dp_rx.c 93 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #include "dp_ipa.h"
  31. #ifdef FEATURE_WDS
  32. #include "dp_txrx_wds.h"
  33. #endif
  34. #include "dp_hist.h"
  35. #include "dp_rx_buffer_pool.h"
  36. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  37. #ifdef ATH_RX_PRI_SAVE
  38. #define DP_RX_TID_SAVE(_nbuf, _tid) \
  39. (qdf_nbuf_set_priority(_nbuf, _tid))
  40. #else
  41. #define DP_RX_TID_SAVE(_nbuf, _tid)
  42. #endif
  43. #ifdef DP_RX_DISABLE_NDI_MDNS_FORWARDING
  44. static inline
  45. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  46. {
  47. if (ta_peer->vdev->opmode == wlan_op_mode_ndi &&
  48. qdf_nbuf_is_ipv6_mdns_pkt(nbuf)) {
  49. DP_STATS_INC(ta_peer, rx.intra_bss.mdns_no_fwd, 1);
  50. return false;
  51. }
  52. return true;
  53. }
  54. #else
  55. static inline
  56. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  57. {
  58. return true;
  59. }
  60. #endif
  61. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  62. {
  63. return vdev->ap_bridge_enabled;
  64. }
  65. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  66. #ifdef DUP_RX_DESC_WAR
  67. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  68. hal_ring_handle_t hal_ring,
  69. hal_ring_desc_t ring_desc,
  70. struct dp_rx_desc *rx_desc)
  71. {
  72. void *hal_soc = soc->hal_soc;
  73. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  74. dp_rx_desc_dump(rx_desc);
  75. }
  76. #else
  77. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  78. hal_ring_handle_t hal_ring_hdl,
  79. hal_ring_desc_t ring_desc,
  80. struct dp_rx_desc *rx_desc)
  81. {
  82. hal_soc_handle_t hal_soc = soc->hal_soc;
  83. dp_rx_desc_dump(rx_desc);
  84. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  85. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  86. qdf_assert_always(0);
  87. }
  88. #endif
  89. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  90. #ifdef RX_DESC_SANITY_WAR
  91. static inline
  92. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  93. hal_ring_handle_t hal_ring_hdl,
  94. hal_ring_desc_t ring_desc,
  95. struct dp_rx_desc *rx_desc)
  96. {
  97. uint8_t return_buffer_manager;
  98. if (qdf_unlikely(!rx_desc)) {
  99. /*
  100. * This is an unlikely case where the cookie obtained
  101. * from the ring_desc is invalid and hence we are not
  102. * able to find the corresponding rx_desc
  103. */
  104. goto fail;
  105. }
  106. return_buffer_manager = hal_rx_ret_buf_manager_get(ring_desc);
  107. if (qdf_unlikely(!(return_buffer_manager == HAL_RX_BUF_RBM_SW1_BM ||
  108. return_buffer_manager == HAL_RX_BUF_RBM_SW3_BM))) {
  109. goto fail;
  110. }
  111. return QDF_STATUS_SUCCESS;
  112. fail:
  113. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  114. dp_err("Ring Desc:");
  115. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  116. ring_desc);
  117. return QDF_STATUS_E_NULL_VALUE;
  118. }
  119. #else
  120. static inline
  121. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  122. hal_ring_handle_t hal_ring_hdl,
  123. hal_ring_desc_t ring_desc,
  124. struct dp_rx_desc *rx_desc)
  125. {
  126. return QDF_STATUS_SUCCESS;
  127. }
  128. #endif
  129. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  130. /**
  131. * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
  132. *
  133. * @dp_soc: struct dp_soc *
  134. * @nbuf_frag_info_t: nbuf frag info
  135. * @dp_pdev: struct dp_pdev *
  136. * @rx_desc_pool: Rx desc pool
  137. *
  138. * Return: QDF_STATUS
  139. */
  140. #ifdef DP_RX_MON_MEM_FRAG
  141. static inline QDF_STATUS
  142. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  143. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  144. struct dp_pdev *dp_pdev,
  145. struct rx_desc_pool *rx_desc_pool)
  146. {
  147. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  148. (nbuf_frag_info_t->virt_addr).vaddr =
  149. qdf_frag_alloc(rx_desc_pool->buf_size);
  150. if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
  151. dp_err("Frag alloc failed");
  152. DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
  153. return QDF_STATUS_E_NOMEM;
  154. }
  155. ret = qdf_mem_map_page(dp_soc->osdev,
  156. (nbuf_frag_info_t->virt_addr).vaddr,
  157. QDF_DMA_FROM_DEVICE,
  158. rx_desc_pool->buf_size,
  159. &nbuf_frag_info_t->paddr);
  160. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  161. qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
  162. dp_err("Frag map failed");
  163. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  164. return QDF_STATUS_E_FAULT;
  165. }
  166. return QDF_STATUS_SUCCESS;
  167. }
  168. #else
  169. static inline QDF_STATUS
  170. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  171. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  172. struct dp_pdev *dp_pdev,
  173. struct rx_desc_pool *rx_desc_pool)
  174. {
  175. return QDF_STATUS_SUCCESS;
  176. }
  177. #endif /* DP_RX_MON_MEM_FRAG */
  178. /**
  179. * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
  180. *
  181. * @dp_soc: struct dp_soc *
  182. * @mac_id: Mac id
  183. * @num_entries_avail: num_entries_avail
  184. * @nbuf_frag_info_t: nbuf frag info
  185. * @dp_pdev: struct dp_pdev *
  186. * @rx_desc_pool: Rx desc pool
  187. *
  188. * Return: QDF_STATUS
  189. */
  190. static inline QDF_STATUS
  191. dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
  192. uint32_t mac_id,
  193. uint32_t num_entries_avail,
  194. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  195. struct dp_pdev *dp_pdev,
  196. struct rx_desc_pool *rx_desc_pool)
  197. {
  198. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  199. (nbuf_frag_info_t->virt_addr).nbuf =
  200. dp_rx_buffer_pool_nbuf_alloc(dp_soc,
  201. mac_id,
  202. rx_desc_pool,
  203. num_entries_avail);
  204. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  205. dp_err("nbuf alloc failed");
  206. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  207. return QDF_STATUS_E_NOMEM;
  208. }
  209. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  210. (nbuf_frag_info_t->virt_addr).nbuf,
  211. QDF_DMA_FROM_DEVICE,
  212. rx_desc_pool->buf_size);
  213. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  214. dp_rx_buffer_pool_nbuf_free(dp_soc,
  215. (nbuf_frag_info_t->virt_addr).nbuf, mac_id);
  216. dp_err("nbuf map failed");
  217. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  218. return QDF_STATUS_E_FAULT;
  219. }
  220. nbuf_frag_info_t->paddr =
  221. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  222. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc,
  223. (qdf_nbuf_t)((nbuf_frag_info_t->virt_addr).nbuf),
  224. rx_desc_pool->buf_size,
  225. true);
  226. ret = check_x86_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  227. &nbuf_frag_info_t->paddr,
  228. rx_desc_pool);
  229. if (ret == QDF_STATUS_E_FAILURE) {
  230. qdf_nbuf_unmap_nbytes_single(dp_soc->osdev,
  231. (nbuf_frag_info_t->virt_addr).nbuf,
  232. QDF_DMA_FROM_DEVICE,
  233. rx_desc_pool->buf_size);
  234. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  235. return QDF_STATUS_E_ADDRNOTAVAIL;
  236. }
  237. return QDF_STATUS_SUCCESS;
  238. }
  239. /*
  240. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  241. * called during dp rx initialization
  242. * and at the end of dp_rx_process.
  243. *
  244. * @soc: core txrx main context
  245. * @mac_id: mac_id which is one of 3 mac_ids
  246. * @dp_rxdma_srng: dp rxdma circular ring
  247. * @rx_desc_pool: Pointer to free Rx descriptor pool
  248. * @num_req_buffers: number of buffer to be replenished
  249. * @desc_list: list of descs if called from dp_rx_process
  250. * or NULL during dp rx initialization or out of buffer
  251. * interrupt.
  252. * @tail: tail of descs list
  253. * @func_name: name of the caller function
  254. * Return: return success or failure
  255. */
  256. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  257. struct dp_srng *dp_rxdma_srng,
  258. struct rx_desc_pool *rx_desc_pool,
  259. uint32_t num_req_buffers,
  260. union dp_rx_desc_list_elem_t **desc_list,
  261. union dp_rx_desc_list_elem_t **tail,
  262. const char *func_name)
  263. {
  264. uint32_t num_alloc_desc;
  265. uint16_t num_desc_to_free = 0;
  266. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  267. uint32_t num_entries_avail;
  268. uint32_t count;
  269. int sync_hw_ptr = 1;
  270. struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
  271. void *rxdma_ring_entry;
  272. union dp_rx_desc_list_elem_t *next;
  273. QDF_STATUS ret;
  274. void *rxdma_srng;
  275. rxdma_srng = dp_rxdma_srng->hal_srng;
  276. if (!rxdma_srng) {
  277. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  278. "rxdma srng not initialized");
  279. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  280. return QDF_STATUS_E_FAILURE;
  281. }
  282. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  283. "requested %d buffers for replenish", num_req_buffers);
  284. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  285. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  286. rxdma_srng,
  287. sync_hw_ptr);
  288. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  289. "no of available entries in rxdma ring: %d",
  290. num_entries_avail);
  291. if (!(*desc_list) && (num_entries_avail >
  292. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  293. num_req_buffers = num_entries_avail;
  294. } else if (num_entries_avail < num_req_buffers) {
  295. num_desc_to_free = num_req_buffers - num_entries_avail;
  296. num_req_buffers = num_entries_avail;
  297. }
  298. if (qdf_unlikely(!num_req_buffers)) {
  299. num_desc_to_free = num_req_buffers;
  300. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  301. goto free_descs;
  302. }
  303. /*
  304. * if desc_list is NULL, allocate the descs from freelist
  305. */
  306. if (!(*desc_list)) {
  307. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  308. rx_desc_pool,
  309. num_req_buffers,
  310. desc_list,
  311. tail);
  312. if (!num_alloc_desc) {
  313. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  314. "no free rx_descs in freelist");
  315. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  316. num_req_buffers);
  317. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  318. return QDF_STATUS_E_NOMEM;
  319. }
  320. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  321. "%d rx desc allocated", num_alloc_desc);
  322. num_req_buffers = num_alloc_desc;
  323. }
  324. count = 0;
  325. while (count < num_req_buffers) {
  326. /* Flag is set while pdev rx_desc_pool initialization */
  327. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  328. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  329. &nbuf_frag_info,
  330. dp_pdev,
  331. rx_desc_pool);
  332. else
  333. ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
  334. mac_id,
  335. num_entries_avail, &nbuf_frag_info,
  336. dp_pdev, rx_desc_pool);
  337. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  338. if (qdf_unlikely(ret == QDF_STATUS_E_FAULT))
  339. continue;
  340. break;
  341. }
  342. count++;
  343. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  344. rxdma_srng);
  345. qdf_assert_always(rxdma_ring_entry);
  346. next = (*desc_list)->next;
  347. /* Flag is set while pdev rx_desc_pool initialization */
  348. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  349. dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
  350. &nbuf_frag_info);
  351. else
  352. dp_rx_desc_prep(&((*desc_list)->rx_desc),
  353. &nbuf_frag_info);
  354. /* rx_desc.in_use should be zero at this time*/
  355. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  356. (*desc_list)->rx_desc.in_use = 1;
  357. (*desc_list)->rx_desc.in_err_state = 0;
  358. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  359. func_name, RX_DESC_REPLENISHED);
  360. dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
  361. nbuf_frag_info.virt_addr.nbuf,
  362. (unsigned long long)(nbuf_frag_info.paddr),
  363. (*desc_list)->rx_desc.cookie);
  364. hal_rxdma_buff_addr_info_set(rxdma_ring_entry,
  365. nbuf_frag_info.paddr,
  366. (*desc_list)->rx_desc.cookie,
  367. rx_desc_pool->owner);
  368. *desc_list = next;
  369. }
  370. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  371. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  372. count, num_desc_to_free);
  373. /* No need to count the number of bytes received during replenish.
  374. * Therefore set replenish.pkts.bytes as 0.
