Fichiers
android_kernel_samsung_sm86…/dp/wifi3.0/dp_main.c
phadiman d1bb528ae7 qcacmn: Host Static Memory Optimization (in NSS offload mode)
Low memory profiles like 256M and 16M profiles support
only NSS Wi-Fi offload mode and HOST data path APIs are
not used in NSS offload mode

Disable HOST data path APIs which are not used in both
NSS Wi-Fi offload mode and in HOST mode (in NSS offload mode)

CRs-Fixed: 2831478
Change-Id: I6895054a6c96bd446c2df7761ce65feef662a3cc
2020-12-15 13:34:26 -08:00

13974 lignes
371 KiB
C

/*
* Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include <qdf_types.h>
#include <qdf_lock.h>
#include <qdf_net_types.h>
#include <qdf_lro.h>
#include <qdf_module.h>
#include <hal_hw_headers.h>
#include <hal_api.h>
#include <hif.h>
#include <htt.h>
#include <wdi_event.h>
#include <queue.h>
#include "dp_types.h"
#include "dp_internal.h"
#include "dp_tx.h"
#include "dp_tx_desc.h"
#include "dp_rx.h"
#include "dp_rx_mon.h"
#ifdef DP_RATETABLE_SUPPORT
#include "dp_ratetable.h"
#endif
#include <cdp_txrx_handle.h>
#include <wlan_cfg.h>
#include <wlan_utility.h>
#include "cdp_txrx_cmn_struct.h"
#include "cdp_txrx_stats_struct.h"
#include "cdp_txrx_cmn_reg.h"
#include <qdf_util.h>
#include "dp_peer.h"
#include "dp_rx_mon.h"
#include "htt_stats.h"
#include "dp_htt.h"
#ifdef WLAN_SUPPORT_RX_FISA
#include <dp_fisa_rx.h>
#endif
#include "htt_ppdu_stats.h"
#include "qdf_mem.h" /* qdf_mem_malloc,free */
#include "cfg_ucfg_api.h"
#include "dp_mon_filter.h"
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
#include "cdp_txrx_flow_ctrl_v2.h"
#else
static inline void
cdp_dump_flow_pool_info(struct cdp_soc_t *soc)
{
return;
}
#endif
#include "dp_ipa.h"
#include "dp_cal_client_api.h"
#ifdef FEATURE_WDS
#include "dp_txrx_wds.h"
#endif
#ifdef WLAN_SUPPORT_MSCS
#include "dp_mscs.h"
#endif
#ifdef ATH_SUPPORT_IQUE
#include "dp_txrx_me.h"
#endif
#if defined(DP_CON_MON)
#ifndef REMOVE_PKT_LOG
#include <pktlog_ac_api.h>
#include <pktlog_ac.h>
#endif
#endif
#ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
#include <dp_swlm.h>
#endif
#ifdef WLAN_FEATURE_STATS_EXT
#define INIT_RX_HW_STATS_LOCK(_soc) \
qdf_spinlock_create(&(_soc)->rx_hw_stats_lock)
#define DEINIT_RX_HW_STATS_LOCK(_soc) \
qdf_spinlock_destroy(&(_soc)->rx_hw_stats_lock)
#else
#define INIT_RX_HW_STATS_LOCK(_soc) /* no op */
#define DEINIT_RX_HW_STATS_LOCK(_soc) /* no op */
#endif
#ifdef DP_PEER_EXTENDED_API
#define SET_PEER_REF_CNT_ONE(_peer) \
qdf_atomic_set(&(_peer)->ref_cnt, 1)
#else
#define SET_PEER_REF_CNT_ONE(_peer)
#endif
/*
* The max size of cdp_peer_stats_param_t is limited to 16 bytes.
* If the buffer size is exceeding this size limit,
* dp_txrx_get_peer_stats is to be used instead.
*/
QDF_COMPILE_TIME_ASSERT(cdp_peer_stats_param_t_max_size,
(sizeof(cdp_peer_stats_param_t) <= 16));
#ifdef WLAN_FEATURE_DP_EVENT_HISTORY
/*
* If WLAN_CFG_INT_NUM_CONTEXTS is changed, HIF_NUM_INT_CONTEXTS
* also should be updated accordingly
*/
QDF_COMPILE_TIME_ASSERT(num_intr_grps,
HIF_NUM_INT_CONTEXTS == WLAN_CFG_INT_NUM_CONTEXTS);
/*
* HIF_EVENT_HIST_MAX should always be power of 2
*/
QDF_COMPILE_TIME_ASSERT(hif_event_history_size,
(HIF_EVENT_HIST_MAX & (HIF_EVENT_HIST_MAX - 1)) == 0);
#endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
/*
* If WLAN_CFG_INT_NUM_CONTEXTS is changed,
* WLAN_CFG_INT_NUM_CONTEXTS_MAX should also be updated
*/
QDF_COMPILE_TIME_ASSERT(wlan_cfg_num_int_ctxs,
WLAN_CFG_INT_NUM_CONTEXTS_MAX >=
WLAN_CFG_INT_NUM_CONTEXTS);
#ifdef WLAN_RX_PKT_CAPTURE_ENH
#include "dp_rx_mon_feature.h"
#else
/*
* dp_config_enh_rx_capture()- API to enable/disable enhanced rx capture
* @pdev_handle: DP_PDEV handle
* @val: user provided value
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_config_enh_rx_capture(struct dp_pdev *pdev_handle, uint8_t val)
{
return QDF_STATUS_E_INVAL;
}
#endif /* WLAN_RX_PKT_CAPTURE_ENH */
#ifdef WLAN_TX_PKT_CAPTURE_ENH
#include "dp_tx_capture.h"
#else
/*
* dp_config_enh_tx_capture()- API to enable/disable enhanced tx capture
* @pdev_handle: DP_PDEV handle
* @val: user provided value
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_config_enh_tx_capture(struct dp_pdev *pdev_handle, uint8_t val)
{
return QDF_STATUS_E_INVAL;
}
#endif
static void dp_pdev_srng_deinit(struct dp_pdev *pdev);
static QDF_STATUS dp_pdev_srng_init(struct dp_pdev *pdev);
static void dp_pdev_srng_free(struct dp_pdev *pdev);
static QDF_STATUS dp_pdev_srng_alloc(struct dp_pdev *pdev);
static void dp_soc_srng_deinit(struct dp_soc *soc);
static QDF_STATUS dp_soc_srng_init(struct dp_soc *soc);
static void dp_soc_srng_free(struct dp_soc *soc);
static QDF_STATUS dp_soc_srng_alloc(struct dp_soc *soc);
static void dp_soc_cfg_init(struct dp_soc *soc);
static void dp_soc_cfg_attach(struct dp_soc *soc);
static inline
QDF_STATUS dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
HTC_HANDLE htc_handle,
qdf_device_t qdf_osdev,
uint8_t pdev_id);
static int dp_pdev_post_attach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id);
static QDF_STATUS
dp_pdev_init_wifi3(struct cdp_soc_t *txrx_soc,
HTC_HANDLE htc_handle,
qdf_device_t qdf_osdev,
uint8_t pdev_id);
static QDF_STATUS
dp_pdev_deinit_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id, int force);
static void dp_soc_detach_wifi3(struct cdp_soc_t *txrx_soc);
static void dp_soc_deinit_wifi3(struct cdp_soc_t *txrx_soc);
void *dp_soc_init(struct dp_soc *soc, HTC_HANDLE htc_handle,
struct hif_opaque_softc *hif_handle);
static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force);
static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc,
uint8_t pdev_id,
int force);
static struct dp_soc *
dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
struct hif_opaque_softc *hif_handle,
HTC_HANDLE htc_handle,
qdf_device_t qdf_osdev,
struct ol_if_ops *ol_ops, uint16_t device_id);
static void dp_pktlogmod_exit(struct dp_pdev *handle);
static inline QDF_STATUS dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint8_t *peer_mac_addr);
static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint8_t *peer_mac, uint32_t bitmap);
static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle,
bool unmap_only);
#ifdef ENABLE_VERBOSE_DEBUG
bool is_dp_verbose_debug_enabled;
#endif
#if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
static void dp_cfr_filter(struct cdp_soc_t *soc_hdl,
uint8_t pdev_id,
bool enable,
struct cdp_monitor_filter *filter_val);
static bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id);
static void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
bool enable);
static inline void
dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
struct cdp_cfr_rcc_stats *cfr_rcc_stats);
static inline void
dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id);
static inline void
dp_enable_mon_reap_timer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
bool enable);
#endif
static inline bool
dp_is_enable_reap_timer_non_pkt(struct dp_pdev *pdev);
static uint8_t dp_soc_ring_if_nss_offloaded(struct dp_soc *soc,
enum hal_ring_type ring_type,
int ring_num);
#define DP_INTR_POLL_TIMER_MS 5
#define MON_VDEV_TIMER_INIT 0x1
#define MON_VDEV_TIMER_RUNNING 0x2
/* Generic AST entry aging timer value */
#define DP_AST_AGING_TIMER_DEFAULT_MS 1000
#define DP_MCS_LENGTH (6*MAX_MCS)
#define DP_CURR_FW_STATS_AVAIL 19
#define DP_HTT_DBG_EXT_STATS_MAX 256
#define DP_MAX_SLEEP_TIME 100
#ifndef QCA_WIFI_3_0_EMU
#define SUSPEND_DRAIN_WAIT 500
#else
#define SUSPEND_DRAIN_WAIT 3000
#endif
#ifdef IPA_OFFLOAD
/* Exclude IPA rings from the interrupt context */
#define TX_RING_MASK_VAL 0xb
#define RX_RING_MASK_VAL 0x7
#else
#define TX_RING_MASK_VAL 0xF
#define RX_RING_MASK_VAL 0xF
#endif
#define STR_MAXLEN 64
#define RNG_ERR "SRNG setup failed for"
/* Threshold for peer's cached buf queue beyond which frames are dropped */
#define DP_RX_CACHED_BUFQ_THRESH 64
/* Budget to reap monitor status ring */
#define DP_MON_REAP_BUDGET 1024
/**
* default_dscp_tid_map - Default DSCP-TID mapping
*
* DSCP TID
* 000000 0
* 001000 1
* 010000 2
* 011000 3
* 100000 4
* 101000 5
* 110000 6
* 111000 7
*/
static uint8_t default_dscp_tid_map[DSCP_TID_MAP_MAX] = {
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7,
};
/**
* default_pcp_tid_map - Default PCP-TID mapping
*
* PCP TID
* 000 0
* 001 1
* 010 2
* 011 3
* 100 4
* 101 5
* 110 6
* 111 7
*/
static uint8_t default_pcp_tid_map[PCP_TID_MAP_MAX] = {
0, 1, 2, 3, 4, 5, 6, 7,
};
/**
* @brief Cpu to tx ring map
*/
uint8_t
dp_cpu_ring_map[DP_NSS_CPU_RING_MAP_MAX][WLAN_CFG_INT_NUM_CONTEXTS_MAX] = {
{0x0, 0x1, 0x2, 0x0, 0x0, 0x1, 0x2, 0x0, 0x0, 0x1, 0x2},
{0x1, 0x2, 0x1, 0x2, 0x1, 0x2, 0x1, 0x2, 0x1, 0x2, 0x1},
{0x0, 0x2, 0x0, 0x2, 0x0, 0x2, 0x0, 0x2, 0x0, 0x2, 0x0},
{0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2},
{0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3},
#ifdef WLAN_TX_PKT_CAPTURE_ENH
{0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1}
#endif
};
/**
* @brief Select the type of statistics
*/
enum dp_stats_type {
STATS_FW = 0,
STATS_HOST = 1,
STATS_TYPE_MAX = 2,
};
/**
* @brief General Firmware statistics options
*
*/
enum dp_fw_stats {
TXRX_FW_STATS_INVALID = -1,
};
/**
* dp_stats_mapping_table - Firmware and Host statistics
* currently supported
*/
const int dp_stats_mapping_table[][STATS_TYPE_MAX] = {
{HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID},
{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID},
/* Last ENUM for HTT FW STATS */
{DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID},
{TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS},
{TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS},
{TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS},
{TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS},
{TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS},
{TXRX_FW_STATS_INVALID, TXRX_AST_STATS},
{TXRX_FW_STATS_INVALID, TXRX_SRNG_PTR_STATS},
{TXRX_FW_STATS_INVALID, TXRX_RX_MON_STATS},
{TXRX_FW_STATS_INVALID, TXRX_REO_QUEUE_STATS},
{TXRX_FW_STATS_INVALID, TXRX_SOC_CFG_PARAMS},
{TXRX_FW_STATS_INVALID, TXRX_PDEV_CFG_PARAMS},
{TXRX_FW_STATS_INVALID, TXRX_SOC_INTERRUPT_STATS},
{TXRX_FW_STATS_INVALID, TXRX_SOC_FSE_STATS},
{TXRX_FW_STATS_INVALID, TXRX_HAL_REG_WRITE_STATS},
{HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT, TXRX_HOST_STATS_INVALID}
};
/* MCL specific functions */
#if defined(DP_CON_MON)
/**
* dp_soc_get_mon_mask_for_interrupt_mode() - get mon mode mask for intr mode
* @soc: pointer to dp_soc handle
* @intr_ctx_num: interrupt context number for which mon mask is needed
*
* For MCL, monitor mode rings are being processed in timer contexts (polled).
* This function is returning 0, since in interrupt mode(softirq based RX),
* we donot want to process monitor mode rings in a softirq.
*
* So, in case packet log is enabled for SAP/STA/P2P modes,
* regular interrupt processing will not process monitor mode rings. It would be
* done in a separate timer context.
*
* Return: 0
*/
static inline
uint32_t dp_soc_get_mon_mask_for_interrupt_mode(struct dp_soc *soc, int intr_ctx_num)
{
return 0;
}
/*
* dp_service_mon_rings()- service monitor rings
* @soc: soc dp handle
* @quota: number of ring entry that can be serviced
*
* Return: None
*
*/
static void dp_service_mon_rings(struct dp_soc *soc, uint32_t quota)
{
int ring = 0, work_done;
struct dp_pdev *pdev = NULL;
for (ring = 0 ; ring < MAX_NUM_LMAC_HW; ring++) {
pdev = dp_get_pdev_for_lmac_id(soc, ring);
if (!pdev)
continue;
work_done = dp_mon_process(soc, NULL, ring, quota);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("Reaped %d descs from Monitor rings"),
work_done);
}
}
/*
* dp_mon_reap_timer_handler()- timer to reap monitor rings
* reqd as we are not getting ppdu end interrupts
* @arg: SoC Handle
*
* Return:
*
*/
static void dp_mon_reap_timer_handler(void *arg)
{
struct dp_soc *soc = (struct dp_soc *)arg;
dp_service_mon_rings(soc, QCA_NAPI_BUDGET);
qdf_timer_mod(&soc->mon_reap_timer, DP_INTR_POLL_TIMER_MS);
}
#ifndef REMOVE_PKT_LOG
/**
* dp_pkt_log_init() - API to initialize packet log
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
* @scn: HIF context
*
* Return: none
*/
void dp_pkt_log_init(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, void *scn)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *handle =
dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!handle) {
dp_err("pdev handle is NULL");
return;
}
if (handle->pkt_log_init) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Packet log not initialized", __func__);
return;
}
pktlog_sethandle(&handle->pl_dev, scn);
pktlog_set_pdev_id(handle->pl_dev, pdev_id);
pktlog_set_callback_regtype(PKTLOG_DEFAULT_CALLBACK_REGISTRATION);
if (pktlogmod_init(scn)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: pktlogmod_init failed", __func__);
handle->pkt_log_init = false;
} else {
handle->pkt_log_init = true;
}
}
/**
* dp_pkt_log_con_service() - connect packet log service
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
* @scn: device context
*
* Return: none
*/
static void dp_pkt_log_con_service(struct cdp_soc_t *soc_hdl,
uint8_t pdev_id, void *scn)
{
dp_pkt_log_init(soc_hdl, pdev_id, scn);
pktlog_htc_attach();
}
/**
* dp_pktlogmod_exit() - API to cleanup pktlog info
* @pdev: Pdev handle
*
* Return: none
*/
static void dp_pktlogmod_exit(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
struct hif_opaque_softc *scn = soc->hif_handle;
if (!scn) {
dp_err("Invalid hif(scn) handle");
return;
}
/* stop mon_reap_timer if it has been started */
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED &&
soc->reap_timer_init && (!dp_is_enable_reap_timer_non_pkt(pdev)))
qdf_timer_sync_cancel(&soc->mon_reap_timer);
pktlogmod_exit(scn);
pdev->pkt_log_init = false;
}
#else
static void dp_pkt_log_con_service(struct cdp_soc_t *soc_hdl,
uint8_t pdev_id, void *scn)
{
}
static void dp_pktlogmod_exit(struct dp_pdev *handle) { }
#endif
/**
* dp_get_num_rx_contexts() - get number of RX contexts
* @soc_hdl: cdp opaque soc handle
*
* Return: number of RX contexts
*/
static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
{
int i;
int num_rx_contexts = 0;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++)
if (wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, i))
num_rx_contexts++;
return num_rx_contexts;
}
#else
static void dp_pktlogmod_exit(struct dp_pdev *handle) { }
/**
* dp_soc_get_mon_mask_for_interrupt_mode() - get mon mode mask for intr mode
* @soc: pointer to dp_soc handle
* @intr_ctx_num: interrupt context number for which mon mask is needed
*
* Return: mon mask value
*/
static inline
uint32_t dp_soc_get_mon_mask_for_interrupt_mode(struct dp_soc *soc, int intr_ctx_num)
{
return wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
}
/*
* dp_service_lmac_rings()- timer to reap lmac rings
* @arg: SoC Handle
*
* Return:
*
*/
static void dp_service_lmac_rings(void *arg)
{
struct dp_soc *soc = (struct dp_soc *)arg;
int ring = 0, i;
struct dp_pdev *pdev = NULL;
union dp_rx_desc_list_elem_t *desc_list = NULL;
union dp_rx_desc_list_elem_t *tail = NULL;
/* Process LMAC interrupts */
for (ring = 0 ; ring < MAX_NUM_LMAC_HW; ring++) {
int mac_for_pdev = ring;
struct dp_srng *rx_refill_buf_ring;
pdev = dp_get_pdev_for_lmac_id(soc, mac_for_pdev);
if (!pdev)
continue;
rx_refill_buf_ring = &soc->rx_refill_buf_ring[mac_for_pdev];
dp_mon_process(soc, NULL, mac_for_pdev,
QCA_NAPI_BUDGET);
for (i = 0;
i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++)
dp_rxdma_err_process(&soc->intr_ctx[i], soc,
mac_for_pdev,
QCA_NAPI_BUDGET);
if (!dp_soc_ring_if_nss_offloaded(soc, RXDMA_BUF,
mac_for_pdev))
dp_rx_buffers_replenish(soc, mac_for_pdev,
rx_refill_buf_ring,
&soc->rx_desc_buf[mac_for_pdev],
0, &desc_list, &tail);
}
qdf_timer_mod(&soc->lmac_reap_timer, DP_INTR_POLL_TIMER_MS);
}
#endif
static int dp_peer_add_ast_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint8_t *peer_mac,
uint8_t *mac_addr,
enum cdp_txrx_ast_entry_type type,
uint32_t flags)
{
int ret = -1;
QDF_STATUS status = QDF_STATUS_SUCCESS;
struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl,
peer_mac, 0, vdev_id,
DP_MOD_ID_CDP);
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%s: Peer is NULL!\n", __func__);
return ret;
}
status = dp_peer_add_ast((struct dp_soc *)soc_hdl,
peer,
mac_addr,
type,
flags);
if ((status == QDF_STATUS_SUCCESS) ||
(status == QDF_STATUS_E_ALREADY) ||
(status == QDF_STATUS_E_AGAIN))
ret = 0;
dp_hmwds_ast_add_notify(peer, mac_addr,
type, status, false);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return ret;
}
static int dp_peer_update_ast_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint8_t *peer_mac,
uint8_t *wds_macaddr,
uint32_t flags)
{
int status = -1;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_ast_entry *ast_entry = NULL;
struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl,
peer_mac, 0, vdev_id,
DP_MOD_ID_CDP);
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%s: Peer is NULL!\n", __func__);
return status;
}
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
peer->vdev->pdev->pdev_id);
if (ast_entry) {
status = dp_peer_update_ast(soc,
peer,
ast_entry, flags);
}
qdf_spin_unlock_bh(&soc->ast_lock);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return status;
}
/*
* dp_peer_reset_ast_entries() - Deletes all HMWDS entries for a peer
* @soc_handle: Datapath SOC handle
* @peer: DP peer
* @arg: callback argument
*
* Return: None
*/
static void
dp_peer_reset_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
{
struct dp_ast_entry *ast_entry = NULL;
struct dp_ast_entry *tmp_ast_entry;
DP_PEER_ITERATE_ASE_LIST(peer, ast_entry, tmp_ast_entry) {
if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
(ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
dp_peer_del_ast(soc, ast_entry);
}
}
/*
* dp_wds_reset_ast_wifi3() - Reset the is_active param for ast entry
* @soc_handle: Datapath SOC handle
* @wds_macaddr: WDS entry MAC Address
* @peer_macaddr: WDS entry MAC Address
* @vdev_id: id of vdev handle
* Return: QDF_STATUS
*/
static QDF_STATUS dp_wds_reset_ast_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t *wds_macaddr,
uint8_t *peer_mac_addr,
uint8_t vdev_id)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_ast_entry *ast_entry = NULL;
struct dp_peer *peer;
struct dp_pdev *pdev;
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev)
return QDF_STATUS_E_FAILURE;
pdev = vdev->pdev;
if (peer_mac_addr) {
peer = dp_peer_find_hash_find(soc, peer_mac_addr,
0, vdev->vdev_id,
DP_MOD_ID_CDP);
if (!peer) {
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_E_FAILURE;
}
qdf_spin_lock_bh(&soc->ast_lock);
dp_peer_reset_ast_entries(soc, peer, NULL);
qdf_spin_unlock_bh(&soc->ast_lock);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
} else if (wds_macaddr) {
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
pdev->pdev_id);
if (ast_entry) {
if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
(ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
dp_peer_del_ast(soc, ast_entry);
}
qdf_spin_unlock_bh(&soc->ast_lock);
}
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/*
* dp_wds_reset_ast_table_wifi3() - Reset the is_active param for all ast entry
* @soc: Datapath SOC handle
* @vdev_id: id of vdev object
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_wds_reset_ast_table_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id)
{
struct dp_soc *soc = (struct dp_soc *) soc_hdl;
qdf_spin_lock_bh(&soc->ast_lock);
dp_soc_iterate_peer(soc, dp_peer_reset_ast_entries, NULL,
DP_MOD_ID_CDP);
qdf_spin_unlock_bh(&soc->ast_lock);
return QDF_STATUS_SUCCESS;
}
/*
* dp_peer_flush_ast_entries() - Delete all wds and hmwds ast entries of a peer
* @soc: Datapath SOC
* @peer: Datapath peer
* @arg: arg to callback
*
* Return: None
*/
static void
dp_peer_flush_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
{
struct dp_ast_entry *ase = NULL;
struct dp_ast_entry *temp_ase;
DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
if ((ase->type ==
CDP_TXRX_AST_TYPE_STATIC) ||
(ase->type ==
CDP_TXRX_AST_TYPE_SELF) ||
(ase->type ==
CDP_TXRX_AST_TYPE_STA_BSS))
continue;
dp_peer_del_ast(soc, ase);
}
}
/*
* dp_wds_flush_ast_table_wifi3() - Delete all wds and hmwds ast entry
* @soc: Datapath SOC handle
*
* Return: None
*/
static void dp_wds_flush_ast_table_wifi3(struct cdp_soc_t *soc_hdl)
{
struct dp_soc *soc = (struct dp_soc *) soc_hdl;
qdf_spin_lock_bh(&soc->ast_lock);
dp_soc_iterate_peer(soc, dp_peer_flush_ast_entries, NULL,
DP_MOD_ID_CDP);
qdf_spin_unlock_bh(&soc->ast_lock);
}
/**
* dp_peer_get_ast_info_by_soc_wifi3() - search the soc AST hash table
* and return ast entry information
* of first ast entry found in the
* table with given mac address
*
* @soc : data path soc handle
* @ast_mac_addr : AST entry mac address
* @ast_entry_info : ast entry information
*
* return : true if ast entry found with ast_mac_addr
* false if ast entry not found
*/
static bool dp_peer_get_ast_info_by_soc_wifi3
(struct cdp_soc_t *soc_hdl,
uint8_t *ast_mac_addr,
struct cdp_ast_entry_info *ast_entry_info)
{
struct dp_ast_entry *ast_entry = NULL;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_peer *peer = NULL;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_soc(soc, ast_mac_addr);
if ((!ast_entry) ||
(ast_entry->delete_in_progress && !ast_entry->callback)) {
qdf_spin_unlock_bh(&soc->ast_lock);
return false;
}
peer = dp_peer_get_ref_by_id(soc, ast_entry->peer_id,
DP_MOD_ID_AST);
if (!peer) {
qdf_spin_unlock_bh(&soc->ast_lock);
return false;
}
ast_entry_info->type = ast_entry->type;
ast_entry_info->pdev_id = ast_entry->pdev_id;
ast_entry_info->vdev_id = ast_entry->vdev_id;
ast_entry_info->peer_id = ast_entry->peer_id;
qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
&peer->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE);
dp_peer_unref_delete(peer, DP_MOD_ID_AST);
qdf_spin_unlock_bh(&soc->ast_lock);
return true;
}
/**
* dp_peer_get_ast_info_by_pdevid_wifi3() - search the soc AST hash table
* and return ast entry information
* if mac address and pdev_id matches
*
* @soc : data path soc handle
* @ast_mac_addr : AST entry mac address
* @pdev_id : pdev_id
* @ast_entry_info : ast entry information
*
* return : true if ast entry found with ast_mac_addr
* false if ast entry not found
*/
static bool dp_peer_get_ast_info_by_pdevid_wifi3
(struct cdp_soc_t *soc_hdl,
uint8_t *ast_mac_addr,
uint8_t pdev_id,
struct cdp_ast_entry_info *ast_entry_info)
{
struct dp_ast_entry *ast_entry;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_peer *peer = NULL;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, ast_mac_addr,
pdev_id);
if ((!ast_entry) ||
(ast_entry->delete_in_progress && !ast_entry->callback)) {
qdf_spin_unlock_bh(&soc->ast_lock);
return false;
}
peer = dp_peer_get_ref_by_id(soc, ast_entry->peer_id,
DP_MOD_ID_AST);
if (!peer) {
qdf_spin_unlock_bh(&soc->ast_lock);
return false;
}
ast_entry_info->type = ast_entry->type;
ast_entry_info->pdev_id = ast_entry->pdev_id;
ast_entry_info->vdev_id = ast_entry->vdev_id;
ast_entry_info->peer_id = ast_entry->peer_id;
qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
&peer->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE);
dp_peer_unref_delete(peer, DP_MOD_ID_AST);
qdf_spin_unlock_bh(&soc->ast_lock);
return true;
}
/**
* dp_peer_ast_entry_del_by_soc() - delete the ast entry from soc AST hash table
* with given mac address
*
* @soc : data path soc handle
* @ast_mac_addr : AST entry mac address
* @callback : callback function to called on ast delete response from FW
* @cookie : argument to be passed to callback
*
* return : QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
* is sent
* QDF_STATUS_E_INVAL false if ast entry not found
*/
static QDF_STATUS dp_peer_ast_entry_del_by_soc(struct cdp_soc_t *soc_handle,
uint8_t *mac_addr,
txrx_ast_free_cb callback,
void *cookie)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
struct dp_ast_entry *ast_entry = NULL;
txrx_ast_free_cb cb = NULL;
void *arg = NULL;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_soc(soc, mac_addr);
if (!ast_entry) {
qdf_spin_unlock_bh(&soc->ast_lock);
return -QDF_STATUS_E_INVAL;
}
if (ast_entry->callback) {
cb = ast_entry->callback;
arg = ast_entry->cookie;
}
ast_entry->callback = callback;
ast_entry->cookie = cookie;
/*
* if delete_in_progress is set AST delete is sent to target
* and host is waiting for response should not send delete
* again
*/
if (!ast_entry->delete_in_progress)
dp_peer_del_ast(soc, ast_entry);
qdf_spin_unlock_bh(&soc->ast_lock);
if (cb) {
cb(soc->ctrl_psoc,
dp_soc_to_cdp_soc(soc),
arg,
CDP_TXRX_AST_DELETE_IN_PROGRESS);
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_peer_ast_entry_del_by_pdev() - delete the ast entry from soc AST hash
* table if mac address and pdev_id matches
*
* @soc : data path soc handle
* @ast_mac_addr : AST entry mac address
* @pdev_id : pdev id
* @callback : callback function to called on ast delete response from FW
* @cookie : argument to be passed to callback
*
* return : QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
* is sent
* QDF_STATUS_E_INVAL false if ast entry not found
*/
static QDF_STATUS dp_peer_ast_entry_del_by_pdev(struct cdp_soc_t *soc_handle,
uint8_t *mac_addr,
uint8_t pdev_id,
txrx_ast_free_cb callback,
void *cookie)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
struct dp_ast_entry *ast_entry;
txrx_ast_free_cb cb = NULL;
void *arg = NULL;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, mac_addr, pdev_id);
if (!ast_entry) {
qdf_spin_unlock_bh(&soc->ast_lock);
return -QDF_STATUS_E_INVAL;
}
if (ast_entry->callback) {
cb = ast_entry->callback;
arg = ast_entry->cookie;
}
ast_entry->callback = callback;
ast_entry->cookie = cookie;
/*
* if delete_in_progress is set AST delete is sent to target
* and host is waiting for response should not sent delete
* again
*/
if (!ast_entry->delete_in_progress)
dp_peer_del_ast(soc, ast_entry);
qdf_spin_unlock_bh(&soc->ast_lock);
if (cb) {
cb(soc->ctrl_psoc,
dp_soc_to_cdp_soc(soc),
arg,
CDP_TXRX_AST_DELETE_IN_PROGRESS);
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_srng_find_ring_in_mask() - find which ext_group a ring belongs
* @ring_num: ring num of the ring being queried
* @grp_mask: the grp_mask array for the ring type in question.
*
* The grp_mask array is indexed by group number and the bit fields correspond
* to ring numbers. We are finding which interrupt group a ring belongs to.
*
* Return: the index in the grp_mask array with the ring number.
* -QDF_STATUS_E_NOENT if no entry is found
*/
static int dp_srng_find_ring_in_mask(int ring_num, int *grp_mask)
{
int ext_group_num;
int mask = 1 << ring_num;
for (ext_group_num = 0; ext_group_num < WLAN_CFG_INT_NUM_CONTEXTS;
ext_group_num++) {
if (mask & grp_mask[ext_group_num])
return ext_group_num;
}
return -QDF_STATUS_E_NOENT;
}
static int dp_srng_calculate_msi_group(struct dp_soc *soc,
enum hal_ring_type ring_type,
int ring_num)
{
int *grp_mask;
switch (ring_type) {
case WBM2SW_RELEASE:
/* dp_tx_comp_handler - soc->tx_comp_ring */
if (ring_num < 3)
grp_mask = &soc->wlan_cfg_ctx->int_tx_ring_mask[0];
/* dp_rx_wbm_err_process - soc->rx_rel_ring */
else if (ring_num == 3) {
/* sw treats this as a separate ring type */
grp_mask = &soc->wlan_cfg_ctx->
int_rx_wbm_rel_ring_mask[0];
ring_num = 0;
} else {
qdf_assert(0);
return -QDF_STATUS_E_NOENT;
}
break;
case REO_EXCEPTION:
/* dp_rx_err_process - &soc->reo_exception_ring */
grp_mask = &soc->wlan_cfg_ctx->int_rx_err_ring_mask[0];
break;
case REO_DST:
/* dp_rx_process - soc->reo_dest_ring */
grp_mask = &soc->wlan_cfg_ctx->int_rx_ring_mask[0];
break;
case REO_STATUS:
/* dp_reo_status_ring_handler - soc->reo_status_ring */
grp_mask = &soc->wlan_cfg_ctx->int_reo_status_ring_mask[0];
break;
/* dp_rx_mon_status_srng_process - pdev->rxdma_mon_status_ring*/
case RXDMA_MONITOR_STATUS:
/* dp_rx_mon_dest_process - pdev->rxdma_mon_dst_ring */
case RXDMA_MONITOR_DST:
/* dp_mon_process */
grp_mask = &soc->wlan_cfg_ctx->int_rx_mon_ring_mask[0];
break;
case RXDMA_DST:
/* dp_rxdma_err_process */
grp_mask = &soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[0];
break;
case RXDMA_BUF:
grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0];
break;
case RXDMA_MONITOR_BUF:
grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_mon_ring_mask[0];
break;
case TCL_DATA:
/* CMD_CREDIT_RING is used as command in 8074 and credit in 9000 */
case TCL_CMD_CREDIT:
case REO_CMD:
case SW2WBM_RELEASE:
case WBM_IDLE_LINK:
/* normally empty SW_TO_HW rings */
return -QDF_STATUS_E_NOENT;
break;
case TCL_STATUS:
case REO_REINJECT:
/* misc unused rings */
return -QDF_STATUS_E_NOENT;
break;
case CE_SRC:
case CE_DST:
case CE_DST_STATUS:
/* CE_rings - currently handled by hif */
default:
return -QDF_STATUS_E_NOENT;
break;
}
return dp_srng_find_ring_in_mask(ring_num, grp_mask);
}
static void dp_srng_msi_setup(struct dp_soc *soc, struct hal_srng_params
*ring_params, int ring_type, int ring_num)
{
int msi_group_number;
int msi_data_count;
int ret;
uint32_t msi_data_start, msi_irq_start, addr_low, addr_high;
ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
&msi_data_count, &msi_data_start,
&msi_irq_start);
if (ret)
return;
msi_group_number = dp_srng_calculate_msi_group(soc, ring_type,
ring_num);
if (msi_group_number < 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW,
FL("ring not part of an ext_group; ring_type: %d,ring_num %d"),
ring_type, ring_num);
ring_params->msi_addr = 0;
ring_params->msi_data = 0;
return;
}
if (msi_group_number > msi_data_count) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_WARN,
FL("2 msi_groups will share an msi; msi_group_num %d"),
msi_group_number);
QDF_ASSERT(0);
}
pld_get_msi_address(soc->osdev->dev, &addr_low, &addr_high);
ring_params->msi_addr = addr_low;
ring_params->msi_addr |= (qdf_dma_addr_t)(((uint64_t)addr_high) << 32);
ring_params->msi_data = (msi_group_number % msi_data_count)
+ msi_data_start;
ring_params->flags |= HAL_SRNG_MSI_INTR;
}
#ifdef FEATURE_AST
/**
* dp_print_peer_ast_entries() - Dump AST entries of peer
* @soc: Datapath soc handle
* @peer: Datapath peer
* @arg: argument to iterate function
*
* return void
*/
static void
dp_print_peer_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
{
struct dp_ast_entry *ase, *tmp_ase;
uint32_t num_entries = 0;
char type[CDP_TXRX_AST_TYPE_MAX][10] = {
"NONE", "STATIC", "SELF", "WDS", "MEC", "HMWDS", "BSS",
"DA", "HMWDS_SEC"};
DP_PEER_ITERATE_ASE_LIST(peer, ase, tmp_ase) {
DP_PRINT_STATS("%6d mac_addr = "QDF_MAC_ADDR_FMT
" peer_mac_addr = "QDF_MAC_ADDR_FMT
" peer_id = %u"
" type = %s"
" next_hop = %d"
" is_active = %d"
" ast_idx = %d"
" ast_hash = %d"
" delete_in_progress = %d"
" pdev_id = %d"
" vdev_id = %d",
++num_entries,
QDF_MAC_ADDR_REF(ase->mac_addr.raw),
QDF_MAC_ADDR_REF(peer->mac_addr.raw),
ase->peer_id,
type[ase->type],
ase->next_hop,
ase->is_active,
ase->ast_idx,
ase->ast_hash_value,
ase->delete_in_progress,
ase->pdev_id,
ase->vdev_id);
}
}
/**
* dp_print_ast_stats() - Dump AST table contents
* @soc: Datapath soc handle
*
* return void
*/
void dp_print_ast_stats(struct dp_soc *soc)
{
DP_PRINT_STATS("AST Stats:");
DP_PRINT_STATS(" Entries Added = %d", soc->stats.ast.added);
DP_PRINT_STATS(" Entries Deleted = %d", soc->stats.ast.deleted);
DP_PRINT_STATS(" Entries Agedout = %d", soc->stats.ast.aged_out);
DP_PRINT_STATS(" Entries MAP ERR = %d", soc->stats.ast.map_err);
DP_PRINT_STATS(" Entries Mismatch ERR = %d",
soc->stats.ast.ast_mismatch);
DP_PRINT_STATS("AST Table:");
qdf_spin_lock_bh(&soc->ast_lock);
dp_soc_iterate_peer(soc, dp_print_peer_ast_entries, NULL,
DP_MOD_ID_GENERIC_STATS);
qdf_spin_unlock_bh(&soc->ast_lock);
}
#else
void dp_print_ast_stats(struct dp_soc *soc)
{
DP_PRINT_STATS("AST Stats not available.Enable FEATURE_AST");
return;
}
#endif
/**
* dp_print_peer_info() - Dump peer info
* @soc: Datapath soc handle
* @peer: Datapath peer handle
* @arg: argument to iter function
*
* return void
*/
static void
dp_print_peer_info(struct dp_soc *soc, struct dp_peer *peer, void *arg)
{
DP_PRINT_STATS(" peer_mac_addr = "QDF_MAC_ADDR_FMT
" nawds_enabled = %d"
" bss_peer = %d"
" wds_enabled = %d"
" tx_cap_enabled = %d"
" rx_cap_enabled = %d"
" peer id = %d",
QDF_MAC_ADDR_REF(peer->mac_addr.raw),
peer->nawds_enabled,
peer->bss_peer,
peer->wds_enabled,
peer->tx_cap_enabled,
peer->rx_cap_enabled,
peer->peer_id);
}
/**
* dp_print_peer_table() - Dump all Peer stats
* @vdev: Datapath Vdev handle
*
* return void
*/
static void dp_print_peer_table(struct dp_vdev *vdev)
{
DP_PRINT_STATS("Dumping Peer Table Stats:");
dp_vdev_iterate_peer(vdev, dp_print_peer_info, NULL,
DP_MOD_ID_GENERIC_STATS);
}
#ifdef WLAN_DP_PER_RING_TYPE_CONFIG
/**
* dp_srng_configure_interrupt_thresholds() - Retrieve interrupt
* threshold values from the wlan_srng_cfg table for each ring type
* @soc: device handle
* @ring_params: per ring specific parameters
* @ring_type: Ring type
* @ring_num: Ring number for a given ring type
*
* Fill the ring params with the interrupt threshold
* configuration parameters available in the per ring type wlan_srng_cfg
* table.