  375. */
  376. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  377. free_descs:
  378. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  379. /*
  380. * add any available free desc back to the free list
  381. */
  382. if (*desc_list)
  383. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  384. mac_id, rx_desc_pool);
  385. return QDF_STATUS_SUCCESS;
  386. }
  387. /*
  388. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  389. * pkts to RAW mode simulation to
  390. * decapsulate the pkt.
  391. *
  392. * @vdev: vdev on which RAW mode is enabled
  393. * @nbuf_list: list of RAW pkts to process
  394. * @peer: peer object from which the pkt is rx
  395. *
  396. * Return: void
  397. */
  398. void
  399. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  400. struct dp_peer *peer)
  401. {
  402. qdf_nbuf_t deliver_list_head = NULL;
  403. qdf_nbuf_t deliver_list_tail = NULL;
  404. qdf_nbuf_t nbuf;
  405. nbuf = nbuf_list;
  406. while (nbuf) {
  407. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  408. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  409. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  410. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  411. /*
  412. * reset the chfrag_start and chfrag_end bits in nbuf cb
  413. * as this is a non-amsdu pkt and RAW mode simulation expects
  414. * these bit s to be 0 for non-amsdu pkt.
  415. */
  416. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  417. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  418. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  419. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  420. }
  421. nbuf = next;
  422. }
  423. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  424. &deliver_list_tail, peer->mac_addr.raw);
  425. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  426. }
  427. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  428. #ifndef FEATURE_WDS
  429. static void
  430. dp_rx_da_learn(struct dp_soc *soc,
  431. uint8_t *rx_tlv_hdr,
  432. struct dp_peer *ta_peer,
  433. qdf_nbuf_t nbuf)
  434. {
  435. }
  436. #endif
  437. /*
  438. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  439. *
  440. * @soc: core txrx main context
  441. * @ta_peer : source peer entry
  442. * @rx_tlv_hdr : start address of rx tlvs
  443. * @nbuf : nbuf that has to be intrabss forwarded
  444. *
  445. * Return: bool: true if it is forwarded else false
  446. */
  447. static bool
  448. dp_rx_intrabss_fwd(struct dp_soc *soc,
  449. struct dp_peer *ta_peer,
  450. uint8_t *rx_tlv_hdr,
  451. qdf_nbuf_t nbuf,
  452. struct hal_rx_msdu_metadata msdu_metadata)
  453. {
  454. uint16_t len;
  455. uint8_t is_frag;
  456. uint16_t da_peer_id = HTT_INVALID_PEER;
  457. struct dp_peer *da_peer = NULL;
  458. bool is_da_bss_peer = false;
  459. struct dp_ast_entry *ast_entry;
  460. qdf_nbuf_t nbuf_copy;
  461. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  462. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  463. struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats.
  464. tid_stats.tid_rx_stats[ring_id][tid];
  465. /* check if the destination peer is available in peer table
  466. * and also check if the source peer and destination peer
  467. * belong to the same vap and destination peer is not bss peer.
  468. */
  469. if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
  470. ast_entry = soc->ast_table[msdu_metadata.da_idx];
  471. if (!ast_entry)
  472. return false;
  473. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  474. ast_entry->is_active = TRUE;
  475. return false;
  476. }
  477. da_peer_id = ast_entry->peer_id;
  478. if (da_peer_id == HTT_INVALID_PEER)
  479. return false;
  480. /* TA peer cannot be same as peer(DA) on which AST is present
  481. * this indicates a change in topology and that AST entries
  482. * are yet to be updated.
  483. */
  484. if (da_peer_id == ta_peer->peer_id)
  485. return false;
  486. if (ast_entry->vdev_id != ta_peer->vdev->vdev_id)
  487. return false;
  488. da_peer = dp_peer_get_ref_by_id(soc, da_peer_id,
  489. DP_MOD_ID_RX);
  490. if (!da_peer)
  491. return false;
  492. is_da_bss_peer = da_peer->bss_peer;
  493. dp_peer_unref_delete(da_peer, DP_MOD_ID_RX);
  494. if (!is_da_bss_peer) {
  495. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  496. is_frag = qdf_nbuf_is_frag(nbuf);
  497. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  498. /* If the source or destination peer in the isolation
  499. * list then dont forward instead push to bridge stack.
  500. */
  501. if (dp_get_peer_isolation(ta_peer) ||
  502. dp_get_peer_isolation(da_peer))
  503. return false;
  504. /* linearize the nbuf just before we send to
  505. * dp_tx_send()
  506. */
  507. if (qdf_unlikely(is_frag)) {
  508. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  509. return false;
  510. nbuf = qdf_nbuf_unshare(nbuf);
  511. if (!nbuf) {
  512. DP_STATS_INC_PKT(ta_peer,
  513. rx.intra_bss.fail,
  514. 1,
  515. len);
  516. /* return true even though the pkt is
  517. * not forwarded. Basically skb_unshare
  518. * failed and we want to continue with
  519. * next nbuf.
  520. */
  521. tid_stats->fail_cnt[INTRABSS_DROP]++;
  522. return true;
  523. }
  524. }
  525. if (!dp_tx_send((struct cdp_soc_t *)soc,
  526. ta_peer->vdev->vdev_id, nbuf)) {
  527. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  528. len);
  529. return true;
  530. } else {
  531. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  532. len);
  533. tid_stats->fail_cnt[INTRABSS_DROP]++;
  534. return false;
  535. }
  536. }
  537. }
  538. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  539. * source, then clone the pkt and send the cloned pkt for
  540. * intra BSS forwarding and original pkt up the network stack
  541. * Note: how do we handle multicast pkts. do we forward
  542. * all multicast pkts as is or let a higher layer module
  543. * like igmpsnoop decide whether to forward or not with
  544. * Mcast enhancement.
  545. */
  546. else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
  547. !ta_peer->bss_peer))) {
  548. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  549. goto end;
  550. /* If the source peer in the isolation list
  551. * then dont forward instead push to bridge stack
  552. */
  553. if (dp_get_peer_isolation(ta_peer))
  554. goto end;
  555. nbuf_copy = qdf_nbuf_copy(nbuf);
  556. if (!nbuf_copy)
  557. goto end;
  558. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  559. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  560. /* Set cb->ftype to intrabss FWD */
  561. qdf_nbuf_set_tx_ftype(nbuf_copy, CB_FTYPE_INTRABSS_FWD);
  562. if (dp_tx_send((struct cdp_soc_t *)soc,
  563. ta_peer->vdev->vdev_id, nbuf_copy)) {
  564. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  565. tid_stats->fail_cnt[INTRABSS_DROP]++;
  566. qdf_nbuf_free(nbuf_copy);
  567. } else {
  568. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  569. tid_stats->intrabss_cnt++;
  570. }
  571. }
  572. end:
  573. /* return false as we have to still send the original pkt
  574. * up the stack
  575. */
  576. return false;
  577. }
  578. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  579. #ifdef MESH_MODE_SUPPORT
  580. /**
  581. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  582. *
  583. * @vdev: DP Virtual device handle
  584. * @nbuf: Buffer pointer
  585. * @rx_tlv_hdr: start of rx tlv header
  586. * @peer: pointer to peer
  587. *
  588. * This function allocated memory for mesh receive stats and fill the
  589. * required stats. Stores the memory address in skb cb.
  590. *
  591. * Return: void
  592. */
  593. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  594. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  595. {
  596. struct mesh_recv_hdr_s *rx_info = NULL;
  597. uint32_t pkt_type;
  598. uint32_t nss;
  599. uint32_t rate_mcs;
  600. uint32_t bw;
  601. uint8_t primary_chan_num;
  602. uint32_t center_chan_freq;
  603. struct dp_soc *soc;
  604. /* fill recv mesh stats */
  605. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  606. /* upper layers are resposible to free this memory */
  607. if (!rx_info) {
  608. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  609. "Memory allocation failed for mesh rx stats");
  610. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  611. return;
  612. }
  613. rx_info->rs_flags = MESH_RXHDR_VER1;
  614. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  615. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  616. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  617. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  618. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  619. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  620. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  621. if (vdev->osif_get_key)
  622. vdev->osif_get_key(vdev->osif_vdev,
  623. &rx_info->rs_decryptkey[0],
  624. &peer->mac_addr.raw[0],
  625. rx_info->rs_keyix);
  626. }
  627. rx_info->rs_rssi = peer->stats.rx.rssi;
  628. soc = vdev->pdev->soc;
  629. primary_chan_num = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  630. center_chan_freq = hal_rx_msdu_start_get_freq(rx_tlv_hdr) >> 16;
  631. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  632. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  633. soc->ctrl_psoc,
  634. vdev->pdev->pdev_id,
  635. center_chan_freq);
  636. }
  637. rx_info->rs_channel = primary_chan_num;
  638. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  639. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  640. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  641. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  642. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  643. (bw << 24);
  644. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  645. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  646. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  647. rx_info->rs_flags,
  648. rx_info->rs_rssi,
  649. rx_info->rs_channel,
  650. rx_info->rs_ratephy1,
  651. rx_info->rs_keyix);
  652. }
  653. /**
  654. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  655. *
  656. * @vdev: DP Virtual device handle
  657. * @nbuf: Buffer pointer
  658. * @rx_tlv_hdr: start of rx tlv header
  659. *
  660. * This checks if the received packet is matching any filter out
  661. * catogery and and drop the packet if it matches.
  662. *
  663. * Return: status(0 indicates drop, 1 indicate to no drop)
  664. */
  665. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  666. uint8_t *rx_tlv_hdr)
  667. {
  668. union dp_align_mac_addr mac_addr;
  669. struct dp_soc *soc = vdev->pdev->soc;
  670. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  671. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  672. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  673. rx_tlv_hdr))
  674. return QDF_STATUS_SUCCESS;
  675. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  676. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  677. rx_tlv_hdr))
  678. return QDF_STATUS_SUCCESS;
  679. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  680. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  681. rx_tlv_hdr) &&
  682. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  683. rx_tlv_hdr))
  684. return QDF_STATUS_SUCCESS;
  685. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  686. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  687. rx_tlv_hdr,
  688. &mac_addr.raw[0]))
  689. return QDF_STATUS_E_FAILURE;
  690. if (!qdf_mem_cmp(&mac_addr.raw[0],
  691. &vdev->mac_addr.raw[0],
  692. QDF_MAC_ADDR_SIZE))
  693. return QDF_STATUS_SUCCESS;
  694. }
  695. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  696. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  697. rx_tlv_hdr,
  698. &mac_addr.raw[0]))
  699. return QDF_STATUS_E_FAILURE;
  700. if (!qdf_mem_cmp(&mac_addr.raw[0],
  701. &vdev->mac_addr.raw[0],
  702. QDF_MAC_ADDR_SIZE))
  703. return QDF_STATUS_SUCCESS;
  704. }
  705. }
  706. return QDF_STATUS_E_FAILURE;
  707. }
  708. #else
  709. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  710. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  711. {
  712. }
  713. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  714. uint8_t *rx_tlv_hdr)
  715. {
  716. return QDF_STATUS_E_FAILURE;
  717. }
  718. #endif
  719. #ifdef FEATURE_NAC_RSSI
  720. /**
  721. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  722. * clients
  723. * @pdev: DP pdev handle
  724. * @rx_pkt_hdr: Rx packet Header
  725. *
  726. * return: dp_vdev*
  727. */
  728. static
  729. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  730. uint8_t *rx_pkt_hdr)
  731. {
  732. struct ieee80211_frame *wh;
  733. struct dp_neighbour_peer *peer = NULL;
  734. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  735. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  736. return NULL;
  737. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  738. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  739. neighbour_peer_list_elem) {
  740. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  741. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  742. QDF_TRACE(
  743. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  744. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  745. peer->neighbour_peers_macaddr.raw[0],
  746. peer->neighbour_peers_macaddr.raw[1],
  747. peer->neighbour_peers_macaddr.raw[2],
  748. peer->neighbour_peers_macaddr.raw[3],
  749. peer->neighbour_peers_macaddr.raw[4],
  750. peer->neighbour_peers_macaddr.raw[5]);
  751. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  752. return pdev->monitor_vdev;
  753. }
  754. }
  755. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  756. return NULL;
  757. }
  758. /**
  759. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  760. * @soc: DP SOC handle
  761. * @mpdu: mpdu for which peer is invalid
  762. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  763. * pool_id has same mapping)
  764. *
  765. * return: integer type
  766. */
  767. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  768. uint8_t mac_id)
  769. {
  770. struct dp_invalid_peer_msg msg;
  771. struct dp_vdev *vdev = NULL;
  772. struct dp_pdev *pdev = NULL;
  773. struct ieee80211_frame *wh;
  774. qdf_nbuf_t curr_nbuf, next_nbuf;
  775. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  776. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  777. rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  778. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  779. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  780. "Drop decapped frames");
  781. goto free;
  782. }
  783. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  784. if (!DP_FRAME_IS_DATA(wh)) {
  785. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  786. "NAWDS valid only for data frames");
  787. goto free;
  788. }
  789. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  790. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  791. "Invalid nbuf length");
  792. goto free;
  793. }
  794. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  795. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  796. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  797. "PDEV %s", !pdev ? "not found" : "down");
  798. goto free;
  799. }
  800. if (pdev->filter_neighbour_peers) {
  801. /* Next Hop scenario not yet handle */
  802. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  803. if (vdev) {
  804. dp_rx_mon_deliver(soc, pdev->pdev_id,
  805. pdev->invalid_peer_head_msdu,
  806. pdev->invalid_peer_tail_msdu);
  807. pdev->invalid_peer_head_msdu = NULL;
  808. pdev->invalid_peer_tail_msdu = NULL;
  809. return 0;
  810. }
  811. }
  812. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  813. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  814. QDF_MAC_ADDR_SIZE) == 0) {
  815. goto out;
  816. }
  817. }
  818. if (!vdev) {
  819. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  820. "VDEV not found");
  821. goto free;
  822. }
  823. out:
  824. msg.wh = wh;
  825. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  826. msg.nbuf = mpdu;
  827. msg.vdev_id = vdev->vdev_id;
  828. /*
  829. * NOTE: Only valid for HKv1.
  830. * If smart monitor mode is enabled on RE, we are getting invalid
  831. * peer frames with RA as STA mac of RE and the TA not matching
  832. * with any NAC list or the the BSSID.Such frames need to dropped
  833. * in order to avoid HM_WDS false addition.
  834. */
  835. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
  836. if (!soc->hw_nac_monitor_support &&
  837. pdev->filter_neighbour_peers &&
  838. vdev->opmode == wlan_op_mode_sta) {
  839. QDF_TRACE(QDF_MODULE_ID_DP,
  840. QDF_TRACE_LEVEL_WARN,
  841. "Drop inv peer pkts with STA RA:%pm",
  842. wh->i_addr1);
  843. goto free;
  844. }
  845. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  846. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  847. pdev->pdev_id, &msg);
  848. }
  849. free:
  850. /* Drop and free packet */
  851. curr_nbuf = mpdu;
  852. while (curr_nbuf) {
  853. next_nbuf = qdf_nbuf_next(curr_nbuf);
  854. qdf_nbuf_free(curr_nbuf);
  855. curr_nbuf = next_nbuf;
  856. }
  857. return 0;
  858. }
  859. /**
  860. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  861. * @soc: DP SOC handle
  862. * @mpdu: mpdu for which peer is invalid
  863. * @mpdu_done: if an mpdu is completed
  864. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  865. * pool_id has same mapping)
  866. *
  867. * return: integer type
  868. */
  869. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  870. qdf_nbuf_t mpdu, bool mpdu_done,
  871. uint8_t mac_id)
  872. {
  873. /* Only trigger the process when mpdu is completed */
  874. if (mpdu_done)
  875. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  876. }
  877. #else
  878. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  879. uint8_t mac_id)
  880. {
  881. qdf_nbuf_t curr_nbuf, next_nbuf;
  882. struct dp_pdev *pdev;
  883. struct dp_vdev *vdev = NULL;
  884. struct ieee80211_frame *wh;
  885. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  886. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  887. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  888. if (!DP_FRAME_IS_DATA(wh)) {
  889. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  890. "only for data frames");
  891. goto free;
  892. }
  893. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  894. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  895. "Invalid nbuf length");
  896. goto free;
  897. }
  898. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  899. if (!pdev) {
  900. QDF_TRACE(QDF_MODULE_ID_DP,
  901. QDF_TRACE_LEVEL_ERROR,
  902. "PDEV not found");
  903. goto free;
  904. }
  905. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  906. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  907. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  908. QDF_MAC_ADDR_SIZE) == 0) {
  909. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  910. goto out;
  911. }
  912. }
  913. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  914. if (!vdev) {
  915. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  916. "VDEV not found");
  917. goto free;
  918. }
  919. out:
  920. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  921. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  922. free:
  923. /* reset the head and tail pointers */
  924. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  925. if (pdev) {
  926. pdev->invalid_peer_head_msdu = NULL;
  927. pdev->invalid_peer_tail_msdu = NULL;
  928. }
  929. /* Drop and free packet */
  930. curr_nbuf = mpdu;
  931. while (curr_nbuf) {
  932. next_nbuf = qdf_nbuf_next(curr_nbuf);
  933. qdf_nbuf_free(curr_nbuf);
  934. curr_nbuf = next_nbuf;
  935. }
  936. /* Reset the head and tail pointers */
  937. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  938. if (pdev) {
  939. pdev->invalid_peer_head_msdu = NULL;
  940. pdev->invalid_peer_tail_msdu = NULL;
  941. }
  942. return 0;
  943. }
  944. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  945. qdf_nbuf_t mpdu, bool mpdu_done,
  946. uint8_t mac_id)
  947. {
  948. /* Process the nbuf */
  949. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  950. }
  951. #endif
  952. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  953. #ifdef RECEIVE_OFFLOAD
  954. /**
  955. * dp_rx_print_offload_info() - Print offload info from RX TLV
  956. * @soc: dp soc handle
  957. * @rx_tlv: RX TLV for which offload information is to be printed
  958. *
  959. * Return: None
  960. */
  961. static void dp_rx_print_offload_info(struct dp_soc *soc, uint8_t *rx_tlv)
  962. {
  963. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  964. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  965. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  966. dp_verbose_debug("chksum 0x%x", hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  967. rx_tlv));
  968. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  969. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  970. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  971. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  972. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  973. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  974. dp_verbose_debug("---------------------------------------------------------");
  975. }
  976. /**
  977. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  978. * @soc: DP SOC handle
  979. * @rx_tlv: RX TLV received for the msdu
  980. * @msdu: msdu for which GRO info needs to be filled
  981. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  982. *
  983. * Return: None
  984. */
  985. static
  986. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  987. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  988. {
  989. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  990. return;
  991. /* Filling up RX offload info only for TCP packets */
  992. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  993. return;
  994. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  995. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  996. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  997. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  998. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  999. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  1000. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  1001. rx_tlv);
  1002. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  1003. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  1004. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  1005. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  1006. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  1007. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  1008. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  1009. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  1010. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  1011. HAL_RX_TLV_GET_IPV6(rx_tlv);
  1012. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  1013. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  1014. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  1015. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  1016. dp_rx_print_offload_info(soc, rx_tlv);
  1017. }
  1018. #else
  1019. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  1020. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  1021. {
  1022. }
  1023. #endif /* RECEIVE_OFFLOAD */
  1024. /**
  1025. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  1026. *
  1027. * @nbuf: pointer to msdu.
  1028. * @mpdu_len: mpdu length
  1029. *
  1030. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  1031. */
  1032. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  1033. {
  1034. bool last_nbuf;
  1035. if (*mpdu_len > (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  1036. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  1037. last_nbuf = false;
  1038. } else {
  1039. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  1040. last_nbuf = true;
  1041. }
  1042. *mpdu_len -= (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  1043. return last_nbuf;
  1044. }
  1045. /**
  1046. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  1047. * multiple nbufs.
  1048. * @soc: DP SOC handle
  1049. * @nbuf: pointer to the first msdu of an amsdu.
  1050. *
  1051. * This function implements the creation of RX frag_list for cases
  1052. * where an MSDU is spread across multiple nbufs.
  1053. *
  1054. * Return: returns the head nbuf which contains complete frag_list.
  1055. */
  1056. qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1057. {
  1058. qdf_nbuf_t parent, frag_list, next = NULL;
  1059. uint16_t frag_list_len = 0;
  1060. uint16_t mpdu_len;
  1061. bool last_nbuf;
  1062. /*
  1063. * Use msdu len got from REO entry descriptor instead since
  1064. * there is case the RX PKT TLV is corrupted while msdu_len
  1065. * from REO descriptor is right for non-raw RX scatter msdu.
  1066. */
  1067. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1068. /*
  1069. * this is a case where the complete msdu fits in one single nbuf.
  1070. * in this case HW sets both start and end bit and we only need to
  1071. * reset these bits for RAW mode simulator to decap the pkt
  1072. */
  1073. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  1074. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  1075. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  1076. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1077. return nbuf;
  1078. }
  1079. /*
  1080. * This is a case where we have multiple msdus (A-MSDU) spread across
  1081. * multiple nbufs. here we create a fraglist out of these nbufs.
  1082. *
  1083. * the moment we encounter a nbuf with continuation bit set we
  1084. * know for sure we have an MSDU which is spread across multiple
  1085. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  1086. */
  1087. parent = nbuf;
  1088. frag_list = nbuf->next;
  1089. nbuf = nbuf->next;
  1090. /*
  1091. * set the start bit in the first nbuf we encounter with continuation
  1092. * bit set. This has the proper mpdu length set as it is the first
  1093. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  1094. * nbufs will form the frag_list of the parent nbuf.
  1095. */
  1096. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1097. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  1098. /*
  1099. * HW issue: MSDU cont bit is set but reported MPDU length can fit
  1100. * in to single buffer
  1101. *
  1102. * Increment error stats and avoid SG list creation
  1103. */
  1104. if (last_nbuf) {
  1105. DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
  1106. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  1107. return parent;
  1108. }
  1109. /*
  1110. * this is where we set the length of the fragments which are
  1111. * associated to the parent nbuf. We iterate through the frag_list
  1112. * till we hit the last_nbuf of the list.
  1113. */
  1114. do {
  1115. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  1116. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1117. frag_list_len += qdf_nbuf_len(nbuf);
  1118. if (last_nbuf) {
  1119. next = nbuf->next;
  1120. nbuf->next = NULL;
  1121. break;
  1122. }
  1123. nbuf = nbuf->next;
  1124. } while (!last_nbuf);
  1125. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1126. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1127. parent->next = next;
  1128. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  1129. return parent;
  1130. }
  1131. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1132. #ifdef QCA_PEER_EXT_STATS
  1133. /*
  1134. * dp_rx_compute_tid_delay - Computer per TID delay stats
  1135. * @peer: DP soc context
  1136. * @nbuf: NBuffer
  1137. *
  1138. * Return: Void
  1139. */
  1140. void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  1141. qdf_nbuf_t nbuf)
  1142. {
  1143. struct cdp_delay_rx_stats *rx_delay = &stats->rx_delay;
  1144. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1145. dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
  1146. }
  1147. #endif /* QCA_PEER_EXT_STATS */
  1148. /**
  1149. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1150. * to pass in correct fields
  1151. *
  1152. * @vdev: pdev handle
  1153. * @tx_desc: tx descriptor
  1154. * @tid: tid value
  1155. * Return: none
  1156. */
  1157. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1158. {
  1159. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1160. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1161. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1162. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1163. uint32_t interframe_delay =
  1164. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1165. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  1166. CDP_DELAY_STATS_REAP_STACK, ring_id);
  1167. /*
  1168. * Update interframe delay stats calculated at deliver_data_ol point.
  1169. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1170. * interframe delay will not be calculate correctly for 1st frame.
  1171. * On the other side, this will help in avoiding extra per packet check
  1172. * of vdev->prev_rx_deliver_tstamp.