*
* Return: None
*/
static void
dp_srng_configure_interrupt_thresholds(struct dp_soc *soc,
struct hal_srng_params *ring_params,
int ring_type, int ring_num,
int num_entries)
{
if (ring_type == REO_DST) {
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
ring_params->intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_rx(soc->wlan_cfg_ctx);
} else if (ring_type == WBM2SW_RELEASE && (ring_num == 3)) {
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
ring_params->intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx);
} else {
ring_params->intr_timer_thres_us =
soc->wlan_srng_cfg[ring_type].timer_threshold;
ring_params->intr_batch_cntr_thres_entries =
soc->wlan_srng_cfg[ring_type].batch_count_threshold;
}
ring_params->low_threshold =
soc->wlan_srng_cfg[ring_type].low_threshold;
if (ring_params->low_threshold)
ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
}
#else
static void
dp_srng_configure_interrupt_thresholds(struct dp_soc *soc,
struct hal_srng_params *ring_params,
int ring_type, int ring_num,
int num_entries)
{
if (ring_type == REO_DST) {
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
ring_params->intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_rx(soc->wlan_cfg_ctx);
} else if (ring_type == WBM2SW_RELEASE && (ring_num < 3)) {
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_tx(soc->wlan_cfg_ctx);
ring_params->intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_tx(soc->wlan_cfg_ctx);
} else {
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
ring_params->intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx);
}
/* Enable low threshold interrupts for rx buffer rings (regular and
* monitor buffer rings.
* TODO: See if this is required for any other ring
*/
if ((ring_type == RXDMA_BUF) || (ring_type == RXDMA_MONITOR_BUF) ||
(ring_type == RXDMA_MONITOR_STATUS)) {
/* TODO: Setting low threshold to 1/8th of ring size
* see if this needs to be configurable
*/
ring_params->low_threshold = num_entries >> 3;
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
ring_params->intr_batch_cntr_thres_entries = 0;
}
/* During initialisation monitor rings are only filled with
* MON_BUF_MIN_ENTRIES entries. So low threshold needs to be set to
* a value less than that. Low threshold value is reconfigured again
* to 1/8th of the ring size when monitor vap is created.
*/
if (ring_type == RXDMA_MONITOR_BUF)
ring_params->low_threshold = MON_BUF_MIN_ENTRIES >> 1;
/* In case of PCI chipsets, we dont have PPDU end interrupts,
* so MONITOR STATUS ring is reaped by receiving MSI from srng.
* Keep batch threshold as 8 so that interrupt is received for
* every 4 packets in MONITOR_STATUS ring
*/
if ((ring_type == RXDMA_MONITOR_STATUS) &&
(soc->intr_mode == DP_INTR_MSI))
ring_params->intr_batch_cntr_thres_entries = 4;
}
#endif
#ifdef DP_MEM_PRE_ALLOC
void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
size_t ctxt_size)
{
void *ctxt_mem;
if (!soc->cdp_soc.ol_ops->dp_prealloc_get_context) {
dp_warn("dp_prealloc_get_context null!");
goto dynamic_alloc;
}
ctxt_mem = soc->cdp_soc.ol_ops->dp_prealloc_get_context(ctxt_type);
if (ctxt_mem)
goto end;
dynamic_alloc:
dp_info("Pre-alloc of ctxt failed. Dynamic allocation");
ctxt_mem = qdf_mem_malloc(ctxt_size);
end:
return ctxt_mem;
}
void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
void *vaddr)
{
QDF_STATUS status;
if (soc->cdp_soc.ol_ops->dp_prealloc_put_context) {
status = soc->cdp_soc.ol_ops->dp_prealloc_put_context(
DP_PDEV_TYPE,
vaddr);
} else {
dp_warn("dp_prealloc_get_context null!");
status = QDF_STATUS_E_NOSUPPORT;
}
if (QDF_IS_STATUS_ERROR(status)) {
dp_info("Context not pre-allocated");
qdf_mem_free(vaddr);
}
}
static inline
void *dp_srng_aligned_mem_alloc_consistent(struct dp_soc *soc,
struct dp_srng *srng,
uint32_t ring_type)
{
void *mem;
qdf_assert(!srng->is_mem_prealloc);
if (!soc->cdp_soc.ol_ops->dp_prealloc_get_consistent) {
dp_warn("dp_prealloc_get_consistent is null!");
goto qdf;
}
mem =
soc->cdp_soc.ol_ops->dp_prealloc_get_consistent
(&srng->alloc_size,
&srng->base_vaddr_unaligned,
&srng->base_paddr_unaligned,
&srng->base_paddr_aligned,
DP_RING_BASE_ALIGN, ring_type);
if (mem) {
srng->is_mem_prealloc = true;
goto end;
}
qdf:
mem = qdf_aligned_mem_alloc_consistent(soc->osdev, &srng->alloc_size,
&srng->base_vaddr_unaligned,
&srng->base_paddr_unaligned,
&srng->base_paddr_aligned,
DP_RING_BASE_ALIGN);
end:
dp_info("%s memory %pK dp_srng %pK ring_type %d alloc_size %d num_entries %d",
srng->is_mem_prealloc ? "pre-alloc" : "dynamic-alloc", mem,
srng, ring_type, srng->alloc_size, srng->num_entries);
return mem;
}
static inline void dp_srng_mem_free_consistent(struct dp_soc *soc,
struct dp_srng *srng)
{
if (srng->is_mem_prealloc) {
if (!soc->cdp_soc.ol_ops->dp_prealloc_put_consistent) {
dp_warn("dp_prealloc_put_consistent is null!");
QDF_BUG(0);
return;
}
soc->cdp_soc.ol_ops->dp_prealloc_put_consistent
(srng->alloc_size,
srng->base_vaddr_unaligned,
srng->base_paddr_unaligned);
} else {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
srng->alloc_size,
srng->base_vaddr_unaligned,
srng->base_paddr_unaligned, 0);
}
}
void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
enum dp_desc_type desc_type,
struct qdf_mem_multi_page_t *pages,
size_t element_size,
uint16_t element_num,
qdf_dma_context_t memctxt,
bool cacheable)
{
if (!soc->cdp_soc.ol_ops->dp_get_multi_pages) {
dp_warn("dp_get_multi_pages is null!");
goto qdf;
}
pages->num_pages = 0;
pages->is_mem_prealloc = 0;
soc->cdp_soc.ol_ops->dp_get_multi_pages(desc_type,
element_size,
element_num,
pages,
cacheable);
if (pages->num_pages)
goto end;
qdf:
qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
element_num, memctxt, cacheable);
end:
dp_info("%s desc_type %d element_size %d element_num %d cacheable %d",
pages->is_mem_prealloc ? "pre-alloc" : "dynamic-alloc",
desc_type, (int)element_size, element_num, cacheable);
}
void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
enum dp_desc_type desc_type,
struct qdf_mem_multi_page_t *pages,
qdf_dma_context_t memctxt,
bool cacheable)
{
if (pages->is_mem_prealloc) {
if (!soc->cdp_soc.ol_ops->dp_put_multi_pages) {
dp_warn("dp_put_multi_pages is null!");
QDF_BUG(0);
return;
}
soc->cdp_soc.ol_ops->dp_put_multi_pages(desc_type, pages);
qdf_mem_zero(pages, sizeof(*pages));
} else {
qdf_mem_multi_pages_free(soc->osdev, pages,
memctxt, cacheable);
}
}
#else
static inline
void *dp_srng_aligned_mem_alloc_consistent(struct dp_soc *soc,
struct dp_srng *srng,
uint32_t ring_type)
{
return qdf_aligned_mem_alloc_consistent(soc->osdev, &srng->alloc_size,
&srng->base_vaddr_unaligned,
&srng->base_paddr_unaligned,
&srng->base_paddr_aligned,
DP_RING_BASE_ALIGN);
}
static inline void dp_srng_mem_free_consistent(struct dp_soc *soc,
struct dp_srng *srng)
{
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
srng->alloc_size,
srng->base_vaddr_unaligned,
srng->base_paddr_unaligned, 0);
}
#endif /* DP_MEM_PRE_ALLOC */
/*
* dp_srng_free() - Free SRNG memory
* @soc : Data path soc handle
* @srng : SRNG pointer
*
* return: None
*/
static void dp_srng_free(struct dp_soc *soc, struct dp_srng *srng)
{
if (srng->alloc_size && srng->base_vaddr_unaligned) {
if (!srng->cached) {
dp_srng_mem_free_consistent(soc, srng);
} else {
qdf_mem_free(srng->base_vaddr_unaligned);
}
srng->alloc_size = 0;
srng->base_vaddr_unaligned = NULL;
}
srng->hal_srng = NULL;
}
/*
* dp_srng_init() - Initialize SRNG
* @soc : Data path soc handle
* @srng : SRNG pointer
* @ring_type : Ring Type
* @ring_num: Ring number
* @mac_id: mac_id
*
* return: QDF_STATUS
*/
static QDF_STATUS dp_srng_init(struct dp_soc *soc, struct dp_srng *srng,
int ring_type, int ring_num, int mac_id)
{
hal_soc_handle_t hal_soc = soc->hal_soc;
struct hal_srng_params ring_params;
if (srng->hal_srng) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Ring type: %d, num:%d is already initialized"),
ring_type, ring_num);
return QDF_STATUS_SUCCESS;
}
/* memset the srng ring to zero */
qdf_mem_zero(srng->base_vaddr_unaligned, srng->alloc_size);
qdf_mem_zero(&ring_params, sizeof(struct hal_srng_params));
ring_params.ring_base_paddr = srng->base_paddr_aligned;
ring_params.ring_base_vaddr = srng->base_vaddr_aligned;
ring_params.num_entries = srng->num_entries;
dp_info("Ring type: %d, num:%d vaddr %pK paddr %pK entries %u",
ring_type, ring_num,
(void *)ring_params.ring_base_vaddr,
(void *)ring_params.ring_base_paddr,
ring_params.num_entries);
if (soc->intr_mode == DP_INTR_MSI) {
dp_srng_msi_setup(soc, &ring_params, ring_type, ring_num);
dp_verbose_debug("Using MSI for ring_type: %d, ring_num %d",
ring_type, ring_num);
} else {
ring_params.msi_data = 0;
ring_params.msi_addr = 0;
dp_verbose_debug("Skipping MSI for ring_type: %d, ring_num %d",
ring_type, ring_num);
}
dp_srng_configure_interrupt_thresholds(soc, &ring_params,
ring_type, ring_num,
srng->num_entries);
if (srng->cached)
ring_params.flags |= HAL_SRNG_CACHED_DESC;
srng->hal_srng = hal_srng_setup(hal_soc, ring_type, ring_num,
mac_id, &ring_params);
if (!srng->hal_srng) {
dp_srng_free(soc, srng);
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
/*
* dp_srng_alloc() - Allocate memory for SRNG
* @soc : Data path soc handle
* @srng : SRNG pointer
* @ring_type : Ring Type
* @num_entries: Number of entries
* @cached: cached flag variable
*
* return: QDF_STATUS
*/
static QDF_STATUS dp_srng_alloc(struct dp_soc *soc, struct dp_srng *srng,
int ring_type, uint32_t num_entries,
bool cached)
{
hal_soc_handle_t hal_soc = soc->hal_soc;
uint32_t entry_size = hal_srng_get_entrysize(hal_soc, ring_type);
uint32_t max_entries = hal_srng_max_entries(hal_soc, ring_type);
if (srng->base_vaddr_unaligned) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Ring type: %d, is already allocated"), ring_type);
return QDF_STATUS_SUCCESS;
}
num_entries = (num_entries > max_entries) ? max_entries : num_entries;
srng->hal_srng = NULL;
srng->alloc_size = num_entries * entry_size;
srng->num_entries = num_entries;
srng->cached = cached;
if (!cached) {
srng->base_vaddr_aligned =
dp_srng_aligned_mem_alloc_consistent(soc,
srng,
ring_type);
} else {
srng->base_vaddr_aligned = qdf_aligned_malloc(
&srng->alloc_size,
&srng->base_vaddr_unaligned,
&srng->base_paddr_unaligned,
&srng->base_paddr_aligned,
DP_RING_BASE_ALIGN);
}
if (!srng->base_vaddr_aligned)
return QDF_STATUS_E_NOMEM;
return QDF_STATUS_SUCCESS;
}
/*
* dp_srng_deinit() - Internal function to deinit SRNG rings used by data path
* @soc: DP SOC handle
* @srng: source ring structure
* @ring_type: type of ring
* @ring_num: ring number
*
* Return: None
*/
static void dp_srng_deinit(struct dp_soc *soc, struct dp_srng *srng,
int ring_type, int ring_num)
{
if (!srng->hal_srng) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Ring type: %d, num:%d not setup"),
ring_type, ring_num);
return;
}
hal_srng_cleanup(soc->hal_soc, srng->hal_srng);
srng->hal_srng = NULL;
}
/* TODO: Need this interface from HIF */
void *hif_get_hal_handle(struct hif_opaque_softc *hif_handle);
#ifdef WLAN_FEATURE_DP_EVENT_HISTORY
int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
hal_ring_handle_t hal_ring_hdl)
{
hal_soc_handle_t hal_soc = dp_soc->hal_soc;
uint32_t hp, tp;
uint8_t ring_id;
if (!int_ctx)
return hal_srng_access_start(hal_soc, hal_ring_hdl);
hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
ring_id = hal_srng_ring_id_get(hal_ring_hdl);
hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_START);
return hal_srng_access_start(hal_soc, hal_ring_hdl);
}
void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
hal_ring_handle_t hal_ring_hdl)
{
hal_soc_handle_t hal_soc = dp_soc->hal_soc;
uint32_t hp, tp;
uint8_t ring_id;
if (!int_ctx)
return hal_srng_access_end(hal_soc, hal_ring_hdl);
hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
ring_id = hal_srng_ring_id_get(hal_ring_hdl);
hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_END);
return hal_srng_access_end(hal_soc, hal_ring_hdl);
}
static inline void dp_srng_record_timer_entry(struct dp_soc *dp_soc,
uint8_t hist_group_id)
{
hif_record_event(dp_soc->hif_handle, hist_group_id,
0, 0, 0, HIF_EVENT_TIMER_ENTRY);
}
static inline void dp_srng_record_timer_exit(struct dp_soc *dp_soc,
uint8_t hist_group_id)
{
hif_record_event(dp_soc->hif_handle, hist_group_id,
0, 0, 0, HIF_EVENT_TIMER_EXIT);
}
#else
static inline void dp_srng_record_timer_entry(struct dp_soc *dp_soc,
uint8_t hist_group_id)
{
}
static inline void dp_srng_record_timer_exit(struct dp_soc *dp_soc,
uint8_t hist_group_id)
{
}
#endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
/*
* dp_should_timer_irq_yield() - Decide if the bottom half should yield
* @soc: DP soc handle
* @work_done: work done in softirq context
* @start_time: start time for the softirq
*
* Return: enum with yield code
*/
static enum timer_yield_status
dp_should_timer_irq_yield(struct dp_soc *soc, uint32_t work_done,
uint64_t start_time)
{
uint64_t cur_time = qdf_get_log_timestamp();
if (!work_done)
return DP_TIMER_WORK_DONE;
if (cur_time - start_time > DP_MAX_TIMER_EXEC_TIME_TICKS)
return DP_TIMER_TIME_EXHAUST;
return DP_TIMER_NO_YIELD;
}
/**
* dp_process_lmac_rings() - Process LMAC rings
* @int_ctx: interrupt context
* @total_budget: budget of work which can be done
*
* Return: work done
*/
static int dp_process_lmac_rings(struct dp_intr *int_ctx, int total_budget)
{
struct dp_intr_stats *intr_stats = &int_ctx->intr_stats;
struct dp_soc *soc = int_ctx->soc;
uint32_t remaining_quota = total_budget;
struct dp_pdev *pdev = NULL;
uint32_t work_done = 0;
int budget = total_budget;
int ring = 0;
/* Process LMAC interrupts */
for (ring = 0 ; ring < MAX_NUM_LMAC_HW; ring++) {
int mac_for_pdev = ring;
pdev = dp_get_pdev_for_lmac_id(soc, mac_for_pdev);
if (!pdev)
continue;
if (int_ctx->rx_mon_ring_mask & (1 << mac_for_pdev)) {
work_done = dp_mon_process(soc, int_ctx, mac_for_pdev,
remaining_quota);
if (work_done)
intr_stats->num_rx_mon_ring_masks++;
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
if (int_ctx->rxdma2host_ring_mask &
(1 << mac_for_pdev)) {
work_done = dp_rxdma_err_process(int_ctx, soc,
mac_for_pdev,
remaining_quota);
if (work_done)
intr_stats->num_rxdma2host_ring_masks++;
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
if (int_ctx->host2rxdma_ring_mask &
(1 << mac_for_pdev)) {
union dp_rx_desc_list_elem_t *desc_list = NULL;
union dp_rx_desc_list_elem_t *tail = NULL;
struct dp_srng *rx_refill_buf_ring;
if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
rx_refill_buf_ring =
&soc->rx_refill_buf_ring[mac_for_pdev];
else
rx_refill_buf_ring =
&soc->rx_refill_buf_ring[pdev->lmac_id];
intr_stats->num_host2rxdma_ring_masks++;
DP_STATS_INC(pdev, replenish.low_thresh_intrs,
1);
dp_rx_buffers_replenish(soc, mac_for_pdev,
rx_refill_buf_ring,
&soc->rx_desc_buf[mac_for_pdev],
0, &desc_list, &tail);
}
}
budget_done:
return total_budget - budget;
}
#ifndef QCA_HOST_MODE_WIFI_DISABLED
/*
* dp_service_srngs() - Top level interrupt handler for DP Ring interrupts
* @dp_ctx: DP SOC handle
* @budget: Number of frames/descriptors that can be processed in one shot
*
* Return: remaining budget/quota for the soc device
*/
static uint32_t dp_service_srngs(void *dp_ctx, uint32_t dp_budget)
{
struct dp_intr *int_ctx = (struct dp_intr *)dp_ctx;
struct dp_intr_stats *intr_stats = &int_ctx->intr_stats;
struct dp_soc *soc = int_ctx->soc;
int ring = 0;
uint32_t work_done = 0;
int budget = dp_budget;
uint8_t tx_mask = int_ctx->tx_ring_mask;
uint8_t rx_mask = int_ctx->rx_ring_mask;
uint8_t rx_err_mask = int_ctx->rx_err_ring_mask;
uint8_t rx_wbm_rel_mask = int_ctx->rx_wbm_rel_ring_mask;
uint8_t reo_status_mask = int_ctx->reo_status_ring_mask;
uint32_t remaining_quota = dp_budget;
dp_verbose_debug("tx %x rx %x rx_err %x rx_wbm_rel %x reo_status %x rx_mon_ring %x host2rxdma %x rxdma2host %x\n",
tx_mask, rx_mask, rx_err_mask, rx_wbm_rel_mask,
reo_status_mask,
int_ctx->rx_mon_ring_mask,
int_ctx->host2rxdma_ring_mask,
int_ctx->rxdma2host_ring_mask);
/* Process Tx completion interrupts first to return back buffers */
while (tx_mask) {
if (tx_mask & 0x1) {
work_done = dp_tx_comp_handler(int_ctx,
soc,
soc->tx_comp_ring[ring].hal_srng,
ring, remaining_quota);
if (work_done) {
intr_stats->num_tx_ring_masks[ring]++;
dp_verbose_debug("tx mask 0x%x ring %d, budget %d, work_done %d",
tx_mask, ring, budget,
work_done);
}
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
tx_mask = tx_mask >> 1;
ring++;
}
/* Process REO Exception ring interrupt */
if (rx_err_mask) {
work_done = dp_rx_err_process(int_ctx, soc,
soc->reo_exception_ring.hal_srng,
remaining_quota);
if (work_done) {
intr_stats->num_rx_err_ring_masks++;
dp_verbose_debug("REO Exception Ring: work_done %d budget %d",
work_done, budget);
}
budget -= work_done;
if (budget <= 0) {
goto budget_done;
}
remaining_quota = budget;
}
/* Process Rx WBM release ring interrupt */
if (rx_wbm_rel_mask) {
work_done = dp_rx_wbm_err_process(int_ctx, soc,
soc->rx_rel_ring.hal_srng,
remaining_quota);
if (work_done) {
intr_stats->num_rx_wbm_rel_ring_masks++;
dp_verbose_debug("WBM Release Ring: work_done %d budget %d",
work_done, budget);
}
budget -= work_done;
if (budget <= 0) {
goto budget_done;
}
remaining_quota = budget;
}
/* Process Rx interrupts */
if (rx_mask) {
for (ring = 0; ring < soc->num_reo_dest_rings; ring++) {
if (!(rx_mask & (1 << ring)))
continue;
work_done = dp_rx_process(int_ctx,
soc->reo_dest_ring[ring].hal_srng,
ring,
remaining_quota);
if (work_done) {
intr_stats->num_rx_ring_masks[ring]++;
dp_verbose_debug("rx mask 0x%x ring %d, work_done %d budget %d",
rx_mask, ring,
work_done, budget);
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
}
}
if (reo_status_mask) {
if (dp_reo_status_ring_handler(int_ctx, soc))
int_ctx->intr_stats.num_reo_status_ring_masks++;
}
if (qdf_unlikely(!(soc->mon_vdev_timer_state & MON_VDEV_TIMER_RUNNING))) {
work_done = dp_process_lmac_rings(int_ctx, remaining_quota);
if (work_done) {
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
}
qdf_lro_flush(int_ctx->lro_ctx);
intr_stats->num_masks++;
budget_done:
return dp_budget - budget;
}
#else /* QCA_HOST_MODE_WIFI_DISABLED */
/*
* dp_service_srngs() - Top level handler for DP Monitor Ring interrupts
* @dp_ctx: DP SOC handle
* @budget: Number of frames/descriptors that can be processed in one shot
*
* Return: remaining budget/quota for the soc device
*/
static uint32_t dp_service_srngs(void *dp_ctx, uint32_t dp_budget)
{
struct dp_intr *int_ctx = (struct dp_intr *)dp_ctx;
struct dp_intr_stats *intr_stats = &int_ctx->intr_stats;
struct dp_soc *soc = int_ctx->soc;
uint32_t remaining_quota = dp_budget;
uint32_t work_done = 0;
int budget = dp_budget;
if (qdf_unlikely(!(soc->mon_vdev_timer_state & MON_VDEV_TIMER_RUNNING))) {
work_done = dp_process_lmac_rings(int_ctx, remaining_quota);
if (work_done) {
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
}
qdf_lro_flush(int_ctx->lro_ctx);
intr_stats->num_masks++;
budget_done:
return dp_budget - budget;
}
#endif /* QCA_HOST_MODE_WIFI_DISABLED */
/* dp_mon_vdev_timer()- timer poll for interrupts
*
* @arg: SoC Handle
*
* Return:
*
*/
static void dp_mon_vdev_timer(void *arg)
{
struct dp_soc *soc = (struct dp_soc *)arg;
struct dp_pdev *pdev = soc->pdev_list[0];
enum timer_yield_status yield = DP_TIMER_NO_YIELD;
uint32_t work_done = 0, total_work_done = 0;
int budget = 0xffff;
uint32_t remaining_quota = budget;
uint64_t start_time;
uint32_t lmac_id = DP_MON_INVALID_LMAC_ID;
uint32_t lmac_iter;
int max_mac_rings = wlan_cfg_get_num_mac_rings(pdev->wlan_cfg_ctx);
if (!qdf_atomic_read(&soc->cmn_init_done))
return;
if (pdev->mon_chan_band != REG_BAND_UNKNOWN)
lmac_id = pdev->ch_band_lmac_id_mapping[pdev->mon_chan_band];
start_time = qdf_get_log_timestamp();
dp_is_hw_dbs_enable(soc, &max_mac_rings);
while (yield == DP_TIMER_NO_YIELD) {
for (lmac_iter = 0; lmac_iter < max_mac_rings; lmac_iter++) {
if (lmac_iter == lmac_id)
work_done = dp_mon_process(
soc, NULL,
lmac_iter, remaining_quota);
else
work_done =
dp_mon_drop_packets_for_mac(pdev,
lmac_iter,
remaining_quota);
if (work_done) {
budget -= work_done;
if (budget <= 0) {
yield = DP_TIMER_WORK_EXHAUST;
goto budget_done;
}
remaining_quota = budget;
total_work_done += work_done;
}
}
yield = dp_should_timer_irq_yield(soc, total_work_done,
start_time);
total_work_done = 0;
}
budget_done:
if (yield == DP_TIMER_WORK_EXHAUST ||
yield == DP_TIMER_TIME_EXHAUST)
qdf_timer_mod(&soc->mon_vdev_timer, 1);
else
qdf_timer_mod(&soc->mon_vdev_timer, DP_INTR_POLL_TIMER_MS);
}
/* dp_interrupt_timer()- timer poll for interrupts
*
* @arg: SoC Handle
*
* Return:
*
*/
static void dp_interrupt_timer(void *arg)
{
struct dp_soc *soc = (struct dp_soc *) arg;
struct dp_pdev *pdev = soc->pdev_list[0];
enum timer_yield_status yield = DP_TIMER_NO_YIELD;
uint32_t work_done = 0, total_work_done = 0;
int budget = 0xffff, i;
uint32_t remaining_quota = budget;
uint64_t start_time;
uint32_t lmac_id = DP_MON_INVALID_LMAC_ID;
uint8_t dp_intr_id = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
uint32_t lmac_iter;
int max_mac_rings = wlan_cfg_get_num_mac_rings(pdev->wlan_cfg_ctx);
/*
* this logic makes all data path interfacing rings (UMAC/LMAC)
* and Monitor rings polling mode when NSS offload is disabled
*/
if (wlan_cfg_is_poll_mode_enabled(soc->wlan_cfg_ctx) &&
!wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
if (qdf_atomic_read(&soc->cmn_init_done)) {
for (i = 0; i < wlan_cfg_get_num_contexts(
soc->wlan_cfg_ctx); i++)
dp_service_srngs(&soc->intr_ctx[i], 0xffff);
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
}
return;
}
if (!qdf_atomic_read(&soc->cmn_init_done))
return;
if (pdev->mon_chan_band != REG_BAND_UNKNOWN) {
lmac_id = pdev->ch_band_lmac_id_mapping[pdev->mon_chan_band];
if (qdf_likely(lmac_id != DP_MON_INVALID_LMAC_ID)) {
dp_intr_id = soc->mon_intr_id_lmac_map[lmac_id];
dp_srng_record_timer_entry(soc, dp_intr_id);
}
}
start_time = qdf_get_log_timestamp();
dp_is_hw_dbs_enable(soc, &max_mac_rings);
while (yield == DP_TIMER_NO_YIELD) {
for (lmac_iter = 0; lmac_iter < max_mac_rings; lmac_iter++) {
if (lmac_iter == lmac_id)
work_done = dp_mon_process(soc,
&soc->intr_ctx[dp_intr_id],
lmac_iter, remaining_quota);
else
work_done = dp_mon_drop_packets_for_mac(pdev,
lmac_iter,
remaining_quota);
if (work_done) {
budget -= work_done;
if (budget <= 0) {
yield = DP_TIMER_WORK_EXHAUST;
goto budget_done;
}
remaining_quota = budget;
total_work_done += work_done;
}
}
yield = dp_should_timer_irq_yield(soc, total_work_done,
start_time);
total_work_done = 0;
}
budget_done:
if (yield == DP_TIMER_WORK_EXHAUST ||
yield == DP_TIMER_TIME_EXHAUST)
qdf_timer_mod(&soc->int_timer, 1);
else
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
if (lmac_id != DP_MON_INVALID_LMAC_ID)
dp_srng_record_timer_exit(soc, dp_intr_id);
}
#ifdef WLAN_FEATURE_DP_EVENT_HISTORY
static inline bool dp_is_mon_mask_valid(struct dp_soc *soc,
struct dp_intr *intr_ctx)
{
if (intr_ctx->rx_mon_ring_mask)
return true;
return false;
}
#else
static inline bool dp_is_mon_mask_valid(struct dp_soc *soc,
struct dp_intr *intr_ctx)
{
return false;
}
#endif
/*
* dp_soc_attach_poll() - Register handlers for DP interrupts
* @txrx_soc: DP SOC handle
*
* Host driver will register for “DP_NUM_INTERRUPT_CONTEXTS” number of NAPI
* contexts. Each NAPI context will have a tx_ring_mask , rx_ring_mask ,and
* rx_monitor_ring mask to indicate the rings that are processed by the handler.
*
* Return: 0 for success, nonzero for failure.
*/
static QDF_STATUS dp_soc_attach_poll(struct cdp_soc_t *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
int lmac_id = 0;
qdf_mem_set(&soc->mon_intr_id_lmac_map,
sizeof(soc->mon_intr_id_lmac_map), DP_MON_INVALID_LMAC_ID);
soc->intr_mode = DP_INTR_POLL;
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
soc->intr_ctx[i].dp_intr_id = i;
soc->intr_ctx[i].tx_ring_mask =
wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_ring_mask =
wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_mon_ring_mask =
wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_err_ring_mask =
wlan_cfg_get_rx_err_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_wbm_rel_ring_mask =
wlan_cfg_get_rx_wbm_rel_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].reo_status_ring_mask =
wlan_cfg_get_reo_status_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rxdma2host_ring_mask =
wlan_cfg_get_rxdma2host_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].soc = soc;
soc->intr_ctx[i].lro_ctx = qdf_lro_init();
if (dp_is_mon_mask_valid(soc, &soc->intr_ctx[i])) {
hif_event_history_init(soc->hif_handle, i);
soc->mon_intr_id_lmac_map[lmac_id] = i;
lmac_id++;
}
}
qdf_timer_init(soc->osdev, &soc->int_timer,
dp_interrupt_timer, (void *)soc,
QDF_TIMER_TYPE_WAKE_APPS);
return QDF_STATUS_SUCCESS;
}
/**
* dp_soc_set_interrupt_mode() - Set the interrupt mode in soc
* soc: DP soc handle
*
* Set the appropriate interrupt mode flag in the soc
*/
static void dp_soc_set_interrupt_mode(struct dp_soc *soc)
{
uint32_t msi_base_data, msi_vector_start;
int msi_vector_count, ret;
soc->intr_mode = DP_INTR_INTEGRATED;
if (!(soc->wlan_cfg_ctx->napi_enabled) ||
(soc->cdp_soc.ol_ops->get_con_mode &&
soc->cdp_soc.ol_ops->get_con_mode() == QDF_GLOBAL_MONITOR_MODE)) {
soc->intr_mode = DP_INTR_POLL;
} else {
ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
&msi_vector_count,
&msi_base_data,
&msi_vector_start);
if (ret)
return;
soc->intr_mode = DP_INTR_MSI;
}
}
static QDF_STATUS dp_soc_interrupt_attach(struct cdp_soc_t *txrx_soc);
#if defined(DP_INTR_POLL_BOTH)
/*
* dp_soc_interrupt_attach_wrapper() - Register handlers for DP interrupts
* @txrx_soc: DP SOC handle
*
* Call the appropriate attach function based on the mode of operation.
* This is a WAR for enabling monitor mode.
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
if (!(soc->wlan_cfg_ctx->napi_enabled) ||
(soc->cdp_soc.ol_ops->get_con_mode &&
soc->cdp_soc.ol_ops->get_con_mode() ==
QDF_GLOBAL_MONITOR_MODE)) {
dp_info("Poll mode");
return dp_soc_attach_poll(txrx_soc);
} else {
dp_info("Interrupt mode");
return dp_soc_interrupt_attach(txrx_soc);
}
}
#else
#if defined(DP_INTR_POLL_BASED) && DP_INTR_POLL_BASED
static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
{
return dp_soc_attach_poll(txrx_soc);
}
#else
static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
if (wlan_cfg_is_poll_mode_enabled(soc->wlan_cfg_ctx))
return dp_soc_attach_poll(txrx_soc);
else
return dp_soc_interrupt_attach(txrx_soc);
}
#endif
#endif
static void dp_soc_interrupt_map_calculate_integrated(struct dp_soc *soc,
int intr_ctx_num, int *irq_id_map, int *num_irq_r)
{
int j;
int num_irq = 0;
int tx_mask =
wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mask =
wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mon_mask =
wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
soc->intr_mode = DP_INTR_INTEGRATED;
for (j = 0; j < HIF_MAX_GRP_IRQ; j++) {
if (tx_mask & (1 << j)) {
irq_id_map[num_irq++] =
(wbm2host_tx_completions_ring1 - j);
}
if (rx_mask & (1 << j)) {
irq_id_map[num_irq++] =
(reo2host_destination_ring1 - j);
}
if (rxdma2host_ring_mask & (1 << j)) {
irq_id_map[num_irq++] =
rxdma2host_destination_ring_mac1 - j;
}
if (host2rxdma_ring_mask & (1 << j)) {
irq_id_map[num_irq++] =
host2rxdma_host_buf_ring_mac1 - j;
}
if (host2rxdma_mon_ring_mask & (1 << j)) {
irq_id_map[num_irq++] =
host2rxdma_monitor_ring1 - j;
}
if (rx_mon_mask & (1 << j)) {
irq_id_map[num_irq++] =
ppdu_end_interrupts_mac1 - j;
irq_id_map[num_irq++] =
rxdma2host_monitor_status_ring_mac1 - j;
irq_id_map[num_irq++] =
rxdma2host_monitor_destination_mac1 - j;
}
if (rx_wbm_rel_ring_mask & (1 << j))
irq_id_map[num_irq++] = wbm2host_rx_release;
if (rx_err_ring_mask & (1 << j))
irq_id_map[num_irq++] = reo2host_exception;
if (reo_status_ring_mask & (1 << j))
irq_id_map[num_irq++] = reo2host_status;
}
*num_irq_r = num_irq;
}
static void dp_soc_interrupt_map_calculate_msi(struct dp_soc *soc,
int intr_ctx_num, int *irq_id_map, int *num_irq_r,
int msi_vector_count, int msi_vector_start)
{
int tx_mask = wlan_cfg_get_tx_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mask = wlan_cfg_get_rx_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mon_mask = wlan_cfg_get_rx_mon_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
unsigned int vector =
(intr_ctx_num % msi_vector_count) + msi_vector_start;
int num_irq = 0;
soc->intr_mode = DP_INTR_MSI;
if (tx_mask | rx_mask | rx_mon_mask | rx_err_ring_mask |
rx_wbm_rel_ring_mask | reo_status_ring_mask | rxdma2host_ring_mask |
host2rxdma_ring_mask | host2rxdma_mon_ring_mask)
irq_id_map[num_irq++] =
pld_get_msi_irq(soc->osdev->dev, vector);
*num_irq_r = num_irq;
}
static void dp_soc_interrupt_map_calculate(struct dp_soc *soc, int intr_ctx_num,
int *irq_id_map, int *num_irq)
{
int msi_vector_count, ret;
uint32_t msi_base_data, msi_vector_start;
ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
&msi_vector_count,
&msi_base_data,
&msi_vector_start);
if (ret)
return dp_soc_interrupt_map_calculate_integrated(soc,
intr_ctx_num, irq_id_map, num_irq);
else
dp_soc_interrupt_map_calculate_msi(soc,
intr_ctx_num, irq_id_map, num_irq,
msi_vector_count, msi_vector_start);
}
/*
* dp_soc_interrupt_attach() - Register handlers for DP interrupts
* @txrx_soc: DP SOC handle
*
* Host driver will register for “DP_NUM_INTERRUPT_CONTEXTS” number of NAPI
* contexts. Each NAPI context will have a tx_ring_mask , rx_ring_mask ,and
* rx_monitor_ring mask to indicate the rings that are processed by the handler.