  1173. */
  1174. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  1175. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  1176. vdev->prev_rx_deliver_tstamp = current_ts;
  1177. }
  1178. /**
  1179. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1180. * @pdev: dp pdev reference
  1181. * @buf_list: buffer list to be dropepd
  1182. *
  1183. * Return: int (number of bufs dropped)
  1184. */
  1185. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1186. qdf_nbuf_t buf_list)
  1187. {
  1188. struct cdp_tid_rx_stats *stats = NULL;
  1189. uint8_t tid = 0, ring_id = 0;
  1190. int num_dropped = 0;
  1191. qdf_nbuf_t buf, next_buf;
  1192. buf = buf_list;
  1193. while (buf) {
  1194. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1195. next_buf = qdf_nbuf_queue_next(buf);
  1196. tid = qdf_nbuf_get_tid_val(buf);
  1197. if (qdf_likely(pdev)) {
  1198. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1199. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1200. stats->delivered_to_stack--;
  1201. }
  1202. qdf_nbuf_free(buf);
  1203. buf = next_buf;
  1204. num_dropped++;
  1205. }
  1206. return num_dropped;
  1207. }
  1208. #ifdef QCA_SUPPORT_WDS_EXTENDED
  1209. /**
  1210. * dp_rx_wds_ext() - Make different lists for 4-address and 3-address frames
  1211. * @nbuf_head: skb list head
  1212. * @vdev: vdev
  1213. * @peer: peer
  1214. * @peer_id: peer id of new received frame
  1215. * @vdev_id: vdev_id of new received frame
  1216. *
  1217. * Return: true if peer_ids are different.
  1218. */
  1219. static inline bool
  1220. dp_rx_is_list_ready(qdf_nbuf_t nbuf_head,
  1221. struct dp_vdev *vdev,
  1222. struct dp_peer *peer,
  1223. uint16_t peer_id,
  1224. uint8_t vdev_id)
  1225. {
  1226. if (nbuf_head && peer && (peer->peer_id != peer_id))
  1227. return true;
  1228. return false;
  1229. }
  1230. /**
  1231. * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
  1232. * @soc: core txrx main context
  1233. * @vdev: vdev
  1234. * @peer: peer
  1235. * @nbuf_head: skb list head
  1236. *
  1237. * Return: true if packet is delivered to netdev per STA.
  1238. */
  1239. static inline bool
  1240. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1241. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1242. {
  1243. /*
  1244. * When extended WDS is disabled, frames are sent to AP netdevice.
  1245. */
  1246. if (qdf_likely(!vdev->wds_ext_enabled))
  1247. return false;
  1248. /*
  1249. * There can be 2 cases:
  1250. * 1. Send frame to parent netdev if its not for netdev per STA
  1251. * 2. If frame is meant for netdev per STA:
  1252. * a. Send frame to appropriate netdev using registered fp.
  1253. * b. If fp is NULL, drop the frames.
  1254. */
  1255. if (!peer->wds_ext.init)
  1256. return false;
  1257. if (peer->osif_rx)
  1258. peer->osif_rx(peer->wds_ext.osif_peer, nbuf_head);
  1259. else
  1260. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1261. return true;
  1262. }
  1263. #else
  1264. static inline bool
  1265. dp_rx_is_list_ready(qdf_nbuf_t nbuf_head,
  1266. struct dp_vdev *vdev,
  1267. struct dp_peer *peer,
  1268. uint16_t peer_id,
  1269. uint8_t vdev_id)
  1270. {
  1271. if (nbuf_head && vdev && (vdev->vdev_id != vdev_id))
  1272. return true;
  1273. return false;
  1274. }
  1275. static inline bool
  1276. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1277. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1278. {
  1279. return false;
  1280. }
  1281. #endif
  1282. #ifdef PEER_CACHE_RX_PKTS
  1283. /**
  1284. * dp_rx_flush_rx_cached() - flush cached rx frames
  1285. * @peer: peer
  1286. * @drop: flag to drop frames or forward to net stack
  1287. *
  1288. * Return: None
  1289. */
  1290. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1291. {
  1292. struct dp_peer_cached_bufq *bufqi;
  1293. struct dp_rx_cached_buf *cache_buf = NULL;
  1294. ol_txrx_rx_fp data_rx = NULL;
  1295. int num_buff_elem;
  1296. QDF_STATUS status;
  1297. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1298. qdf_atomic_dec(&peer->flush_in_progress);
  1299. return;
  1300. }
  1301. qdf_spin_lock_bh(&peer->peer_info_lock);
  1302. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1303. data_rx = peer->vdev->osif_rx;
  1304. else
  1305. drop = true;
  1306. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1307. bufqi = &peer->bufq_info;
  1308. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1309. qdf_list_remove_front(&bufqi->cached_bufq,
  1310. (qdf_list_node_t **)&cache_buf);
  1311. while (cache_buf) {
  1312. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1313. cache_buf->buf);
  1314. bufqi->entries -= num_buff_elem;
  1315. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1316. if (drop) {
  1317. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1318. cache_buf->buf);
  1319. } else {
  1320. /* Flush the cached frames to OSIF DEV */
  1321. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1322. if (status != QDF_STATUS_SUCCESS)
  1323. bufqi->dropped = dp_rx_drop_nbuf_list(
  1324. peer->vdev->pdev,
  1325. cache_buf->buf);
  1326. }
  1327. qdf_mem_free(cache_buf);
  1328. cache_buf = NULL;
  1329. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1330. qdf_list_remove_front(&bufqi->cached_bufq,
  1331. (qdf_list_node_t **)&cache_buf);
  1332. }
  1333. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1334. qdf_atomic_dec(&peer->flush_in_progress);
  1335. }
  1336. /**
  1337. * dp_rx_enqueue_rx() - cache rx frames
  1338. * @peer: peer
  1339. * @rx_buf_list: cache buffer list
  1340. *
  1341. * Return: None
  1342. */
  1343. static QDF_STATUS
  1344. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1345. {
  1346. struct dp_rx_cached_buf *cache_buf;
  1347. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1348. int num_buff_elem;
  1349. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1350. bufqi->dropped);
  1351. if (!peer->valid) {
  1352. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1353. rx_buf_list);
  1354. return QDF_STATUS_E_INVAL;
  1355. }
  1356. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1357. if (bufqi->entries >= bufqi->thresh) {
  1358. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1359. rx_buf_list);
  1360. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1361. return QDF_STATUS_E_RESOURCES;
  1362. }
  1363. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1364. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1365. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1366. if (!cache_buf) {
  1367. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1368. "Failed to allocate buf to cache rx frames");
  1369. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1370. rx_buf_list);
  1371. return QDF_STATUS_E_NOMEM;
  1372. }
  1373. cache_buf->buf = rx_buf_list;
  1374. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1375. qdf_list_insert_back(&bufqi->cached_bufq,
  1376. &cache_buf->node);
  1377. bufqi->entries += num_buff_elem;
  1378. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1379. return QDF_STATUS_SUCCESS;
  1380. }
  1381. static inline
  1382. bool dp_rx_is_peer_cache_bufq_supported(void)
  1383. {
  1384. return true;
  1385. }
  1386. #else
  1387. static inline
  1388. bool dp_rx_is_peer_cache_bufq_supported(void)
  1389. {
  1390. return false;
  1391. }
  1392. static inline QDF_STATUS
  1393. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1394. {
  1395. return QDF_STATUS_SUCCESS;
  1396. }
  1397. #endif
  1398. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1399. /**
  1400. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1401. * using the appropriate call back functions.
  1402. * @soc: soc
  1403. * @vdev: vdev
  1404. * @peer: peer
  1405. * @nbuf_head: skb list head
  1406. * @nbuf_tail: skb list tail
  1407. *
  1408. * Return: None
  1409. */
  1410. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1411. struct dp_vdev *vdev,
  1412. struct dp_peer *peer,
  1413. qdf_nbuf_t nbuf_head)
  1414. {
  1415. if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
  1416. peer, nbuf_head)))
  1417. return;
  1418. /* Function pointer initialized only when FISA is enabled */
  1419. if (vdev->osif_fisa_rx)
  1420. /* on failure send it via regular path */
  1421. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1422. else
  1423. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1424. }
  1425. #else
  1426. /**
  1427. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1428. * using the appropriate call back functions.
  1429. * @soc: soc
  1430. * @vdev: vdev
  1431. * @peer: peer
  1432. * @nbuf_head: skb list head
  1433. * @nbuf_tail: skb list tail
  1434. *
  1435. * Check the return status of the call back function and drop
  1436. * the packets if the return status indicates a failure.
  1437. *
  1438. * Return: None
  1439. */
  1440. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1441. struct dp_vdev *vdev,
  1442. struct dp_peer *peer,
  1443. qdf_nbuf_t nbuf_head)
  1444. {
  1445. int num_nbuf = 0;
  1446. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1447. /* Function pointer initialized only when FISA is enabled */
  1448. if (vdev->osif_fisa_rx)
  1449. /* on failure send it via regular path */
  1450. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1451. else if (vdev->osif_rx)
  1452. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1453. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1454. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1455. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1456. if (peer)
  1457. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1458. }
  1459. }
  1460. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1461. void dp_rx_deliver_to_stack(struct dp_soc *soc,
  1462. struct dp_vdev *vdev,
  1463. struct dp_peer *peer,
  1464. qdf_nbuf_t nbuf_head,
  1465. qdf_nbuf_t nbuf_tail)
  1466. {
  1467. int num_nbuf = 0;
  1468. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1469. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1470. /*
  1471. * This is a special case where vdev is invalid,
  1472. * so we cannot know the pdev to which this packet
  1473. * belonged. Hence we update the soc rx error stats.
  1474. */
  1475. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1476. return;
  1477. }
  1478. /*
  1479. * highly unlikely to have a vdev without a registered rx
  1480. * callback function. if so let us free the nbuf_list.
  1481. */
  1482. if (qdf_unlikely(!vdev->osif_rx)) {
  1483. if (peer && dp_rx_is_peer_cache_bufq_supported()) {
  1484. dp_rx_enqueue_rx(peer, nbuf_head);
  1485. } else {
  1486. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1487. nbuf_head);
  1488. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1489. }
  1490. return;
  1491. }
  1492. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1493. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1494. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1495. &nbuf_tail, peer->mac_addr.raw);
  1496. }
  1497. dp_rx_check_delivery_to_stack(soc, vdev, peer, nbuf_head);
  1498. }
  1499. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1500. /**
  1501. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1502. * @nbuf: pointer to the first msdu of an amsdu.
  1503. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1504. *
  1505. * The ipsumed field of the skb is set based on whether HW validated the
  1506. * IP/TCP/UDP checksum.
  1507. *
  1508. * Return: void
  1509. */
  1510. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1511. qdf_nbuf_t nbuf,
  1512. uint8_t *rx_tlv_hdr)
  1513. {
  1514. qdf_nbuf_rx_cksum_t cksum = {0};
  1515. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1516. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1517. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1518. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1519. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1520. } else {
  1521. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1522. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1523. }
  1524. }
  1525. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1526. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer) \
  1527. { \
  1528. qdf_nbuf_t nbuf_local; \
  1529. struct dp_peer *peer_local; \
  1530. struct dp_vdev *vdev_local = vdev_hdl; \
  1531. do { \
  1532. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1533. break; \
  1534. nbuf_local = nbuf; \
  1535. peer_local = peer; \
  1536. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1537. break; \
  1538. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1539. break; \
  1540. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1541. (nbuf_local), \
  1542. (peer_local), 0, 1); \
  1543. } while (0); \
  1544. }
  1545. #else
  1546. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer)
  1547. #endif
  1548. /**
  1549. * dp_rx_msdu_stats_update() - update per msdu stats.
  1550. * @soc: core txrx main context
  1551. * @nbuf: pointer to the first msdu of an amsdu.
  1552. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1553. * @peer: pointer to the peer object.
  1554. * @ring_id: reo dest ring number on which pkt is reaped.
  1555. * @tid_stats: per tid rx stats.
  1556. *
  1557. * update all the per msdu stats for that nbuf.