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_soc_interrupt_attach(struct cdp_soc_t *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i = 0;
int num_irq = 0;
qdf_mem_set(&soc->mon_intr_id_lmac_map,
sizeof(soc->mon_intr_id_lmac_map), DP_MON_INVALID_LMAC_ID);
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
int ret = 0;
/* Map of IRQ ids registered with one interrupt context */
int irq_id_map[HIF_MAX_GRP_IRQ];
int tx_mask =
wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, i);
int rx_mask =
wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, i);
int rx_mon_mask =
dp_soc_get_mon_mask_for_interrupt_mode(soc, i);
int rx_err_ring_mask =
wlan_cfg_get_rx_err_ring_mask(soc->wlan_cfg_ctx, i);
int rx_wbm_rel_ring_mask =
wlan_cfg_get_rx_wbm_rel_ring_mask(soc->wlan_cfg_ctx, i);
int reo_status_ring_mask =
wlan_cfg_get_reo_status_ring_mask(soc->wlan_cfg_ctx, i);
int rxdma2host_ring_mask =
wlan_cfg_get_rxdma2host_ring_mask(soc->wlan_cfg_ctx, i);
int host2rxdma_ring_mask =
wlan_cfg_get_host2rxdma_ring_mask(soc->wlan_cfg_ctx, i);
int host2rxdma_mon_ring_mask =
wlan_cfg_get_host2rxdma_mon_ring_mask(
soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].dp_intr_id = i;
soc->intr_ctx[i].tx_ring_mask = tx_mask;
soc->intr_ctx[i].rx_ring_mask = rx_mask;
soc->intr_ctx[i].rx_mon_ring_mask = rx_mon_mask;
soc->intr_ctx[i].rx_err_ring_mask = rx_err_ring_mask;
soc->intr_ctx[i].rxdma2host_ring_mask = rxdma2host_ring_mask;
soc->intr_ctx[i].host2rxdma_ring_mask = host2rxdma_ring_mask;
soc->intr_ctx[i].rx_wbm_rel_ring_mask = rx_wbm_rel_ring_mask;
soc->intr_ctx[i].reo_status_ring_mask = reo_status_ring_mask;
soc->intr_ctx[i].host2rxdma_mon_ring_mask =
host2rxdma_mon_ring_mask;
soc->intr_ctx[i].soc = soc;
num_irq = 0;
dp_soc_interrupt_map_calculate(soc, i, &irq_id_map[0],
&num_irq);
ret = hif_register_ext_group(soc->hif_handle,
num_irq, irq_id_map, dp_service_srngs,
&soc->intr_ctx[i], "dp_intr",
HIF_EXEC_NAPI_TYPE, QCA_NAPI_DEF_SCALE_BIN_SHIFT);
if (ret) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("failed, ret = %d"), ret);
return QDF_STATUS_E_FAILURE;
}
hif_event_history_init(soc->hif_handle, i);
soc->intr_ctx[i].lro_ctx = qdf_lro_init();
}
hif_configure_ext_group_interrupts(soc->hif_handle);
return QDF_STATUS_SUCCESS;
}
/*
* dp_soc_interrupt_detach() - Deregister any allocations done for interrupts
* @txrx_soc: DP SOC handle
*
* Return: none
*/
static void dp_soc_interrupt_detach(struct cdp_soc_t *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
if (soc->intr_mode == DP_INTR_POLL) {
qdf_timer_free(&soc->int_timer);
} else {
hif_deregister_exec_group(soc->hif_handle, "dp_intr");
}
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
soc->intr_ctx[i].tx_ring_mask = 0;
soc->intr_ctx[i].rx_ring_mask = 0;
soc->intr_ctx[i].rx_mon_ring_mask = 0;
soc->intr_ctx[i].rx_err_ring_mask = 0;
soc->intr_ctx[i].rx_wbm_rel_ring_mask = 0;
soc->intr_ctx[i].reo_status_ring_mask = 0;
soc->intr_ctx[i].rxdma2host_ring_mask = 0;
soc->intr_ctx[i].host2rxdma_ring_mask = 0;
soc->intr_ctx[i].host2rxdma_mon_ring_mask = 0;
hif_event_history_deinit(soc->hif_handle, i);
qdf_lro_deinit(soc->intr_ctx[i].lro_ctx);
}
qdf_mem_set(&soc->mon_intr_id_lmac_map,
sizeof(soc->mon_intr_id_lmac_map),
DP_MON_INVALID_LMAC_ID);
}
#define AVG_MAX_MPDUS_PER_TID 128
#define AVG_TIDS_PER_CLIENT 2
#define AVG_FLOWS_PER_TID 2
#define AVG_MSDUS_PER_FLOW 128
#define AVG_MSDUS_PER_MPDU 4
/*
* dp_hw_link_desc_pool_banks_free() - Free h/w link desc pool banks
* @soc: DP SOC handle
* @mac_id: mac id
*
* Return: none
*/
void dp_hw_link_desc_pool_banks_free(struct dp_soc *soc, uint32_t mac_id)
{
struct qdf_mem_multi_page_t *pages;
if (mac_id != WLAN_INVALID_PDEV_ID)
pages = &soc->mon_link_desc_pages[mac_id];
else
pages = &soc->link_desc_pages;
if (pages->dma_pages) {
wlan_minidump_remove((void *)
pages->dma_pages->page_v_addr_start);
dp_desc_multi_pages_mem_free(soc, DP_HW_LINK_DESC_TYPE,
pages, 0, false);
}
}
/*
* dp_hw_link_desc_pool_banks_alloc() - Allocate h/w link desc pool banks
* @soc: DP SOC handle
* @mac_id: mac id
*
* Allocates memory pages for link descriptors, the page size is 4K for
* MCL and 2MB for WIN. if the mac_id is invalid link descriptor pages are
* allocated for regular RX/TX and if the there is a proper mac_id link
* descriptors are allocated for RX monitor mode.
*
* Return: QDF_STATUS_SUCCESS: Success
* QDF_STATUS_E_FAILURE: Failure
*/
QDF_STATUS dp_hw_link_desc_pool_banks_alloc(struct dp_soc *soc, uint32_t mac_id)
{
hal_soc_handle_t hal_soc = soc->hal_soc;
int link_desc_size = hal_get_link_desc_size(soc->hal_soc);
int link_desc_align = hal_get_link_desc_align(soc->hal_soc);
uint32_t max_clients = wlan_cfg_get_max_clients(soc->wlan_cfg_ctx);
uint32_t num_mpdus_per_link_desc = hal_num_mpdus_per_link_desc(hal_soc);
uint32_t num_msdus_per_link_desc = hal_num_msdus_per_link_desc(hal_soc);
uint32_t num_mpdu_links_per_queue_desc =
hal_num_mpdu_links_per_queue_desc(hal_soc);
uint32_t max_alloc_size = wlan_cfg_max_alloc_size(soc->wlan_cfg_ctx);
uint32_t *total_link_descs, total_mem_size;
uint32_t num_mpdu_link_descs, num_mpdu_queue_descs;
uint32_t num_tx_msdu_link_descs, num_rx_msdu_link_descs;
uint32_t num_entries;
struct qdf_mem_multi_page_t *pages;
struct dp_srng *dp_srng;
uint8_t minidump_str[MINIDUMP_STR_SIZE];
/* Only Tx queue descriptors are allocated from common link descriptor
* pool Rx queue descriptors are not included in this because (REO queue
* extension descriptors) they are expected to be allocated contiguously
* with REO queue descriptors
*/
if (mac_id != WLAN_INVALID_PDEV_ID) {
pages = &soc->mon_link_desc_pages[mac_id];
dp_srng = &soc->rxdma_mon_desc_ring[mac_id];
num_entries = dp_srng->alloc_size /
hal_srng_get_entrysize(soc->hal_soc,
RXDMA_MONITOR_DESC);
total_link_descs = &soc->total_mon_link_descs[mac_id];
qdf_str_lcopy(minidump_str, "mon_link_desc_bank",
MINIDUMP_STR_SIZE);
} else {
num_mpdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_MAX_MPDUS_PER_TID) / num_mpdus_per_link_desc;
num_mpdu_queue_descs = num_mpdu_link_descs /
num_mpdu_links_per_queue_desc;
num_tx_msdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_FLOWS_PER_TID * AVG_MSDUS_PER_FLOW) /
num_msdus_per_link_desc;
num_rx_msdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_MAX_MPDUS_PER_TID * AVG_MSDUS_PER_MPDU) / 6;
num_entries = num_mpdu_link_descs + num_mpdu_queue_descs +
num_tx_msdu_link_descs + num_rx_msdu_link_descs;
pages = &soc->link_desc_pages;
total_link_descs = &soc->total_link_descs;
qdf_str_lcopy(minidump_str, "link_desc_bank",
MINIDUMP_STR_SIZE);
}
/* Round up to power of 2 */
*total_link_descs = 1;
while (*total_link_descs < num_entries)
*total_link_descs <<= 1;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
FL("total_link_descs: %u, link_desc_size: %d"),
*total_link_descs, link_desc_size);
total_mem_size = *total_link_descs * link_desc_size;
total_mem_size += link_desc_align;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
FL("total_mem_size: %d"), total_mem_size);
dp_set_max_page_size(pages, max_alloc_size);
dp_desc_multi_pages_mem_alloc(soc, DP_HW_LINK_DESC_TYPE,
pages,
link_desc_size,
*total_link_descs,
0, false);
if (!pages->num_pages) {
dp_err("Multi page alloc fail for hw link desc pool");
return QDF_STATUS_E_FAULT;
}
wlan_minidump_log(pages->dma_pages->page_v_addr_start,
pages->num_pages * pages->page_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_WBM_IDLE_LINK,
"hw_link_desc_bank");
return QDF_STATUS_SUCCESS;
}
/*
* dp_hw_link_desc_ring_free() - Free h/w link desc rings
* @soc: DP SOC handle
*
* Return: none
*/
static void dp_hw_link_desc_ring_free(struct dp_soc *soc)
{
uint32_t i;
uint32_t size = soc->wbm_idle_scatter_buf_size;
void *vaddr = soc->wbm_idle_link_ring.base_vaddr_unaligned;
qdf_dma_addr_t paddr;
if (soc->wbm_idle_scatter_buf_base_vaddr[0]) {
for (i = 0; i < MAX_IDLE_SCATTER_BUFS; i++) {
vaddr = soc->wbm_idle_scatter_buf_base_vaddr[i];
paddr = soc->wbm_idle_scatter_buf_base_paddr[i];
if (vaddr) {
qdf_mem_free_consistent(soc->osdev,
soc->osdev->dev,
size,
vaddr,
paddr,
0);
vaddr = NULL;
}
}
} else {
wlan_minidump_remove(vaddr);
dp_srng_free(soc, &soc->wbm_idle_link_ring);
}
}
/*
* dp_hw_link_desc_ring_alloc() - Allocate hw link desc rings
* @soc: DP SOC handle
*
* Allocate memory for WBM_IDLE_LINK srng ring if the number of
* link descriptors is less then the max_allocated size. else
* allocate memory for wbm_idle_scatter_buffer.
*
* Return: QDF_STATUS_SUCCESS: success
* QDF_STATUS_E_NO_MEM: No memory (Failure)
*/
static QDF_STATUS dp_hw_link_desc_ring_alloc(struct dp_soc *soc)
{
uint32_t entry_size, i;
uint32_t total_mem_size;
qdf_dma_addr_t *baseaddr = NULL;
struct dp_srng *dp_srng;
uint32_t ring_type;
uint32_t max_alloc_size = wlan_cfg_max_alloc_size(soc->wlan_cfg_ctx);
uint32_t tlds;
ring_type = WBM_IDLE_LINK;
dp_srng = &soc->wbm_idle_link_ring;
tlds = soc->total_link_descs;
entry_size = hal_srng_get_entrysize(soc->hal_soc, ring_type);
total_mem_size = entry_size * tlds;
if (total_mem_size <= max_alloc_size) {
if (dp_srng_alloc(soc, dp_srng, ring_type, tlds, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Link desc idle ring setup failed"));
goto fail;
}
wlan_minidump_log(soc->wbm_idle_link_ring.base_vaddr_unaligned,
soc->wbm_idle_link_ring.alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_WBM_IDLE_LINK,
"wbm_idle_link_ring");
} else {
uint32_t num_scatter_bufs;
uint32_t num_entries_per_buf;
uint32_t buf_size = 0;
soc->wbm_idle_scatter_buf_size =
hal_idle_list_scatter_buf_size(soc->hal_soc);
num_entries_per_buf = hal_idle_scatter_buf_num_entries(
soc->hal_soc, soc->wbm_idle_scatter_buf_size);
num_scatter_bufs = hal_idle_list_num_scatter_bufs(
soc->hal_soc, total_mem_size,
soc->wbm_idle_scatter_buf_size);
if (num_scatter_bufs > MAX_IDLE_SCATTER_BUFS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("scatter bufs size out of bounds"));
goto fail;
}
for (i = 0; i < num_scatter_bufs; i++) {
baseaddr = &soc->wbm_idle_scatter_buf_base_paddr[i];
buf_size = soc->wbm_idle_scatter_buf_size;
soc->wbm_idle_scatter_buf_base_vaddr[i] =
qdf_mem_alloc_consistent(soc->osdev,
soc->osdev->dev,
buf_size,
baseaddr);
if (!soc->wbm_idle_scatter_buf_base_vaddr[i]) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("Scatter lst memory alloc fail"));
goto fail;
}
}
soc->num_scatter_bufs = num_scatter_bufs;
}
return QDF_STATUS_SUCCESS;
fail:
for (i = 0; i < MAX_IDLE_SCATTER_BUFS; i++) {
void *vaddr = soc->wbm_idle_scatter_buf_base_vaddr[i];
qdf_dma_addr_t paddr = soc->wbm_idle_scatter_buf_base_paddr[i];
if (vaddr) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
soc->wbm_idle_scatter_buf_size,
vaddr,
paddr, 0);
vaddr = NULL;
}
}
return QDF_STATUS_E_NOMEM;
}
/*
* dp_hw_link_desc_ring_init() - Initialize hw link desc rings
* @soc: DP SOC handle
*
* Return: QDF_STATUS_SUCCESS: success
* QDF_STATUS_E_FAILURE: failure
*/
static QDF_STATUS dp_hw_link_desc_ring_init(struct dp_soc *soc)
{
struct dp_srng *dp_srng = &soc->wbm_idle_link_ring;
if (dp_srng->base_vaddr_unaligned) {
if (dp_srng_init(soc, dp_srng, WBM_IDLE_LINK, 0, 0))
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
/*
* dp_hw_link_desc_ring_deinit() - Reset hw link desc rings
* @soc: DP SOC handle
*
* Return: None
*/
static void dp_hw_link_desc_ring_deinit(struct dp_soc *soc)
{
dp_srng_deinit(soc, &soc->wbm_idle_link_ring, WBM_IDLE_LINK, 0);
}
/*
* dp_hw_link_desc_ring_replenish() - Replenish hw link desc rings
* @soc: DP SOC handle
* @mac_id: mac id
*
* Return: None
*/
void dp_link_desc_ring_replenish(struct dp_soc *soc, uint32_t mac_id)
{
uint32_t cookie = 0;
uint32_t page_idx = 0;
struct qdf_mem_multi_page_t *pages;
struct qdf_mem_dma_page_t *dma_pages;
uint32_t offset = 0;
uint32_t count = 0;
void *desc_srng;
int link_desc_size = hal_get_link_desc_size(soc->hal_soc);
uint32_t total_link_descs;
uint32_t scatter_buf_num;
uint32_t num_entries_per_buf = 0;
uint32_t rem_entries;
uint32_t num_descs_per_page;
uint32_t num_scatter_bufs = 0;
uint8_t *scatter_buf_ptr;
void *desc;
num_scatter_bufs = soc->num_scatter_bufs;
if (mac_id == WLAN_INVALID_PDEV_ID) {
pages = &soc->link_desc_pages;
total_link_descs = soc->total_link_descs;
desc_srng = soc->wbm_idle_link_ring.hal_srng;
} else {
pages = &soc->mon_link_desc_pages[mac_id];
total_link_descs = soc->total_mon_link_descs[mac_id];
desc_srng = soc->rxdma_mon_desc_ring[mac_id].hal_srng;
}
dma_pages = pages->dma_pages;
do {
qdf_mem_zero(dma_pages[page_idx].page_v_addr_start,
pages->page_size);
page_idx++;
} while (page_idx < pages->num_pages);
if (desc_srng) {
hal_srng_access_start_unlocked(soc->hal_soc, desc_srng);
page_idx = 0;
count = 0;
offset = 0;
pages = &soc->link_desc_pages;
while ((desc = hal_srng_src_get_next(soc->hal_soc,
desc_srng)) &&
(count < total_link_descs)) {
page_idx = count / pages->num_element_per_page;
offset = count % pages->num_element_per_page;
cookie = LINK_DESC_COOKIE(count, page_idx);
hal_set_link_desc_addr(desc, cookie,
dma_pages[page_idx].page_p_addr
+ (offset * link_desc_size));
count++;
}
hal_srng_access_end_unlocked(soc->hal_soc, desc_srng);
} else {
/* Populate idle list scatter buffers with link descriptor
* pointers
*/
scatter_buf_num = 0;
num_entries_per_buf = hal_idle_scatter_buf_num_entries(
soc->hal_soc,
soc->wbm_idle_scatter_buf_size);
scatter_buf_ptr = (uint8_t *)(
soc->wbm_idle_scatter_buf_base_vaddr[scatter_buf_num]);
rem_entries = num_entries_per_buf;
pages = &soc->link_desc_pages;
page_idx = 0; count = 0;
offset = 0;
num_descs_per_page = pages->num_element_per_page;
while (count < total_link_descs) {
page_idx = count / num_descs_per_page;
offset = count % num_descs_per_page;
cookie = LINK_DESC_COOKIE(count, page_idx);
hal_set_link_desc_addr((void *)scatter_buf_ptr,
cookie,
dma_pages[page_idx].page_p_addr +
(offset * link_desc_size));
rem_entries--;
if (rem_entries) {
scatter_buf_ptr += link_desc_size;
} else {
rem_entries = num_entries_per_buf;
scatter_buf_num++;
if (scatter_buf_num >= num_scatter_bufs)
break;
scatter_buf_ptr = (uint8_t *)
(soc->wbm_idle_scatter_buf_base_vaddr[
scatter_buf_num]);
}
count++;
}
/* Setup link descriptor idle list in HW */
hal_setup_link_idle_list(soc->hal_soc,
soc->wbm_idle_scatter_buf_base_paddr,
soc->wbm_idle_scatter_buf_base_vaddr,
num_scatter_bufs, soc->wbm_idle_scatter_buf_size,
(uint32_t)(scatter_buf_ptr -
(uint8_t *)(soc->wbm_idle_scatter_buf_base_vaddr[
scatter_buf_num-1])), total_link_descs);
}
}
#ifdef IPA_OFFLOAD
#define REO_DST_RING_SIZE_QCA6290 1023
#ifndef CONFIG_WIFI_EMULATION_WIFI_3_0
#define REO_DST_RING_SIZE_QCA8074 1023
#define REO_DST_RING_SIZE_QCN9000 2048
#else
#define REO_DST_RING_SIZE_QCA8074 8
#define REO_DST_RING_SIZE_QCN9000 8
#endif /* CONFIG_WIFI_EMULATION_WIFI_3_0 */
#else
#define REO_DST_RING_SIZE_QCA6290 1024
#ifndef CONFIG_WIFI_EMULATION_WIFI_3_0
#define REO_DST_RING_SIZE_QCA8074 2048
#define REO_DST_RING_SIZE_QCN9000 2048
#else
#define REO_DST_RING_SIZE_QCA8074 8
#define REO_DST_RING_SIZE_QCN9000 8
#endif /* CONFIG_WIFI_EMULATION_WIFI_3_0 */
#endif /* IPA_OFFLOAD */
#ifndef FEATURE_WDS
static void dp_soc_wds_attach(struct dp_soc *soc)
{
}
static void dp_soc_wds_detach(struct dp_soc *soc)
{
}
#endif
/*
* dp_soc_reset_ring_map() - Reset cpu ring map
* @soc: Datapath soc handler
*
* This api resets the default cpu ring map
*/
static void dp_soc_reset_cpu_ring_map(struct dp_soc *soc)
{
uint8_t i;
int nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
for (i = 0; i < WLAN_CFG_INT_NUM_CONTEXTS; i++) {
switch (nss_config) {
case dp_nss_cfg_first_radio:
/*
* Setting Tx ring map for one nss offloaded radio
*/
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_FIRST_RADIO_OFFLOADED_MAP][i];
break;
case dp_nss_cfg_second_radio:
/*
* Setting Tx ring for two nss offloaded radios
*/
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_SECOND_RADIO_OFFLOADED_MAP][i];
break;
case dp_nss_cfg_dbdc:
/*
* Setting Tx ring map for 2 nss offloaded radios
*/
soc->tx_ring_map[i] =
dp_cpu_ring_map[DP_NSS_DBDC_OFFLOADED_MAP][i];
break;
case dp_nss_cfg_dbtc:
/*
* Setting Tx ring map for 3 nss offloaded radios
*/
soc->tx_ring_map[i] =
dp_cpu_ring_map[DP_NSS_DBTC_OFFLOADED_MAP][i];
break;
default:
dp_err("tx_ring_map failed due to invalid nss cfg");
break;
}
}
}
/*
* dp_soc_ring_if_nss_offloaded() - find if ring is offloaded to NSS
* @dp_soc - DP soc handle
* @ring_type - ring type
* @ring_num - ring_num
*
* return 0 or 1
*/
static uint8_t dp_soc_ring_if_nss_offloaded(struct dp_soc *soc, enum hal_ring_type ring_type, int ring_num)
{
uint8_t nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
uint8_t status = 0;
switch (ring_type) {
case WBM2SW_RELEASE:
case REO_DST:
case RXDMA_BUF:
case REO_EXCEPTION:
status = ((nss_config) & (1 << ring_num));
break;
default:
break;
}
return status;
}
/*
* dp_soc_disable_unused_mac_intr_mask() - reset interrupt mask for
* unused WMAC hw rings
* @dp_soc - DP Soc handle
* @mac_num - wmac num
*
* Return: Return void
*/
static void dp_soc_disable_unused_mac_intr_mask(struct dp_soc *soc,
int mac_num)
{
int *grp_mask = NULL;
int group_number;
grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0];
group_number = dp_srng_find_ring_in_mask(mac_num, grp_mask);
wlan_cfg_set_host2rxdma_ring_mask(soc->wlan_cfg_ctx,
group_number, 0x0);
grp_mask = &soc->wlan_cfg_ctx->int_rx_mon_ring_mask[0];
group_number = dp_srng_find_ring_in_mask(mac_num, grp_mask);
wlan_cfg_set_rx_mon_ring_mask(soc->wlan_cfg_ctx,
group_number, 0x0);
grp_mask = &soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[0];
group_number = dp_srng_find_ring_in_mask(mac_num, grp_mask);
wlan_cfg_set_rxdma2host_ring_mask(soc->wlan_cfg_ctx,
group_number, 0x0);
grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_mon_ring_mask[0];
group_number = dp_srng_find_ring_in_mask(mac_num, grp_mask);
wlan_cfg_set_host2rxdma_mon_ring_mask(soc->wlan_cfg_ctx,
group_number, 0x0);
}
/*
* dp_soc_reset_intr_mask() - reset interrupt mask
* @dp_soc - DP Soc handle
*
* Return: Return void
*/
static void dp_soc_reset_intr_mask(struct dp_soc *soc)
{
uint8_t j;
int *grp_mask = NULL;
int group_number, mask, num_ring;
/* number of tx ring */
num_ring = soc->num_tcl_data_rings;
/*
* group mask for tx completion ring.
*/
grp_mask = &soc->wlan_cfg_ctx->int_tx_ring_mask[0];
/* loop and reset the mask for only offloaded ring */
for (j = 0; j < WLAN_CFG_NUM_TCL_DATA_RINGS; j++) {
/*
* Group number corresponding to tx offloaded ring.
*/
group_number = dp_srng_find_ring_in_mask(j, grp_mask);
if (group_number < 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("ring not part of any group; ring_type: %d,ring_num %d"),
WBM2SW_RELEASE, j);
return;
}
mask = wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, group_number);
if (!dp_soc_ring_if_nss_offloaded(soc, WBM2SW_RELEASE, j) &&
(!mask)) {
continue;
}
/* reset the tx mask for offloaded ring */
mask &= (~(1 << j));
/*
* reset the interrupt mask for offloaded ring.
*/
wlan_cfg_set_tx_ring_mask(soc->wlan_cfg_ctx, group_number, mask);
}
/* number of rx rings */
num_ring = soc->num_reo_dest_rings;
/*
* group mask for reo destination ring.
*/
grp_mask = &soc->wlan_cfg_ctx->int_rx_ring_mask[0];
/* loop and reset the mask for only offloaded ring */
for (j = 0; j < WLAN_CFG_NUM_REO_DEST_RING; j++) {
/*
* Group number corresponding to rx offloaded ring.
*/
group_number = dp_srng_find_ring_in_mask(j, grp_mask);
if (group_number < 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("ring not part of any group; ring_type: %d,ring_num %d"),
REO_DST, j);
return;
}
mask = wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, group_number);
if (!dp_soc_ring_if_nss_offloaded(soc, REO_DST, j) &&
(!mask)) {
continue;
}
/* reset the interrupt mask for offloaded ring */
mask &= (~(1 << j));
/*
* set the interrupt mask to zero for rx offloaded radio.
*/
wlan_cfg_set_rx_ring_mask(soc->wlan_cfg_ctx, group_number, mask);
}
/*
* group mask for Rx buffer refill ring
*/
grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0];
/* loop and reset the mask for only offloaded ring */
for (j = 0; j < MAX_PDEV_CNT; j++) {
int lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, j);
if (!dp_soc_ring_if_nss_offloaded(soc, RXDMA_BUF, j)) {
continue;
}
/*
* Group number corresponding to rx offloaded ring.
*/
group_number = dp_srng_find_ring_in_mask(lmac_id, grp_mask);
if (group_number < 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("ring not part of any group; ring_type: %d,ring_num %d"),
REO_DST, lmac_id);
return;
}
/* set the interrupt mask for offloaded ring */
mask = wlan_cfg_get_host2rxdma_ring_mask(soc->wlan_cfg_ctx,
group_number);
mask &= (~(1 << lmac_id));
/*
* set the interrupt mask to zero for rx offloaded radio.
*/
wlan_cfg_set_host2rxdma_ring_mask(soc->wlan_cfg_ctx,
group_number, mask);
}
grp_mask = &soc->wlan_cfg_ctx->int_rx_err_ring_mask[0];
for (j = 0; j < num_ring; j++) {
if (!dp_soc_ring_if_nss_offloaded(soc, REO_EXCEPTION, j)) {
continue;
}
/*
* Group number corresponding to rx err ring.
*/
group_number = dp_srng_find_ring_in_mask(j, grp_mask);
if (group_number < 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("ring not part of any group; ring_type: %d,ring_num %d"),
REO_EXCEPTION, j);
return;
}
wlan_cfg_set_rx_err_ring_mask(soc->wlan_cfg_ctx,
group_number, 0);
}
}
#ifdef IPA_OFFLOAD
/**
* dp_reo_remap_config() - configure reo remap register value based
* nss configuration.
* based on offload_radio value below remap configuration
* get applied.
* 0 - both Radios handled by host (remap rings 1, 2, 3 & 4)
* 1 - 1st Radio handled by NSS (remap rings 2, 3 & 4)
* 2 - 2nd Radio handled by NSS (remap rings 1, 2 & 4)
* 3 - both Radios handled by NSS (remap not required)
* 4 - IPA OFFLOAD enabled (remap rings 1,2 & 3)
*
* @remap1: output parameter indicates reo remap 1 register value
* @remap2: output parameter indicates reo remap 2 register value
* Return: bool type, true if remap is configured else false.
*/
bool dp_reo_remap_config(struct dp_soc *soc, uint32_t *remap1, uint32_t *remap2)
{
uint32_t ring[4] = {REO_REMAP_SW1, REO_REMAP_SW2,
REO_REMAP_SW3};
hal_compute_reo_remap_ix2_ix3(soc->hal_soc, ring,
3, remap1, remap2);
dp_debug("remap1 %x remap2 %x", *remap1, *remap2);
return true;
}
/**
* dp_ipa_get_tx_ring_size() - Get Tx ring size for IPA
*
* @tx_ring_num: Tx ring number
* @tx_ipa_ring_sz: Return param only updated for IPA.
*
* Return: None
*/
static void dp_ipa_get_tx_ring_size(int tx_ring_num, int *tx_ipa_ring_sz)
{
if (tx_ring_num == IPA_TCL_DATA_RING_IDX)
*tx_ipa_ring_sz = WLAN_CFG_IPA_TX_RING_SIZE;
}
/**
* dp_ipa_get_tx_comp_ring_size() - Get Tx comp ring size for IPA
*
* @tx_comp_ring_num: Tx comp ring number
* @tx_comp_ipa_ring_sz: Return param only updated for IPA.
*
* Return: None
*/
static void dp_ipa_get_tx_comp_ring_size(int tx_comp_ring_num,
int *tx_comp_ipa_ring_sz)
{
if (tx_comp_ring_num == IPA_TCL_DATA_RING_IDX)
*tx_comp_ipa_ring_sz = WLAN_CFG_IPA_TX_COMP_RING_SIZE;
}
#else
static uint8_t dp_reo_ring_selection(uint32_t value, uint32_t *ring)
{
uint8_t num = 0;
switch (value) {
case 0xF:
num = 4;
ring[0] = REO_REMAP_SW1;
ring[1] = REO_REMAP_SW2;
ring[2] = REO_REMAP_SW3;
ring[3] = REO_REMAP_SW4;
break;
case 0xE:
num = 3;
ring[0] = REO_REMAP_SW2;
ring[1] = REO_REMAP_SW3;
ring[2] = REO_REMAP_SW4;
break;
case 0xD:
num = 3;
ring[0] = REO_REMAP_SW1;
ring[1] = REO_REMAP_SW3;
ring[2] = REO_REMAP_SW4;
break;
case 0xC:
num = 2;
ring[0] = REO_REMAP_SW3;
ring[1] = REO_REMAP_SW4;
break;
case 0xB:
num = 3;
ring[0] = REO_REMAP_SW1;
ring[1] = REO_REMAP_SW2;
ring[2] = REO_REMAP_SW4;
break;
case 0xA:
num = 2;
ring[0] = REO_REMAP_SW2;
ring[1] = REO_REMAP_SW4;
break;
case 0x9:
num = 2;
ring[0] = REO_REMAP_SW1;
ring[1] = REO_REMAP_SW4;
break;
case 0x8:
num = 1;
ring[0] = REO_REMAP_SW4;
break;
case 0x7:
num = 3;
ring[0] = REO_REMAP_SW1;
ring[1] = REO_REMAP_SW2;
ring[2] = REO_REMAP_SW3;
break;
case 0x6:
num = 2;
ring[0] = REO_REMAP_SW2;
ring[1] = REO_REMAP_SW3;
break;
case 0x5:
num = 2;
ring[0] = REO_REMAP_SW1;
ring[1] = REO_REMAP_SW3;
break;
case 0x4:
num = 1;
ring[0] = REO_REMAP_SW3;
break;
case 0x3:
num = 2;
ring[0] = REO_REMAP_SW1;
ring[1] = REO_REMAP_SW2;
break;
case 0x2:
num = 1;
ring[0] = REO_REMAP_SW2;
break;
case 0x1:
num = 1;
ring[0] = REO_REMAP_SW1;
break;
}
return num;
}
static bool dp_reo_remap_config(struct dp_soc *soc,
uint32_t *remap1,
uint32_t *remap2)
{
uint8_t offload_radio = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
uint32_t reo_config = wlan_cfg_get_reo_rings_mapping(soc->wlan_cfg_ctx);
uint8_t target_type, num;
uint32_t ring[4];
uint32_t value;
target_type = hal_get_target_type(soc->hal_soc);
switch (offload_radio) {
case dp_nss_cfg_default:
value = reo_config & 0xF;
num = dp_reo_ring_selection(value, ring);
hal_compute_reo_remap_ix2_ix3(soc->hal_soc, ring,
num, remap1, remap2);
break;
case dp_nss_cfg_first_radio:
value = reo_config & 0xE;
num = dp_reo_ring_selection(value, ring);
hal_compute_reo_remap_ix2_ix3(soc->hal_soc, ring,
num, remap1, remap2);
break;
case dp_nss_cfg_second_radio:
value = reo_config & 0xD;
num = dp_reo_ring_selection(value, ring);
hal_compute_reo_remap_ix2_ix3(soc->hal_soc, ring,
num, remap1, remap2);
break;
case dp_nss_cfg_dbdc:
case dp_nss_cfg_dbtc:
/* return false if both or all are offloaded to NSS */
return false;
}
dp_debug("remap1 %x remap2 %x offload_radio %u",
*remap1, *remap2, offload_radio);
return true;
}
static void dp_ipa_get_tx_ring_size(int ring_num, int *tx_ipa_ring_sz)
{
}
static void dp_ipa_get_tx_comp_ring_size(int tx_comp_ring_num,
int *tx_comp_ipa_ring_sz)
{
}
#endif /* IPA_OFFLOAD */
/*
* dp_reo_frag_dst_set() - configure reo register to set the
* fragment destination ring
* @soc : Datapath soc
* @frag_dst_ring : output parameter to set fragment destination ring
*
* Based on offload_radio below fragment destination rings is selected
* 0 - TCL
* 1 - SW1
* 2 - SW2
* 3 - SW3
* 4 - SW4
* 5 - Release
* 6 - FW
* 7 - alternate select
*
* return: void
*/
static void dp_reo_frag_dst_set(struct dp_soc *soc, uint8_t *frag_dst_ring)
{
uint8_t offload_radio = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
switch (offload_radio) {
case dp_nss_cfg_default:
*frag_dst_ring = REO_REMAP_TCL;
break;
case dp_nss_cfg_first_radio:
/*
* This configuration is valid for single band radio which
* is also NSS offload.
*/
case dp_nss_cfg_dbdc:
case dp_nss_cfg_dbtc:
*frag_dst_ring = HAL_SRNG_REO_ALTERNATE_SELECT;
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_reo_frag_dst_set invalid offload radio config"));
break;
}
}
#ifdef ENABLE_VERBOSE_DEBUG
static void dp_enable_verbose_debug(struct dp_soc *soc)
{
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
soc_cfg_ctx = soc->wlan_cfg_ctx;
if (soc_cfg_ctx->per_pkt_trace & dp_verbose_debug_mask)
is_dp_verbose_debug_enabled = true;
if (soc_cfg_ctx->per_pkt_trace & hal_verbose_debug_mask)
hal_set_verbose_debug(true);
else
hal_set_verbose_debug(false);
}
#else
static void dp_enable_verbose_debug(struct dp_soc *soc)
{
}
#endif
#ifdef WLAN_FEATURE_STATS_EXT
static inline void dp_create_ext_stats_event(struct dp_soc *soc)
{
qdf_event_create(&soc->rx_hw_stats_event);
}
#else
static inline void dp_create_ext_stats_event(struct dp_soc *soc)
{
}
#endif
static void dp_deinit_tx_pair_by_index(struct dp_soc *soc, int index)
{
wlan_minidump_remove(soc->tcl_data_ring[index].base_vaddr_unaligned);
dp_srng_deinit(soc, &soc->tcl_data_ring[index], TCL_DATA, index);
wlan_minidump_remove(soc->tx_comp_ring[index].base_vaddr_unaligned);
dp_srng_deinit(soc, &soc->tx_comp_ring[index], WBM2SW_RELEASE, index);
}
static QDF_STATUS dp_init_tx_ring_pair_by_index(struct dp_soc *soc,
uint8_t index)
{
if (dp_srng_init(soc, &soc->tcl_data_ring[index], TCL_DATA, index, 0)) {
dp_err("dp_srng_init failed for tcl_data_ring");
goto fail1;
}
wlan_minidump_log(soc->tcl_data_ring[index].base_vaddr_unaligned,
soc->tcl_data_ring[index].alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_TCL_DATA,
"tcl_data_ring");
if (dp_srng_init(soc, &soc->tx_comp_ring[index], WBM2SW_RELEASE,
index, 0)) {
dp_err("dp_srng_init failed for tx_comp_ring");
goto fail1;
}
wlan_minidump_log(soc->tx_comp_ring[index].base_vaddr_unaligned,
soc->tx_comp_ring[index].alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_TX_COMP,
"tcl_comp_ring");
return QDF_STATUS_SUCCESS;
fail1:
return QDF_STATUS_E_FAILURE;
}
static void dp_free_tx_ring_pair_by_index(struct dp_soc *soc, uint8_t index)
{
dp_srng_free(soc, &soc->tcl_data_ring[index]);
dp_srng_free(soc, &soc->tx_comp_ring[index]);
}
static QDF_STATUS dp_alloc_tx_ring_pair_by_index(struct dp_soc *soc,
uint8_t index)
{
int tx_ring_size;
int tx_comp_ring_size;
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx = soc->wlan_cfg_ctx;
int cached = 0;
tx_ring_size = wlan_cfg_tx_ring_size(soc_cfg_ctx);
dp_ipa_get_tx_ring_size(index, &tx_ring_size);
if (dp_srng_alloc(soc, &soc->tcl_data_ring[index], TCL_DATA,
tx_ring_size, cached)) {
dp_err("dp_srng_alloc failed for tcl_data_ring");
goto fail1;
}
tx_comp_ring_size = wlan_cfg_tx_comp_ring_size(soc_cfg_ctx);
dp_ipa_get_tx_comp_ring_size(index, &tx_comp_ring_size);
/* Enable cached TCL desc if NSS offload is disabled */
if (!wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx))
cached = WLAN_CFG_DST_RING_CACHED_DESC;
if (dp_srng_alloc(soc, &soc->tx_comp_ring[index], WBM2SW_RELEASE,
tx_comp_ring_size, cached)) {
dp_err("dp_srng_alloc failed for tx_comp_ring");
goto fail1;
}
return QDF_STATUS_SUCCESS;
fail1:
return QDF_STATUS_E_FAILURE;
}
static QDF_STATUS dp_lro_hash_setup(struct dp_soc *soc, struct dp_pdev *pdev)
{
struct cdp_lro_hash_config lro_hash;
QDF_STATUS status;
if (!wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) &&
!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx) &&
!wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
dp_err("LRO, GRO and RX hash disabled");
return QDF_STATUS_E_FAILURE;
}
qdf_mem_zero(&lro_hash, sizeof(lro_hash));
if (wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) ||
wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx)) {
lro_hash.lro_enable = 1;
lro_hash.tcp_flag = QDF_TCPHDR_ACK;
lro_hash.tcp_flag_mask = QDF_TCPHDR_FIN | QDF_TCPHDR_SYN |
QDF_TCPHDR_RST | QDF_TCPHDR_ACK | QDF_TCPHDR_URG |
QDF_TCPHDR_ECE | QDF_TCPHDR_CWR;
}
qdf_get_random_bytes(lro_hash.toeplitz_hash_ipv4,
(sizeof(lro_hash.toeplitz_hash_ipv4[0]) *
LRO_IPV4_SEED_ARR_SZ));
qdf_get_random_bytes(lro_hash.toeplitz_hash_ipv6,
(sizeof(lro_hash.toeplitz_hash_ipv6[0]) *
LRO_IPV6_SEED_ARR_SZ));
qdf_assert(soc->cdp_soc.ol_ops->lro_hash_config);
if (!soc->cdp_soc.ol_ops->lro_hash_config) {
QDF_BUG(0);
dp_err("lro_hash_config not configured");
return QDF_STATUS_E_FAILURE;
}
status = soc->cdp_soc.ol_ops->lro_hash_config(soc->ctrl_psoc,
pdev->pdev_id,
&lro_hash);
if (!QDF_IS_STATUS_SUCCESS(status)) {
dp_err("failed to send lro_hash_config to FW %u", status);
return status;
}
dp_info("LRO CMD config: lro_enable: 0x%x tcp_flag 0x%x tcp_flag_mask 0x%x",
lro_hash.lro_enable, lro_hash.tcp_flag,
lro_hash.tcp_flag_mask);
dp_info("toeplitz_hash_ipv4:");
qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
lro_hash.toeplitz_hash_ipv4,
(sizeof(lro_hash.toeplitz_hash_ipv4[0]) *
LRO_IPV4_SEED_ARR_SZ));
dp_info("toeplitz_hash_ipv6:");
qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
lro_hash.toeplitz_hash_ipv6,
(sizeof(lro_hash.toeplitz_hash_ipv6[0]) *
LRO_IPV6_SEED_ARR_SZ));
return status;
}
/*
* dp_rxdma_ring_setup() - configure the RX DMA rings
* @soc: data path SoC handle
* @pdev: Physical device handle
*
* Return: 0 - success, > 0 - failure
*/
#ifdef QCA_HOST2FW_RXBUF_RING
static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev)
{
struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
int max_mac_rings;
int i;
int ring_size;
pdev_cfg_ctx = pdev->wlan_cfg_ctx;
max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx);
ring_size = wlan_cfg_get_rx_dma_buf_ring_size(pdev_cfg_ctx);
for (i = 0; i < max_mac_rings; i++) {
dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i);
if (dp_srng_alloc(soc, &pdev->rx_mac_buf_ring[i],
RXDMA_BUF, ring_size, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("failed rx mac ring setup"));
return QDF_STATUS_E_FAILURE;
}
if (dp_srng_init(soc, &pdev->rx_mac_buf_ring[i],
RXDMA_BUF, 1, i)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("failed rx mac ring setup"));
dp_srng_free(soc, &pdev->rx_mac_buf_ring[i]);
return QDF_STATUS_E_FAILURE;
}
}
return QDF_STATUS_SUCCESS;
}
#else
static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
#endif
/**
* dp_dscp_tid_map_setup(): Initialize the dscp-tid maps
* @pdev - DP_PDEV handle
*
* Return: void
*/
static inline void
dp_dscp_tid_map_setup(struct dp_pdev *pdev)
{
uint8_t map_id;
struct dp_soc *soc = pdev->soc;
if (!soc)
return;
for (map_id = 0; map_id < DP_MAX_TID_MAPS; map_id++) {
qdf_mem_copy(pdev->dscp_tid_map[map_id],
default_dscp_tid_map,
sizeof(default_dscp_tid_map));
}
for (map_id = 0; map_id < soc->num_hw_dscp_tid_map; map_id++) {
hal_tx_set_dscp_tid_map(soc->hal_soc,
default_dscp_tid_map,
map_id);
}
}
/**
* dp_pcp_tid_map_setup(): Initialize the pcp-tid maps
* @pdev - DP_PDEV handle
*
* Return: void
*/
static inline void
dp_pcp_tid_map_setup(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
if (!soc)
return;
qdf_mem_copy(soc->pcp_tid_map, default_pcp_tid_map,
sizeof(default_pcp_tid_map));
hal_tx_set_pcp_tid_map_default(soc->hal_soc, default_pcp_tid_map);
}
#ifdef IPA_OFFLOAD
/**
* dp_setup_ipa_rx_refill_buf_ring - Setup second Rx refill buffer ring
* @soc: data path instance
* @pdev: core txrx pdev context
*
* Return: QDF_STATUS_SUCCESS: success
* QDF_STATUS_E_RESOURCES: Error return
*/
static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
int entries;
soc_cfg_ctx = soc->wlan_cfg_ctx;
entries = wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
/* Setup second Rx refill buffer ring */
if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_alloc failed second rx refill ring"));
return QDF_STATUS_E_FAILURE;
}
if (dp_srng_init(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
IPA_RX_REFILL_BUF_RING_IDX, pdev->pdev_id)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_init failed second rx refill ring"));
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_cleanup_ipa_rx_refill_buf_ring - Cleanup second Rx refill buffer ring
* @soc: data path instance
* @pdev: core txrx pdev context
*
* Return: void
*/
static void dp_cleanup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
dp_srng_deinit(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF, 0);
dp_srng_free(soc, &pdev->rx_refill_buf_ring2);
}
#else
static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
static void dp_cleanup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
}
#endif
#if !defined(DISABLE_MON_CONFIG)
/**
* dp_mon_ring_deinit() - Deinitialize monitor rings
* @pdev: DP pdev handle
*
*/
static void dp_mon_rings_deinit(struct dp_pdev *pdev)
{
int mac_id = 0;
struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
struct dp_soc *soc = pdev->soc;
pdev_cfg_ctx = pdev->wlan_cfg_ctx;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int lmac_id = dp_get_lmac_id_for_pdev_id(soc, mac_id,
pdev->pdev_id);
dp_srng_deinit(soc, &soc->rxdma_mon_status_ring[lmac_id],
RXDMA_MONITOR_STATUS, 0);
if (!soc->wlan_cfg_ctx->rxdma1_enable)
continue;
dp_srng_deinit(soc, &soc->rxdma_mon_buf_ring[lmac_id],
RXDMA_MONITOR_BUF, 0);
dp_srng_deinit(soc, &soc->rxdma_mon_dst_ring[lmac_id],
RXDMA_MONITOR_DST, 0);
dp_srng_deinit(soc, &soc->rxdma_mon_desc_ring[lmac_id],
RXDMA_MONITOR_DESC, 0);
}
}
/**
* dp_mon_rings_free() - free monitor rings
* @pdev: Datapath pdev handle
*
*/
static void dp_mon_rings_free(struct dp_pdev *pdev)
{
int mac_id = 0;
struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
struct dp_soc *soc = pdev->soc;
pdev_cfg_ctx = pdev->wlan_cfg_ctx;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int lmac_id = dp_get_lmac_id_for_pdev_id(soc, mac_id,
pdev->pdev_id);
dp_srng_free(soc, &soc->rxdma_mon_status_ring[lmac_id]);
if (!soc->wlan_cfg_ctx->rxdma1_enable)
continue;
dp_srng_free(soc, &soc->rxdma_mon_buf_ring[lmac_id]);
dp_srng_free(soc, &soc->rxdma_mon_dst_ring[lmac_id]);
dp_srng_free(soc, &soc->rxdma_mon_desc_ring[lmac_id]);
}
}
/**
* dp_mon_rings_init() - Initialize monitor srng rings
* @pdev: Datapath pdev handle
*
* return: QDF_STATUS_SUCCESS on success
* QDF_STATUS_E_NOMEM on failure
*/
static
QDF_STATUS dp_mon_rings_init(struct dp_soc *soc, struct dp_pdev *pdev)
{
int mac_id = 0;
struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
pdev_cfg_ctx = pdev->wlan_cfg_ctx;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int lmac_id = dp_get_lmac_id_for_pdev_id(soc, mac_id,
pdev->pdev_id);
if (dp_srng_init(soc, &soc->rxdma_mon_status_ring[lmac_id],
RXDMA_MONITOR_STATUS, 0, lmac_id)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_mon_status_ring"));
goto fail1;
}
if (!soc->wlan_cfg_ctx->rxdma1_enable)
continue;
if (dp_srng_init(soc, &soc->rxdma_mon_buf_ring[lmac_id],
RXDMA_MONITOR_BUF, 0, lmac_id)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_mon_buf_ring "));
goto fail1;
}
if (dp_srng_init(soc, &soc->rxdma_mon_dst_ring[lmac_id],
RXDMA_MONITOR_DST, 0, lmac_id)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_mon_dst_ring"));
goto fail1;
}
if (dp_srng_init(soc, &soc->rxdma_mon_desc_ring[lmac_id],
RXDMA_MONITOR_DESC, 0, lmac_id)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_mon_desc_ring"));
goto fail1;
}
}
return QDF_STATUS_SUCCESS;
fail1:
dp_mon_rings_deinit(pdev);
return QDF_STATUS_E_NOMEM;
}
/**
* dp_mon_rings_alloc() - Allocate memory for monitor srng rings
* @soc: Datapath soc handle
* @pdev: Datapath pdev handle
*
* return: QDF_STATUS_SUCCESS on success
* QDF_STATUS_E_NOMEM on failure
*/
static
QDF_STATUS dp_mon_rings_alloc(struct dp_soc *soc, struct dp_pdev *pdev)
{
int mac_id = 0;
int entries;
struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
pdev_cfg_ctx = pdev->wlan_cfg_ctx;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int lmac_id =
dp_get_lmac_id_for_pdev_id(soc, mac_id, pdev->pdev_id);
entries = wlan_cfg_get_dma_mon_stat_ring_size(pdev_cfg_ctx);
if (dp_srng_alloc(soc, &soc->rxdma_mon_status_ring[lmac_id],
RXDMA_MONITOR_STATUS, entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_mon_status_ring"));
goto fail1;
}
if (!soc->wlan_cfg_ctx->rxdma1_enable)
continue;
entries = wlan_cfg_get_dma_mon_buf_ring_size(pdev_cfg_ctx);
if (dp_srng_alloc(soc, &soc->rxdma_mon_buf_ring[lmac_id],
RXDMA_MONITOR_BUF, entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_mon_buf_ring "));
goto fail1;
}
entries = wlan_cfg_get_dma_mon_dest_ring_size(pdev_cfg_ctx);
if (dp_srng_alloc(soc, &soc->rxdma_mon_dst_ring[lmac_id],
RXDMA_MONITOR_DST, entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_mon_dst_ring"));
goto fail1;
}
entries = wlan_cfg_get_dma_mon_desc_ring_size(pdev_cfg_ctx);
if (dp_srng_alloc(soc, &soc->rxdma_mon_desc_ring[lmac_id],
RXDMA_MONITOR_DESC, entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_mon_desc_ring"));
goto fail1;
}
}
return QDF_STATUS_SUCCESS;
fail1:
dp_mon_rings_free(pdev);
return QDF_STATUS_E_NOMEM;
}
#else
static void dp_mon_rings_free(struct dp_pdev *pdev)
{
}
static void dp_mon_rings_deinit(struct dp_pdev *pdev)
{
}
static
QDF_STATUS dp_mon_rings_init(struct dp_soc *soc, struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
static
QDF_STATUS dp_mon_rings_alloc(struct dp_soc *soc, struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
#endif
#ifdef ATH_SUPPORT_EXT_STAT
/*dp_peer_cal_clients_stats_update - update peer stats on cal client timer
* @soc : Datapath SOC
* @peer : Datapath peer
* @arg : argument to iter function
*/
static void
dp_peer_cal_clients_stats_update(struct dp_soc *soc,
struct dp_peer *peer,
void *arg)
{
dp_cal_client_update_peer_stats(&peer->stats);
}
/*dp_iterate_update_peer_list - update peer stats on cal client timer
* @pdev_hdl: pdev handle
*/
void dp_iterate_update_peer_list(struct cdp_pdev *pdev_hdl)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_hdl;
dp_pdev_iterate_peer(pdev, dp_peer_cal_clients_stats_update, NULL,
DP_MOD_ID_CDP);
}
#else
void dp_iterate_update_peer_list(struct cdp_pdev *pdev_hdl)
{
}
#endif
/*
* dp_htt_ppdu_stats_attach() - attach resources for HTT PPDU stats processing
* @pdev: Datapath PDEV handle
*
* Return: QDF_STATUS_SUCCESS: Success
* QDF_STATUS_E_NOMEM: Error
*/
static QDF_STATUS dp_htt_ppdu_stats_attach(struct dp_pdev *pdev)
{
pdev->ppdu_tlv_buf = qdf_mem_malloc(HTT_T2H_MAX_MSG_SIZE);
if (!pdev->ppdu_tlv_buf) {
QDF_TRACE_ERROR(QDF_MODULE_ID_DP, "ppdu_tlv_buf alloc fail");
return QDF_STATUS_E_NOMEM;
}
return QDF_STATUS_SUCCESS;
}
#ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
/**
* dp_soc_rx_history_attach() - Attach the ring history record buffers
* @soc: DP soc structure
*
* This function allocates the memory for recording the rx ring, rx error
* ring and the reinject ring entries. There is no error returned in case
* of allocation failure since the record function checks if the history is
* initialized or not. We do not want to fail the driver load in case of
* failure to allocate memory for debug history.
*
* Returns: None
*/
static void dp_soc_rx_history_attach(struct dp_soc *soc)
{
int i;
uint32_t rx_ring_hist_size;
uint32_t rx_err_ring_hist_size;
uint32_t rx_reinject_hist_size;
rx_ring_hist_size = sizeof(*soc->rx_ring_history[i]);
rx_err_ring_hist_size = sizeof(*soc->rx_err_ring_history);
rx_reinject_hist_size = sizeof(*soc->rx_reinject_ring_history);
for (i = 0; i < MAX_REO_DEST_RINGS; i++) {
soc->rx_ring_history[i] = qdf_mem_malloc(rx_ring_hist_size);
if (soc->rx_ring_history[i])
qdf_atomic_init(&soc->rx_ring_history[i]->index);
}
soc->rx_err_ring_history = qdf_mem_malloc(rx_err_ring_hist_size);
if (soc->rx_err_ring_history)
qdf_atomic_init(&soc->rx_err_ring_history->index);
soc->rx_reinject_ring_history = qdf_mem_malloc(rx_reinject_hist_size);
if (soc->rx_reinject_ring_history)
qdf_atomic_init(&soc->rx_reinject_ring_history->index);
}
static void dp_soc_rx_history_detach(struct dp_soc *soc)
{
int i;
for (i = 0; i < MAX_REO_DEST_RINGS; i++)
qdf_mem_free(soc->rx_ring_history[i]);
qdf_mem_free(soc->rx_err_ring_history);
qdf_mem_free(soc->rx_reinject_ring_history);
}
#else
static inline void dp_soc_rx_history_attach(struct dp_soc *soc)
{
}
static inline void dp_soc_rx_history_detach(struct dp_soc *soc)
{
}
#endif
/*
* dp_pdev_attach_wifi3() - attach txrx pdev
* @txrx_soc: Datapath SOC handle
* @htc_handle: HTC handle for host-target interface
* @qdf_osdev: QDF OS device
* @pdev_id: PDEV ID
*
* Return: QDF_STATUS
*/
static inline QDF_STATUS dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
HTC_HANDLE htc_handle,
qdf_device_t qdf_osdev,
uint8_t pdev_id)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
struct dp_pdev *pdev = NULL;
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
int nss_cfg;
pdev = dp_context_alloc_mem(soc, DP_PDEV_TYPE, sizeof(*pdev));
if (!pdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP PDEV memory allocation failed"));
goto fail0;
}
wlan_minidump_log(pdev, sizeof(*pdev), soc->ctrl_psoc,
WLAN_MD_DP_PDEV, "dp_pdev");
soc_cfg_ctx = soc->wlan_cfg_ctx;
pdev->wlan_cfg_ctx = wlan_cfg_pdev_attach(soc->ctrl_psoc);
if (!pdev->wlan_cfg_ctx) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("pdev cfg_attach failed"));
goto fail1;
}
/*
* set nss pdev config based on soc config
*/
nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
(nss_cfg & (1 << pdev_id)));
pdev->soc = soc;
pdev->pdev_id = pdev_id;
soc->pdev_list[pdev_id] = pdev;
pdev->lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, pdev_id);
soc->pdev_count++;
/* Allocate memory for pdev srng rings */
if (dp_pdev_srng_alloc(pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_pdev_srng_alloc failed"));
goto fail2;
}
/* Rx specific init */
if (dp_rx_pdev_desc_pool_alloc(pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_rx_pdev_attach failed"));
goto fail3;
}
/* Rx monitor mode specific init */
if (dp_rx_pdev_mon_desc_pool_alloc(pdev)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"dp_rx_pdev_mon_attach failed");
goto fail4;
}
return QDF_STATUS_SUCCESS;
fail4:
dp_rx_pdev_desc_pool_free(pdev);
fail3:
dp_pdev_srng_free(pdev);
fail2:
wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
fail1:
qdf_mem_free(pdev);
fail0:
return QDF_STATUS_E_FAILURE;
}
/*
* dp_rxdma_ring_cleanup() - configure the RX DMA rings
* @soc: data path SoC handle
* @pdev: Physical device handle
*
* Return: void
*/
#ifdef QCA_HOST2FW_RXBUF_RING
static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev)
{
int i;
for (i = 0; i < MAX_RX_MAC_RINGS; i++) {
dp_srng_deinit(soc, &pdev->rx_mac_buf_ring[i], RXDMA_BUF, 1);
dp_srng_free(soc, &pdev->rx_mac_buf_ring[i]);
}
if (soc->reap_timer_init) {
qdf_timer_free(&soc->mon_reap_timer);
soc->reap_timer_init = 0;
}
}
#else
static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev)
{
if (soc->lmac_timer_init) {
qdf_timer_stop(&soc->lmac_reap_timer);
qdf_timer_free(&soc->lmac_reap_timer);
soc->lmac_timer_init = 0;
}
}
#endif
/*
* dp_neighbour_peers_detach() - Detach neighbour peers(nac clients)
* @pdev: device object
*
* Return: void
*/
static void dp_neighbour_peers_detach(struct dp_pdev *pdev)
{
struct dp_neighbour_peer *peer = NULL;
struct dp_neighbour_peer *temp_peer = NULL;
TAILQ_FOREACH_SAFE(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem, temp_peer) {
/* delete this peer from the list */
TAILQ_REMOVE(&pdev->neighbour_peers_list,
peer, neighbour_peer_list_elem);
qdf_mem_free(peer);
}
qdf_spinlock_destroy(&pdev->neighbour_peer_mutex);
}
/**
* dp_htt_ppdu_stats_detach() - detach stats resources
* @pdev: Datapath PDEV handle
*
* Return: void
*/
static void dp_htt_ppdu_stats_detach(struct dp_pdev *pdev)
{
struct ppdu_info *ppdu_info, *ppdu_info_next;
TAILQ_FOREACH_SAFE(ppdu_info, &pdev->ppdu_info_list,
ppdu_info_list_elem, ppdu_info_next) {
if (!ppdu_info)
break;
TAILQ_REMOVE(&pdev->ppdu_info_list,
ppdu_info, ppdu_info_list_elem);
pdev->list_depth--;
qdf_assert_always(ppdu_info->nbuf);
qdf_nbuf_free(ppdu_info->nbuf);
qdf_mem_free(ppdu_info);
}
TAILQ_FOREACH_SAFE(ppdu_info, &pdev->sched_comp_ppdu_list,
ppdu_info_list_elem, ppdu_info_next) {
if (!ppdu_info)
break;
TAILQ_REMOVE(&pdev->sched_comp_ppdu_list,
ppdu_info, ppdu_info_list_elem);
pdev->sched_comp_list_depth--;
qdf_assert_always(ppdu_info->nbuf);
qdf_nbuf_free(ppdu_info->nbuf);
qdf_mem_free(ppdu_info);
}
if (pdev->ppdu_tlv_buf)
qdf_mem_free(pdev->ppdu_tlv_buf);
}
#ifdef WLAN_DP_PENDING_MEM_FLUSH
/**
* dp_pdev_flush_pending_vdevs() - Flush all delete pending vdevs in pdev
* @pdev: Datapath PDEV handle
*
* This is the last chance to flush all pending dp vdevs/peers,
* some peer/vdev leak case like Non-SSR + peer unmap missing
* will be covered here.
*
* Return: None
*/
static void dp_pdev_flush_pending_vdevs(struct dp_pdev *pdev)
{
struct dp_vdev *vdev = NULL;
while (true) {
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
if (vdev->delete.pending)
break;
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
/*
* vdev will be freed when all peers get cleanup,
* dp_delete_pending_vdev will remove vdev from vdev_list
* in pdev.
*/
if (vdev)
dp_vdev_flush_peers((struct cdp_vdev *)vdev, 0);
else
break;
}
}
#else
static void dp_pdev_flush_pending_vdevs(struct dp_pdev *pdev)
{
}
#endif
/**
* dp_pdev_deinit() - Deinit txrx pdev
* @txrx_pdev: Datapath PDEV handle
* @force: Force deinit
*
* Return: None
*/
static void dp_pdev_deinit(struct cdp_pdev *txrx_pdev, int force)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
qdf_nbuf_t curr_nbuf, next_nbuf;
if (pdev->pdev_deinit)
return;
dp_tx_me_exit(pdev);
dp_rx_fst_detach(pdev->soc, pdev);
dp_rx_pdev_mon_buffers_free(pdev);
dp_rx_pdev_buffers_free(pdev);
dp_rx_pdev_mon_desc_pool_deinit(pdev);
dp_rx_pdev_desc_pool_deinit(pdev);
dp_htt_ppdu_stats_detach(pdev);
dp_tx_ppdu_stats_detach(pdev);
qdf_event_destroy(&pdev->fw_peer_stats_event);
dp_cal_client_detach(&pdev->cal_client_ctx);
if (pdev->sojourn_buf)
qdf_nbuf_free(pdev->sojourn_buf);
dp_pdev_flush_pending_vdevs(pdev);
dp_tx_desc_flush(pdev, NULL, true);
dp_pktlogmod_exit(pdev);
dp_neighbour_peers_detach(pdev);
qdf_spinlock_destroy(&pdev->tx_mutex);
qdf_spinlock_destroy(&pdev->vdev_list_lock);
if (pdev->invalid_peer)
qdf_mem_free(pdev->invalid_peer);
if (pdev->filter)
dp_mon_filter_dealloc(pdev);
dp_pdev_srng_deinit(pdev);
dp_ipa_uc_detach(pdev->soc, pdev);
dp_cleanup_ipa_rx_refill_buf_ring(pdev->soc, pdev);
dp_rxdma_ring_cleanup(pdev->soc, pdev);
curr_nbuf = pdev->invalid_peer_head_msdu;
while (curr_nbuf) {
next_nbuf = qdf_nbuf_next(curr_nbuf);
qdf_nbuf_free(curr_nbuf);
curr_nbuf = next_nbuf;
}
pdev->invalid_peer_head_msdu = NULL;
pdev->invalid_peer_tail_msdu = NULL;
dp_wdi_event_detach(pdev);
pdev->pdev_deinit = 1;
}
/**
* dp_pdev_deinit_wifi3() - Deinit txrx pdev
* @psoc: Datapath psoc handle
* @pdev_id: Id of datapath PDEV handle
* @force: Force deinit
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_pdev_deinit_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id,
int force)
{
struct dp_pdev *txrx_pdev;
txrx_pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc,
pdev_id);
if (!txrx_pdev)
return QDF_STATUS_E_FAILURE;
dp_pdev_deinit((struct cdp_pdev *)txrx_pdev, force);
return QDF_STATUS_SUCCESS;
}
/*
* dp_pdev_post_attach() - Do post pdev attach after dev_alloc_name
* @txrx_pdev: Datapath PDEV handle
*
* Return: None
*/
static void dp_pdev_post_attach(struct cdp_pdev *txrx_pdev)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
dp_tx_capture_debugfs_init(pdev);
if (dp_pdev_htt_stats_dbgfs_init(pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Failed to initialize pdev HTT stats debugfs");
}
}
/*
* dp_pdev_post_attach_wifi3() - attach txrx pdev post
* @psoc: Datapath soc handle
* @pdev_id: pdev id of pdev
*
* Return: QDF_STATUS
*/
static int dp_pdev_post_attach_wifi3(struct cdp_soc_t *soc,
uint8_t pdev_id)
{
struct dp_pdev *pdev;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP PDEV is Null for pdev id %d"), pdev_id);
return QDF_STATUS_E_FAILURE;
}
dp_pdev_post_attach((struct cdp_pdev *)pdev);
return QDF_STATUS_SUCCESS;
}
/*
* dp_pdev_detach() - Complete rest of pdev detach
* @txrx_pdev: Datapath PDEV handle
* @force: Force deinit
*
* Return: None
*/
static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
struct dp_soc *soc = pdev->soc;
dp_pdev_htt_stats_dbgfs_deinit(pdev);
dp_rx_pdev_mon_desc_pool_free(pdev);
dp_rx_pdev_desc_pool_free(pdev);
dp_pdev_srng_free(pdev);
soc->pdev_count--;
soc->pdev_list[pdev->pdev_id] = NULL;
wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
wlan_minidump_remove(pdev);
dp_context_free_mem(soc, DP_PDEV_TYPE, pdev);
}
/*
* dp_pdev_detach_wifi3() - detach txrx pdev
* @psoc: Datapath soc handle
* @pdev_id: pdev id of pdev
* @force: Force detach
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id,
int force)
{
struct dp_pdev *pdev;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc,
pdev_id);
if (!pdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP PDEV is Null for pdev id %d"), pdev_id);
return QDF_STATUS_E_FAILURE;
}
dp_pdev_detach((struct cdp_pdev *)pdev, force);
return QDF_STATUS_SUCCESS;
}
/*
* dp_reo_desc_freelist_destroy() - Flush REO descriptors from deferred freelist
* @soc: DP SOC handle
*/
static inline void dp_reo_desc_freelist_destroy(struct dp_soc *soc)
{
struct reo_desc_list_node *desc;
struct dp_rx_tid *rx_tid;
qdf_spin_lock_bh(&soc->reo_desc_freelist_lock);
while (qdf_list_remove_front(&soc->reo_desc_freelist,
(qdf_list_node_t **)&desc) == QDF_STATUS_SUCCESS) {
rx_tid = &desc->rx_tid;
qdf_mem_unmap_nbytes_single(soc->osdev,
rx_tid->hw_qdesc_paddr,
QDF_DMA_BIDIRECTIONAL,
rx_tid->hw_qdesc_alloc_size);
qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
qdf_mem_free(desc);
}
qdf_spin_unlock_bh(&soc->reo_desc_freelist_lock);
qdf_list_destroy(&soc->reo_desc_freelist);
qdf_spinlock_destroy(&soc->reo_desc_freelist_lock);
}
/*
* dp_soc_reset_txrx_ring_map() - reset tx ring map
* @soc: DP SOC handle
*
*/
static void dp_soc_reset_txrx_ring_map(struct dp_soc *soc)
{
uint32_t i;
for (i = 0; i < WLAN_CFG_INT_NUM_CONTEXTS; i++)
soc->tx_ring_map[i] = 0;
}
/*
* dp_soc_print_inactive_objects() - prints inactive peer and vdev list
* @soc: DP SOC handle
*
*/
static void dp_soc_print_inactive_objects(struct dp_soc *soc)
{
struct dp_peer *peer = NULL;
struct dp_peer *tmp_peer = NULL;
struct dp_vdev *vdev = NULL;
struct dp_vdev *tmp_vdev = NULL;
int i = 0;
uint32_t count;
if (TAILQ_EMPTY(&soc->inactive_peer_list) &&
TAILQ_EMPTY(&soc->inactive_vdev_list))
return;
TAILQ_FOREACH_SAFE(peer, &soc->inactive_peer_list,
inactive_list_elem, tmp_peer) {
for (i = 0; i < DP_MOD_ID_MAX; i++) {
count = qdf_atomic_read(&peer->mod_refs[i]);
if (count)
DP_PRINT_STATS("peer %pK Module id %u ==> %u",
peer, i, count);
}
}
TAILQ_FOREACH_SAFE(vdev, &soc->inactive_vdev_list,
inactive_list_elem, tmp_vdev) {
for (i = 0; i < DP_MOD_ID_MAX; i++) {
count = qdf_atomic_read(&vdev->mod_refs[i]);
if (count)
DP_PRINT_STATS("vdev %pK Module id %u ==> %u",
vdev, i, count);
}
}
QDF_BUG(0);
}
/**
* dp_soc_deinit() - Deinitialize txrx SOC
* @txrx_soc: Opaque DP SOC handle
*
* Return: None
*/
static void dp_soc_deinit(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
struct htt_soc *htt_soc = soc->htt_handle;
qdf_atomic_set(&soc->cmn_init_done, 0);
/* free peer tables & AST tables allocated during peer_map_attach */
if (soc->peer_map_attach_success) {
dp_peer_find_detach(soc);
soc->peer_map_attach_success = FALSE;
}
qdf_flush_work(&soc->htt_stats.work);
qdf_disable_work(&soc->htt_stats.work);
qdf_spinlock_destroy(&soc->htt_stats.lock);
dp_soc_reset_txrx_ring_map(soc);
dp_reo_desc_freelist_destroy(soc);
DEINIT_RX_HW_STATS_LOCK(soc);
qdf_spinlock_destroy(&soc->ast_lock);
qdf_nbuf_queue_free(&soc->htt_stats.msg);
dp_soc_wds_detach(soc);
qdf_spinlock_destroy(&soc->rx.defrag.defrag_lock);
qdf_spinlock_destroy(&soc->vdev_map_lock);
dp_reo_cmdlist_destroy(soc);
qdf_spinlock_destroy(&soc->rx.reo_cmd_lock);
dp_soc_tx_desc_sw_pools_deinit(soc);
dp_soc_srng_deinit(soc);
dp_hw_link_desc_ring_deinit(soc);
dp_soc_print_inactive_objects(soc);
qdf_spinlock_destroy(&soc->inactive_peer_list_lock);
qdf_spinlock_destroy(&soc->inactive_vdev_list_lock);
htt_soc_htc_dealloc(soc->htt_handle);
htt_soc_detach(htt_soc);
/* Free wbm sg list and reset flags in down path */
dp_rx_wbm_sg_list_deinit(soc);
wlan_minidump_remove(soc);
}
/**
* dp_soc_deinit_wifi3() - Deinitialize txrx SOC
* @txrx_soc: Opaque DP SOC handle
*
* Return: None
*/
static void dp_soc_deinit_wifi3(struct cdp_soc_t *txrx_soc)
{
dp_soc_deinit(txrx_soc);
}
/*
* dp_soc_detach() - Detach rest of txrx SOC
* @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
*
* Return: None
*/
static void dp_soc_detach(struct cdp_soc_t *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
dp_soc_swlm_detach(soc);
dp_soc_tx_desc_sw_pools_free(soc);
dp_soc_srng_free(soc);
dp_hw_link_desc_ring_free(soc);
dp_hw_link_desc_pool_banks_free(soc, WLAN_INVALID_PDEV_ID);
wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
dp_soc_rx_history_detach(soc);
if (soc->mon_vdev_timer_state & MON_VDEV_TIMER_INIT) {
qdf_timer_free(&soc->mon_vdev_timer);
soc->mon_vdev_timer_state = 0;
}
qdf_mem_free(soc);
}
/*
* dp_soc_detach_wifi3() - Detach txrx SOC
* @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
*
* Return: None
*/
static void dp_soc_detach_wifi3(struct cdp_soc_t *txrx_soc)
{
dp_soc_detach(txrx_soc);
}
#if !defined(DISABLE_MON_CONFIG)
/**
* dp_mon_htt_srng_setup() - Prepare HTT messages for Monitor rings
* @soc: soc handle
* @pdev: physical device handle
* @mac_id: ring number
* @mac_for_pdev: mac_id
*
* Return: non-zero for failure, zero for success
*/
static QDF_STATUS dp_mon_htt_srng_setup(struct dp_soc *soc,
struct dp_pdev *pdev,
int mac_id,
int mac_for_pdev)
{
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (soc->wlan_cfg_ctx->rxdma1_enable) {
status = htt_srng_setup(soc->htt_handle, mac_for_pdev,
soc->rxdma_mon_buf_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_BUF);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt srng setup message for Rxdma mon buf ring");
return status;
}
status = htt_srng_setup(soc->htt_handle, mac_for_pdev,
soc->rxdma_mon_dst_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_DST);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt srng setup message for Rxdma mon dst ring");
return status;
}
status = htt_srng_setup(soc->htt_handle, mac_for_pdev,
soc->rxdma_mon_status_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_STATUS);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt srng setup message for Rxdma mon status ring");
return status;
}
status = htt_srng_setup(soc->htt_handle, mac_for_pdev,
soc->rxdma_mon_desc_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_DESC);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt srng message for Rxdma mon desc ring");
return status;
}
} else {
status = htt_srng_setup(soc->htt_handle, mac_for_pdev,
soc->rxdma_mon_status_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_STATUS);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt srng setup message for Rxdma mon status ring");
return status;
}
}
return status;
}
#else
static QDF_STATUS dp_mon_htt_srng_setup(struct dp_soc *soc,
struct dp_pdev *pdev,
int mac_id,
int mac_for_pdev)
{
return QDF_STATUS_SUCCESS;
}
#endif
/*
* dp_rxdma_ring_config() - configure the RX DMA rings
*
* This function is used to configure the MAC rings.
* On MCL host provides buffers in Host2FW ring
* FW refills (copies) buffers to the ring and updates
* ring_idx in register
*
* @soc: data path SoC handle
*
* Return: zero on success, non-zero on failure
*/
#ifdef QCA_HOST2FW_RXBUF_RING
static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
{
int i;
QDF_STATUS status = QDF_STATUS_SUCCESS;
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
if (pdev) {
int mac_id;
bool dbs_enable = 0;
int max_mac_rings =
wlan_cfg_get_num_mac_rings
(pdev->wlan_cfg_ctx);
int lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i);
htt_srng_setup(soc->htt_handle, 0,
soc->rx_refill_buf_ring[lmac_id]
.hal_srng,
RXDMA_BUF);
if (pdev->rx_refill_buf_ring2.hal_srng)
htt_srng_setup(soc->htt_handle, 0,
pdev->rx_refill_buf_ring2.hal_srng,
RXDMA_BUF);
if (soc->cdp_soc.ol_ops->
is_hw_dbs_2x2_capable) {
dbs_enable = soc->cdp_soc.ol_ops->
is_hw_dbs_2x2_capable(
(void *)soc->ctrl_psoc);
}
if (dbs_enable) {
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
FL("DBS enabled max_mac_rings %d"),
max_mac_rings);
} else {
max_mac_rings = 1;
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
FL("DBS disabled, max_mac_rings %d"),
max_mac_rings);
}
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("pdev_id %d max_mac_rings %d"),
pdev->pdev_id, max_mac_rings);
for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
int mac_for_pdev =
dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
/*
* Obtain lmac id from pdev to access the LMAC
* ring in soc context
*/
lmac_id =
dp_get_lmac_id_for_pdev_id(soc,
mac_id,
pdev->pdev_id);
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
FL("mac_id %d"), mac_for_pdev);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rx_mac_buf_ring[mac_id]
.hal_srng,
RXDMA_BUF);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
soc->rxdma_err_dst_ring[lmac_id]
.hal_srng,
RXDMA_DST);
/* Configure monitor mode rings */
status = dp_mon_htt_srng_setup(soc, pdev,
lmac_id,
mac_for_pdev);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt monitor messages to target");
return status;
}
}
}
}
/*
* Timer to reap rxdma status rings.