  1558. * Return: void
  1559. */
  1560. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1561. qdf_nbuf_t nbuf,
  1562. uint8_t *rx_tlv_hdr,
  1563. struct dp_peer *peer,
  1564. uint8_t ring_id,
  1565. struct cdp_tid_rx_stats *tid_stats)
  1566. {
  1567. bool is_ampdu, is_not_amsdu;
  1568. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1569. struct dp_vdev *vdev = peer->vdev;
  1570. qdf_ether_header_t *eh;
  1571. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1572. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, peer);
  1573. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1574. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1575. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1576. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1577. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1578. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1579. tid_stats->msdu_cnt++;
  1580. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1581. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1582. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1583. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1584. tid_stats->mcast_msdu_cnt++;
  1585. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1586. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1587. tid_stats->bcast_msdu_cnt++;
  1588. }
  1589. }
  1590. /*
  1591. * currently we can return from here as we have similar stats
  1592. * updated at per ppdu level instead of msdu level
  1593. */
  1594. if (!soc->process_rx_status)
  1595. return;
  1596. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1597. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1598. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1599. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1600. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1601. tid = qdf_nbuf_get_tid_val(nbuf);
  1602. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1603. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1604. rx_tlv_hdr);
  1605. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1606. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1607. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[mcs], 1,
  1608. ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1609. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
  1610. ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1611. DP_STATS_INC(peer, rx.bw[bw], 1);
  1612. /*
  1613. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1614. * then increase index [nss - 1] in array counter.
  1615. */
  1616. if (nss > 0 && (pkt_type == DOT11_N ||
  1617. pkt_type == DOT11_AC ||
  1618. pkt_type == DOT11_AX))
  1619. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1620. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1621. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1622. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1623. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1624. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1625. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1626. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1627. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1628. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1629. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1630. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1631. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1632. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1633. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1634. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1635. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1636. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1637. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1638. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1639. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1640. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1641. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1642. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1643. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1644. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1645. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1646. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1647. if ((soc->process_rx_status) &&
  1648. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1649. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1650. if (!vdev->pdev)
  1651. return;
  1652. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1653. &peer->stats, peer->peer_id,
  1654. UPDATE_PEER_STATS,
  1655. vdev->pdev->pdev_id);
  1656. #endif
  1657. }
  1658. }
  1659. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1660. uint8_t *rx_tlv_hdr,
  1661. qdf_nbuf_t nbuf,
  1662. struct hal_rx_msdu_metadata msdu_info)
  1663. {
  1664. if ((qdf_nbuf_is_sa_valid(nbuf) &&
  1665. (msdu_info.sa_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1666. (!qdf_nbuf_is_da_mcbc(nbuf) &&
  1667. qdf_nbuf_is_da_valid(nbuf) &&
  1668. (msdu_info.da_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1669. return false;
  1670. return true;
  1671. }
  1672. #ifndef WDS_VENDOR_EXTENSION
  1673. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1674. struct dp_vdev *vdev,
  1675. struct dp_peer *peer)
  1676. {
  1677. return 1;
  1678. }
  1679. #endif
  1680. #ifdef RX_DESC_DEBUG_CHECK
  1681. /**
  1682. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1683. * corruption
  1684. *
  1685. * @ring_desc: REO ring descriptor
  1686. * @rx_desc: Rx descriptor
  1687. *
  1688. * Return: NONE
  1689. */
  1690. static inline
  1691. QDF_STATUS dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1692. struct dp_rx_desc *rx_desc)
  1693. {
  1694. struct hal_buf_info hbi;
  1695. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1696. /* Sanity check for possible buffer paddr corruption */
  1697. if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
  1698. return QDF_STATUS_SUCCESS;
  1699. return QDF_STATUS_E_FAILURE;
  1700. }
  1701. #else
  1702. static inline
  1703. QDF_STATUS dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1704. struct dp_rx_desc *rx_desc)
  1705. {
  1706. return QDF_STATUS_SUCCESS;
  1707. }
  1708. #endif
  1709. #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
  1710. static inline
  1711. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1712. {
  1713. bool limit_hit = false;
  1714. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  1715. limit_hit =
  1716. (num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
  1717. if (limit_hit)
  1718. DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
  1719. return limit_hit;
  1720. }
  1721. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1722. {
  1723. return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
  1724. }
  1725. #else
  1726. static inline
  1727. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1728. {
  1729. return false;
  1730. }
  1731. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1732. {
  1733. return false;
  1734. }
  1735. #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
  1736. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1737. /**
  1738. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1739. * no corresbonding peer found
  1740. * @soc: core txrx main context
  1741. * @nbuf: pkt skb pointer
  1742. *
  1743. * This function will try to deliver some RX special frames to stack
  1744. * even there is no peer matched found. for instance, LFR case, some
  1745. * eapol data will be sent to host before peer_map done.
  1746. *
  1747. * Return: None
  1748. */
  1749. static
  1750. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1751. {
  1752. uint16_t peer_id;
  1753. uint8_t vdev_id;
  1754. struct dp_vdev *vdev = NULL;
  1755. uint32_t l2_hdr_offset = 0;
  1756. uint16_t msdu_len = 0;
  1757. uint32_t pkt_len = 0;
  1758. uint8_t *rx_tlv_hdr;
  1759. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  1760. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  1761. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1762. if (peer_id > soc->max_peers)
  1763. goto deliver_fail;
  1764. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1765. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
  1766. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  1767. goto deliver_fail;
  1768. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  1769. goto deliver_fail;
  1770. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1771. l2_hdr_offset =
  1772. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1773. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1774. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1775. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  1776. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1777. qdf_nbuf_pull_head(nbuf,
  1778. RX_PKT_TLVS_LEN +
  1779. l2_hdr_offset);
  1780. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  1781. qdf_nbuf_set_exc_frame(nbuf, 1);
  1782. if (QDF_STATUS_SUCCESS !=
  1783. vdev->osif_rx(vdev->osif_vdev, nbuf))
  1784. goto deliver_fail;
  1785. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1786. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1787. return;
  1788. }
  1789. deliver_fail:
  1790. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1791. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1792. qdf_nbuf_free(nbuf);
  1793. if (vdev)
  1794. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1795. }
  1796. #else
  1797. static inline
  1798. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1799. {
  1800. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1801. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1802. qdf_nbuf_free(nbuf);
  1803. }
  1804. #endif
  1805. /**
  1806. * dp_rx_srng_get_num_pending() - get number of pending entries
  1807. * @hal_soc: hal soc opaque pointer
  1808. * @hal_ring: opaque pointer to the HAL Rx Ring
  1809. * @num_entries: number of entries in the hal_ring.
  1810. * @near_full: pointer to a boolean. This is set if ring is near full.
  1811. *
  1812. * The function returns the number of entries in a destination ring which are
  1813. * yet to be reaped. The function also checks if the ring is near full.
  1814. * If more than half of the ring needs to be reaped, the ring is considered
  1815. * approaching full.
  1816. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1817. * entries. It should not be called within a SRNG lock. HW pointer value is
  1818. * synced into cached_hp.
  1819. *
  1820. * Return: Number of pending entries if any
  1821. */
  1822. static
  1823. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1824. hal_ring_handle_t hal_ring_hdl,
  1825. uint32_t num_entries,
  1826. bool *near_full)
  1827. {
  1828. uint32_t num_pending = 0;
  1829. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1830. hal_ring_hdl,
  1831. true);
  1832. if (num_entries && (num_pending >= num_entries >> 1))
  1833. *near_full = true;
  1834. else
  1835. *near_full = false;
  1836. return num_pending;
  1837. }
  1838. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1839. #ifdef WLAN_SUPPORT_RX_FISA
  1840. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1841. {
  1842. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1843. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1844. }
  1845. /**
  1846. * dp_rx_set_hdr_pad() - set l3 padding in nbuf cb
  1847. * @nbuf: pkt skb pointer
  1848. * @l3_padding: l3 padding
  1849. *
  1850. * Return: None
  1851. */
  1852. static inline
  1853. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1854. {
  1855. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1856. }
  1857. #else
  1858. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1859. {
  1860. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1861. }
  1862. static inline
  1863. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1864. {
  1865. }
  1866. #endif
  1867. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1868. #ifdef DP_RX_DROP_RAW_FRM
  1869. /**
  1870. * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
  1871. * @nbuf: pkt skb pointer
  1872. *
  1873. * Return: true - raw frame, dropped
  1874. * false - not raw frame, do nothing
  1875. */
  1876. static inline
  1877. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  1878. {
  1879. if (qdf_nbuf_is_raw_frame(nbuf)) {
  1880. qdf_nbuf_free(nbuf);
  1881. return true;
  1882. }
  1883. return false;
  1884. }
  1885. #else
  1886. static inline
  1887. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  1888. {
  1889. return false;
  1890. }
  1891. #endif
  1892. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1893. /**
  1894. * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
  1895. * @soc: Datapath soc structure
  1896. * @ring_num: REO ring number
  1897. * @ring_desc: REO ring descriptor
  1898. *
  1899. * Returns: None
  1900. */
  1901. static inline void
  1902. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  1903. hal_ring_desc_t ring_desc)
  1904. {
  1905. struct dp_buf_info_record *record;
  1906. uint8_t rbm;
  1907. struct hal_buf_info hbi;
  1908. uint32_t idx;
  1909. if (qdf_unlikely(!&soc->rx_ring_history[ring_num]))
  1910. return;
  1911. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1912. rbm = hal_rx_ret_buf_manager_get(ring_desc);
  1913. idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
  1914. DP_RX_HIST_MAX);
  1915. /* No NULL check needed for record since its an array */
  1916. record = &soc->rx_ring_history[ring_num]->entry[idx];
  1917. record->timestamp = qdf_get_log_timestamp();
  1918. record->hbi.paddr = hbi.paddr;
  1919. record->hbi.sw_cookie = hbi.sw_cookie;
  1920. record->hbi.rbm = rbm;
  1921. }
  1922. #else
  1923. static inline void
  1924. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  1925. hal_ring_desc_t ring_desc)
  1926. {
  1927. }
  1928. #endif
  1929. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  1930. /**
  1931. * dp_rx_update_stats() - Update soc level rx packet count
  1932. * @soc: DP soc handle
  1933. * @nbuf: nbuf received
  1934. *
  1935. * Returns: none
  1936. */
  1937. static inline void dp_rx_update_stats(struct dp_soc *soc,
  1938. qdf_nbuf_t nbuf)
  1939. {
  1940. DP_STATS_INC_PKT(soc, rx.ingress, 1,
  1941. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1942. }
  1943. #else
  1944. static inline void dp_rx_update_stats(struct dp_soc *soc,
  1945. qdf_nbuf_t nbuf)
  1946. {
  1947. }
  1948. #endif
  1949. /**
  1950. * dp_rx_process() - Brain of the Rx processing functionality
  1951. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1952. * @int_ctx: per interrupt context
  1953. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1954. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  1955. * @quota: No. of units (packets) that can be serviced in one shot.
  1956. *
  1957. * This function implements the core of Rx functionality. This is
  1958. * expected to handle only non-error frames.