* Needed until we enable ppdu end interrupts
*/
qdf_timer_init(soc->osdev, &soc->mon_reap_timer,
dp_mon_reap_timer_handler, (void *)soc,
QDF_TIMER_TYPE_WAKE_APPS);
soc->reap_timer_init = 1;
qdf_timer_init(soc->osdev, &soc->mon_vdev_timer,
dp_mon_vdev_timer, (void *)soc,
QDF_TIMER_TYPE_WAKE_APPS);
soc->mon_vdev_timer_state |= MON_VDEV_TIMER_INIT;
return status;
}
#else
/* This is only for WIN */
static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
{
int i;
QDF_STATUS status = QDF_STATUS_SUCCESS;
int mac_for_pdev;
int lmac_id;
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
if (!pdev)
continue;
mac_for_pdev = i;
lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
soc->rx_refill_buf_ring[lmac_id].
hal_srng, RXDMA_BUF);
#ifndef DISABLE_MON_CONFIG
if (soc->wlan_cfg_ctx->rxdma1_enable) {
htt_srng_setup(soc->htt_handle, mac_for_pdev,
soc->rxdma_mon_buf_ring[lmac_id].hal_srng,
RXDMA_MONITOR_BUF);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
soc->rxdma_mon_dst_ring[lmac_id].hal_srng,
RXDMA_MONITOR_DST);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
soc->rxdma_mon_desc_ring[lmac_id].hal_srng,
RXDMA_MONITOR_DESC);
}
htt_srng_setup(soc->htt_handle, mac_for_pdev,
soc->rxdma_mon_status_ring[lmac_id].hal_srng,
RXDMA_MONITOR_STATUS);
#endif
htt_srng_setup(soc->htt_handle, mac_for_pdev,
soc->rxdma_err_dst_ring[lmac_id].hal_srng,
RXDMA_DST);
}
/* Configure LMAC rings in Polled mode */
if (soc->lmac_polled_mode) {
/*
* Timer to reap lmac rings.
*/
qdf_timer_init(soc->osdev, &soc->lmac_reap_timer,
dp_service_lmac_rings, (void *)soc,
QDF_TIMER_TYPE_WAKE_APPS);
soc->lmac_timer_init = 1;
qdf_timer_mod(&soc->lmac_reap_timer, DP_INTR_POLL_TIMER_MS);
}
return status;
}
#endif
#ifdef NO_RX_PKT_HDR_TLV
static QDF_STATUS
dp_rxdma_ring_sel_cfg(struct dp_soc *soc)
{
int i;
int mac_id;
struct htt_rx_ring_tlv_filter htt_tlv_filter = {0};
QDF_STATUS status = QDF_STATUS_SUCCESS;
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 1;
htt_tlv_filter.mpdu_end = 1;
htt_tlv_filter.msdu_end = 1;
htt_tlv_filter.attention = 1;
htt_tlv_filter.packet = 1;
htt_tlv_filter.packet_header = 0;
htt_tlv_filter.ppdu_start = 0;
htt_tlv_filter.ppdu_end = 0;
htt_tlv_filter.ppdu_end_user_stats = 0;
htt_tlv_filter.ppdu_end_user_stats_ext = 0;
htt_tlv_filter.ppdu_end_status_done = 0;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_mo = 0;
htt_tlv_filter.fp_mgmt_filter = 0;
htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_BA_REQ;
htt_tlv_filter.fp_data_filter = (FILTER_DATA_UCAST |
FILTER_DATA_MCAST |
FILTER_DATA_DATA);
htt_tlv_filter.mo_mgmt_filter = 0;
htt_tlv_filter.mo_ctrl_filter = 0;
htt_tlv_filter.mo_data_filter = 0;
htt_tlv_filter.md_data_filter = 0;
htt_tlv_filter.offset_valid = true;
htt_tlv_filter.rx_packet_offset = RX_PKT_TLVS_LEN;
/*Not subscribing rx_pkt_header*/
htt_tlv_filter.rx_header_offset = 0;
htt_tlv_filter.rx_mpdu_start_offset =
hal_rx_mpdu_start_offset_get(soc->hal_soc);
htt_tlv_filter.rx_mpdu_end_offset =
hal_rx_mpdu_end_offset_get(soc->hal_soc);
htt_tlv_filter.rx_msdu_start_offset =
hal_rx_msdu_start_offset_get(soc->hal_soc);
htt_tlv_filter.rx_msdu_end_offset =
hal_rx_msdu_end_offset_get(soc->hal_soc);
htt_tlv_filter.rx_attn_offset =
hal_rx_attn_offset_get(soc->hal_soc);
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
if (!pdev)
continue;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev =
dp_get_mac_id_for_pdev(mac_id, pdev->pdev_id);
/*
* Obtain lmac id from pdev to access the LMAC ring
* in soc context
*/
int lmac_id =
dp_get_lmac_id_for_pdev_id(soc, mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
soc->rx_refill_buf_ring[lmac_id].
hal_srng,
RXDMA_BUF, RX_DATA_BUFFER_SIZE,
&htt_tlv_filter);
}
}
return status;
}
#else
static QDF_STATUS
dp_rxdma_ring_sel_cfg(struct dp_soc *soc)
{
return QDF_STATUS_SUCCESS;
}
#endif
/*
* dp_rx_target_fst_config() - configure the RXOLE Flow Search Engine
*
* This function is used to configure the FSE HW block in RX OLE on a
* per pdev basis. Here, we will be programming parameters related to
* the Flow Search Table.
*
* @soc: data path SoC handle
*
* Return: zero on success, non-zero on failure
*/
#ifdef WLAN_SUPPORT_RX_FLOW_TAG
static QDF_STATUS
dp_rx_target_fst_config(struct dp_soc *soc)
{
int i;
QDF_STATUS status = QDF_STATUS_SUCCESS;
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
/* Flow search is not enabled if NSS offload is enabled */
if (pdev &&
!wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
status = dp_rx_flow_send_fst_fw_setup(pdev->soc, pdev);
if (status != QDF_STATUS_SUCCESS)
break;
}
}
return status;
}
#elif defined(WLAN_SUPPORT_RX_FISA)
/**
* dp_rx_target_fst_config() - Configure RX OLE FSE engine in HW
* @soc: SoC handle
*
* Return: Success
*/
static inline QDF_STATUS dp_rx_target_fst_config(struct dp_soc *soc)
{
/* Check if it is enabled in the INI */
if (!soc->fisa_enable) {
dp_err("RX FISA feature is disabled");
return QDF_STATUS_E_NOSUPPORT;
}
return dp_rx_flow_send_fst_fw_setup(soc, soc->pdev_list[0]);
}
#define FISA_MAX_TIMEOUT 0xffffffff
#define FISA_DISABLE_TIMEOUT 0
static QDF_STATUS dp_rx_fisa_config(struct dp_soc *soc)
{
struct dp_htt_rx_fisa_cfg fisa_config;
fisa_config.pdev_id = 0;
fisa_config.fisa_timeout = FISA_MAX_TIMEOUT;
return dp_htt_rx_fisa_config(soc->pdev_list[0], &fisa_config);
}
#else /* !WLAN_SUPPORT_RX_FISA */
static inline QDF_STATUS dp_rx_target_fst_config(struct dp_soc *soc)
{
return QDF_STATUS_SUCCESS;
}
#endif /* !WLAN_SUPPORT_RX_FISA */
#ifndef WLAN_SUPPORT_RX_FISA
static QDF_STATUS dp_rx_fisa_config(struct dp_soc *soc)
{
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS dp_rx_dump_fisa_stats(struct dp_soc *soc)
{
return QDF_STATUS_SUCCESS;
}
static void dp_rx_dump_fisa_table(struct dp_soc *soc)
{
}
#endif /* !WLAN_SUPPORT_RX_FISA */
#ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
static inline QDF_STATUS dp_print_swlm_stats(struct dp_soc *soc)
{
return QDF_STATUS_SUCCESS;
}
#endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
/*
* dp_soc_attach_target_wifi3() - SOC initialization in the target
* @cdp_soc: Opaque Datapath SOC handle
*
* Return: zero on success, non-zero on failure
*/
static QDF_STATUS
dp_soc_attach_target_wifi3(struct cdp_soc_t *cdp_soc)
{
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
QDF_STATUS status = QDF_STATUS_SUCCESS;
htt_soc_attach_target(soc->htt_handle);
status = dp_rxdma_ring_config(soc);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt srng setup messages to target");
return status;
}
status = dp_rxdma_ring_sel_cfg(soc);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt ring config message to target");
return status;
}
status = dp_rx_target_fst_config(soc);
if (status != QDF_STATUS_SUCCESS &&
status != QDF_STATUS_E_NOSUPPORT) {
dp_err("Failed to send htt fst setup config message to target");
return status;
}
if (status == QDF_STATUS_SUCCESS) {
status = dp_rx_fisa_config(soc);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt FISA config message to target");
return status;
}
}
DP_STATS_INIT(soc);
/* initialize work queue for stats processing */
qdf_create_work(0, &soc->htt_stats.work, htt_t2h_stats_handler, soc);
return QDF_STATUS_SUCCESS;
}
#ifdef QCA_SUPPORT_FULL_MON
static inline QDF_STATUS
dp_soc_config_full_mon_mode(struct dp_pdev *pdev, enum dp_full_mon_config val)
{
struct dp_soc *soc = pdev->soc;
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (!soc->full_mon_mode)
return QDF_STATUS_SUCCESS;
if ((htt_h2t_full_mon_cfg(soc->htt_handle,
pdev->pdev_id,
val)) != QDF_STATUS_SUCCESS) {
status = QDF_STATUS_E_FAILURE;
}
return status;
}
#else
static inline QDF_STATUS
dp_soc_config_full_mon_mode(struct dp_pdev *pdev, enum dp_full_mon_config val)
{
return 0;
}
#endif
/*
* dp_vdev_id_map_tbl_add() - Add vdev into vdev_id table
* @soc: SoC handle
* @vdev: vdev handle
* @vdev_id: vdev_id
*
* Return: None
*/
static void dp_vdev_id_map_tbl_add(struct dp_soc *soc,
struct dp_vdev *vdev,
uint8_t vdev_id)
{
QDF_ASSERT(vdev_id <= MAX_VDEV_CNT);
qdf_spin_lock_bh(&soc->vdev_map_lock);
if (dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CONFIG) !=
QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"unable to get vdev reference at MAP vdev %pK vdev_id %u",
vdev, vdev_id);
qdf_spin_unlock_bh(&soc->vdev_map_lock);
return;
}
if (!soc->vdev_id_map[vdev_id])
soc->vdev_id_map[vdev_id] = vdev;
else
QDF_ASSERT(0);
qdf_spin_unlock_bh(&soc->vdev_map_lock);
}
/*
* dp_vdev_id_map_tbl_remove() - remove vdev from vdev_id table
* @soc: SoC handle
* @vdev: vdev handle
*
* Return: None
*/
static void dp_vdev_id_map_tbl_remove(struct dp_soc *soc,
struct dp_vdev *vdev)
{
qdf_spin_lock_bh(&soc->vdev_map_lock);
QDF_ASSERT(soc->vdev_id_map[vdev->vdev_id] == vdev);
soc->vdev_id_map[vdev->vdev_id] = NULL;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
qdf_spin_unlock_bh(&soc->vdev_map_lock);
}
/*
* dp_vdev_pdev_list_add() - add vdev into pdev's list
* @soc: soc handle
* @pdev: pdev handle
* @vdev: vdev handle
*
* return: none
*/
static void dp_vdev_pdev_list_add(struct dp_soc *soc,
struct dp_pdev *pdev,
struct dp_vdev *vdev)
{
qdf_spin_lock_bh(&pdev->vdev_list_lock);
if (dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CONFIG) !=
QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"unable to get vdev reference at MAP vdev %pK",
vdev);
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
return;
}
/* add this vdev into the pdev's list */
TAILQ_INSERT_TAIL(&pdev->vdev_list, vdev, vdev_list_elem);
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
}
/*
* dp_vdev_pdev_list_remove() - remove vdev from pdev's list
* @soc: SoC handle
* @pdev: pdev handle
* @vdev: VDEV handle
*
* Return: none
*/
static void dp_vdev_pdev_list_remove(struct dp_soc *soc,
struct dp_pdev *pdev,
struct dp_vdev *vdev)
{
uint8_t found = 0;
struct dp_vdev *tmpvdev = NULL;
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(tmpvdev, &pdev->vdev_list, vdev_list_elem) {
if (tmpvdev == vdev) {
found = 1;
break;
}
}
if (found) {
TAILQ_REMOVE(&pdev->vdev_list, vdev, vdev_list_elem);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
} else {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"vdev:%pK not found in pdev:%pK vdevlist:%pK",
vdev, pdev, &pdev->vdev_list);
QDF_ASSERT(0);
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
}
/*
* dp_vdev_attach_wifi3() - attach txrx vdev
* @txrx_pdev: Datapath PDEV handle
* @vdev_mac_addr: MAC address of the virtual interface
* @vdev_id: VDEV Id
* @wlan_op_mode: VDEV operating mode
* @subtype: VDEV operating subtype
*
* Return: status
*/
static QDF_STATUS dp_vdev_attach_wifi3(struct cdp_soc_t *cdp_soc,
uint8_t pdev_id,
uint8_t *vdev_mac_addr,
uint8_t vdev_id,
enum wlan_op_mode op_mode,
enum wlan_op_subtype subtype)
{
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
struct dp_vdev *vdev = qdf_mem_malloc(sizeof(*vdev));
int i = 0;
if (!pdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP PDEV is Null for pdev id %d"), pdev_id);
qdf_mem_free(vdev);
goto fail0;
}
if (!vdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP VDEV memory allocation failed"));
goto fail0;
}
wlan_minidump_log(vdev, sizeof(*vdev), soc->ctrl_psoc,
WLAN_MD_DP_VDEV, "dp_vdev");
vdev->pdev = pdev;
vdev->vdev_id = vdev_id;
vdev->opmode = op_mode;
vdev->subtype = subtype;
vdev->osdev = soc->osdev;
vdev->osif_rx = NULL;
vdev->osif_rsim_rx_decap = NULL;
vdev->osif_get_key = NULL;
vdev->osif_rx_mon = NULL;
vdev->osif_tx_free_ext = NULL;
vdev->osif_vdev = NULL;
vdev->delete.pending = 0;
vdev->safemode = 0;
vdev->drop_unenc = 1;
vdev->sec_type = cdp_sec_type_none;
vdev->multipass_en = false;
qdf_atomic_init(&vdev->ref_cnt);
for (i = 0; i < DP_MOD_ID_MAX; i++)
qdf_atomic_init(&vdev->mod_refs[i]);
/* Take one reference for create*/
qdf_atomic_inc(&vdev->ref_cnt);
qdf_atomic_inc(&vdev->mod_refs[DP_MOD_ID_CONFIG]);
vdev->num_peers = 0;
#ifdef notyet
vdev->filters_num = 0;
#endif
vdev->lmac_id = pdev->lmac_id;
qdf_mem_copy(
&vdev->mac_addr.raw[0], vdev_mac_addr, QDF_MAC_ADDR_SIZE);
/* TODO: Initialize default HTT meta data that will be used in
* TCL descriptors for packets transmitted from this VDEV
*/
qdf_spinlock_create(&vdev->peer_list_lock);
TAILQ_INIT(&vdev->peer_list);
dp_peer_multipass_list_init(vdev);
if ((soc->intr_mode == DP_INTR_POLL) &&
wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx) != 0) {
if ((pdev->vdev_count == 0) ||
(wlan_op_mode_monitor == vdev->opmode))
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
} else if (soc->intr_mode == DP_INTR_MSI &&
wlan_op_mode_monitor == vdev->opmode &&
soc->mon_vdev_timer_state & MON_VDEV_TIMER_INIT) {
qdf_timer_mod(&soc->mon_vdev_timer, DP_INTR_POLL_TIMER_MS);
soc->mon_vdev_timer_state |= MON_VDEV_TIMER_RUNNING;
}
dp_vdev_id_map_tbl_add(soc, vdev, vdev_id);
if (wlan_op_mode_monitor == vdev->opmode) {
pdev->monitor_vdev = vdev;
return QDF_STATUS_SUCCESS;
}
vdev->tx_encap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
vdev->rx_decap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
vdev->dscp_tid_map_id = 0;
vdev->mcast_enhancement_en = 0;
vdev->igmp_mcast_enhanc_en = 0;
vdev->raw_mode_war = wlan_cfg_get_raw_mode_war(soc->wlan_cfg_ctx);
vdev->prev_tx_enq_tstamp = 0;
vdev->prev_rx_deliver_tstamp = 0;
vdev->skip_sw_tid_classification = DP_TX_HW_DSCP_TID_MAP_VALID;
dp_vdev_pdev_list_add(soc, pdev, vdev);
pdev->vdev_count++;
if (wlan_op_mode_sta != vdev->opmode)
vdev->ap_bridge_enabled = true;
else
vdev->ap_bridge_enabled = false;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s: wlan_cfg_ap_bridge_enabled %d",
__func__, vdev->ap_bridge_enabled);
dp_tx_vdev_attach(vdev);
if (pdev->vdev_count == 1)
dp_lro_hash_setup(soc, pdev);
dp_info("Created vdev %pK ("QDF_MAC_ADDR_FMT")", vdev,
QDF_MAC_ADDR_REF(vdev->mac_addr.raw));
DP_STATS_INIT(vdev);
if (wlan_op_mode_sta == vdev->opmode)
dp_peer_create_wifi3((struct cdp_soc_t *)soc, vdev_id,
vdev->mac_addr.raw);
return QDF_STATUS_SUCCESS;
fail0:
return QDF_STATUS_E_FAILURE;
}
#ifndef QCA_HOST_MODE_WIFI_DISABLED
/**
* dp_vdev_register_tx_handler() - Register Tx handler
* @vdev: struct dp_vdev *
* @soc: struct dp_soc *
* @txrx_ops: struct ol_txrx_ops *
*/
static inline void dp_vdev_register_tx_handler(struct dp_vdev *vdev,
struct dp_soc *soc,
struct ol_txrx_ops *txrx_ops)
{
/* Enable vdev_id check only for ap, if flag is enabled */
if (vdev->mesh_vdev)
txrx_ops->tx.tx = dp_tx_send_mesh;
else if ((wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx)) &&
(vdev->opmode == wlan_op_mode_ap))
txrx_ops->tx.tx = dp_tx_send_vdev_id_check;
else
txrx_ops->tx.tx = dp_tx_send;
/* Avoid check in regular exception Path */
if ((wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx)) &&
(vdev->opmode == wlan_op_mode_ap))
txrx_ops->tx.tx_exception = dp_tx_send_exception_vdev_id_check;
else
txrx_ops->tx.tx_exception = dp_tx_send_exception;
dp_alert("Configure tx_vdev_id_chk_handler Feature Flag: %d and mode:%d for vdev_id:%d",
wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx),
vdev->opmode, vdev->vdev_id);
}
#else /* QCA_HOST_MODE_WIFI_DISABLED */
static inline void dp_vdev_register_tx_handler(struct dp_vdev *vdev,
struct dp_soc *soc,
struct ol_txrx_ops *txrx_ops)
{
}
#endif /* QCA_HOST_MODE_WIFI_DISABLED */
/**
* dp_vdev_register_wifi3() - Register VDEV operations from osif layer
* @soc: Datapath soc handle
* @vdev_id: id of Datapath VDEV handle
* @osif_vdev: OSIF vdev handle
* @txrx_ops: Tx and Rx operations
*
* Return: DP VDEV handle on success, NULL on failure
*/
static QDF_STATUS dp_vdev_register_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
ol_osif_vdev_handle osif_vdev,
struct ol_txrx_ops *txrx_ops)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev)
return QDF_STATUS_E_FAILURE;
vdev->osif_vdev = osif_vdev;
vdev->osif_rx = txrx_ops->rx.rx;
vdev->osif_rx_stack = txrx_ops->rx.rx_stack;
vdev->osif_rx_flush = txrx_ops->rx.rx_flush;
vdev->osif_gro_flush = txrx_ops->rx.rx_gro_flush;
vdev->osif_rsim_rx_decap = txrx_ops->rx.rsim_rx_decap;
vdev->osif_fisa_rx = txrx_ops->rx.osif_fisa_rx;
vdev->osif_fisa_flush = txrx_ops->rx.osif_fisa_flush;
vdev->osif_get_key = txrx_ops->get_key;
vdev->osif_rx_mon = txrx_ops->rx.mon;
vdev->osif_tx_free_ext = txrx_ops->tx.tx_free_ext;
vdev->tx_comp = txrx_ops->tx.tx_comp;
vdev->stats_cb = txrx_ops->rx.stats_rx;
#ifdef notyet
#if ATH_SUPPORT_WAPI
vdev->osif_check_wai = txrx_ops->rx.wai_check;
#endif
#endif
#ifdef UMAC_SUPPORT_PROXY_ARP
vdev->osif_proxy_arp = txrx_ops->proxy_arp;
#endif
vdev->me_convert = txrx_ops->me_convert;
dp_vdev_register_tx_handler(vdev, soc, txrx_ops);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW,
"DP Vdev Register success");
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/**
* dp_peer_delete() - delete DP peer
*
* @soc: Datatpath soc
* @peer: Datapath peer
* @arg: argument to iter function
*
* Return: void
*/
static void
dp_peer_delete(struct dp_soc *soc,
struct dp_peer *peer,
void *arg)
{
if (!peer->valid)
return;
dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
peer->vdev->vdev_id,
peer->mac_addr.raw, 0);
}
/**
* dp_vdev_flush_peers() - Forcibily Flush peers of vdev
* @vdev: Datapath VDEV handle
* @unmap_only: Flag to indicate "only unmap"
*
* Return: void
*/
static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle, bool unmap_only)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
struct dp_peer *peer;
uint32_t i = 0;
if (!unmap_only)
dp_vdev_iterate_peer(vdev, dp_peer_delete, NULL,
DP_MOD_ID_CDP);
for (i = 0; i < soc->max_peers ; i++) {
peer = __dp_peer_get_ref_by_id(soc, i, DP_MOD_ID_CDP);
if (!peer)
continue;
if (peer->vdev != vdev) {
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
continue;
}
dp_info("peer: "QDF_MAC_ADDR_FMT" is getting unmap",
QDF_MAC_ADDR_REF(peer->mac_addr.raw));
dp_rx_peer_unmap_handler(soc, i,
vdev->vdev_id,
peer->mac_addr.raw, 0,
DP_PEER_WDS_COUNT_INVALID);
SET_PEER_REF_CNT_ONE(peer);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
}
}
/*
* dp_vdev_detach_wifi3() - Detach txrx vdev
* @cdp_soc: Datapath soc handle
* @vdev_id: VDEV Id
* @callback: Callback OL_IF on completion of detach
* @cb_context: Callback context
*
*/
static QDF_STATUS dp_vdev_detach_wifi3(struct cdp_soc_t *cdp_soc,
uint8_t vdev_id,
ol_txrx_vdev_delete_cb callback,
void *cb_context)
{
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
struct dp_pdev *pdev;
struct dp_neighbour_peer *peer = NULL;
struct dp_neighbour_peer *temp_peer = NULL;
struct dp_peer *vap_self_peer = NULL;
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev)
return QDF_STATUS_E_FAILURE;
pdev = vdev->pdev;
vap_self_peer = dp_sta_vdev_self_peer_ref_n_get(soc, vdev,
DP_MOD_ID_CONFIG);
if (vap_self_peer) {
qdf_spin_lock_bh(&soc->ast_lock);
if (vap_self_peer->self_ast_entry) {
dp_peer_del_ast(soc, vap_self_peer->self_ast_entry);
vap_self_peer->self_ast_entry = NULL;
}
qdf_spin_unlock_bh(&soc->ast_lock);
dp_peer_delete_wifi3((struct cdp_soc_t *)soc, vdev->vdev_id,
vap_self_peer->mac_addr.raw, 0);
dp_peer_unref_delete(vap_self_peer, DP_MOD_ID_CONFIG);
}
/*
* If Target is hung, flush all peers before detaching vdev
* this will free all references held due to missing
* unmap commands from Target
*/
if (!hif_is_target_ready(HIF_GET_SOFTC(soc->hif_handle)))
dp_vdev_flush_peers((struct cdp_vdev *)vdev, false);
else if (hif_get_target_status(soc->hif_handle) == TARGET_STATUS_RESET)
dp_vdev_flush_peers((struct cdp_vdev *)vdev, true);
dp_rx_vdev_detach(vdev);
/*
* move it after dp_rx_vdev_detach(),
* as the call back done in dp_rx_vdev_detach()
* still need to get vdev pointer by vdev_id.
*/
dp_vdev_id_map_tbl_remove(soc, vdev);
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
if (!soc->hw_nac_monitor_support) {
TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem) {
QDF_ASSERT(peer->vdev != vdev);
}
} else {
TAILQ_FOREACH_SAFE(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem, temp_peer) {
if (peer->vdev == vdev) {
TAILQ_REMOVE(&pdev->neighbour_peers_list, peer,
neighbour_peer_list_elem);
qdf_mem_free(peer);
}
}
}
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
if (vdev->vdev_dp_ext_handle) {
qdf_mem_free(vdev->vdev_dp_ext_handle);
vdev->vdev_dp_ext_handle = NULL;
}
/* indicate that the vdev needs to be deleted */
vdev->delete.pending = 1;
vdev->delete.callback = callback;
vdev->delete.context = cb_context;
if (vdev->opmode != wlan_op_mode_monitor)
dp_vdev_pdev_list_remove(soc, pdev, vdev);
/* release reference taken above for find */
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
TAILQ_INSERT_TAIL(&soc->inactive_vdev_list, vdev, inactive_list_elem);
qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
/* release reference taken at dp_vdev_create */
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
return QDF_STATUS_SUCCESS;
}
static inline struct dp_peer *dp_peer_can_reuse(struct dp_vdev *vdev,
uint8_t *peer_mac_addr)
{
struct dp_peer *peer;
struct dp_soc *soc = vdev->pdev->soc;
qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
TAILQ_FOREACH(peer, &soc->inactive_peer_list,
inactive_list_elem) {
/* reuse bss peer only when vdev matches*/
if (peer->bss_peer && (peer->vdev == vdev) &&
qdf_mem_cmp(peer_mac_addr, peer->mac_addr.raw,
QDF_MAC_ADDR_SIZE) == 0) {
/* increment ref count for cdp_peer_create*/
if (dp_peer_get_ref(soc, peer, DP_MOD_ID_CONFIG) ==
QDF_STATUS_SUCCESS) {
TAILQ_REMOVE(&soc->inactive_peer_list, peer,
inactive_list_elem);
qdf_spin_unlock_bh
(&soc->inactive_peer_list_lock);
return peer;
}
}
}
qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
return NULL;
}
#ifdef FEATURE_AST
static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc,
struct dp_pdev *pdev,
uint8_t *peer_mac_addr)
{
struct dp_ast_entry *ast_entry;
qdf_spin_lock_bh(&soc->ast_lock);
if (soc->ast_override_support)
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, peer_mac_addr,
pdev->pdev_id);
else
ast_entry = dp_peer_ast_hash_find_soc(soc, peer_mac_addr);
if (ast_entry && ast_entry->next_hop && !ast_entry->delete_in_progress)
dp_peer_del_ast(soc, ast_entry);
qdf_spin_unlock_bh(&soc->ast_lock);
}
#endif
#ifdef PEER_CACHE_RX_PKTS
static inline void dp_peer_rx_bufq_resources_init(struct dp_peer *peer)
{
qdf_spinlock_create(&peer->bufq_info.bufq_lock);
peer->bufq_info.thresh = DP_RX_CACHED_BUFQ_THRESH;
qdf_list_create(&peer->bufq_info.cached_bufq, DP_RX_CACHED_BUFQ_THRESH);
}
#else
static inline void dp_peer_rx_bufq_resources_init(struct dp_peer *peer)
{
}
#endif
/*
* dp_peer_create_wifi3() - attach txrx peer
* @soc_hdl: Datapath soc handle
* @vdev_id: id of vdev
* @peer_mac_addr: Peer MAC address
*
* Return: 0 on success, -1 on failure
*/
static QDF_STATUS
dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
uint8_t *peer_mac_addr)
{
struct dp_peer *peer;
int i;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_pdev *pdev;
struct cdp_peer_cookie peer_cookie;
enum cdp_txrx_ast_entry_type ast_type = CDP_TXRX_AST_TYPE_STATIC;
struct dp_vdev *vdev = NULL;
if (!peer_mac_addr)
return QDF_STATUS_E_FAILURE;
vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
if (!vdev)
return QDF_STATUS_E_FAILURE;
pdev = vdev->pdev;
soc = pdev->soc;
/*
* If a peer entry with given MAC address already exists,
* reuse the peer and reset the state of peer.
*/
peer = dp_peer_can_reuse(vdev, peer_mac_addr);
if (peer) {
dp_peer_vdev_list_add(soc, vdev, peer);
dp_peer_find_hash_add(soc, peer);
qdf_atomic_init(&peer->is_default_route_set);
dp_peer_cleanup(vdev, peer);
for (i = 0; i < DP_MAX_TIDS; i++)
qdf_spinlock_create(&peer->rx_tid[i].tid_lock);
qdf_spin_lock_bh(&soc->ast_lock);
dp_peer_delete_ast_entries(soc, peer);
qdf_spin_unlock_bh(&soc->ast_lock);
if ((vdev->opmode == wlan_op_mode_sta) &&
!qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE)) {
ast_type = CDP_TXRX_AST_TYPE_SELF;
}
dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
peer->valid = 1;
dp_local_peer_id_alloc(pdev, peer);
qdf_spinlock_create(&peer->peer_info_lock);
dp_peer_rx_bufq_resources_init(peer);
DP_STATS_INIT(peer);
DP_STATS_UPD(peer, rx.avg_rssi, INVALID_RSSI);
/*
* In tx_monitor mode, filter may be set for unassociated peer
* when unassociated peer get associated peer need to
* update tx_cap_enabled flag to support peer filter.
*/
dp_peer_tx_capture_filter_check(pdev, peer);
dp_set_peer_isolation(peer, false);
dp_wds_ext_peer_init(peer);
dp_peer_update_state(soc, peer, DP_PEER_STATE_INIT);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
} else {
/*
* When a STA roams from RPTR AP to ROOT AP and vice versa, we
* need to remove the AST entry which was earlier added as a WDS
* entry.
* If an AST entry exists, but no peer entry exists with a given
* MAC addresses, we could deduce it as a WDS entry
*/
dp_peer_ast_handle_roam_del(soc, pdev, peer_mac_addr);
}
#ifdef notyet
peer = (struct dp_peer *)qdf_mempool_alloc(soc->osdev,
soc->mempool_ol_ath_peer);
#else
peer = (struct dp_peer *)qdf_mem_malloc(sizeof(*peer));
#endif
wlan_minidump_log(peer,
sizeof(*peer),
soc->ctrl_psoc,
WLAN_MD_DP_PEER, "dp_peer");
if (!peer) {
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_E_FAILURE; /* failure */
}
qdf_mem_zero(peer, sizeof(struct dp_peer));
TAILQ_INIT(&peer->ast_entry_list);
/* store provided params */
peer->vdev = vdev;
/* get the vdev reference for new peer */
dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CHILD);
if ((vdev->opmode == wlan_op_mode_sta) &&
!qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE)) {
ast_type = CDP_TXRX_AST_TYPE_SELF;
}
qdf_spinlock_create(&peer->peer_state_lock);
dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
qdf_spinlock_create(&peer->peer_info_lock);
dp_wds_ext_peer_init(peer);
dp_peer_rx_bufq_resources_init(peer);
qdf_mem_copy(
&peer->mac_addr.raw[0], peer_mac_addr, QDF_MAC_ADDR_SIZE);
/* initialize the peer_id */
peer->peer_id = HTT_INVALID_PEER;
/* reset the ast index to flowid table */
dp_peer_reset_flowq_map(peer);
qdf_atomic_init(&peer->ref_cnt);
for (i = 0; i < DP_MOD_ID_MAX; i++)
qdf_atomic_init(&peer->mod_refs[i]);
/* keep one reference for attach */
qdf_atomic_inc(&peer->ref_cnt);
qdf_atomic_inc(&peer->mod_refs[DP_MOD_ID_CONFIG]);
dp_peer_vdev_list_add(soc, vdev, peer);
/* TODO: See if hash based search is required */
dp_peer_find_hash_add(soc, peer);
/* Initialize the peer state */
peer->state = OL_TXRX_PEER_STATE_DISC;
dp_info("vdev %pK created peer %pK ("QDF_MAC_ADDR_FMT") ref_cnt: %d",
vdev, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
qdf_atomic_read(&peer->ref_cnt));
/*
* For every peer MAp message search and set if bss_peer
*/
if (qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
QDF_MAC_ADDR_SIZE) == 0 &&
(wlan_op_mode_sta != vdev->opmode)) {
dp_info("vdev bss_peer!!");
peer->bss_peer = 1;
}
if (wlan_op_mode_sta == vdev->opmode &&
qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
QDF_MAC_ADDR_SIZE) == 0) {
peer->sta_self_peer = 1;
}
for (i = 0; i < DP_MAX_TIDS; i++)
qdf_spinlock_create(&peer->rx_tid[i].tid_lock);
peer->valid = 1;
dp_local_peer_id_alloc(pdev, peer);
DP_STATS_INIT(peer);
DP_STATS_UPD(peer, rx.avg_rssi, INVALID_RSSI);
qdf_mem_copy(peer_cookie.mac_addr, peer->mac_addr.raw,
QDF_MAC_ADDR_SIZE);
peer_cookie.ctx = NULL;
peer_cookie.pdev_id = pdev->pdev_id;
peer_cookie.cookie = pdev->next_peer_cookie++;
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_PEER_CREATE, pdev->soc,
(void *)&peer_cookie,
peer->peer_id, WDI_NO_VAL, pdev->pdev_id);
#endif
if (soc->rdkstats_enabled) {
if (!peer_cookie.ctx) {
pdev->next_peer_cookie--;
qdf_err("Failed to initialize peer rate stats");
} else {
peer->rdkstats_ctx = (struct cdp_peer_rate_stats_ctx *)
peer_cookie.ctx;
}
}
/*
* Allocate peer extended stats context. Fall through in
* case of failure as its not an implicit requirement to have
* this object for regular statistics updates.
*/
if (dp_peer_ext_stats_ctx_alloc(soc, peer) !=
QDF_STATUS_SUCCESS)
dp_warn("peer ext_stats ctx alloc failed");
/*
* In tx_monitor mode, filter may be set for unassociated peer
* when unassociated peer get associated peer need to
* update tx_cap_enabled flag to support peer filter.
*/
dp_peer_tx_capture_filter_check(pdev, peer);
dp_set_peer_isolation(peer, false);
dp_peer_update_state(soc, peer, DP_PEER_STATE_INIT);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/*
* dp_vdev_get_default_reo_hash() - get reo dest ring and hash values for a vdev
* @vdev: Datapath VDEV handle
* @reo_dest: pointer to default reo_dest ring for vdev to be populated
* @hash_based: pointer to hash value (enabled/disabled) to be populated
*
* Return: None
*/
static
void dp_vdev_get_default_reo_hash(struct dp_vdev *vdev,
enum cdp_host_reo_dest_ring *reo_dest,
bool *hash_based)
{
struct dp_soc *soc;
struct dp_pdev *pdev;
pdev = vdev->pdev;
soc = pdev->soc;
/*
* hash based steering is disabled for Radios which are offloaded
* to NSS
*/
if (!wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx))
*hash_based = wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx);
/*
* Below line of code will ensure the proper reo_dest ring is chosen
* for cases where toeplitz hash cannot be generated (ex: non TCP/UDP)
*/
*reo_dest = pdev->reo_dest;
}
#ifdef IPA_OFFLOAD
/**
* dp_is_vdev_subtype_p2p() - Check if the subtype for vdev is P2P
* @vdev: Virtual device
*
* Return: true if the vdev is of subtype P2P
* false if the vdev is of any other subtype
*/
static inline bool dp_is_vdev_subtype_p2p(struct dp_vdev *vdev)
{
if (vdev->subtype == wlan_op_subtype_p2p_device ||
vdev->subtype == wlan_op_subtype_p2p_cli ||
vdev->subtype == wlan_op_subtype_p2p_go)
return true;
return false;
}
/*
* dp_peer_setup_get_reo_hash() - get reo dest ring and hash values for a peer
* @vdev: Datapath VDEV handle
* @reo_dest: pointer to default reo_dest ring for vdev to be populated
* @hash_based: pointer to hash value (enabled/disabled) to be populated
*
* If IPA is enabled in ini, for SAP mode, disable hash based
* steering, use default reo_dst ring for RX. Use config values for other modes.