  1959. *
  1960. * Return: uint32_t: No. of elements processed
  1961. */
  1962. uint32_t dp_rx_process(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl,
  1963. uint8_t reo_ring_num, uint32_t quota)
  1964. {
  1965. hal_ring_desc_t ring_desc;
  1966. hal_soc_handle_t hal_soc;
  1967. struct dp_rx_desc *rx_desc = NULL;
  1968. qdf_nbuf_t nbuf, next;
  1969. bool near_full;
  1970. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
  1971. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
  1972. uint32_t num_pending;
  1973. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  1974. uint16_t msdu_len = 0;
  1975. uint16_t peer_id;
  1976. uint8_t vdev_id;
  1977. struct dp_peer *peer;
  1978. struct dp_vdev *vdev;
  1979. uint32_t pkt_len = 0;
  1980. struct hal_rx_mpdu_desc_info mpdu_desc_info;
  1981. struct hal_rx_msdu_desc_info msdu_desc_info;
  1982. enum hal_reo_error_status error;
  1983. uint32_t peer_mdata;
  1984. uint8_t *rx_tlv_hdr;
  1985. uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
  1986. uint8_t mac_id = 0;
  1987. struct dp_pdev *rx_pdev;
  1988. struct dp_srng *dp_rxdma_srng;
  1989. struct rx_desc_pool *rx_desc_pool;
  1990. struct dp_soc *soc = int_ctx->soc;
  1991. uint8_t ring_id = 0;
  1992. uint8_t core_id = 0;
  1993. struct cdp_tid_rx_stats *tid_stats;
  1994. qdf_nbuf_t nbuf_head;
  1995. qdf_nbuf_t nbuf_tail;
  1996. qdf_nbuf_t deliver_list_head;
  1997. qdf_nbuf_t deliver_list_tail;
  1998. uint32_t num_rx_bufs_reaped = 0;
  1999. uint32_t intr_id;
  2000. struct hif_opaque_softc *scn;
  2001. int32_t tid = 0;
  2002. bool is_prev_msdu_last = true;
  2003. uint32_t num_entries_avail = 0;
  2004. uint32_t rx_ol_pkt_cnt = 0;
  2005. uint32_t num_entries = 0;
  2006. struct hal_rx_msdu_metadata msdu_metadata;
  2007. QDF_STATUS status;
  2008. qdf_nbuf_t ebuf_head;
  2009. qdf_nbuf_t ebuf_tail;
  2010. DP_HIST_INIT();
  2011. qdf_assert_always(soc && hal_ring_hdl);
  2012. hal_soc = soc->hal_soc;
  2013. qdf_assert_always(hal_soc);
  2014. scn = soc->hif_handle;
  2015. hif_pm_runtime_mark_dp_rx_busy(scn);
  2016. intr_id = int_ctx->dp_intr_id;
  2017. num_entries = hal_srng_get_num_entries(hal_soc, hal_ring_hdl);
  2018. more_data:
  2019. /* reset local variables here to be re-used in the function */
  2020. nbuf_head = NULL;
  2021. nbuf_tail = NULL;
  2022. deliver_list_head = NULL;
  2023. deliver_list_tail = NULL;
  2024. peer = NULL;
  2025. vdev = NULL;
  2026. num_rx_bufs_reaped = 0;
  2027. ebuf_head = NULL;
  2028. ebuf_tail = NULL;
  2029. qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
  2030. qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
  2031. qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
  2032. qdf_mem_zero(head, sizeof(head));
  2033. qdf_mem_zero(tail, sizeof(tail));
  2034. if (qdf_unlikely(dp_rx_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
  2035. /*
  2036. * Need API to convert from hal_ring pointer to
  2037. * Ring Type / Ring Id combo
  2038. */
  2039. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  2040. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  2041. FL("HAL RING Access Failed -- %pK"), hal_ring_hdl);
  2042. goto done;
  2043. }
  2044. /*
  2045. * start reaping the buffers from reo ring and queue
  2046. * them in per vdev queue.
  2047. * Process the received pkts in a different per vdev loop.
  2048. */
  2049. while (qdf_likely(quota &&
  2050. (ring_desc = hal_srng_dst_peek(hal_soc,
  2051. hal_ring_hdl)))) {
  2052. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  2053. ring_id = hal_srng_ring_id_get(hal_ring_hdl);
  2054. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  2055. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  2056. FL("HAL RING 0x%pK:error %d"), hal_ring_hdl, error);
  2057. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  2058. /* Don't know how to deal with this -- assert */
  2059. qdf_assert(0);
  2060. }
  2061. dp_rx_ring_record_entry(soc, reo_ring_num, ring_desc);
  2062. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  2063. status = dp_rx_cookie_check_and_invalidate(ring_desc);
  2064. if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) {
  2065. DP_STATS_INC(soc, rx.err.stale_cookie, 1);
  2066. break;
  2067. }
  2068. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  2069. status = dp_rx_desc_sanity(soc, hal_soc, hal_ring_hdl,
  2070. ring_desc, rx_desc);
  2071. if (QDF_IS_STATUS_ERROR(status)) {
  2072. if (qdf_unlikely(rx_desc && rx_desc->nbuf)) {
  2073. qdf_assert_always(rx_desc->unmapped);
  2074. dp_ipa_handle_rx_buf_smmu_mapping(
  2075. soc,
  2076. rx_desc->nbuf,
  2077. RX_DATA_BUFFER_SIZE,
  2078. false);
  2079. qdf_nbuf_unmap_nbytes_single(
  2080. soc->osdev,
  2081. rx_desc->nbuf,
  2082. QDF_DMA_FROM_DEVICE,
  2083. RX_DATA_BUFFER_SIZE);
  2084. rx_desc->unmapped = 1;
  2085. dp_rx_buffer_pool_nbuf_free(soc, rx_desc->nbuf,
  2086. rx_desc->pool_id);
  2087. dp_rx_add_to_free_desc_list(
  2088. &head[rx_desc->pool_id],
  2089. &tail[rx_desc->pool_id],
  2090. rx_desc);
  2091. }
  2092. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2093. continue;
  2094. }
  2095. /*
  2096. * this is a unlikely scenario where the host is reaping
  2097. * a descriptor which it already reaped just a while ago
  2098. * but is yet to replenish it back to HW.
  2099. * In this case host will dump the last 128 descriptors
  2100. * including the software descriptor rx_desc and assert.
  2101. */
  2102. if (qdf_unlikely(!rx_desc->in_use)) {
  2103. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  2104. dp_info_rl("Reaping rx_desc not in use!");
  2105. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2106. ring_desc, rx_desc);
  2107. /* ignore duplicate RX desc and continue to process */
  2108. /* Pop out the descriptor */
  2109. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2110. continue;
  2111. }
  2112. status = dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
  2113. if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) {
  2114. DP_STATS_INC(soc, rx.err.nbuf_sanity_fail, 1);
  2115. dp_info_rl("Nbuf sanity check failure!");
  2116. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2117. ring_desc, rx_desc);
  2118. rx_desc->in_err_state = 1;
  2119. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2120. continue;
  2121. }
  2122. if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
  2123. dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
  2124. DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
  2125. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2126. ring_desc, rx_desc);
  2127. }
  2128. /* Get MPDU DESC info */
  2129. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  2130. /* Get MSDU DESC info */
  2131. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  2132. if (qdf_unlikely(msdu_desc_info.msdu_flags &
  2133. HAL_MSDU_F_MSDU_CONTINUATION)) {
  2134. /* previous msdu has end bit set, so current one is
  2135. * the new MPDU
  2136. */
  2137. if (is_prev_msdu_last) {
  2138. /* Get number of entries available in HW ring */
  2139. num_entries_avail =
  2140. hal_srng_dst_num_valid(hal_soc,
  2141. hal_ring_hdl, 1);
  2142. /* For new MPDU check if we can read complete
  2143. * MPDU by comparing the number of buffers
  2144. * available and number of buffers needed to
  2145. * reap this MPDU
  2146. */
  2147. if (((msdu_desc_info.msdu_len /
  2148. (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN) +
  2149. 1)) > num_entries_avail) {
  2150. DP_STATS_INC(
  2151. soc,
  2152. rx.msdu_scatter_wait_break,
  2153. 1);
  2154. break;
  2155. }
  2156. is_prev_msdu_last = false;
  2157. }
  2158. }
  2159. core_id = smp_processor_id();
  2160. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  2161. if (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RETRY_BIT)
  2162. qdf_nbuf_set_rx_retry_flag(rx_desc->nbuf, 1);
  2163. if (qdf_unlikely(mpdu_desc_info.mpdu_flags &
  2164. HAL_MPDU_F_RAW_AMPDU))
  2165. qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1);
  2166. if (!is_prev_msdu_last &&
  2167. msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  2168. is_prev_msdu_last = true;
  2169. /* Pop out the descriptor*/
  2170. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2171. rx_bufs_reaped[rx_desc->pool_id]++;
  2172. peer_mdata = mpdu_desc_info.peer_meta_data;
  2173. QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
  2174. DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  2175. QDF_NBUF_CB_RX_VDEV_ID(rx_desc->nbuf) =
  2176. DP_PEER_METADATA_VDEV_ID_GET(peer_mdata);
  2177. /*
  2178. * save msdu flags first, last and continuation msdu in
  2179. * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
  2180. * length to nbuf->cb. This ensures the info required for
  2181. * per pkt processing is always in the same cache line.
  2182. * This helps in improving throughput for smaller pkt
  2183. * sizes.
  2184. */
  2185. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  2186. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  2187. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  2188. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  2189. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  2190. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  2191. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
  2192. qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
  2193. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
  2194. qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
  2195. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
  2196. qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
  2197. qdf_nbuf_set_tid_val(rx_desc->nbuf,
  2198. HAL_RX_REO_QUEUE_NUMBER_GET(ring_desc));
  2199. qdf_nbuf_set_rx_reo_dest_ind(
  2200. rx_desc->nbuf,
  2201. HAL_RX_REO_MSDU_REO_DST_IND_GET(ring_desc));
  2202. QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
  2203. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  2204. /*
  2205. * move unmap after scattered msdu waiting break logic
  2206. * in case double skb unmap happened.
  2207. */
  2208. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  2209. dp_ipa_handle_rx_buf_smmu_mapping(soc, rx_desc->nbuf,
  2210. rx_desc_pool->buf_size,
  2211. false);
  2212. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  2213. QDF_DMA_FROM_DEVICE,
  2214. rx_desc_pool->buf_size);
  2215. rx_desc->unmapped = 1;
  2216. DP_RX_PROCESS_NBUF(soc, nbuf_head, nbuf_tail, ebuf_head,
  2217. ebuf_tail, rx_desc);
  2218. /*
  2219. * if continuation bit is set then we have MSDU spread
  2220. * across multiple buffers, let us not decrement quota
  2221. * till we reap all buffers of that MSDU.
  2222. */
  2223. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  2224. quota -= 1;
  2225. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  2226. &tail[rx_desc->pool_id],
  2227. rx_desc);
  2228. num_rx_bufs_reaped++;
  2229. /*
  2230. * only if complete msdu is received for scatter case,
  2231. * then allow break.
  2232. */
  2233. if (is_prev_msdu_last &&
  2234. dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
  2235. break;
  2236. }
  2237. done:
  2238. dp_rx_srng_access_end(int_ctx, soc, hal_ring_hdl);
  2239. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  2240. /*
  2241. * continue with next mac_id if no pkts were reaped
  2242. * from that pool
  2243. */
  2244. if (!rx_bufs_reaped[mac_id])
  2245. continue;
  2246. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_id];
  2247. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  2248. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  2249. rx_desc_pool, rx_bufs_reaped[mac_id],
  2250. &head[mac_id], &tail[mac_id]);
  2251. }
  2252. dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
  2253. /* Peer can be NULL is case of LFR */
  2254. if (qdf_likely(peer))
  2255. vdev = NULL;
  2256. /*
  2257. * BIG loop where each nbuf is dequeued from global queue,
  2258. * processed and queued back on a per vdev basis. These nbufs
  2259. * are sent to stack as and when we run out of nbufs
  2260. * or a new nbuf dequeued from global queue has a different
  2261. * vdev when compared to previous nbuf.
  2262. */
  2263. nbuf = nbuf_head;
  2264. while (nbuf) {
  2265. next = nbuf->next;
  2266. if (qdf_unlikely(dp_rx_is_raw_frame_dropped(nbuf))) {
  2267. nbuf = next;
  2268. DP_STATS_INC(soc, rx.err.raw_frm_drop, 1);
  2269. continue;
  2270. }
  2271. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  2272. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  2273. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  2274. if (dp_rx_is_list_ready(deliver_list_head, vdev, peer,
  2275. peer_id, vdev_id)) {
  2276. dp_rx_deliver_to_stack(soc, vdev, peer,
  2277. deliver_list_head,
  2278. deliver_list_tail);
  2279. deliver_list_head = NULL;
  2280. deliver_list_tail = NULL;
  2281. }
  2282. /* Get TID from struct cb->tid_val, save to tid */
  2283. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  2284. tid = qdf_nbuf_get_tid_val(nbuf);
  2285. if (qdf_unlikely(!peer)) {
  2286. peer = dp_peer_get_ref_by_id(soc, peer_id,
  2287. DP_MOD_ID_RX);
  2288. } else if (peer && peer->peer_id != peer_id) {
  2289. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2290. peer = dp_peer_get_ref_by_id(soc, peer_id,
  2291. DP_MOD_ID_RX);
  2292. }
  2293. if (peer) {
  2294. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  2295. qdf_dp_trace_set_track(nbuf, QDF_RX);
  2296. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  2297. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  2298. QDF_NBUF_RX_PKT_DATA_TRACK;
  2299. }
  2300. rx_bufs_used++;
  2301. if (qdf_likely(peer)) {
  2302. vdev = peer->vdev;
  2303. } else {
  2304. nbuf->next = NULL;
  2305. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2306. nbuf = next;
  2307. continue;
  2308. }
  2309. if (qdf_unlikely(!vdev)) {
  2310. qdf_nbuf_free(nbuf);
  2311. nbuf = next;
  2312. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  2313. continue;
  2314. }
  2315. /* when hlos tid override is enabled, save tid in
  2316. * skb->priority
  2317. */
  2318. if (qdf_unlikely(vdev->skip_sw_tid_classification &
  2319. DP_TXRX_HLOS_TID_OVERRIDE_ENABLED))
  2320. qdf_nbuf_set_priority(nbuf, tid);
  2321. rx_pdev = vdev->pdev;
  2322. DP_RX_TID_SAVE(nbuf, tid);
  2323. if (qdf_unlikely(rx_pdev->delay_stats_flag) ||
  2324. qdf_unlikely(wlan_cfg_is_peer_ext_stats_enabled(
  2325. soc->wlan_cfg_ctx)))
  2326. qdf_nbuf_set_timestamp(nbuf);
  2327. ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  2328. tid_stats =
  2329. &rx_pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  2330. /*
  2331. * Check if DMA completed -- msdu_done is the last bit
  2332. * to be written
  2333. */
  2334. if (qdf_unlikely(!qdf_nbuf_is_rx_chfrag_cont(nbuf) &&
  2335. !hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  2336. dp_err("MSDU DONE failure");
  2337. DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
  2338. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  2339. QDF_TRACE_LEVEL_INFO);
  2340. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  2341. qdf_nbuf_free(nbuf);
  2342. qdf_assert(0);
  2343. nbuf = next;
  2344. continue;
  2345. }
  2346. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  2347. /*
  2348. * First IF condition:
  2349. * 802.11 Fragmented pkts are reinjected to REO
  2350. * HW block as SG pkts and for these pkts we only
  2351. * need to pull the RX TLVS header length.