* Return: None
*/
static void dp_peer_setup_get_reo_hash(struct dp_vdev *vdev,
enum cdp_host_reo_dest_ring *reo_dest,
bool *hash_based)
{
struct dp_soc *soc;
struct dp_pdev *pdev;
pdev = vdev->pdev;
soc = pdev->soc;
dp_vdev_get_default_reo_hash(vdev, reo_dest, hash_based);
/* For P2P-GO interfaces we do not need to change the REO
* configuration even if IPA config is enabled
*/
if (dp_is_vdev_subtype_p2p(vdev))
return;
/*
* If IPA is enabled, disable hash-based flow steering and set
* reo_dest_ring_4 as the REO ring to receive packets on.
* IPA is configured to reap reo_dest_ring_4.
*
* Note - REO DST indexes are from 0 - 3, while cdp_host_reo_dest_ring
* value enum value is from 1 - 4.
* Hence, *reo_dest = IPA_REO_DEST_RING_IDX + 1
*/
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
if (vdev->opmode == wlan_op_mode_ap) {
*reo_dest = IPA_REO_DEST_RING_IDX + 1;
*hash_based = 0;
} else if (vdev->opmode == wlan_op_mode_sta &&
dp_ipa_is_mdm_platform()) {
*reo_dest = IPA_REO_DEST_RING_IDX + 1;
}
}
}
#else
/*
* dp_peer_setup_get_reo_hash() - get reo dest ring and hash values for a peer
* @vdev: Datapath VDEV handle
* @reo_dest: pointer to default reo_dest ring for vdev to be populated
* @hash_based: pointer to hash value (enabled/disabled) to be populated
*
* Use system config values for hash based steering.
* Return: None
*/
static void dp_peer_setup_get_reo_hash(struct dp_vdev *vdev,
enum cdp_host_reo_dest_ring *reo_dest,
bool *hash_based)
{
dp_vdev_get_default_reo_hash(vdev, reo_dest, hash_based);
}
#endif /* IPA_OFFLOAD */
/*
* dp_peer_setup_wifi3() - initialize the peer
* @soc_hdl: soc handle object
* @vdev_id : vdev_id of vdev object
* @peer_mac: Peer's mac address
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_peer_setup_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
uint8_t *peer_mac)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_pdev *pdev;
bool hash_based = 0;
enum cdp_host_reo_dest_ring reo_dest;
QDF_STATUS status = QDF_STATUS_SUCCESS;
struct dp_vdev *vdev = NULL;
struct dp_peer *peer =
dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
DP_MOD_ID_CDP);
enum wlan_op_mode vdev_opmode;
if (!peer)
return QDF_STATUS_E_FAILURE;
vdev = peer->vdev;
if (!vdev) {
status = QDF_STATUS_E_FAILURE;
goto fail;
}
/* save vdev related member in case vdev freed */
vdev_opmode = vdev->opmode;
pdev = vdev->pdev;
dp_peer_setup_get_reo_hash(vdev, &reo_dest, &hash_based);
dp_info("pdev: %d vdev :%d opmode:%u hash-based-steering:%d default-reo_dest:%u",
pdev->pdev_id, vdev->vdev_id,
vdev->opmode, hash_based, reo_dest);
/*
* There are corner cases where the AD1 = AD2 = "VAPs address"
* i.e both the devices have same MAC address. In these
* cases we want such pkts to be processed in NULL Q handler
* which is REO2TCL ring. for this reason we should
* not setup reo_queues and default route for bss_peer.
*/
dp_peer_tx_init(pdev, peer);
if (peer->bss_peer && vdev->opmode == wlan_op_mode_ap) {
status = QDF_STATUS_E_FAILURE;
goto fail;
}
if (soc->cdp_soc.ol_ops->peer_set_default_routing) {
/* TODO: Check the destination ring number to be passed to FW */
soc->cdp_soc.ol_ops->peer_set_default_routing(
soc->ctrl_psoc,
peer->vdev->pdev->pdev_id,
peer->mac_addr.raw,
peer->vdev->vdev_id, hash_based, reo_dest);
}
qdf_atomic_set(&peer->is_default_route_set, 1);
if (vdev_opmode != wlan_op_mode_monitor)
dp_peer_rx_init(pdev, peer);
dp_peer_ppdu_delayed_ba_init(peer);
fail:
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return status;
}
/*
* dp_cp_peer_del_resp_handler - Handle the peer delete response
* @soc_hdl: Datapath SOC handle
* @vdev_id: id of virtual device object
* @mac_addr: Mac address of the peer
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_cp_peer_del_resp_handler(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint8_t *mac_addr)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_ast_entry *ast_entry = NULL;
txrx_ast_free_cb cb = NULL;
void *cookie;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry =
dp_peer_ast_hash_find_by_vdevid(soc, mac_addr,
vdev_id);
/* in case of qwrap we have multiple BSS peers
* with same mac address
*
* AST entry for this mac address will be created
* only for one peer hence it will be NULL here
*/
if ((!ast_entry || !ast_entry->delete_in_progress) ||
(ast_entry->peer_id != HTT_INVALID_PEER)) {
qdf_spin_unlock_bh(&soc->ast_lock);
return QDF_STATUS_E_FAILURE;
}
if (ast_entry->is_mapped)
soc->ast_table[ast_entry->ast_idx] = NULL;
DP_STATS_INC(soc, ast.deleted, 1);
dp_peer_ast_hash_remove(soc, ast_entry);
cb = ast_entry->callback;
cookie = ast_entry->cookie;
ast_entry->callback = NULL;
ast_entry->cookie = NULL;
soc->num_ast_entries--;
qdf_spin_unlock_bh(&soc->ast_lock);
if (cb) {
cb(soc->ctrl_psoc,
dp_soc_to_cdp_soc(soc),
cookie,
CDP_TXRX_AST_DELETED);
}
qdf_mem_free(ast_entry);
return QDF_STATUS_SUCCESS;
}
/*
* dp_set_ba_aging_timeout() - set ba aging timeout per AC
* @txrx_soc: cdp soc handle
* @ac: Access category
* @value: timeout value in millisec
*
* Return: void
*/
static void dp_set_ba_aging_timeout(struct cdp_soc_t *txrx_soc,
uint8_t ac, uint32_t value)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
hal_set_ba_aging_timeout(soc->hal_soc, ac, value);
}
/*
* dp_get_ba_aging_timeout() - get ba aging timeout per AC
* @txrx_soc: cdp soc handle
* @ac: access category
* @value: timeout value in millisec
*
* Return: void
*/
static void dp_get_ba_aging_timeout(struct cdp_soc_t *txrx_soc,
uint8_t ac, uint32_t *value)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
hal_get_ba_aging_timeout(soc->hal_soc, ac, value);
}
/*
* dp_set_pdev_reo_dest() - set the reo destination ring for this pdev
* @txrx_soc: cdp soc handle
* @pdev_id: id of physical device object
* @val: reo destination ring index (1 - 4)
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_set_pdev_reo_dest(struct cdp_soc_t *txrx_soc, uint8_t pdev_id,
enum cdp_host_reo_dest_ring val)
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)txrx_soc,
pdev_id);
if (pdev) {
pdev->reo_dest = val;
return QDF_STATUS_SUCCESS;
}
return QDF_STATUS_E_FAILURE;
}
/*
* dp_get_pdev_reo_dest() - get the reo destination for this pdev
* @txrx_soc: cdp soc handle
* @pdev_id: id of physical device object
*
* Return: reo destination ring index
*/
static enum cdp_host_reo_dest_ring
dp_get_pdev_reo_dest(struct cdp_soc_t *txrx_soc, uint8_t pdev_id)
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)txrx_soc,
pdev_id);
if (pdev)
return pdev->reo_dest;
else
return cdp_host_reo_dest_ring_unknown;
}
#ifdef ATH_SUPPORT_NAC
/*
* dp_set_filter_neigh_peers() - set filter neighbour peers for smart mesh
* @pdev_handle: device object
* @val: value to be set
*
* Return: void
*/
static int dp_set_filter_neigh_peers(struct dp_pdev *pdev,
bool val)
{
/* Enable/Disable smart mesh filtering. This flag will be checked
* during rx processing to check if packets are from NAC clients.
*/
pdev->filter_neighbour_peers = val;
return 0;
}
#else
static int dp_set_filter_neigh_peers(struct dp_pdev *pdev,
bool val)
{
return 0;
}
#endif /* ATH_SUPPORT_NAC */
#if defined(ATH_SUPPORT_NAC_RSSI) || defined(ATH_SUPPORT_NAC)
/*
* dp_update_filter_neighbour_peers() - set neighbour peers(nac clients)
* address for smart mesh filtering
* @txrx_soc: cdp soc handle
* @vdev_id: id of virtual device object
* @cmd: Add/Del command
* @macaddr: nac client mac address
*
* Return: success/failure
*/
static int dp_update_filter_neighbour_peers(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint32_t cmd, uint8_t *macaddr)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_pdev *pdev;
struct dp_neighbour_peer *peer = NULL;
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev || !macaddr)
goto fail0;
pdev = vdev->pdev;
if (!pdev)
goto fail0;
/* Store address of NAC (neighbour peer) which will be checked
* against TA of received packets.
*/
if (cmd == DP_NAC_PARAM_ADD) {
peer = (struct dp_neighbour_peer *) qdf_mem_malloc(
sizeof(*peer));
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP neighbour peer node memory allocation failed"));
goto fail0;
}
qdf_mem_copy(&peer->neighbour_peers_macaddr.raw[0],
macaddr, QDF_MAC_ADDR_SIZE);
peer->vdev = vdev;
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
/* add this neighbour peer into the list */
TAILQ_INSERT_TAIL(&pdev->neighbour_peers_list, peer,
neighbour_peer_list_elem);
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
/* first neighbour */
if (!pdev->neighbour_peers_added) {
QDF_STATUS status = QDF_STATUS_SUCCESS;
pdev->neighbour_peers_added = true;
dp_mon_filter_setup_smart_monitor(pdev);
status = dp_mon_filter_update(pdev);
if (status != QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("smart mon filter setup failed"));
dp_mon_filter_reset_smart_monitor(pdev);
pdev->neighbour_peers_added = false;
}
}
} else if (cmd == DP_NAC_PARAM_DEL) {
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem) {
if (!qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
macaddr, QDF_MAC_ADDR_SIZE)) {
/* delete this peer from the list */
TAILQ_REMOVE(&pdev->neighbour_peers_list,
peer, neighbour_peer_list_elem);
qdf_mem_free(peer);
break;
}
}
/* last neighbour deleted */
if (TAILQ_EMPTY(&pdev->neighbour_peers_list)) {
QDF_STATUS status = QDF_STATUS_SUCCESS;
pdev->neighbour_peers_added = false;
dp_mon_filter_reset_smart_monitor(pdev);
status = dp_mon_filter_update(pdev);
if (status != QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("smart mon filter clear failed"));
}
}
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
}
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return 1;
fail0:
if (vdev)
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return 0;
}
#endif /* ATH_SUPPORT_NAC_RSSI || ATH_SUPPORT_NAC */
#ifdef WLAN_SUPPORT_MSCS
/*
* dp_record_mscs_params - MSCS parameters sent by the STA in
* the MSCS Request to the AP. The AP makes a note of these
* parameters while comparing the MSDUs sent by the STA, to
* send the downlink traffic with correct User priority.
* @soc - Datapath soc handle
* @peer_mac - STA Mac address
* @vdev_id - ID of the vdev handle
* @mscs_params - Structure having MSCS parameters obtained
* from handshake
* @active - Flag to set MSCS active/inactive
* return type - QDF_STATUS - Success/Invalid
*/
static QDF_STATUS
dp_record_mscs_params(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
uint8_t vdev_id, struct cdp_mscs_params *mscs_params,
bool active)
{
struct dp_peer *peer;
QDF_STATUS status = QDF_STATUS_E_INVAL;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
peer = dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
DP_MOD_ID_CDP);
if (!peer) {
dp_err("Peer is NULL!");
goto fail;
}
if (!active) {
dp_info("MSCS Procedure is terminated");
peer->mscs_active = active;
goto fail;
}
if (mscs_params->classifier_type == IEEE80211_TCLAS_MASK_CLA_TYPE_4) {
/* Populate entries inside IPV4 database first */
peer->mscs_ipv4_parameter.user_priority_bitmap =
mscs_params->user_pri_bitmap;
peer->mscs_ipv4_parameter.user_priority_limit =
mscs_params->user_pri_limit;
peer->mscs_ipv4_parameter.classifier_mask =
mscs_params->classifier_mask;
/* Populate entries inside IPV6 database */
peer->mscs_ipv6_parameter.user_priority_bitmap =
mscs_params->user_pri_bitmap;
peer->mscs_ipv6_parameter.user_priority_limit =
mscs_params->user_pri_limit;
peer->mscs_ipv6_parameter.classifier_mask =
mscs_params->classifier_mask;
peer->mscs_active = 1;
dp_info("\n\tMSCS Procedure request based parameters for "QDF_MAC_ADDR_FMT"\n"
"\tClassifier_type = %d\tUser priority bitmap = %x\n"
"\tUser priority limit = %x\tClassifier mask = %x",
QDF_MAC_ADDR_REF(peer_mac),
mscs_params->classifier_type,
peer->mscs_ipv4_parameter.user_priority_bitmap,
peer->mscs_ipv4_parameter.user_priority_limit,
peer->mscs_ipv4_parameter.classifier_mask);
}
status = QDF_STATUS_SUCCESS;
fail:
if (peer)
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return status;
}
#endif
/*
* dp_get_sec_type() - Get the security type
* @soc: soc handle
* @vdev_id: id of dp handle
* @peer_mac: mac of datapath PEER handle
* @sec_idx: Security id (mcast, ucast)
*
* return sec_type: Security type
*/
static int dp_get_sec_type(struct cdp_soc_t *soc, uint8_t vdev_id,
uint8_t *peer_mac, uint8_t sec_idx)
{
int sec_type = 0;
struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
peer_mac, 0, vdev_id,
DP_MOD_ID_CDP);
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%s: Peer is NULL!\n", __func__);
return sec_type;
}
sec_type = peer->security[sec_idx].sec_type;
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return sec_type;
}
/*
* dp_peer_authorize() - authorize txrx peer
* @soc: soc handle
* @vdev_id: id of dp handle
* @peer_mac: mac of datapath PEER handle
* @authorize
*
*/
static QDF_STATUS
dp_peer_authorize(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
uint8_t *peer_mac, uint32_t authorize)
{
QDF_STATUS status = QDF_STATUS_SUCCESS;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_peer *peer = dp_peer_find_hash_find(soc, peer_mac,
0, vdev_id,
DP_MOD_ID_CDP);
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%s: Peer is NULL!\n", __func__);
status = QDF_STATUS_E_FAILURE;
} else {
peer->authorize = authorize ? 1 : 0;
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
}
return status;
}
static void dp_flush_monitor_rings(struct dp_soc *soc)
{
struct dp_pdev *pdev = soc->pdev_list[0];
hal_soc_handle_t hal_soc = soc->hal_soc;
uint32_t lmac_id;
uint32_t hp, tp;
uint8_t dp_intr_id;
int budget;
void *mon_dst_srng;
/* Reset monitor filters before reaping the ring*/
qdf_spin_lock_bh(&pdev->mon_lock);
dp_mon_filter_reset_mon_mode(pdev);
if (dp_mon_filter_update(pdev) != QDF_STATUS_SUCCESS)
dp_info("failed to reset monitor filters");
qdf_spin_unlock_bh(&pdev->mon_lock);
if (pdev->mon_chan_band == REG_BAND_UNKNOWN)
return;
lmac_id = pdev->ch_band_lmac_id_mapping[pdev->mon_chan_band];
if (qdf_unlikely(lmac_id == DP_MON_INVALID_LMAC_ID))
return;
dp_intr_id = soc->mon_intr_id_lmac_map[lmac_id];
mon_dst_srng = dp_rxdma_get_mon_dst_ring(pdev, lmac_id);
/* reap full ring */
budget = wlan_cfg_get_dma_mon_stat_ring_size(pdev->wlan_cfg_ctx);
hal_get_sw_hptp(hal_soc, mon_dst_srng, &tp, &hp);
dp_info("Before reap: Monitor DST ring HP %u TP %u", hp, tp);
dp_mon_process(soc, &soc->intr_ctx[dp_intr_id], lmac_id, budget);
hal_get_sw_hptp(hal_soc, mon_dst_srng, &tp, &hp);
dp_info("After reap: Monitor DST ring HP %u TP %u", hp, tp);
}
/**
* dp_vdev_unref_delete() - check and process vdev delete
* @soc : DP specific soc pointer
* @vdev: DP specific vdev pointer
* @mod_id: module id
*
*/
void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
enum dp_mod_id mod_id)
{
ol_txrx_vdev_delete_cb vdev_delete_cb = NULL;
void *vdev_delete_context = NULL;
uint8_t vdev_id = vdev->vdev_id;
struct dp_pdev *pdev = vdev->pdev;
struct dp_vdev *tmp_vdev = NULL;
uint8_t found = 0;
QDF_ASSERT(qdf_atomic_dec_return(&vdev->mod_refs[mod_id]) >= 0);
/* Return if this is not the last reference*/
if (!qdf_atomic_dec_and_test(&vdev->ref_cnt))
return;
/*
* This should be set as last reference need to released
* after cdp_vdev_detach() is called
*
* if this assert is hit there is a ref count issue
*/
QDF_ASSERT(vdev->delete.pending);
vdev_delete_cb = vdev->delete.callback;
vdev_delete_context = vdev->delete.context;
dp_info("deleting vdev object %pK ("QDF_MAC_ADDR_FMT")- its last peer is done",
vdev, QDF_MAC_ADDR_REF(vdev->mac_addr.raw));
if (wlan_op_mode_monitor == vdev->opmode) {
if (soc->intr_mode == DP_INTR_POLL) {
qdf_timer_sync_cancel(&soc->int_timer);
dp_flush_monitor_rings(soc);
} else if (soc->intr_mode == DP_INTR_MSI &&
soc->mon_vdev_timer_state & MON_VDEV_TIMER_RUNNING) {
qdf_timer_sync_cancel(&soc->mon_vdev_timer);
dp_flush_monitor_rings(soc);
soc->mon_vdev_timer_state &= ~MON_VDEV_TIMER_RUNNING;
}
pdev->monitor_vdev = NULL;
goto free_vdev;
}
/* all peers are gone, go ahead and delete it */
dp_tx_flow_pool_unmap_handler(pdev, vdev_id,
FLOW_TYPE_VDEV, vdev_id);
dp_tx_vdev_detach(vdev);
free_vdev:
qdf_spinlock_destroy(&vdev->peer_list_lock);
qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
TAILQ_FOREACH(tmp_vdev, &soc->inactive_vdev_list,
inactive_list_elem) {
if (tmp_vdev == vdev) {
found = 1;
break;
}
}
if (found)
TAILQ_REMOVE(&soc->inactive_vdev_list, vdev,
inactive_list_elem);
/* delete this peer from the list */
qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
dp_info("deleting vdev object %pK ("QDF_MAC_ADDR_FMT")",
vdev, QDF_MAC_ADDR_REF(vdev->mac_addr.raw));
wlan_minidump_remove(vdev);
qdf_mem_free(vdev);
vdev = NULL;
if (vdev_delete_cb)
vdev_delete_cb(vdev_delete_context);
}
/*
* dp_peer_unref_delete() - unref and delete peer
* @peer_handle: Datapath peer handle
* @mod_id: ID of module releasing reference
*
*/
void dp_peer_unref_delete(struct dp_peer *peer, enum dp_mod_id mod_id)
{
struct dp_vdev *vdev = peer->vdev;
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
uint16_t peer_id;
struct cdp_peer_cookie peer_cookie;
struct dp_peer *tmp_peer;
bool found = false;
int tid = 0;
if (mod_id > DP_MOD_ID_RX)
QDF_ASSERT(qdf_atomic_dec_return(&peer->mod_refs[mod_id]) >= 0);
/*
* Hold the lock all the way from checking if the peer ref count
* is zero until the peer references are removed from the hash
* table and vdev list (if the peer ref count is zero).
* This protects against a new HL tx operation starting to use the
* peer object just after this function concludes it's done being used.
* Furthermore, the lock needs to be held while checking whether the
* vdev's list of peers is empty, to make sure that list is not modified
* concurrently with the empty check.
*/
if (qdf_atomic_dec_and_test(&peer->ref_cnt)) {
peer_id = peer->peer_id;
/*
* Make sure that the reference to the peer in
* peer object map is removed
*/
QDF_ASSERT(peer_id == HTT_INVALID_PEER);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"Deleting peer %pK ("QDF_MAC_ADDR_FMT")", peer,
QDF_MAC_ADDR_REF(peer->mac_addr.raw));
/*
* Deallocate the extended stats contenxt
*/
dp_peer_ext_stats_ctx_dealloc(soc, peer);
/* send peer destroy event to upper layer */
qdf_mem_copy(peer_cookie.mac_addr, peer->mac_addr.raw,
QDF_MAC_ADDR_SIZE);
peer_cookie.ctx = NULL;
peer_cookie.ctx = (struct cdp_stats_cookie *)
peer->rdkstats_ctx;
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_PEER_DESTROY,
soc,
(void *)&peer_cookie,
peer->peer_id,
WDI_NO_VAL,
pdev->pdev_id);
#endif
peer->rdkstats_ctx = NULL;
wlan_minidump_remove(peer);
qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
TAILQ_FOREACH(tmp_peer, &soc->inactive_peer_list,
inactive_list_elem) {
if (tmp_peer == peer) {
found = 1;
break;
}
}
if (found)
TAILQ_REMOVE(&soc->inactive_peer_list, peer,
inactive_list_elem);
/* delete this peer from the list */
qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
DP_AST_ASSERT(TAILQ_EMPTY(&peer->ast_entry_list));
dp_peer_update_state(soc, peer, DP_PEER_STATE_FREED);
/* cleanup the peer data */
dp_peer_cleanup(vdev, peer);
for (tid = 0; tid < DP_MAX_TIDS; tid++)
qdf_spinlock_destroy(&peer->rx_tid[tid].tid_lock);
qdf_spinlock_destroy(&peer->peer_state_lock);
qdf_mem_free(peer);
/*
* Decrement ref count taken at peer create
*/
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CHILD);
}
}
#ifdef PEER_CACHE_RX_PKTS
static inline void dp_peer_rx_bufq_resources_deinit(struct dp_peer *peer)
{
qdf_list_destroy(&peer->bufq_info.cached_bufq);
qdf_spinlock_destroy(&peer->bufq_info.bufq_lock);
}
#else
static inline void dp_peer_rx_bufq_resources_deinit(struct dp_peer *peer)
{
}
#endif
/*
* dp_peer_detach_wifi3() – Detach txrx peer
* @soc_hdl: soc handle
* @vdev_id: id of dp handle
* @peer_mac: mac of datapath PEER handle
* @bitmap: bitmap indicating special handling of request.
*
*/
static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint8_t *peer_mac, uint32_t bitmap)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_peer *peer = dp_peer_find_hash_find(soc, peer_mac,
0, vdev_id,
DP_MOD_ID_CDP);
struct dp_vdev *vdev = NULL;
/* Peer can be null for monitor vap mac address */
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
"%s: Invalid peer\n", __func__);
return QDF_STATUS_E_FAILURE;
}
if (!peer->valid) {
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
dp_err("Invalid peer: "QDF_MAC_ADDR_FMT,
QDF_MAC_ADDR_REF(peer_mac));
return QDF_STATUS_E_ALREADY;
}
vdev = peer->vdev;
if (!vdev)
return QDF_STATUS_E_FAILURE;
peer->valid = 0;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
FL("peer %pK ("QDF_MAC_ADDR_FMT")"), peer,
QDF_MAC_ADDR_REF(peer->mac_addr.raw));
dp_local_peer_id_free(peer->vdev->pdev, peer);
/* Drop all rx packets before deleting peer */
dp_clear_peer_internal(soc, peer);
dp_peer_rx_bufq_resources_deinit(peer);
qdf_spinlock_destroy(&peer->peer_info_lock);
dp_peer_multipass_list_remove(peer);
/* remove the reference to the peer from the hash table */
dp_peer_find_hash_remove(soc, peer);
dp_peer_vdev_list_remove(soc, vdev, peer);
qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
TAILQ_INSERT_TAIL(&soc->inactive_peer_list, peer,
inactive_list_elem);
qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
/*
* Remove the reference added during peer_attach.
* The peer will still be left allocated until the
* PEER_UNMAP message arrives to remove the other
* reference, added by the PEER_MAP message.
*/
dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
/*
* Remove the reference taken above
*/
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/*
* dp_get_vdev_mac_addr_wifi3() – Detach txrx peer
* @soc_hdl: Datapath soc handle
* @vdev_id: virtual interface id
*
* Return: MAC address on success, NULL on failure.
*
*/
static uint8 *dp_get_vdev_mac_addr_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
uint8_t *mac = NULL;
if (!vdev)
return NULL;
mac = vdev->mac_addr.raw;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return mac;
}
/*
* dp_vdev_set_wds() - Enable per packet stats
* @soc: DP soc handle
* @vdev_id: id of DP VDEV handle
* @val: value
*
* Return: none
*/
static int dp_vdev_set_wds(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
uint32_t val)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev =
dp_vdev_get_ref_by_id((struct dp_soc *)soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev)
return QDF_STATUS_E_FAILURE;
vdev->wds_enabled = val;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/*
* dp_get_mon_vdev_from_pdev_wifi3() - Get vdev id of monitor mode
* @soc_hdl: datapath soc handle
* @pdev_id: physical device instance id
*
* Return: virtual interface id
*/
static uint8_t dp_get_mon_vdev_from_pdev_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (qdf_unlikely(!pdev || !pdev->monitor_vdev))
return -EINVAL;
return pdev->monitor_vdev->vdev_id;
}
static int dp_get_opmode(struct cdp_soc_t *soc_hdl, uint8_t vdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
int opmode;
if (!vdev) {
dp_err("vdev for id %d is NULL", vdev_id);
return -EINVAL;
}
opmode = vdev->opmode;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return opmode;
}
/**
* dp_get_os_rx_handles_from_vdev_wifi3() - Get os rx handles for a vdev
* @soc_hdl: ol_txrx_soc_handle handle
* @vdev_id: vdev id for which os rx handles are needed
* @stack_fn_p: pointer to stack function pointer
* @osif_handle_p: pointer to ol_osif_vdev_handle
*
* Return: void
*/
static
void dp_get_os_rx_handles_from_vdev_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
ol_txrx_rx_fp *stack_fn_p,
ol_osif_vdev_handle *osif_vdev_p)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev)
return;
*stack_fn_p = vdev->osif_rx_stack;
*osif_vdev_p = vdev->osif_vdev;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
}
/**
* dp_get_ctrl_pdev_from_vdev() - Get control pdev of vdev
* @soc_hdl: datapath soc handle
* @vdev_id: virtual device/interface id
*
* Return: Handle to control pdev
*/
static struct cdp_cfg *dp_get_ctrl_pdev_from_vdev_wifi3(
struct cdp_soc_t *soc_hdl,
uint8_t vdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
struct dp_pdev *pdev;
if (!vdev)
return NULL;
pdev = vdev->pdev;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return pdev ? (struct cdp_cfg *)pdev->wlan_cfg_ctx : NULL;
}
/**
* dp_monitor_mode_ring_config() - Send the tlv config to fw for monitor buffer
* ring based on target
* @soc: soc handle
* @mac_for_pdev: WIN- pdev_id, MCL- mac id
* @pdev: physical device handle
* @ring_num: mac id
* @htt_tlv_filter: tlv filter
*
* Return: zero on success, non-zero on failure
*/
static inline
QDF_STATUS dp_monitor_mode_ring_config(struct dp_soc *soc, uint8_t mac_for_pdev,
struct dp_pdev *pdev, uint8_t ring_num,
struct htt_rx_ring_tlv_filter htt_tlv_filter)
{
QDF_STATUS status;
if (soc->wlan_cfg_ctx->rxdma1_enable)
status = htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
soc->rxdma_mon_buf_ring[ring_num]
.hal_srng,
RXDMA_MONITOR_BUF,
RX_MONITOR_BUFFER_SIZE,
&htt_tlv_filter);
else
status = htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rx_mac_buf_ring[ring_num]
.hal_srng,
RXDMA_BUF, RX_DATA_BUFFER_SIZE,
&htt_tlv_filter);
return status;
}
static inline void
dp_pdev_disable_mcopy_code(struct dp_pdev *pdev)
{
pdev->mcopy_mode = M_COPY_DISABLED;
pdev->monitor_configured = false;
pdev->monitor_vdev = NULL;
}
/**
* dp_reset_monitor_mode() - Disable monitor mode
* @soc_hdl: Datapath soc handle
* @pdev_id: id of datapath PDEV handle
*
* Return: QDF_STATUS
*/
QDF_STATUS dp_reset_monitor_mode(struct cdp_soc_t *soc_hdl,
uint8_t pdev_id,
uint8_t special_monitor)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (!pdev)
return QDF_STATUS_E_FAILURE;
qdf_spin_lock_bh(&pdev->mon_lock);
dp_soc_config_full_mon_mode(pdev, DP_FULL_MON_DISABLE);
pdev->monitor_vdev = NULL;
pdev->monitor_configured = false;
/*
* Lite monitor mode, smart monitor mode and monitor
* mode uses this APIs to filter reset and mode disable
*/
if (pdev->mcopy_mode) {
#if defined(FEATURE_PERPKT_INFO)
dp_pdev_disable_mcopy_code(pdev);
dp_mon_filter_reset_mcopy_mode(pdev);
#endif /* FEATURE_PERPKT_INFO */
} else if (special_monitor) {
#if defined(ATH_SUPPORT_NAC)
dp_mon_filter_reset_smart_monitor(pdev);
#endif /* ATH_SUPPORT_NAC */
} else {
dp_mon_filter_reset_mon_mode(pdev);
}
status = dp_mon_filter_update(pdev);
if (status != QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Failed to reset monitor filters"));
}
qdf_spin_unlock_bh(&pdev->mon_lock);
return QDF_STATUS_SUCCESS;
}
/**
* dp_get_tx_pending() - read pending tx
* @pdev_handle: Datapath PDEV handle
*
* Return: outstanding tx
*/
static uint32_t dp_get_tx_pending(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
return qdf_atomic_read(&pdev->num_tx_outstanding);
}
/**
* dp_get_peer_mac_from_peer_id() - get peer mac
* @pdev_handle: Datapath PDEV handle
* @peer_id: Peer ID
* @peer_mac: MAC addr of PEER
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_get_peer_mac_from_peer_id(struct cdp_soc_t *soc,
uint32_t peer_id,
uint8_t *peer_mac)
{
struct dp_peer *peer;
if (soc && peer_mac) {
peer = dp_peer_get_ref_by_id((struct dp_soc *)soc,
(uint16_t)peer_id,
DP_MOD_ID_CDP);
if (peer) {
qdf_mem_copy(peer_mac, peer->mac_addr.raw,
QDF_MAC_ADDR_SIZE);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
}
return QDF_STATUS_E_FAILURE;
}
/**
* dp_vdev_set_monitor_mode() - Set DP VDEV to monitor mode
* @vdev_handle: Datapath VDEV handle
* @smart_monitor: Flag to denote if its smart monitor mode
*
* Return: 0 on success, not 0 on failure
*/
static QDF_STATUS dp_vdev_set_monitor_mode(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint8_t special_monitor)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
uint32_t mac_id;
uint32_t mac_for_pdev;
struct dp_pdev *pdev;
uint32_t num_entries;
struct dp_srng *mon_buf_ring;
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (!vdev)
return QDF_STATUS_E_FAILURE;
pdev = vdev->pdev;
pdev->monitor_vdev = vdev;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_WARN,
"pdev=%pK, pdev_id=%d, soc=%pK vdev=%pK\n",
pdev, pdev->pdev_id, pdev->soc, vdev);
/*
* do not configure monitor buf ring and filter for smart and
* lite monitor
* for smart monitor filters are added along with first NAC
* for lite monitor required configuration done through
* dp_set_pdev_param
*/
if (special_monitor) {
status = QDF_STATUS_SUCCESS;
goto fail;
}
/*Check if current pdev's monitor_vdev exists */
if (pdev->monitor_configured) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
"monitor vap already created vdev=%pK\n", vdev);
status = QDF_STATUS_E_RESOURCES;
goto fail;
}
pdev->monitor_configured = true;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
mac_for_pdev = dp_get_lmac_id_for_pdev_id(pdev->soc, mac_id,
pdev->pdev_id);
dp_rx_pdev_mon_buf_buffers_alloc(pdev, mac_for_pdev,
FALSE);
/*
* Configure low interrupt threshld when monitor mode is
* configured.