  2352. * Second IF condition:
  2353. * The below condition happens when an MSDU is spread
  2354. * across multiple buffers. This can happen in two cases
  2355. * 1. The nbuf size is smaller then the received msdu.
  2356. * ex: we have set the nbuf size to 2048 during
  2357. * nbuf_alloc. but we received an msdu which is
  2358. * 2304 bytes in size then this msdu is spread
  2359. * across 2 nbufs.
  2360. *
  2361. * 2. AMSDUs when RAW mode is enabled.
  2362. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  2363. * across 1st nbuf and 2nd nbuf and last MSDU is
  2364. * spread across 2nd nbuf and 3rd nbuf.
  2365. *
  2366. * for these scenarios let us create a skb frag_list and
  2367. * append these buffers till the last MSDU of the AMSDU
  2368. * Third condition:
  2369. * This is the most likely case, we receive 802.3 pkts
  2370. * decapsulated by HW, here we need to set the pkt length.
  2371. */
  2372. hal_rx_msdu_metadata_get(hal_soc, rx_tlv_hdr, &msdu_metadata);
  2373. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2374. bool is_mcbc, is_sa_vld, is_da_vld;
  2375. is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(soc->hal_soc,
  2376. rx_tlv_hdr);
  2377. is_sa_vld =
  2378. hal_rx_msdu_end_sa_is_valid_get(soc->hal_soc,
  2379. rx_tlv_hdr);
  2380. is_da_vld =
  2381. hal_rx_msdu_end_da_is_valid_get(soc->hal_soc,
  2382. rx_tlv_hdr);
  2383. qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
  2384. qdf_nbuf_set_da_valid(nbuf, is_da_vld);
  2385. qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
  2386. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  2387. } else if (qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  2388. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2389. nbuf = dp_rx_sg_create(soc, nbuf);
  2390. next = nbuf->next;
  2391. if (qdf_nbuf_is_raw_frame(nbuf)) {
  2392. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  2393. DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
  2394. } else {
  2395. qdf_nbuf_free(nbuf);
  2396. DP_STATS_INC(soc, rx.err.scatter_msdu, 1);
  2397. dp_info_rl("scatter msdu len %d, dropped",
  2398. msdu_len);
  2399. nbuf = next;
  2400. continue;
  2401. }
  2402. } else {
  2403. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2404. pkt_len = msdu_len +
  2405. msdu_metadata.l3_hdr_pad +
  2406. RX_PKT_TLVS_LEN;
  2407. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  2408. dp_rx_skip_tlvs(nbuf, msdu_metadata.l3_hdr_pad);
  2409. }
  2410. /*
  2411. * process frame for mulitpass phrase processing
  2412. */
  2413. if (qdf_unlikely(vdev->multipass_en)) {
  2414. if (dp_rx_multipass_process(peer, nbuf, tid) == false) {
  2415. DP_STATS_INC(peer, rx.multipass_rx_pkt_drop, 1);
  2416. qdf_nbuf_free(nbuf);
  2417. nbuf = next;
  2418. continue;
  2419. }
  2420. }
  2421. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
  2422. QDF_TRACE(QDF_MODULE_ID_DP,
  2423. QDF_TRACE_LEVEL_ERROR,
  2424. FL("Policy Check Drop pkt"));
  2425. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  2426. /* Drop & free packet */
  2427. qdf_nbuf_free(nbuf);
  2428. /* Statistics */
  2429. nbuf = next;
  2430. continue;
  2431. }
  2432. if (qdf_unlikely(peer && (peer->nawds_enabled) &&
  2433. (qdf_nbuf_is_da_mcbc(nbuf)) &&
  2434. (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc,
  2435. rx_tlv_hdr) ==
  2436. false))) {
  2437. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  2438. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  2439. qdf_nbuf_free(nbuf);
  2440. nbuf = next;
  2441. continue;
  2442. }
  2443. if (soc->process_rx_status)
  2444. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  2445. /* Update the protocol tag in SKB based on CCE metadata */
  2446. dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
  2447. reo_ring_num, false, true);
  2448. /* Update the flow tag in SKB based on FSE metadata */
  2449. dp_rx_update_flow_tag(soc, vdev, nbuf, rx_tlv_hdr, true);
  2450. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
  2451. ring_id, tid_stats);
  2452. if (qdf_unlikely(vdev->mesh_vdev)) {
  2453. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  2454. == QDF_STATUS_SUCCESS) {
  2455. QDF_TRACE(QDF_MODULE_ID_DP,
  2456. QDF_TRACE_LEVEL_INFO_MED,
  2457. FL("mesh pkt filtered"));
  2458. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  2459. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  2460. 1);
  2461. qdf_nbuf_free(nbuf);
  2462. nbuf = next;
  2463. continue;
  2464. }
  2465. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  2466. }
  2467. if (qdf_likely(vdev->rx_decap_type ==
  2468. htt_cmn_pkt_type_ethernet) &&
  2469. qdf_likely(!vdev->mesh_vdev)) {
  2470. /* WDS Destination Address Learning */
  2471. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  2472. /* Due to HW issue, sometimes we see that the sa_idx
  2473. * and da_idx are invalid with sa_valid and da_valid
  2474. * bits set
  2475. *
  2476. * in this case we also see that value of
  2477. * sa_sw_peer_id is set as 0
  2478. *
  2479. * Drop the packet if sa_idx and da_idx OOB or
  2480. * sa_sw_peerid is 0
  2481. */
  2482. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf,
  2483. msdu_metadata)) {
  2484. qdf_nbuf_free(nbuf);
  2485. nbuf = next;
  2486. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  2487. continue;
  2488. }
  2489. /* WDS Source Port Learning */
  2490. if (qdf_likely(vdev->wds_enabled))
  2491. dp_rx_wds_srcport_learn(soc,
  2492. rx_tlv_hdr,
  2493. peer,
  2494. nbuf,
  2495. msdu_metadata);
  2496. /* Intrabss-fwd */
  2497. if (dp_rx_check_ap_bridge(vdev))
  2498. if (dp_rx_intrabss_fwd(soc,
  2499. peer,
  2500. rx_tlv_hdr,
  2501. nbuf,
  2502. msdu_metadata)) {
  2503. nbuf = next;
  2504. tid_stats->intrabss_cnt++;
  2505. continue; /* Get next desc */
  2506. }
  2507. }
  2508. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf, &rx_ol_pkt_cnt);
  2509. dp_rx_update_stats(soc, nbuf);
  2510. DP_RX_LIST_APPEND(deliver_list_head,
  2511. deliver_list_tail,
  2512. nbuf);
  2513. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  2514. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2515. if (qdf_unlikely(peer->in_twt))
  2516. DP_STATS_INC_PKT(peer, rx.to_stack_twt, 1,
  2517. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2518. tid_stats->delivered_to_stack++;
  2519. nbuf = next;
  2520. }
  2521. if (qdf_likely(deliver_list_head)) {
  2522. if (qdf_likely(peer))
  2523. dp_rx_deliver_to_stack(soc, vdev, peer,
  2524. deliver_list_head,
  2525. deliver_list_tail);
  2526. else {
  2527. nbuf = deliver_list_head;
  2528. while (nbuf) {
  2529. next = nbuf->next;
  2530. nbuf->next = NULL;
  2531. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2532. nbuf = next;
  2533. }
  2534. }
  2535. }
  2536. if (qdf_likely(peer))
  2537. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2538. if (dp_rx_enable_eol_data_check(soc) && rx_bufs_used) {
  2539. if (quota) {
  2540. num_pending =
  2541. dp_rx_srng_get_num_pending(hal_soc,
  2542. hal_ring_hdl,
  2543. num_entries,
  2544. &near_full);
  2545. if (num_pending) {
  2546. DP_STATS_INC(soc, rx.hp_oos2, 1);
  2547. if (!hif_exec_should_yield(scn, intr_id))
  2548. goto more_data;
  2549. if (qdf_unlikely(near_full)) {
  2550. DP_STATS_INC(soc, rx.near_full, 1);
  2551. goto more_data;
  2552. }
  2553. }
  2554. }
  2555. if (vdev && vdev->osif_fisa_flush)
  2556. vdev->osif_fisa_flush(soc, reo_ring_num);
  2557. if (vdev && vdev->osif_gro_flush && rx_ol_pkt_cnt) {
  2558. vdev->osif_gro_flush(vdev->osif_vdev,
  2559. reo_ring_num);
  2560. }
  2561. }
  2562. /* Update histogram statistics by looping through pdev's */
  2563. DP_RX_HIST_STATS_PER_PDEV();
  2564. return rx_bufs_used; /* Assume no scale factor for now */
  2565. }
  2566. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  2567. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2568. {
  2569. QDF_STATUS ret;
  2570. if (vdev->osif_rx_flush) {
  2571. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2572. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  2573. dp_err("Failed to flush rx pkts for vdev %d\n",
  2574. vdev->vdev_id);
  2575. return ret;
  2576. }
  2577. }
  2578. return QDF_STATUS_SUCCESS;
  2579. }
  2580. static QDF_STATUS
  2581. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
  2582. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  2583. struct dp_pdev *dp_pdev,
  2584. struct rx_desc_pool *rx_desc_pool)
  2585. {
  2586. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2587. (nbuf_frag_info_t->virt_addr).nbuf =
  2588. qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  2589. RX_BUFFER_RESERVATION,
  2590. rx_desc_pool->buf_alignment, FALSE);
  2591. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  2592. dp_err("nbuf alloc failed");
  2593. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2594. return ret;
  2595. }
  2596. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  2597. (nbuf_frag_info_t->virt_addr).nbuf,
  2598. QDF_DMA_FROM_DEVICE,
  2599. rx_desc_pool->buf_size);
  2600. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2601. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  2602. dp_err("nbuf map failed");
  2603. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2604. return ret;
  2605. }
  2606. nbuf_frag_info_t->paddr =
  2607. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  2608. ret = check_x86_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  2609. &nbuf_frag_info_t->paddr,
  2610. rx_desc_pool);
  2611. if (ret == QDF_STATUS_E_FAILURE) {
  2612. qdf_nbuf_unmap_nbytes_single(dp_soc->osdev,
  2613. (nbuf_frag_info_t->virt_addr).nbuf,
  2614. QDF_DMA_FROM_DEVICE,
  2615. rx_desc_pool->buf_size);
  2616. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  2617. dp_err("nbuf check x86 failed");
  2618. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2619. return ret;
  2620. }
  2621. return QDF_STATUS_SUCCESS;
  2622. }
  2623. QDF_STATUS
  2624. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2625. struct dp_srng *dp_rxdma_srng,
  2626. struct rx_desc_pool *rx_desc_pool,
  2627. uint32_t num_req_buffers)
  2628. {
  2629. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2630. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2631. union dp_rx_desc_list_elem_t *next;
  2632. void *rxdma_ring_entry;
  2633. qdf_dma_addr_t paddr;
  2634. struct dp_rx_nbuf_frag_info *nf_info;
  2635. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2636. uint32_t buffer_index, nbuf_ptrs_per_page;
  2637. qdf_nbuf_t nbuf;
  2638. QDF_STATUS ret;
  2639. int page_idx, total_pages;
  2640. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2641. union dp_rx_desc_list_elem_t *tail = NULL;
  2642. int sync_hw_ptr = 1;
  2643. uint32_t num_entries_avail;
  2644. if (qdf_unlikely(!rxdma_srng)) {
  2645. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2646. return QDF_STATUS_E_FAILURE;
  2647. }
  2648. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2649. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2650. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  2651. rxdma_srng,
  2652. sync_hw_ptr);
  2653. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2654. if (!num_entries_avail) {
  2655. dp_err("Num of available entries is zero, nothing to do");
  2656. return QDF_STATUS_E_NOMEM;
  2657. }
  2658. if (num_entries_avail < num_req_buffers)
  2659. num_req_buffers = num_entries_avail;
  2660. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2661. num_req_buffers, &desc_list, &tail);
  2662. if (!nr_descs) {
  2663. dp_err("no free rx_descs in freelist");
  2664. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2665. return QDF_STATUS_E_NOMEM;
  2666. }
  2667. dp_debug("got %u RX descs for driver attach", nr_descs);
  2668. /*
  2669. * Try to allocate pointers to the nbuf one page at a time.