*/
mon_buf_ring = &pdev->soc->rxdma_mon_buf_ring[mac_for_pdev];
if (mon_buf_ring->hal_srng) {
num_entries = mon_buf_ring->num_entries;
hal_set_low_threshold(mon_buf_ring->hal_srng,
num_entries >> 3);
htt_srng_setup(pdev->soc->htt_handle,
pdev->pdev_id,
mon_buf_ring->hal_srng,
RXDMA_MONITOR_BUF);
}
}
dp_soc_config_full_mon_mode(pdev, DP_FULL_MON_ENABLE);
dp_mon_filter_setup_mon_mode(pdev);
status = dp_mon_filter_update(pdev);
if (status != QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Failed to reset monitor filters"));
dp_mon_filter_reset_mon_mode(pdev);
pdev->monitor_configured = false;
pdev->monitor_vdev = NULL;
}
fail:
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return status;
}
/**
* dp_pdev_set_advance_monitor_filter() - Set DP PDEV monitor filter
* @soc: soc handle
* @pdev_id: id of Datapath PDEV handle
* @filter_val: Flag to select Filter for monitor mode
* Return: 0 on success, not 0 on failure
*/
static QDF_STATUS
dp_pdev_set_advance_monitor_filter(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
struct cdp_monitor_filter *filter_val)
{
/* Many monitor VAPs can exists in a system but only one can be up at
* anytime
*/
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_vdev *vdev;
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (!pdev)
return QDF_STATUS_E_FAILURE;
vdev = pdev->monitor_vdev;
if (!vdev)
return QDF_STATUS_E_FAILURE;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_WARN,
"pdev=%pK, pdev_id=%d, soc=%pK vdev=%pK",
pdev, pdev_id, soc, vdev);
/*Check if current pdev's monitor_vdev exists */
if (!pdev->monitor_vdev) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"vdev=%pK", vdev);
qdf_assert(vdev);
}
/* update filter mode, type in pdev structure */
pdev->mon_filter_mode = filter_val->mode;
pdev->fp_mgmt_filter = filter_val->fp_mgmt;
pdev->fp_ctrl_filter = filter_val->fp_ctrl;
pdev->fp_data_filter = filter_val->fp_data;
pdev->mo_mgmt_filter = filter_val->mo_mgmt;
pdev->mo_ctrl_filter = filter_val->mo_ctrl;
pdev->mo_data_filter = filter_val->mo_data;
dp_mon_filter_setup_mon_mode(pdev);
status = dp_mon_filter_update(pdev);
if (status != QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Failed to set filter for advance mon mode"));
dp_mon_filter_reset_mon_mode(pdev);
}
return status;
}
/**
* dp_deliver_tx_mgmt() - Deliver mgmt frame for tx capture
* @cdp_soc : data path soc handle
* @pdev_id : pdev_id
* @nbuf: Management frame buffer
*/
static QDF_STATUS
dp_deliver_tx_mgmt(struct cdp_soc_t *cdp_soc, uint8_t pdev_id, qdf_nbuf_t nbuf)
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
dp_deliver_mgmt_frm(pdev, nbuf);
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_bsscolor() - sets bsscolor for tx capture
* @pdev: Datapath PDEV handle
* @bsscolor: new bsscolor
*/
static void
dp_mon_set_bsscolor(struct dp_pdev *pdev, uint8_t bsscolor)
{
pdev->rx_mon_recv_status.bsscolor = bsscolor;
}
/**
* dp_pdev_get_filter_ucast_data() - get DP PDEV monitor ucast filter
* @soc : data path soc handle
* @pdev_id : pdev_id
* Return: true on ucast filter flag set
*/
static bool dp_pdev_get_filter_ucast_data(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if ((pdev->fp_data_filter & FILTER_DATA_UCAST) ||
(pdev->mo_data_filter & FILTER_DATA_UCAST))
return true;
return false;
}
/**
* dp_pdev_get_filter_mcast_data() - get DP PDEV monitor mcast filter
* @pdev_handle: Datapath PDEV handle
* Return: true on mcast filter flag set
*/
static bool dp_pdev_get_filter_mcast_data(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if ((pdev->fp_data_filter & FILTER_DATA_MCAST) ||
(pdev->mo_data_filter & FILTER_DATA_MCAST))
return true;
return false;
}
/**
* dp_pdev_get_filter_non_data() - get DP PDEV monitor non_data filter
* @pdev_handle: Datapath PDEV handle
* Return: true on non data filter flag set
*/
static bool dp_pdev_get_filter_non_data(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if ((pdev->fp_mgmt_filter & FILTER_MGMT_ALL) ||
(pdev->mo_mgmt_filter & FILTER_MGMT_ALL)) {
if ((pdev->fp_ctrl_filter & FILTER_CTRL_ALL) ||
(pdev->mo_ctrl_filter & FILTER_CTRL_ALL)) {
return true;
}
}
return false;
}
#ifdef MESH_MODE_SUPPORT
static
void dp_vdev_set_mesh_mode(struct cdp_vdev *vdev_hdl, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("val %d"), val);
vdev->mesh_vdev = val;
if (val)
vdev->skip_sw_tid_classification |=
DP_TX_MESH_ENABLED;
else
vdev->skip_sw_tid_classification &=
~DP_TX_MESH_ENABLED;
}
/*
* dp_peer_set_mesh_rx_filter() - to set the mesh rx filter
* @vdev_hdl: virtual device object
* @val: value to be set
*
* Return: void
*/
static
void dp_vdev_set_mesh_rx_filter(struct cdp_vdev *vdev_hdl, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("val %d"), val);
vdev->mesh_rx_filter = val;
}
#endif
/*
* dp_vdev_set_hlos_tid_override() - to set hlos tid override
* @vdev_hdl: virtual device object
* @val: value to be set
*
* Return: void
*/
static
void dp_vdev_set_hlos_tid_override(struct dp_vdev *vdev, uint32_t val)
{
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("val %d"), val);
if (val)
vdev->skip_sw_tid_classification |=
DP_TXRX_HLOS_TID_OVERRIDE_ENABLED;
else
vdev->skip_sw_tid_classification &=
~DP_TXRX_HLOS_TID_OVERRIDE_ENABLED;
}
/*
* dp_vdev_get_hlos_tid_override() - to get hlos tid override flag
* @vdev_hdl: virtual device object
* @val: value to be set
*
* Return: 1 if this flag is set
*/
static
uint8_t dp_vdev_get_hlos_tid_override(struct cdp_vdev *vdev_hdl)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
return !!(vdev->skip_sw_tid_classification &
DP_TXRX_HLOS_TID_OVERRIDE_ENABLED);
}
#ifdef VDEV_PEER_PROTOCOL_COUNT
static void dp_enable_vdev_peer_protocol_count(struct cdp_soc_t *soc_hdl,
int8_t vdev_id,
bool enable)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev;
vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
if (!vdev)
return;
dp_info("enable %d vdev_id %d", enable, vdev_id);
vdev->peer_protocol_count_track = enable;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
}
static void dp_enable_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc_hdl,
int8_t vdev_id,
int drop_mask)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev;
vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
if (!vdev)
return;
dp_info("drop_mask %d vdev_id %d", drop_mask, vdev_id);
vdev->peer_protocol_count_dropmask = drop_mask;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
}
static int dp_is_vdev_peer_protocol_count_enabled(struct cdp_soc_t *soc_hdl,
int8_t vdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev;
int peer_protocol_count_track;
vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
if (!vdev)
return 0;
dp_info("enable %d vdev_id %d", vdev->peer_protocol_count_track,
vdev_id);
peer_protocol_count_track =
vdev->peer_protocol_count_track;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return peer_protocol_count_track;
}
static int dp_get_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc_hdl,
int8_t vdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev;
int peer_protocol_count_dropmask;
vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
if (!vdev)
return 0;
dp_info("drop_mask %d vdev_id %d", vdev->peer_protocol_count_dropmask,
vdev_id);
peer_protocol_count_dropmask =
vdev->peer_protocol_count_dropmask;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return peer_protocol_count_dropmask;
}
#endif
bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data)
{
uint8_t pdev_count;
for (pdev_count = 0; pdev_count < MAX_PDEV_CNT; pdev_count++) {
if (soc->pdev_list[pdev_count] &&
soc->pdev_list[pdev_count] == data)
return true;
}
return false;
}
/**
* dp_rx_bar_stats_cb(): BAR received stats callback
* @soc: SOC handle
* @cb_ctxt: Call back context
* @reo_status: Reo status
*
* return: void
*/
void dp_rx_bar_stats_cb(struct dp_soc *soc, void *cb_ctxt,
union hal_reo_status *reo_status)
{
struct dp_pdev *pdev = (struct dp_pdev *)cb_ctxt;
struct hal_reo_queue_status *queue_status = &(reo_status->queue_status);
if (!dp_check_pdev_exists(soc, pdev)) {
dp_err_rl("pdev doesn't exist");
return;
}
if (!qdf_atomic_read(&soc->cmn_init_done))
return;
if (queue_status->header.status != HAL_REO_CMD_SUCCESS) {
DP_PRINT_STATS("REO stats failure %d",
queue_status->header.status);
qdf_atomic_set(&(pdev->stats_cmd_complete), 1);
return;
}
pdev->stats.rx.bar_recv_cnt += queue_status->bar_rcvd_cnt;
qdf_atomic_set(&(pdev->stats_cmd_complete), 1);
}
/**
* dp_aggregate_vdev_stats(): Consolidate stats at VDEV level
* @vdev: DP VDEV handle
*
* return: void
*/
void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
struct cdp_vdev_stats *vdev_stats)
{
struct dp_soc *soc = NULL;
if (!vdev || !vdev->pdev)
return;
soc = vdev->pdev->soc;
qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats));
dp_vdev_iterate_peer(vdev, dp_update_vdev_stats, vdev_stats,
DP_MOD_ID_GENERIC_STATS);
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
vdev_stats, vdev->vdev_id,
UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
#endif
}
void dp_aggregate_pdev_stats(struct dp_pdev *pdev)
{
struct dp_vdev *vdev = NULL;
struct dp_soc *soc;
struct cdp_vdev_stats *vdev_stats =
qdf_mem_malloc(sizeof(struct cdp_vdev_stats));
if (!vdev_stats) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"DP alloc failure - unable to get alloc vdev stats");
return;
}
qdf_mem_zero(&pdev->stats.tx, sizeof(pdev->stats.tx));
qdf_mem_zero(&pdev->stats.rx, sizeof(pdev->stats.rx));
qdf_mem_zero(&pdev->stats.tx_i, sizeof(pdev->stats.tx_i));
if (pdev->mcopy_mode)
DP_UPDATE_STATS(pdev, pdev->invalid_peer);
soc = pdev->soc;
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
dp_aggregate_vdev_stats(vdev, vdev_stats);
dp_update_pdev_stats(pdev, vdev_stats);
dp_update_pdev_ingress_stats(pdev, vdev);
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
qdf_mem_free(vdev_stats);
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, pdev->soc, &pdev->stats,
pdev->pdev_id, UPDATE_PDEV_STATS, pdev->pdev_id);
#endif
}
/**
* dp_vdev_getstats() - get vdev packet level stats
* @vdev_handle: Datapath VDEV handle
* @stats: cdp network device stats structure
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_vdev_getstats(struct cdp_vdev *vdev_handle,
struct cdp_dev_stats *stats)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
struct dp_soc *soc;
struct cdp_vdev_stats *vdev_stats;
if (!vdev)
return QDF_STATUS_E_FAILURE;
pdev = vdev->pdev;
if (!pdev)
return QDF_STATUS_E_FAILURE;
soc = pdev->soc;
vdev_stats = qdf_mem_malloc(sizeof(struct cdp_vdev_stats));
if (!vdev_stats) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"DP alloc failure - unable to get alloc vdev stats");
return QDF_STATUS_E_FAILURE;
}
dp_aggregate_vdev_stats(vdev, vdev_stats);
stats->tx_packets = vdev_stats->tx_i.rcvd.num;
stats->tx_bytes = vdev_stats->tx_i.rcvd.bytes;
stats->tx_errors = vdev_stats->tx.tx_failed +
vdev_stats->tx_i.dropped.dropped_pkt.num;
stats->tx_dropped = stats->tx_errors;
stats->rx_packets = vdev_stats->rx.unicast.num +
vdev_stats->rx.multicast.num +
vdev_stats->rx.bcast.num;
stats->rx_bytes = vdev_stats->rx.unicast.bytes +
vdev_stats->rx.multicast.bytes +
vdev_stats->rx.bcast.bytes;
qdf_mem_free(vdev_stats);
return QDF_STATUS_SUCCESS;
}
/**
* dp_pdev_getstats() - get pdev packet level stats
* @pdev_handle: Datapath PDEV handle
* @stats: cdp network device stats structure
*
* Return: QDF_STATUS
*/
static void dp_pdev_getstats(struct cdp_pdev *pdev_handle,
struct cdp_dev_stats *stats)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
dp_aggregate_pdev_stats(pdev);
stats->tx_packets = pdev->stats.tx_i.rcvd.num;
stats->tx_bytes = pdev->stats.tx_i.rcvd.bytes;
stats->tx_errors = pdev->stats.tx.tx_failed +
pdev->stats.tx_i.dropped.dropped_pkt.num;
stats->tx_dropped = stats->tx_errors;
stats->rx_packets = pdev->stats.rx.unicast.num +
pdev->stats.rx.multicast.num +
pdev->stats.rx.bcast.num;
stats->rx_bytes = pdev->stats.rx.unicast.bytes +
pdev->stats.rx.multicast.bytes +
pdev->stats.rx.bcast.bytes;
stats->rx_errors = pdev->stats.err.desc_alloc_fail +
pdev->stats.err.ip_csum_err +
pdev->stats.err.tcp_udp_csum_err +
pdev->stats.rx.err.mic_err +
pdev->stats.rx.err.decrypt_err +
pdev->stats.err.rxdma_error +
pdev->stats.err.reo_error;
stats->rx_dropped = pdev->stats.dropped.msdu_not_done +
pdev->stats.dropped.mec +
pdev->stats.dropped.mesh_filter +
pdev->stats.dropped.wifi_parse +
pdev->stats.dropped.mon_rx_drop +
pdev->stats.dropped.mon_radiotap_update_err;
}
/**
* dp_get_device_stats() - get interface level packet stats
* @soc: soc handle
* @id : vdev_id or pdev_id based on type
* @stats: cdp network device stats structure
* @type: device type pdev/vdev
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_get_device_stats(struct cdp_soc_t *soc_hdl, uint8_t id,
struct cdp_dev_stats *stats,
uint8_t type)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
QDF_STATUS status = QDF_STATUS_E_FAILURE;
struct dp_vdev *vdev;
switch (type) {
case UPDATE_VDEV_STATS:
vdev = dp_vdev_get_ref_by_id(soc, id, DP_MOD_ID_CDP);
if (vdev) {
status = dp_vdev_getstats((struct cdp_vdev *)vdev,
stats);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
}
return status;
case UPDATE_PDEV_STATS:
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3(
(struct dp_soc *)soc,
id);
if (pdev) {
dp_pdev_getstats((struct cdp_pdev *)pdev,
stats);
return QDF_STATUS_SUCCESS;
}
}
break;
default:
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"apstats cannot be updated for this input "
"type %d", type);
break;
}
return QDF_STATUS_E_FAILURE;
}
const
char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type)
{
switch (ring_type) {
case REO_DST:
return "Reo_dst";
case REO_EXCEPTION:
return "Reo_exception";
case REO_CMD:
return "Reo_cmd";
case REO_REINJECT:
return "Reo_reinject";
case REO_STATUS:
return "Reo_status";
case WBM2SW_RELEASE:
return "wbm2sw_release";
case TCL_DATA:
return "tcl_data";
case TCL_CMD_CREDIT:
return "tcl_cmd_credit";
case TCL_STATUS:
return "tcl_status";
case SW2WBM_RELEASE:
return "sw2wbm_release";
case RXDMA_BUF:
return "Rxdma_buf";
case RXDMA_DST:
return "Rxdma_dst";
case RXDMA_MONITOR_BUF:
return "Rxdma_monitor_buf";
case RXDMA_MONITOR_DESC:
return "Rxdma_monitor_desc";
case RXDMA_MONITOR_STATUS:
return "Rxdma_monitor_status";
default:
dp_err("Invalid ring type");
break;
}
return "Invalid";
}
/*
* dp_print_napi_stats(): NAPI stats
* @soc - soc handle
*/
void dp_print_napi_stats(struct dp_soc *soc)
{
hif_print_napi_stats(soc->hif_handle);
}
#ifdef QCA_PEER_EXT_STATS
/**
* dp_txrx_host_peer_ext_stats_clr: Reinitialize the txrx peer ext stats
*
*/
static inline void dp_txrx_host_peer_ext_stats_clr(struct dp_peer *peer)
{
if (peer->pext_stats)
qdf_mem_zero(peer->pext_stats, sizeof(*peer->pext_stats));
}
#else
static inline void dp_txrx_host_peer_ext_stats_clr(struct dp_peer *peer)
{
}
#endif
/**
* dp_txrx_host_peer_stats_clr): Reinitialize the txrx peer stats
* @soc: Datapath soc
* @peer: Datatpath peer
* @arg: argument to iter function
*
* Return: QDF_STATUS
*/
static inline void
dp_txrx_host_peer_stats_clr(struct dp_soc *soc,
struct dp_peer *peer,
void *arg)
{
struct dp_rx_tid *rx_tid;
uint8_t tid;
for (tid = 0; tid < DP_MAX_TIDS; tid++) {
rx_tid = &peer->rx_tid[tid];
DP_STATS_CLR(rx_tid);
}
DP_STATS_CLR(peer);
dp_txrx_host_peer_ext_stats_clr(peer);
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, peer->vdev->pdev->soc,
&peer->stats, peer->peer_id,
UPDATE_PEER_STATS, peer->vdev->pdev->pdev_id);
#endif
}
/**
* dp_txrx_host_stats_clr(): Reinitialize the txrx stats
* @vdev: DP_VDEV handle
* @dp_soc: DP_SOC handle
*
* Return: QDF_STATUS
*/
static inline QDF_STATUS
dp_txrx_host_stats_clr(struct dp_vdev *vdev, struct dp_soc *soc)
{
if (!vdev || !vdev->pdev)
return QDF_STATUS_E_FAILURE;
/*
* if NSS offload is enabled, then send message
* to NSS FW to clear the stats. Once NSS FW clears the statistics
* then clear host statistics.
*/
if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
if (soc->cdp_soc.ol_ops->nss_stats_clr)
soc->cdp_soc.ol_ops->nss_stats_clr(soc->ctrl_psoc,
vdev->vdev_id);
}
DP_STATS_CLR(vdev->pdev);
DP_STATS_CLR(vdev->pdev->soc);
DP_STATS_CLR(vdev);
hif_clear_napi_stats(vdev->pdev->soc->hif_handle);
dp_vdev_iterate_peer(vdev, dp_txrx_host_peer_stats_clr, NULL,
DP_MOD_ID_GENERIC_STATS);
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
&vdev->stats, vdev->vdev_id,
UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
#endif
return QDF_STATUS_SUCCESS;
}
/*
* dp_get_host_peer_stats()- function to print peer stats
* @soc: dp_soc handle
* @mac_addr: mac address of the peer
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_get_host_peer_stats(struct cdp_soc_t *soc, uint8_t *mac_addr)
{
struct dp_peer *peer = NULL;
if (!mac_addr) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: NULL peer mac addr\n", __func__);
return QDF_STATUS_E_FAILURE;
}
peer = dp_peer_find_hash_find((struct dp_soc *)soc,
mac_addr, 0,
DP_VDEV_ALL,
DP_MOD_ID_CDP);
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Invalid peer\n", __func__);
return QDF_STATUS_E_FAILURE;
}
dp_print_peer_stats(peer);
dp_peer_rxtid_stats(peer, dp_rx_tid_stats_cb, NULL);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/**
* dp_txrx_stats_help() - Helper function for Txrx_Stats
*
* Return: None
*/
static void dp_txrx_stats_help(void)
{
dp_info("Command: iwpriv wlan0 txrx_stats <stats_option> <mac_id>");
dp_info("stats_option:");
dp_info(" 1 -- HTT Tx Statistics");
dp_info(" 2 -- HTT Rx Statistics");
dp_info(" 3 -- HTT Tx HW Queue Statistics");
dp_info(" 4 -- HTT Tx HW Sched Statistics");
dp_info(" 5 -- HTT Error Statistics");
dp_info(" 6 -- HTT TQM Statistics");
dp_info(" 7 -- HTT TQM CMDQ Statistics");
dp_info(" 8 -- HTT TX_DE_CMN Statistics");
dp_info(" 9 -- HTT Tx Rate Statistics");
dp_info(" 10 -- HTT Rx Rate Statistics");
dp_info(" 11 -- HTT Peer Statistics");
dp_info(" 12 -- HTT Tx SelfGen Statistics");
dp_info(" 13 -- HTT Tx MU HWQ Statistics");
dp_info(" 14 -- HTT RING_IF_INFO Statistics");
dp_info(" 15 -- HTT SRNG Statistics");
dp_info(" 16 -- HTT SFM Info Statistics");
dp_info(" 17 -- HTT PDEV_TX_MU_MIMO_SCHED INFO Statistics");
dp_info(" 18 -- HTT Peer List Details");
dp_info(" 20 -- Clear Host Statistics");
dp_info(" 21 -- Host Rx Rate Statistics");
dp_info(" 22 -- Host Tx Rate Statistics");
dp_info(" 23 -- Host Tx Statistics");
dp_info(" 24 -- Host Rx Statistics");
dp_info(" 25 -- Host AST Statistics");
dp_info(" 26 -- Host SRNG PTR Statistics");
dp_info(" 27 -- Host Mon Statistics");
dp_info(" 28 -- Host REO Queue Statistics");
dp_info(" 29 -- Host Soc cfg param Statistics");
dp_info(" 30 -- Host pdev cfg param Statistics");
dp_info(" 31 -- Host FISA stats");
dp_info(" 32 -- Host Register Work stats");
}
/**
* dp_print_host_stats()- Function to print the stats aggregated at host
* @vdev_handle: DP_VDEV handle
* @req: host stats type
* @soc: dp soc handler
*
* Return: 0 on success, print error message in case of failure
*/
static int
dp_print_host_stats(struct dp_vdev *vdev,
struct cdp_txrx_stats_req *req,
struct dp_soc *soc)
{
struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
enum cdp_host_txrx_stats type =
dp_stats_mapping_table[req->stats][STATS_HOST];
dp_aggregate_pdev_stats(pdev);
switch (type) {
case TXRX_CLEAR_STATS:
dp_txrx_host_stats_clr(vdev, soc);
break;
case TXRX_RX_RATE_STATS:
dp_print_rx_rates(vdev);
break;
case TXRX_TX_RATE_STATS:
dp_print_tx_rates(vdev);
break;
case TXRX_TX_HOST_STATS:
dp_print_pdev_tx_stats(pdev);
dp_print_soc_tx_stats(pdev->soc);
break;
case TXRX_RX_HOST_STATS:
dp_print_pdev_rx_stats(pdev);
dp_print_soc_rx_stats(pdev->soc);
break;
case TXRX_AST_STATS:
dp_print_ast_stats(pdev->soc);
dp_print_peer_table(vdev);
break;
case TXRX_SRNG_PTR_STATS:
dp_print_ring_stats(pdev);
break;
case TXRX_RX_MON_STATS:
dp_print_pdev_rx_mon_stats(pdev);
break;
case TXRX_REO_QUEUE_STATS:
dp_get_host_peer_stats((struct cdp_soc_t *)pdev->soc,
req->peer_addr);
break;
case TXRX_SOC_CFG_PARAMS:
dp_print_soc_cfg_params(pdev->soc);
break;
case TXRX_PDEV_CFG_PARAMS:
dp_print_pdev_cfg_params(pdev);
break;
case TXRX_NAPI_STATS:
dp_print_napi_stats(pdev->soc);
break;
case TXRX_SOC_INTERRUPT_STATS:
dp_print_soc_interrupt_stats(pdev->soc);
break;
case TXRX_SOC_FSE_STATS:
dp_rx_dump_fisa_table(pdev->soc);
break;
case TXRX_HAL_REG_WRITE_STATS:
hal_dump_reg_write_stats(pdev->soc->hal_soc);
hal_dump_reg_write_srng_stats(pdev->soc->hal_soc);
break;
default:
dp_info("Wrong Input For TxRx Host Stats");
dp_txrx_stats_help();
break;
}
return 0;
}
/*
* is_ppdu_txrx_capture_enabled() - API to check both pktlog and debug_sniffer
* modes are enabled or not.
* @dp_pdev: dp pdev handle.
*
* Return: bool
*/
static inline bool is_ppdu_txrx_capture_enabled(struct dp_pdev *pdev)
{
if (!pdev->pktlog_ppdu_stats && !pdev->tx_sniffer_enable &&
!pdev->mcopy_mode)
return true;
else
return false;
}
/*
*dp_set_bpr_enable() - API to enable/disable bpr feature
*@pdev_handle: DP_PDEV handle.
*@val: Provided value.
*
*Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS
dp_set_bpr_enable(struct dp_pdev *pdev, int val)
{
switch (val) {
case CDP_BPR_DISABLE:
pdev->bpr_enable = CDP_BPR_DISABLE;
if (!pdev->pktlog_ppdu_stats && !pdev->enhanced_stats_en &&
!pdev->tx_sniffer_enable && !pdev->mcopy_mode) {
dp_h2t_cfg_stats_msg_send(pdev, 0, pdev->pdev_id);
} else if (pdev->enhanced_stats_en &&
!pdev->tx_sniffer_enable && !pdev->mcopy_mode &&
!pdev->pktlog_ppdu_stats) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_ENH_STATS,
pdev->pdev_id);
}
break;
case CDP_BPR_ENABLE:
pdev->bpr_enable = CDP_BPR_ENABLE;
if (!pdev->enhanced_stats_en && !pdev->tx_sniffer_enable &&
!pdev->mcopy_mode && !pdev->pktlog_ppdu_stats) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR,
pdev->pdev_id);
} else if (pdev->enhanced_stats_en &&
!pdev->tx_sniffer_enable && !pdev->mcopy_mode &&
!pdev->pktlog_ppdu_stats) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR_ENH,
pdev->pdev_id);
} else if (pdev->pktlog_ppdu_stats) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR_PKTLOG,
pdev->pdev_id);
}
break;
default:
break;
}
return QDF_STATUS_SUCCESS;
}
/*
* dp_pdev_tid_stats_ingress_inc
* @pdev: pdev handle
* @val: increase in value
*
* Return: void
*/
static void
dp_pdev_tid_stats_ingress_inc(struct dp_pdev *pdev, uint32_t val)
{
pdev->stats.tid_stats.ingress_stack += val;
}
/*
* dp_pdev_tid_stats_osif_drop
* @pdev: pdev handle
* @val: increase in value
*
* Return: void
*/
static void
dp_pdev_tid_stats_osif_drop(struct dp_pdev *pdev, uint32_t val)
{
pdev->stats.tid_stats.osif_drop += val;
}
/*
* dp_config_debug_sniffer()- API to enable/disable debug sniffer
* @pdev: DP_PDEV handle
* @val: user provided value
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS
dp_config_debug_sniffer(struct dp_pdev *pdev, int val)
{
QDF_STATUS status = QDF_STATUS_SUCCESS;
/*
* Note: The mirror copy mode cannot co-exist with any other
* monitor modes. Hence disabling the filter for this mode will
* reset the monitor destination ring filters.
*/
if (pdev->mcopy_mode) {
#ifdef FEATURE_PERPKT_INFO
dp_soc_config_full_mon_mode(pdev, DP_FULL_MON_DISABLE);
dp_pdev_disable_mcopy_code(pdev);
dp_mon_filter_reset_mcopy_mode(pdev);
status = dp_mon_filter_update(pdev);
if (status != QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Failed to reset AM copy mode filters"));
}
#endif /* FEATURE_PERPKT_INFO */
}
switch (val) {
case 0:
pdev->tx_sniffer_enable = 0;
pdev->monitor_configured = false;
/*
* We don't need to reset the Rx monitor status ring or call
* the API dp_ppdu_ring_reset() if all debug sniffer mode is
* disabled. The Rx monitor status ring will be disabled when
* the last mode using the monitor status ring get disabled.
*/
if (!pdev->pktlog_ppdu_stats && !pdev->enhanced_stats_en &&
!pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev, 0, pdev->pdev_id);
} else if (pdev->enhanced_stats_en && !pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_ENH_STATS, pdev->pdev_id);
} else if (!pdev->enhanced_stats_en && pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR_ENH,
pdev->pdev_id);
} else {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR,
pdev->pdev_id);
}
break;
case 1:
pdev->tx_sniffer_enable = 1;
pdev->monitor_configured = false;
if (!pdev->pktlog_ppdu_stats)
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_SNIFFER, pdev->pdev_id);
break;
case 2:
case 4:
if (pdev->monitor_vdev) {
status = QDF_STATUS_E_RESOURCES;
break;
}
#ifdef FEATURE_PERPKT_INFO
pdev->mcopy_mode = val;
pdev->tx_sniffer_enable = 0;
pdev->monitor_configured = true;
/*
* Setup the M copy mode filter.
*/
dp_soc_config_full_mon_mode(pdev, DP_FULL_MON_ENABLE);
dp_mon_filter_setup_mcopy_mode(pdev);
status = dp_mon_filter_update(pdev);
if (status != QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Failed to set M_copy mode filters"));
dp_mon_filter_reset_mcopy_mode(pdev);
dp_pdev_disable_mcopy_code(pdev);
return status;
}
if (!pdev->pktlog_ppdu_stats)
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_SNIFFER, pdev->pdev_id);
#endif /* FEATURE_PERPKT_INFO */
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid value");
break;
}
return status;
}
#ifdef FEATURE_PERPKT_INFO
/*
* dp_enable_enhanced_stats()- API to enable enhanced statistcs
* @soc_handle: DP_SOC handle
* @pdev_id: id of DP_PDEV handle
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_enable_enhanced_stats(struct cdp_soc_t *soc, uint8_t pdev_id)
{
struct dp_pdev *pdev = NULL;
QDF_STATUS status = QDF_STATUS_SUCCESS;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
if (pdev->enhanced_stats_en == 0)
dp_cal_client_timer_start(pdev->cal_client_ctx);
pdev->enhanced_stats_en = 1;
dp_mon_filter_setup_enhanced_stats(pdev);
status = dp_mon_filter_update(pdev);
if (status != QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Failed to set enhanced mode filters"));
dp_mon_filter_reset_enhanced_stats(pdev);
dp_cal_client_timer_stop(pdev->cal_client_ctx);
pdev->enhanced_stats_en = 0;
return QDF_STATUS_E_FAILURE;
}
if (is_ppdu_txrx_capture_enabled(pdev) && !pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_ENH_STATS, pdev->pdev_id);
} else if (is_ppdu_txrx_capture_enabled(pdev) && pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR_ENH,
pdev->pdev_id);
}
return QDF_STATUS_SUCCESS;
}
/*
* dp_disable_enhanced_stats()- API to disable enhanced statistcs
*
* @param soc - the soc handle
* @param pdev_id - pdev_id of pdev
* @return - QDF_STATUS
*/
static QDF_STATUS
dp_disable_enhanced_stats(struct cdp_soc_t *soc, uint8_t pdev_id)
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
if (pdev->enhanced_stats_en == 1)
dp_cal_client_timer_stop(pdev->cal_client_ctx);
pdev->enhanced_stats_en = 0;
if (is_ppdu_txrx_capture_enabled(pdev) && !pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev, 0, pdev->pdev_id);
} else if (is_ppdu_txrx_capture_enabled(pdev) && pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR,
pdev->pdev_id);
}
dp_mon_filter_reset_enhanced_stats(pdev);
if (dp_mon_filter_update(pdev) != QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Failed to reset enhanced mode filters"));
}
return QDF_STATUS_SUCCESS;
}
#endif /* FEATURE_PERPKT_INFO */
/*
* dp_get_fw_peer_stats()- function to print peer stats
* @soc: soc handle
* @pdev_id : id of the pdev handle
* @mac_addr: mac address of the peer
* @cap: Type of htt stats requested
* @is_wait: if set, wait on completion from firmware response
*
* Currently Supporting only MAC ID based requests Only
* 1: HTT_PEER_STATS_REQ_MODE_NO_QUERY
* 2: HTT_PEER_STATS_REQ_MODE_QUERY_TQM
* 3: HTT_PEER_STATS_REQ_MODE_FLUSH_TQM
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_get_fw_peer_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
uint8_t *mac_addr,
uint32_t cap, uint32_t is_wait)
{
int i;
uint32_t config_param0 = 0;
uint32_t config_param1 = 0;
uint32_t config_param2 = 0;
uint32_t config_param3 = 0;
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
HTT_DBG_EXT_STATS_PEER_INFO_IS_MAC_ADDR_SET(config_param0, 1);
config_param0 |= (1 << (cap + 1));
for (i = 0; i < HTT_PEER_STATS_MAX_TLV; i++) {
config_param1 |= (1 << i);
}
config_param2 |= (mac_addr[0] & 0x000000ff);
config_param2 |= ((mac_addr[1] << 8) & 0x0000ff00);
config_param2 |= ((mac_addr[2] << 16) & 0x00ff0000);
config_param2 |= ((mac_addr[3] << 24) & 0xff000000);
config_param3 |= (mac_addr[4] & 0x000000ff);
config_param3 |= ((mac_addr[5] << 8) & 0x0000ff00);
if (is_wait) {
qdf_event_reset(&pdev->fw_peer_stats_event);
dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
config_param0, config_param1,
config_param2, config_param3,
0, DBG_STATS_COOKIE_DP_STATS, 0);
qdf_wait_single_event(&pdev->fw_peer_stats_event,
DP_FW_PEER_STATS_CMP_TIMEOUT_MSEC);
} else {
dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
config_param0, config_param1,
config_param2, config_param3,
0, DBG_STATS_COOKIE_DEFAULT, 0);
}
return QDF_STATUS_SUCCESS;
}
/* This struct definition will be removed from here
* once it get added in FW headers*/
struct httstats_cmd_req {
uint32_t config_param0;
uint32_t config_param1;
uint32_t config_param2;
uint32_t config_param3;
int cookie;
u_int8_t stats_id;
};
/*
* dp_get_htt_stats: function to process the httstas request
* @soc: DP soc handle
* @pdev_id: id of pdev handle
* @data: pointer to request data
* @data_len: length for request data
*
* return: QDF_STATUS
*/
static QDF_STATUS
dp_get_htt_stats(struct cdp_soc_t *soc, uint8_t pdev_id, void *data,
uint32_t data_len)
{
struct httstats_cmd_req *req = (struct httstats_cmd_req *)data;
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
QDF_ASSERT(data_len == sizeof(struct httstats_cmd_req));
dp_h2t_ext_stats_msg_send(pdev, req->stats_id,
req->config_param0, req->config_param1,
req->config_param2, req->config_param3,
req->cookie, DBG_STATS_COOKIE_DEFAULT, 0);
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_pdev_tidmap_prty_wifi3(): update tidmap priority in pdev
* @pdev: DP_PDEV handle
* @prio: tidmap priority value passed by the user
*
* Return: QDF_STATUS_SUCCESS on success
*/
static QDF_STATUS dp_set_pdev_tidmap_prty_wifi3(struct dp_pdev *pdev,
uint8_t prio)
{
struct dp_soc *soc = pdev->soc;
soc->tidmap_prty = prio;
hal_tx_set_tidmap_prty(soc->hal_soc, prio);
return QDF_STATUS_SUCCESS;
}
/*
* dp_get_peer_param: function to get parameters in peer
* @cdp_soc: DP soc handle
* @vdev_id: id of vdev handle
* @peer_mac: peer mac address
* @param: parameter type to be set
* @val : address of buffer
*
* Return: val
*/
static QDF_STATUS dp_get_peer_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
uint8_t *peer_mac,
enum cdp_peer_param_type param,
cdp_config_param_type *val)
{
return QDF_STATUS_SUCCESS;
}
#ifdef WLAN_ATF_ENABLE
static void dp_set_atf_stats_enable(struct dp_pdev *pdev, bool value)
{
if (!pdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid pdev");
return;
}
pdev->dp_atf_stats_enable = value;
}
#else
static void dp_set_atf_stats_enable(struct dp_pdev *pdev, bool value)
{
}
#endif
/*
* dp_set_peer_param: function to set parameters in peer
* @cdp_soc: DP soc handle
* @vdev_id: id of vdev handle
* @peer_mac: peer mac address
* @param: parameter type to be set
* @val: value of parameter to be set
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_set_peer_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
uint8_t *peer_mac,
enum cdp_peer_param_type param,
cdp_config_param_type val)
{
struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)cdp_soc,
peer_mac, 0, vdev_id,
DP_MOD_ID_CDP);
if (!peer)
return QDF_STATUS_E_FAILURE;
switch (param) {
case CDP_CONFIG_NAWDS:
peer->nawds_enabled = val.cdp_peer_param_nawds;
break;
case CDP_CONFIG_NAC:
peer->nac = !!(val.cdp_peer_param_nac);
break;
case CDP_CONFIG_ISOLATION:
dp_set_peer_isolation(peer, val.cdp_peer_param_isolation);
break;
case CDP_CONFIG_IN_TWT:
peer->in_twt = !!(val.cdp_peer_param_in_twt);
break;
default:
break;
}
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/*
* dp_get_pdev_param: function to get parameters from pdev
* @cdp_soc: DP soc handle
* @pdev_id: id of pdev handle
* @param: parameter type to be get
* @value : buffer for value
*
* Return: status
*/
static QDF_STATUS dp_get_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
enum cdp_pdev_param_type param,
cdp_config_param_type *val)
{
struct cdp_pdev *pdev = (struct cdp_pdev *)
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
switch (param) {
case CDP_CONFIG_VOW:
val->cdp_pdev_param_cfg_vow =
((struct dp_pdev *)pdev)->delay_stats_flag;
break;
case CDP_TX_PENDING:
val->cdp_pdev_param_tx_pending = dp_get_tx_pending(pdev);
break;
case CDP_FILTER_MCAST_DATA:
val->cdp_pdev_param_fltr_mcast =
dp_pdev_get_filter_mcast_data(pdev);
break;
case CDP_FILTER_NO_DATA:
val->cdp_pdev_param_fltr_none =
dp_pdev_get_filter_non_data(pdev);
break;
case CDP_FILTER_UCAST_DATA:
val->cdp_pdev_param_fltr_ucast =
dp_pdev_get_filter_ucast_data(pdev);
break;
default:
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
/*
* dp_set_pdev_param: function to set parameters in pdev
* @cdp_soc: DP soc handle
* @pdev_id: id of pdev handle
* @param: parameter type to be set
* @val: value of parameter to be set
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_set_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
enum cdp_pdev_param_type param,
cdp_config_param_type val)
{
int target_type;
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
target_type = hal_get_target_type(soc->hal_soc);
switch (target_type) {
case TARGET_TYPE_QCA6750:
pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MON_5G_LMAC_ID;
pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MON_5G_LMAC_ID;
pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MON_6G_LMAC_ID;
break;
default:
pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MON_2G_LMAC_ID;
pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MON_5G_LMAC_ID;
pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MON_6G_LMAC_ID;
break;
}
switch (param) {
case CDP_CONFIG_TX_CAPTURE:
return dp_config_debug_sniffer(pdev,
val.cdp_pdev_param_tx_capture);
case CDP_CONFIG_DEBUG_SNIFFER:
return dp_config_debug_sniffer(pdev,
val.cdp_pdev_param_dbg_snf);
case CDP_CONFIG_BPR_ENABLE:
return dp_set_bpr_enable(pdev, val.cdp_pdev_param_bpr_enable);
case CDP_CONFIG_PRIMARY_RADIO:
pdev->is_primary = val.cdp_pdev_param_primary_radio;
break;
case CDP_CONFIG_CAPTURE_LATENCY:
pdev->latency_capture_enable = val.cdp_pdev_param_cptr_latcy;
break;
case CDP_INGRESS_STATS:
dp_pdev_tid_stats_ingress_inc(pdev,
val.cdp_pdev_param_ingrs_stats);
break;
case CDP_OSIF_DROP:
dp_pdev_tid_stats_osif_drop(pdev,
val.cdp_pdev_param_osif_drop);
break;
case CDP_CONFIG_ENH_RX_CAPTURE:
return dp_config_enh_rx_capture(pdev,
val.cdp_pdev_param_en_rx_cap);
case CDP_CONFIG_ENH_TX_CAPTURE:
return dp_config_enh_tx_capture(pdev,
val.cdp_pdev_param_en_tx_cap);
case CDP_CONFIG_HMMC_TID_OVERRIDE:
pdev->hmmc_tid_override_en = val.cdp_pdev_param_hmmc_tid_ovrd;
break;
case CDP_CONFIG_HMMC_TID_VALUE:
pdev->hmmc_tid = val.cdp_pdev_param_hmmc_tid;
break;
case CDP_CHAN_NOISE_FLOOR:
pdev->chan_noise_floor = val.cdp_pdev_param_chn_noise_flr;
break;
case CDP_TIDMAP_PRTY:
dp_set_pdev_tidmap_prty_wifi3(pdev,
val.cdp_pdev_param_tidmap_prty);
break;
case CDP_FILTER_NEIGH_PEERS:
dp_set_filter_neigh_peers(pdev,
val.cdp_pdev_param_fltr_neigh_peers);
break;
case CDP_MONITOR_CHANNEL:
pdev->mon_chan_num = val.cdp_pdev_param_monitor_chan;
break;
case CDP_MONITOR_FREQUENCY:
pdev->mon_chan_freq = val.cdp_pdev_param_mon_freq;
pdev->mon_chan_band =
wlan_reg_freq_to_band(pdev->mon_chan_freq);
break;
case CDP_CONFIG_BSS_COLOR:
dp_mon_set_bsscolor(pdev, val.cdp_pdev_param_bss_color);
break;
case CDP_SET_ATF_STATS_ENABLE:
dp_set_atf_stats_enable(pdev,
val.cdp_pdev_param_atf_stats_enable);
break;
default:
return QDF_STATUS_E_INVAL;
}
return QDF_STATUS_SUCCESS;
}
#ifdef QCA_PEER_EXT_STATS
static void dp_rx_update_peer_delay_stats(struct dp_soc *soc,
qdf_nbuf_t nbuf)
{
struct dp_peer *peer = NULL;
uint16_t peer_id, ring_id;
uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
struct cdp_peer_ext_stats *pext_stats = NULL;
peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
if (peer_id > soc->max_peers)
return;
peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_CDP);
if (qdf_unlikely(!peer))
return;
if (qdf_likely(peer->pext_stats)) {
pext_stats = peer->pext_stats;
ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
dp_rx_compute_tid_delay(&pext_stats->delay_stats[tid][ring_id],
nbuf);
}
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
}
#else
static inline void dp_rx_update_peer_delay_stats(struct dp_soc *soc,
qdf_nbuf_t nbuf)
{
}
#endif
/*
* dp_calculate_delay_stats: function to get rx delay stats
* @cdp_soc: DP soc handle
* @vdev_id: id of DP vdev handle
* @nbuf: skb
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_calculate_delay_stats(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
qdf_nbuf_t nbuf)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev)
return QDF_STATUS_SUCCESS;
if (vdev->pdev->delay_stats_flag)
dp_rx_compute_delay(vdev, nbuf);
else
dp_rx_update_peer_delay_stats(soc, nbuf);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/*
* dp_get_vdev_param: function to get parameters from vdev
* @cdp_soc : DP soc handle
* @vdev_id: id of DP vdev handle
* @param: parameter type to get value
* @val: buffer address
*
* return: status
*/
static QDF_STATUS dp_get_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
enum cdp_vdev_param_type param,
cdp_config_param_type *val)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev)
return QDF_STATUS_E_FAILURE;
switch (param) {
case CDP_ENABLE_WDS:
val->cdp_vdev_param_wds = vdev->wds_enabled;
break;
case CDP_ENABLE_MEC:
val->cdp_vdev_param_mec = vdev->mec_enabled;
break;
case CDP_ENABLE_DA_WAR:
val->cdp_vdev_param_da_war = vdev->pdev->soc->da_war_enabled;
break;
case CDP_ENABLE_IGMP_MCAST_EN:
val->cdp_vdev_param_igmp_mcast_en = vdev->igmp_mcast_enhanc_en;
break;
case CDP_ENABLE_MCAST_EN:
val->cdp_vdev_param_mcast_en = vdev->mcast_enhancement_en;
break;
case CDP_ENABLE_HLOS_TID_OVERRIDE:
val->cdp_vdev_param_hlos_tid_override =
dp_vdev_get_hlos_tid_override((struct cdp_vdev *)vdev);
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"param value %d is wrong\n",
param);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_E_FAILURE;
}
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/*
* dp_set_vdev_param: function to set parameters in vdev
* @cdp_soc : DP soc handle
* @vdev_id: id of DP vdev handle
* @param: parameter type to get value
* @val: value
*
* return: QDF_STATUS
*/
static QDF_STATUS
dp_set_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
enum cdp_vdev_param_type param, cdp_config_param_type val)
{
struct dp_soc *dsoc = (struct dp_soc *)cdp_soc;
struct dp_vdev *vdev =
dp_vdev_get_ref_by_id(dsoc, vdev_id, DP_MOD_ID_CDP);
uint32_t var = 0;
if (!vdev)
return QDF_STATUS_E_FAILURE;
switch (param) {
case CDP_ENABLE_WDS:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"wds_enable %d for vdev(%pK) id(%d)\n",
val.cdp_vdev_param_wds, vdev, vdev->vdev_id);
vdev->wds_enabled = val.cdp_vdev_param_wds;
break;
case CDP_ENABLE_MEC:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"mec_enable %d for vdev(%pK) id(%d)\n",
val.cdp_vdev_param_mec, vdev, vdev->vdev_id);
vdev->mec_enabled = val.cdp_vdev_param_mec;
break;
case CDP_ENABLE_DA_WAR:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"da_war_enable %d for vdev(%pK) id(%d)\n",
val.cdp_vdev_param_da_war, vdev, vdev->vdev_id);
vdev->pdev->soc->da_war_enabled = val.cdp_vdev_param_da_war;
dp_wds_flush_ast_table_wifi3(((struct cdp_soc_t *)
vdev->pdev->soc));
break;
case CDP_ENABLE_NAWDS:
vdev->nawds_enabled = val.cdp_vdev_param_nawds;
break;
case CDP_ENABLE_MCAST_EN:
vdev->mcast_enhancement_en = val.cdp_vdev_param_mcast_en;
break;
case CDP_ENABLE_IGMP_MCAST_EN:
vdev->igmp_mcast_enhanc_en = val.cdp_vdev_param_igmp_mcast_en;
break;
case CDP_ENABLE_PROXYSTA:
vdev->proxysta_vdev = val.cdp_vdev_param_proxysta;
break;
case CDP_UPDATE_TDLS_FLAGS:
vdev->tdls_link_connected = val.cdp_vdev_param_tdls_flags;
break;
case CDP_CFG_WDS_AGING_TIMER:
var = val.cdp_vdev_param_aging_tmr;
if (!var)
qdf_timer_stop(&vdev->pdev->soc->ast_aging_timer);
else if (var != vdev->wds_aging_timer_val)
qdf_timer_mod(&vdev->pdev->soc->ast_aging_timer, var);
vdev->wds_aging_timer_val = var;
break;
case CDP_ENABLE_AP_BRIDGE:
if (wlan_op_mode_sta != vdev->opmode)
vdev->ap_bridge_enabled = val.cdp_vdev_param_ap_brdg_en;
else
vdev->ap_bridge_enabled = false;
break;
case CDP_ENABLE_CIPHER:
vdev->sec_type = val.cdp_vdev_param_cipher_en;
break;
case CDP_ENABLE_QWRAP_ISOLATION:
vdev->isolation_vdev = val.cdp_vdev_param_qwrap_isolation;
break;
case CDP_UPDATE_MULTIPASS:
vdev->multipass_en = val.cdp_vdev_param_update_multipass;
break;
case CDP_TX_ENCAP_TYPE:
vdev->tx_encap_type = val.cdp_vdev_param_tx_encap;
break;
case CDP_RX_DECAP_TYPE:
vdev->rx_decap_type = val.cdp_vdev_param_rx_decap;
break;
case CDP_TID_VDEV_PRTY:
vdev->tidmap_prty = val.cdp_vdev_param_tidmap_prty;
break;
case CDP_TIDMAP_TBL_ID:
vdev->tidmap_tbl_id = val.cdp_vdev_param_tidmap_tbl_id;
break;
#ifdef MESH_MODE_SUPPORT
case CDP_MESH_RX_FILTER:
dp_vdev_set_mesh_rx_filter((struct cdp_vdev *)vdev,
val.cdp_vdev_param_mesh_rx_filter);
break;
case CDP_MESH_MODE:
dp_vdev_set_mesh_mode((struct cdp_vdev *)vdev,
val.cdp_vdev_param_mesh_mode);
break;
#endif
case CDP_ENABLE_CSUM:
dp_info("vdev_id %d enable Checksum %d", vdev_id,
val.cdp_enable_tx_checksum);
vdev->csum_enabled = val.cdp_enable_tx_checksum;
break;
case CDP_ENABLE_HLOS_TID_OVERRIDE:
dp_info("vdev_id %d enable hlod tid override %d", vdev_id,
val.cdp_vdev_param_hlos_tid_override);
dp_vdev_set_hlos_tid_override(vdev,
val.cdp_vdev_param_hlos_tid_override);
break;
#ifdef QCA_SUPPORT_WDS_EXTENDED
case CDP_CFG_WDS_EXT:
vdev->wds_ext_enabled = val.cdp_vdev_param_wds_ext;
break;
#endif
default:
break;
}
dp_tx_vdev_update_search_flags((struct dp_vdev *)vdev);
dp_vdev_unref_delete(dsoc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/*
* dp_set_psoc_param: function to set parameters in psoc
* @cdp_soc : DP soc handle
* @param: parameter type to be set
* @val: value of parameter to be set
*
* return: QDF_STATUS
*/
static QDF_STATUS
dp_set_psoc_param(struct cdp_soc_t *cdp_soc,
enum cdp_psoc_param_type param, cdp_config_param_type val)
{
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
struct wlan_cfg_dp_soc_ctxt *wlan_cfg_ctx = soc->wlan_cfg_ctx;
switch (param) {
case CDP_ENABLE_RATE_STATS:
soc->rdkstats_enabled = val.cdp_psoc_param_en_rate_stats;
break;
case CDP_SET_NSS_CFG:
wlan_cfg_set_dp_soc_nss_cfg(wlan_cfg_ctx,
val.cdp_psoc_param_en_nss_cfg);
/*
* TODO: masked out based on the per offloaded radio
*/
switch (val.cdp_psoc_param_en_nss_cfg) {
case dp_nss_cfg_default:
break;
case dp_nss_cfg_first_radio:
/*
* This configuration is valid for single band radio which
* is also NSS offload.