  2670. * Take pointers that can fit in one page of memory and
  2671. * iterate through the total descriptors that need to be
  2672. * allocated in order of pages. Reuse the pointers that
  2673. * have been allocated to fit in one page across each
  2674. * iteration to index into the nbuf.
  2675. */
  2676. total_pages = (nr_descs * sizeof(*nf_info)) / PAGE_SIZE;
  2677. /*
  2678. * Add an extra page to store the remainder if any
  2679. */
  2680. if ((nr_descs * sizeof(*nf_info)) % PAGE_SIZE)
  2681. total_pages++;
  2682. nf_info = qdf_mem_malloc(PAGE_SIZE);
  2683. if (!nf_info) {
  2684. dp_err("failed to allocate nbuf array");
  2685. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2686. QDF_BUG(0);
  2687. return QDF_STATUS_E_NOMEM;
  2688. }
  2689. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*nf_info);
  2690. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2691. qdf_mem_zero(nf_info, PAGE_SIZE);
  2692. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2693. /*
  2694. * The last page of buffer pointers may not be required
  2695. * completely based on the number of descriptors. Below
  2696. * check will ensure we are allocating only the
  2697. * required number of descriptors.
  2698. */
  2699. if (nr_nbuf_total >= nr_descs)
  2700. break;
  2701. /* Flag is set while pdev rx_desc_pool initialization */
  2702. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2703. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  2704. &nf_info[nr_nbuf], dp_pdev,
  2705. rx_desc_pool);
  2706. else
  2707. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2708. &nf_info[nr_nbuf], dp_pdev,
  2709. rx_desc_pool);
  2710. if (QDF_IS_STATUS_ERROR(ret))
  2711. break;
  2712. nr_nbuf_total++;
  2713. }
  2714. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2715. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2716. rxdma_ring_entry =
  2717. hal_srng_src_get_next(dp_soc->hal_soc,
  2718. rxdma_srng);
  2719. qdf_assert_always(rxdma_ring_entry);
  2720. next = desc_list->next;
  2721. paddr = nf_info[buffer_index].paddr;
  2722. nbuf = nf_info[buffer_index].virt_addr.nbuf;
  2723. /* Flag is set while pdev rx_desc_pool initialization */
  2724. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2725. dp_rx_desc_frag_prep(&desc_list->rx_desc,
  2726. &nf_info[buffer_index]);
  2727. else
  2728. dp_rx_desc_prep(&desc_list->rx_desc,
  2729. &nf_info[buffer_index]);
  2730. desc_list->rx_desc.in_use = 1;
  2731. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  2732. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  2733. __func__,
  2734. RX_DESC_REPLENISHED);
  2735. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  2736. desc_list->rx_desc.cookie,
  2737. rx_desc_pool->owner);
  2738. dp_ipa_handle_rx_buf_smmu_mapping(
  2739. dp_soc, nbuf,
  2740. rx_desc_pool->buf_size,
  2741. true);
  2742. desc_list = next;
  2743. }
  2744. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2745. }
  2746. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2747. qdf_mem_free(nf_info);
  2748. if (!nr_nbuf_total) {
  2749. dp_err("No nbuf's allocated");
  2750. QDF_BUG(0);
  2751. return QDF_STATUS_E_RESOURCES;
  2752. }
  2753. /* No need to count the number of bytes received during replenish.
  2754. * Therefore set replenish.pkts.bytes as 0.
  2755. */
  2756. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2757. return QDF_STATUS_SUCCESS;
  2758. }
  2759. /**
  2760. * dp_rx_enable_mon_dest_frag() - Enable frag processing for
  2761. * monitor destination ring via frag.
  2762. *
  2763. * Enable this flag only for monitor destination buffer processing
  2764. * if DP_RX_MON_MEM_FRAG feature is enabled.
  2765. * If flag is set then frag based function will be called for alloc,
  2766. * map, prep desc and free ops for desc buffer else normal nbuf based
  2767. * function will be called.
  2768. *
  2769. * @rx_desc_pool: Rx desc pool
  2770. * @is_mon_dest_desc: Is it for monitor dest buffer
  2771. *
  2772. * Return: None
  2773. */
  2774. #ifdef DP_RX_MON_MEM_FRAG
  2775. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2776. bool is_mon_dest_desc)
  2777. {
  2778. rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
  2779. if (is_mon_dest_desc)
  2780. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
  2781. }
  2782. #else
  2783. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2784. bool is_mon_dest_desc)
  2785. {
  2786. rx_desc_pool->rx_mon_dest_frag_enable = false;
  2787. if (is_mon_dest_desc)
  2788. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
  2789. }
  2790. #endif
  2791. /*
  2792. * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
  2793. * pool
  2794. *
  2795. * @pdev: core txrx pdev context
  2796. *
  2797. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2798. * QDF_STATUS_E_NOMEM
  2799. */
  2800. QDF_STATUS
  2801. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2802. {
  2803. struct dp_soc *soc = pdev->soc;
  2804. uint32_t rxdma_entries;
  2805. uint32_t rx_sw_desc_num;
  2806. struct dp_srng *dp_rxdma_srng;
  2807. struct rx_desc_pool *rx_desc_pool;
  2808. uint32_t status = QDF_STATUS_SUCCESS;
  2809. int mac_for_pdev;
  2810. mac_for_pdev = pdev->lmac_id;
  2811. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2812. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  2813. "nss-wifi<4> skip Rx refil %d", mac_for_pdev);
  2814. return status;
  2815. }
  2816. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2817. rxdma_entries = dp_rxdma_srng->num_entries;
  2818. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2819. rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2820. rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
  2821. status = dp_rx_desc_pool_alloc(soc,
  2822. rx_sw_desc_num,
  2823. rx_desc_pool);
  2824. if (status != QDF_STATUS_SUCCESS)
  2825. return status;
  2826. return status;
  2827. }
  2828. /*
  2829. * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
  2830. *
  2831. * @pdev: core txrx pdev context
  2832. */
  2833. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2834. {
  2835. int mac_for_pdev = pdev->lmac_id;
  2836. struct dp_soc *soc = pdev->soc;
  2837. struct rx_desc_pool *rx_desc_pool;
  2838. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2839. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2840. }
  2841. /*
  2842. * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
  2843. *
  2844. * @pdev: core txrx pdev context
  2845. *
  2846. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2847. * QDF_STATUS_E_NOMEM
  2848. */
  2849. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2850. {
  2851. int mac_for_pdev = pdev->lmac_id;
  2852. struct dp_soc *soc = pdev->soc;
  2853. uint32_t rxdma_entries;
  2854. uint32_t rx_sw_desc_num;
  2855. struct dp_srng *dp_rxdma_srng;
  2856. struct rx_desc_pool *rx_desc_pool;
  2857. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2858. /**
  2859. * If NSS is enabled, rx_desc_pool is already filled.
  2860. * Hence, just disable desc_pool frag flag.
  2861. */
  2862. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2863. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2864. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  2865. "nss-wifi<4> skip Rx refil %d", mac_for_pdev);
  2866. return QDF_STATUS_SUCCESS;
  2867. }
  2868. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2869. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2870. return QDF_STATUS_E_NOMEM;
  2871. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2872. rxdma_entries = dp_rxdma_srng->num_entries;
  2873. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2874. rx_sw_desc_num =
  2875. wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2876. rx_desc_pool->owner = DP_WBM2SW_RBM;
  2877. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2878. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2879. /* Disable monitor dest processing via frag */
  2880. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2881. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2882. rx_sw_desc_num, rx_desc_pool);
  2883. return QDF_STATUS_SUCCESS;
  2884. }
  2885. /*
  2886. * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
  2887. * @pdev: core txrx pdev context
  2888. *
  2889. * This function resets the freelist of rx descriptors and destroys locks
  2890. * associated with this list of descriptors.
  2891. */
  2892. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  2893. {
  2894. int mac_for_pdev = pdev->lmac_id;
  2895. struct dp_soc *soc = pdev->soc;
  2896. struct rx_desc_pool *rx_desc_pool;
  2897. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2898. dp_rx_desc_pool_deinit(soc, rx_desc_pool);
  2899. }
  2900. /*
  2901. * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
  2902. *
  2903. * @pdev: core txrx pdev context
  2904. *
  2905. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2906. * QDF_STATUS_E_NOMEM
  2907. */
  2908. QDF_STATUS
  2909. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  2910. {
  2911. int mac_for_pdev = pdev->lmac_id;
  2912. struct dp_soc *soc = pdev->soc;
  2913. struct dp_srng *dp_rxdma_srng;
  2914. struct rx_desc_pool *rx_desc_pool;
  2915. uint32_t rxdma_entries;
  2916. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2917. rxdma_entries = dp_rxdma_srng->num_entries;
  2918. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2919. /* Initialize RX buffer pool which will be
  2920. * used during low memory conditions
  2921. */
  2922. dp_rx_buffer_pool_init(soc, mac_for_pdev);
  2923. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev, dp_rxdma_srng,
  2924. rx_desc_pool, rxdma_entries - 1);
  2925. }
  2926. /*
  2927. * dp_rx_pdev_buffers_free - Free nbufs (skbs)
  2928. *
  2929. * @pdev: core txrx pdev context
  2930. */
  2931. void
  2932. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  2933. {
  2934. int mac_for_pdev = pdev->lmac_id;
  2935. struct dp_soc *soc = pdev->soc;
  2936. struct rx_desc_pool *rx_desc_pool;
  2937. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2938. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  2939. dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
  2940. }
  2941. #ifdef DP_RX_SPECIAL_FRAME_NEED
  2942. bool dp_rx_deliver_special_frame(struct dp_soc *soc, struct dp_peer *peer,
  2943. qdf_nbuf_t nbuf, uint32_t frame_mask,
  2944. uint8_t *rx_tlv_hdr)
  2945. {
  2946. uint32_t l2_hdr_offset = 0;
  2947. uint16_t msdu_len = 0;
  2948. uint32_t skip_len;
  2949. l2_hdr_offset =
  2950. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2951. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2952. skip_len = l2_hdr_offset;
  2953. } else {
  2954. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2955. skip_len = l2_hdr_offset + RX_PKT_TLVS_LEN;
  2956. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  2957. }
  2958. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2959. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  2960. qdf_nbuf_pull_head(nbuf, skip_len);
  2961. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  2962. qdf_nbuf_set_exc_frame(nbuf, 1);
  2963. dp_rx_deliver_to_stack(soc, peer->vdev, peer,
  2964. nbuf, NULL);
  2965. return true;
  2966. }
  2967. return false;
  2968. }
  2969. #endif