*/
case dp_nss_cfg_dbdc:
case dp_nss_cfg_dbtc:
wlan_cfg_set_num_tx_desc_pool(wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_ext_desc_pool(wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_desc(wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_ext_desc(wlan_cfg_ctx, 0);
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid offload config %d",
val.cdp_psoc_param_en_nss_cfg);
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("nss-wifi<0> nss config is enabled"));
break;
case CDP_SET_PREFERRED_HW_MODE:
soc->preferred_hw_mode = val.cdp_psoc_param_preferred_hw_mode;
break;
default:
break;
}
return QDF_STATUS_SUCCESS;
}
/*
* dp_get_psoc_param: function to get parameters in soc
* @cdp_soc : DP soc handle
* @param: parameter type to be set
* @val: address of buffer
*
* return: status
*/
static QDF_STATUS dp_get_psoc_param(struct cdp_soc_t *cdp_soc,
enum cdp_psoc_param_type param,
cdp_config_param_type *val)
{
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
if (!soc)
return QDF_STATUS_E_FAILURE;
switch (param) {
case CDP_CFG_PEER_EXT_STATS:
val->cdp_psoc_param_pext_stats =
wlan_cfg_is_peer_ext_stats_enabled(soc->wlan_cfg_ctx);
break;
default:
dp_warn("Invalid param");
break;
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_peer_update_pkt_capture_params: Set Rx & Tx Capture flags for a peer
* @soc: DP_SOC handle
* @pdev_id: id of DP_PDEV handle
* @is_rx_pkt_cap_enable: enable/disable Rx packet capture in monitor mode
* @is_tx_pkt_cap_enable: enable/disable/delete/print
* Tx packet capture in monitor mode
* @peer_mac: MAC address for which the above need to be enabled/disabled
*
* Return: Success if Rx & Tx capture is enabled for peer, false otherwise
*/
QDF_STATUS
dp_peer_update_pkt_capture_params(ol_txrx_soc_handle soc,
uint8_t pdev_id,
bool is_rx_pkt_cap_enable,
uint8_t is_tx_pkt_cap_enable,
uint8_t *peer_mac)
{
struct dp_peer *peer;
QDF_STATUS status;
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
peer = dp_peer_find_hash_find((struct dp_soc *)soc,
peer_mac, 0, DP_VDEV_ALL,
DP_MOD_ID_CDP);
if (!peer)
return QDF_STATUS_E_FAILURE;
/* we need to set tx pkt capture for non associated peer */
status = dp_peer_set_tx_capture_enabled(pdev, peer,
is_tx_pkt_cap_enable,
peer_mac);
status = dp_peer_set_rx_capture_enabled(pdev, peer,
is_rx_pkt_cap_enable,
peer_mac);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return status;
}
/*
* dp_set_vdev_dscp_tid_map_wifi3(): Update Map ID selected for particular vdev
* @soc: DP_SOC handle
* @vdev_id: id of DP_VDEV handle
* @map_id:ID of map that needs to be updated
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_set_vdev_dscp_tid_map_wifi3(ol_txrx_soc_handle cdp_soc,
uint8_t vdev_id,
uint8_t map_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (vdev) {
vdev->dscp_tid_map_id = map_id;
/* Updatr flag for transmit tid classification */
if (vdev->dscp_tid_map_id < soc->num_hw_dscp_tid_map)
vdev->skip_sw_tid_classification |=
DP_TX_HW_DSCP_TID_MAP_VALID;
else
vdev->skip_sw_tid_classification &=
~DP_TX_HW_DSCP_TID_MAP_VALID;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
return QDF_STATUS_E_FAILURE;
}
#ifdef DP_RATETABLE_SUPPORT
static int dp_txrx_get_ratekbps(int preamb, int mcs,
int htflag, int gintval)
{
uint32_t rix;
uint16_t ratecode;
return dp_getrateindex((uint32_t)gintval, (uint16_t)mcs, 1,
(uint8_t)preamb, 1, &rix, &ratecode);
}
#else
static int dp_txrx_get_ratekbps(int preamb, int mcs,
int htflag, int gintval)
{
return 0;
}
#endif
/* dp_txrx_get_pdev_stats - Returns cdp_pdev_stats
* @soc: DP soc handle
* @pdev_id: id of DP pdev handle
* @pdev_stats: buffer to copy to
*
* return : status success/failure
*/
static QDF_STATUS
dp_txrx_get_pdev_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
struct cdp_pdev_stats *pdev_stats)
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
dp_aggregate_pdev_stats(pdev);
qdf_mem_copy(pdev_stats, &pdev->stats, sizeof(struct cdp_pdev_stats));
return QDF_STATUS_SUCCESS;
}
/* dp_txrx_update_vdev_me_stats(): Update vdev ME stats sent from CDP
* @vdev: DP vdev handle
* @buf: buffer containing specific stats structure
*
* Returns: void
*/
static void dp_txrx_update_vdev_me_stats(struct dp_vdev *vdev,
void *buf)
{
struct cdp_tx_ingress_stats *host_stats = NULL;
if (!buf) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid host stats buf");
return;
}
host_stats = (struct cdp_tx_ingress_stats *)buf;
DP_STATS_INC_PKT(vdev, tx_i.mcast_en.mcast_pkt,
host_stats->mcast_en.mcast_pkt.num,
host_stats->mcast_en.mcast_pkt.bytes);
DP_STATS_INC(vdev, tx_i.mcast_en.dropped_map_error,
host_stats->mcast_en.dropped_map_error);
DP_STATS_INC(vdev, tx_i.mcast_en.dropped_self_mac,
host_stats->mcast_en.dropped_self_mac);
DP_STATS_INC(vdev, tx_i.mcast_en.dropped_send_fail,
host_stats->mcast_en.dropped_send_fail);
DP_STATS_INC(vdev, tx_i.mcast_en.ucast,
host_stats->mcast_en.ucast);
DP_STATS_INC(vdev, tx_i.mcast_en.fail_seg_alloc,
host_stats->mcast_en.fail_seg_alloc);
DP_STATS_INC(vdev, tx_i.mcast_en.clone_fail,
host_stats->mcast_en.clone_fail);
}
/* dp_txrx_update_vdev_igmp_me_stats(): Update vdev IGMP ME stats sent from CDP
* @vdev: DP vdev handle
* @buf: buffer containing specific stats structure
*
* Returns: void
*/
static void dp_txrx_update_vdev_igmp_me_stats(struct dp_vdev *vdev,
void *buf)
{
struct cdp_tx_ingress_stats *host_stats = NULL;
if (!buf) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid host stats buf");
return;
}
host_stats = (struct cdp_tx_ingress_stats *)buf;
DP_STATS_INC(vdev, tx_i.igmp_mcast_en.igmp_rcvd,
host_stats->igmp_mcast_en.igmp_rcvd);
DP_STATS_INC(vdev, tx_i.igmp_mcast_en.igmp_ucast_converted,
host_stats->igmp_mcast_en.igmp_ucast_converted);
}
/* dp_txrx_update_vdev_host_stats(): Update stats sent through CDP
* @soc: DP soc handle
* @vdev_id: id of DP vdev handle
* @buf: buffer containing specific stats structure
* @stats_id: stats type
*
* Returns: QDF_STATUS
*/
static QDF_STATUS dp_txrx_update_vdev_host_stats(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
void *buf,
uint16_t stats_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid vdev handle");
return QDF_STATUS_E_FAILURE;
}
switch (stats_id) {
case DP_VDEV_STATS_PKT_CNT_ONLY:
break;
case DP_VDEV_STATS_TX_ME:
dp_txrx_update_vdev_me_stats(vdev, buf);
dp_txrx_update_vdev_igmp_me_stats(vdev, buf);
break;
default:
qdf_info("Invalid stats_id %d", stats_id);
break;
}
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/* dp_txrx_get_peer_stats - will return cdp_peer_stats
* @soc: soc handle
* @vdev_id: id of vdev handle
* @peer_mac: mac of DP_PEER handle
* @peer_stats: buffer to copy to
* return : status success/failure
*/
static QDF_STATUS
dp_txrx_get_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
uint8_t *peer_mac, struct cdp_peer_stats *peer_stats)
{
QDF_STATUS status = QDF_STATUS_SUCCESS;
struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
peer_mac, 0, vdev_id,
DP_MOD_ID_CDP);
if (!peer)
return QDF_STATUS_E_FAILURE;
qdf_mem_copy(peer_stats, &peer->stats,
sizeof(struct cdp_peer_stats));
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return status;
}
/* dp_txrx_get_peer_stats_param - will return specified cdp_peer_stats
* @param soc - soc handle
* @param vdev_id - vdev_id of vdev object
* @param peer_mac - mac address of the peer
* @param type - enum of required stats
* @param buf - buffer to hold the value
* return : status success/failure
*/
static QDF_STATUS
dp_txrx_get_peer_stats_param(struct cdp_soc_t *soc, uint8_t vdev_id,
uint8_t *peer_mac, enum cdp_peer_stats_type type,
cdp_peer_stats_param_t *buf)
{
QDF_STATUS ret = QDF_STATUS_SUCCESS;
struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
peer_mac, 0, vdev_id,
DP_MOD_ID_CDP);
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid Peer for Mac "QDF_MAC_ADDR_FMT,
QDF_MAC_ADDR_REF(peer_mac));
return QDF_STATUS_E_FAILURE;
} else if (type < cdp_peer_stats_max) {
switch (type) {
case cdp_peer_tx_ucast:
buf->tx_ucast = peer->stats.tx.ucast;
break;
case cdp_peer_tx_mcast:
buf->tx_mcast = peer->stats.tx.mcast;
break;
case cdp_peer_tx_rate:
buf->tx_rate = peer->stats.tx.tx_rate;
break;
case cdp_peer_tx_last_tx_rate:
buf->last_tx_rate = peer->stats.tx.last_tx_rate;
break;
case cdp_peer_tx_inactive_time:
buf->tx_inactive_time = peer->stats.tx.inactive_time;
break;
case cdp_peer_tx_ratecode:
buf->tx_ratecode = peer->stats.tx.tx_ratecode;
break;
case cdp_peer_tx_flags:
buf->tx_flags = peer->stats.tx.tx_flags;
break;
case cdp_peer_tx_power:
buf->tx_power = peer->stats.tx.tx_power;
break;
case cdp_peer_rx_rate:
buf->rx_rate = peer->stats.rx.rx_rate;
break;
case cdp_peer_rx_last_rx_rate:
buf->last_rx_rate = peer->stats.rx.last_rx_rate;
break;
case cdp_peer_rx_ratecode:
buf->rx_ratecode = peer->stats.rx.rx_ratecode;
break;
case cdp_peer_rx_ucast:
buf->rx_ucast = peer->stats.rx.unicast;
break;
case cdp_peer_rx_flags:
buf->rx_flags = peer->stats.rx.rx_flags;
break;
case cdp_peer_rx_avg_rssi:
buf->rx_avg_rssi = peer->stats.rx.avg_rssi;
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid value");
ret = QDF_STATUS_E_FAILURE;
break;
}
} else {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid value");
ret = QDF_STATUS_E_FAILURE;
}
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return ret;
}
/* dp_txrx_reset_peer_stats - reset cdp_peer_stats for particular peer
* @soc: soc handle
* @vdev_id: id of vdev handle
* @peer_mac: mac of DP_PEER handle
*
* return : QDF_STATUS
*/
static QDF_STATUS
dp_txrx_reset_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
uint8_t *peer_mac)
{
QDF_STATUS status = QDF_STATUS_SUCCESS;
struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
peer_mac, 0, vdev_id,
DP_MOD_ID_CDP);
if (!peer)
return QDF_STATUS_E_FAILURE;
qdf_mem_zero(&peer->stats, sizeof(peer->stats));
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return status;
}
/* dp_txrx_get_vdev_stats - Update buffer with cdp_vdev_stats
* @vdev_handle: DP_VDEV handle
* @buf: buffer for vdev stats
*
* return : int
*/
static int dp_txrx_get_vdev_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
void *buf, bool is_aggregate)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct cdp_vdev_stats *vdev_stats;
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev)
return 1;
vdev_stats = (struct cdp_vdev_stats *)buf;
if (is_aggregate) {
dp_aggregate_vdev_stats(vdev, buf);
} else {
qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats));
}
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return 0;
}
/*
* dp_get_total_per(): get total per
* @soc: DP soc handle
* @pdev_id: id of DP_PDEV handle
*
* Return: % error rate using retries per packet and success packets
*/
static int dp_get_total_per(struct cdp_soc_t *soc, uint8_t pdev_id)
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return 0;
dp_aggregate_pdev_stats(pdev);
if ((pdev->stats.tx.tx_success.num + pdev->stats.tx.retries) == 0)
return 0;
return ((pdev->stats.tx.retries * 100) /
((pdev->stats.tx.tx_success.num) + (pdev->stats.tx.retries)));
}
/*
* dp_txrx_stats_publish(): publish pdev stats into a buffer
* @soc: DP soc handle
* @pdev_id: id of DP_PDEV handle
* @buf: to hold pdev_stats
*
* Return: int
*/
static int
dp_txrx_stats_publish(struct cdp_soc_t *soc, uint8_t pdev_id,
struct cdp_stats_extd *buf)
{
struct cdp_txrx_stats_req req = {0,};
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return TXRX_STATS_LEVEL_OFF;
dp_aggregate_pdev_stats(pdev);
req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_TX;
req.cookie_val = DBG_STATS_COOKIE_DP_STATS;
dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
req.param1, req.param2, req.param3, 0,
req.cookie_val, 0);
msleep(DP_MAX_SLEEP_TIME);
req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_RX;
req.cookie_val = DBG_STATS_COOKIE_DP_STATS;
dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
req.param1, req.param2, req.param3, 0,
req.cookie_val, 0);
msleep(DP_MAX_SLEEP_TIME);
qdf_mem_copy(buf, &pdev->stats, sizeof(struct cdp_pdev_stats));
return TXRX_STATS_LEVEL;
}
/**
* dp_set_pdev_dscp_tid_map_wifi3(): update dscp tid map in pdev
* @soc: soc handle
* @pdev_id: id of DP_PDEV handle
* @map_id: ID of map that needs to be updated
* @tos: index value in map
* @tid: tid value passed by the user
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_set_pdev_dscp_tid_map_wifi3(struct cdp_soc_t *soc_handle,
uint8_t pdev_id,
uint8_t map_id,
uint8_t tos, uint8_t tid)
{
uint8_t dscp;
struct dp_soc *soc = (struct dp_soc *)soc_handle;
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
dscp = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
pdev->dscp_tid_map[map_id][dscp] = tid;
if (map_id < soc->num_hw_dscp_tid_map)
hal_tx_update_dscp_tid(soc->hal_soc, tid,
map_id, dscp);
else
return QDF_STATUS_E_FAILURE;
return QDF_STATUS_SUCCESS;
}
/**
* dp_fw_stats_process(): Process TxRX FW stats request
* @vdev_handle: DP VDEV handle
* @req: stats request
*
* return: int
*/
static int dp_fw_stats_process(struct dp_vdev *vdev,
struct cdp_txrx_stats_req *req)
{
struct dp_pdev *pdev = NULL;
uint32_t stats = req->stats;
uint8_t mac_id = req->mac_id;
if (!vdev) {
DP_TRACE(NONE, "VDEV not found");
return 1;
}
pdev = vdev->pdev;
/*
* For HTT_DBG_EXT_STATS_RESET command, FW need to config
* from param0 to param3 according to below rule:
*
* PARAM:
* - config_param0 : start_offset (stats type)
* - config_param1 : stats bmask from start offset
* - config_param2 : stats bmask from start offset + 32
* - config_param3 : stats bmask from start offset + 64
*/
if (req->stats == CDP_TXRX_STATS_0) {
req->param0 = HTT_DBG_EXT_STATS_PDEV_TX;
req->param1 = 0xFFFFFFFF;
req->param2 = 0xFFFFFFFF;
req->param3 = 0xFFFFFFFF;
} else if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_TX_MU) {
req->param0 = HTT_DBG_EXT_STATS_SET_VDEV_MASK(vdev->vdev_id);
}
if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT) {
return dp_h2t_ext_stats_msg_send(pdev,
HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT,
req->param0, req->param1, req->param2,
req->param3, 0, DBG_STATS_COOKIE_DEFAULT,
mac_id);
} else {
return dp_h2t_ext_stats_msg_send(pdev, stats, req->param0,
req->param1, req->param2, req->param3,
0, DBG_STATS_COOKIE_DEFAULT, mac_id);
}
}
/**
* dp_txrx_stats_request - function to map to firmware and host stats
* @soc: soc handle
* @vdev_id: virtual device ID
* @req: stats request
*
* Return: QDF_STATUS
*/
static
QDF_STATUS dp_txrx_stats_request(struct cdp_soc_t *soc_handle,
uint8_t vdev_id,
struct cdp_txrx_stats_req *req)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_handle);
int host_stats;
int fw_stats;
enum cdp_stats stats;
int num_stats;
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
QDF_STATUS status = QDF_STATUS_E_INVAL;
if (!vdev || !req) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid vdev/req instance");
status = QDF_STATUS_E_INVAL;
goto fail0;
}
if (req->mac_id >= WLAN_CFG_MAC_PER_TARGET) {
dp_err("Invalid mac id request");
status = QDF_STATUS_E_INVAL;
goto fail0;
}
stats = req->stats;
if (stats >= CDP_TXRX_MAX_STATS) {
status = QDF_STATUS_E_INVAL;
goto fail0;
}
/*
* DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
* has to be updated if new FW HTT stats added
*/
if (stats > CDP_TXRX_STATS_HTT_MAX)
stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
num_stats = QDF_ARRAY_SIZE(dp_stats_mapping_table);
if (stats >= num_stats) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Invalid stats option: %d", __func__, stats);
status = QDF_STATUS_E_INVAL;
goto fail0;
}
req->stats = stats;
fw_stats = dp_stats_mapping_table[stats][STATS_FW];
host_stats = dp_stats_mapping_table[stats][STATS_HOST];
dp_info("stats: %u fw_stats_type: %d host_stats: %d",
stats, fw_stats, host_stats);
if (fw_stats != TXRX_FW_STATS_INVALID) {
/* update request with FW stats type */
req->stats = fw_stats;
status = dp_fw_stats_process(vdev, req);
} else if ((host_stats != TXRX_HOST_STATS_INVALID) &&
(host_stats <= TXRX_HOST_STATS_MAX))
status = dp_print_host_stats(vdev, req, soc);
else
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"Wrong Input for TxRx Stats");
fail0:
if (vdev)
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return status;
}
/*
* dp_txrx_dump_stats() - Dump statistics
* @value - Statistics option
*/
static QDF_STATUS dp_txrx_dump_stats(struct cdp_soc_t *psoc, uint16_t value,
enum qdf_stats_verbosity_level level)
{
struct dp_soc *soc =
(struct dp_soc *)psoc;
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (!soc) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: soc is NULL", __func__);
return QDF_STATUS_E_INVAL;
}
switch (value) {
case CDP_TXRX_PATH_STATS:
dp_txrx_path_stats(soc);
dp_print_soc_interrupt_stats(soc);
hal_dump_reg_write_stats(soc->hal_soc);
break;
case CDP_RX_RING_STATS:
dp_print_per_ring_stats(soc);
break;
case CDP_TXRX_TSO_STATS:
dp_print_tso_stats(soc, level);
break;
case CDP_DUMP_TX_FLOW_POOL_INFO:
if (level == QDF_STATS_VERBOSITY_LEVEL_HIGH)
cdp_dump_flow_pool_info((struct cdp_soc_t *)soc);
break;
case CDP_DP_NAPI_STATS:
dp_print_napi_stats(soc);
break;
case CDP_TXRX_DESC_STATS:
/* TODO: NOT IMPLEMENTED */
break;
case CDP_DP_RX_FISA_STATS:
dp_rx_dump_fisa_stats(soc);
break;
case CDP_DP_SWLM_STATS:
dp_print_swlm_stats(soc);
break;
default:
status = QDF_STATUS_E_INVAL;
break;
}
return status;
}
/**
* dp_txrx_clear_dump_stats() - clear dumpStats
* @soc- soc handle
* @value - stats option
*
* Return: 0 - Success, non-zero - failure
*/
static
QDF_STATUS dp_txrx_clear_dump_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
uint8_t value)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (!soc) {
dp_err("soc is NULL");
return QDF_STATUS_E_INVAL;
}
switch (value) {
case CDP_TXRX_TSO_STATS:
dp_txrx_clear_tso_stats(soc);
break;
default:
status = QDF_STATUS_E_INVAL;
break;
}
return status;
}
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
/**
* dp_update_flow_control_parameters() - API to store datapath
* config parameters
* @soc: soc handle
* @cfg: ini parameter handle
*
* Return: void
*/
static inline
void dp_update_flow_control_parameters(struct dp_soc *soc,
struct cdp_config_params *params)
{
soc->wlan_cfg_ctx->tx_flow_stop_queue_threshold =
params->tx_flow_stop_queue_threshold;
soc->wlan_cfg_ctx->tx_flow_start_queue_offset =
params->tx_flow_start_queue_offset;
}
#else
static inline
void dp_update_flow_control_parameters(struct dp_soc *soc,
struct cdp_config_params *params)
{
}
#endif
#ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
/* Max packet limit for TX Comp packet loop (dp_tx_comp_handler) */
#define DP_TX_COMP_LOOP_PKT_LIMIT_MAX 1024
/* Max packet limit for RX REAP Loop (dp_rx_process) */
#define DP_RX_REAP_LOOP_PKT_LIMIT_MAX 1024
static
void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
struct cdp_config_params *params)
{
soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit =
params->tx_comp_loop_pkt_limit;
if (params->tx_comp_loop_pkt_limit < DP_TX_COMP_LOOP_PKT_LIMIT_MAX)
soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = true;
else
soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = false;
soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit =
params->rx_reap_loop_pkt_limit;
if (params->rx_reap_loop_pkt_limit < DP_RX_REAP_LOOP_PKT_LIMIT_MAX)
soc->wlan_cfg_ctx->rx_enable_eol_data_check = true;
else
soc->wlan_cfg_ctx->rx_enable_eol_data_check = false;
soc->wlan_cfg_ctx->rx_hp_oos_update_limit =
params->rx_hp_oos_update_limit;
dp_info("tx_comp_loop_pkt_limit %u tx_comp_enable_eol_data_check %u rx_reap_loop_pkt_limit %u rx_enable_eol_data_check %u rx_hp_oos_update_limit %u",
soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit,
soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check,
soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit,
soc->wlan_cfg_ctx->rx_enable_eol_data_check,
soc->wlan_cfg_ctx->rx_hp_oos_update_limit);
}
#else
static inline
void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
struct cdp_config_params *params)
{ }
#endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
/**
* dp_update_config_parameters() - API to store datapath
* config parameters
* @soc: soc handle
* @cfg: ini parameter handle
*
* Return: status
*/
static
QDF_STATUS dp_update_config_parameters(struct cdp_soc *psoc,
struct cdp_config_params *params)
{
struct dp_soc *soc = (struct dp_soc *)psoc;
if (!(soc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Invalid handle", __func__);
return QDF_STATUS_E_INVAL;
}
soc->wlan_cfg_ctx->tso_enabled = params->tso_enable;
soc->wlan_cfg_ctx->lro_enabled = params->lro_enable;
soc->wlan_cfg_ctx->rx_hash = params->flow_steering_enable;
soc->wlan_cfg_ctx->p2p_tcp_udp_checksumoffload =
params->p2p_tcp_udp_checksumoffload;
soc->wlan_cfg_ctx->nan_tcp_udp_checksumoffload =
params->nan_tcp_udp_checksumoffload;
soc->wlan_cfg_ctx->tcp_udp_checksumoffload =
params->tcp_udp_checksumoffload;
soc->wlan_cfg_ctx->napi_enabled = params->napi_enable;
soc->wlan_cfg_ctx->ipa_enabled = params->ipa_enable;
soc->wlan_cfg_ctx->gro_enabled = params->gro_enable;
dp_update_rx_soft_irq_limit_params(soc, params);
dp_update_flow_control_parameters(soc, params);
return QDF_STATUS_SUCCESS;
}
static struct cdp_wds_ops dp_ops_wds = {
.vdev_set_wds = dp_vdev_set_wds,
#ifdef WDS_VENDOR_EXTENSION
.txrx_set_wds_rx_policy = dp_txrx_set_wds_rx_policy,
.txrx_wds_peer_tx_policy_update = dp_txrx_peer_wds_tx_policy_update,
#endif
};
/*
* dp_txrx_data_tx_cb_set(): set the callback for non standard tx
* @soc_hdl - datapath soc handle
* @vdev_id - virtual interface id
* @callback - callback function
* @ctxt: callback context
*
*/
static void
dp_txrx_data_tx_cb_set(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
ol_txrx_data_tx_cb callback, void *ctxt)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev)
return;
vdev->tx_non_std_data_callback.func = callback;
vdev->tx_non_std_data_callback.ctxt = ctxt;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
}
/**
* dp_pdev_get_dp_txrx_handle() - get dp handle from pdev
* @soc: datapath soc handle
* @pdev_id: id of datapath pdev handle
*
* Return: opaque pointer to dp txrx handle
*/
static void *dp_pdev_get_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id)
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (qdf_unlikely(!pdev))
return NULL;
return pdev->dp_txrx_handle;
}
/**
* dp_pdev_set_dp_txrx_handle() - set dp handle in pdev
* @soc: datapath soc handle
* @pdev_id: id of datapath pdev handle
* @dp_txrx_hdl: opaque pointer for dp_txrx_handle
*
* Return: void
*/
static void
dp_pdev_set_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id,
void *dp_txrx_hdl)
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return;
pdev->dp_txrx_handle = dp_txrx_hdl;
}
/**
* dp_vdev_get_dp_ext_handle() - get dp handle from vdev
* @soc: datapath soc handle
* @vdev_id: vdev id
*
* Return: opaque pointer to dp txrx handle
*/
static void *dp_vdev_get_dp_ext_handle(ol_txrx_soc_handle soc_hdl,
uint8_t vdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
void *dp_ext_handle;
if (!vdev)
return NULL;
dp_ext_handle = vdev->vdev_dp_ext_handle;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return dp_ext_handle;
}
/**
* dp_vdev_set_dp_ext_handle() - set dp handle in vdev
* @soc: datapath soc handle
* @vdev_id: vdev id
* @size: size of advance dp handle
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_vdev_set_dp_ext_handle(ol_txrx_soc_handle soc_hdl, uint8_t vdev_id,
uint16_t size)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
void *dp_ext_handle;
if (!vdev)
return QDF_STATUS_E_FAILURE;
dp_ext_handle = qdf_mem_malloc(size);
if (!dp_ext_handle) {
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_E_FAILURE;
}
vdev->vdev_dp_ext_handle = dp_ext_handle;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/**
* dp_vdev_inform_ll_conn() - Inform vdev to add/delete a latency critical
* connection for this vdev
* @soc_hdl: CDP soc handle
* @vdev_id: vdev ID
* @action: Add/Delete action
*
* Returns: QDF_STATUS.
*/
static QDF_STATUS
dp_vdev_inform_ll_conn(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
enum vdev_ll_conn_actions action)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev) {
dp_err("LL connection action for invalid vdev %d", vdev_id);
return QDF_STATUS_E_FAILURE;
}
switch (action) {
case CDP_VDEV_LL_CONN_ADD:
vdev->num_latency_critical_conn++;
break;
case CDP_VDEV_LL_CONN_DEL:
vdev->num_latency_critical_conn--;
break;
default:
dp_err("LL connection action invalid %d", action);
break;
}
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
#ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
/**
* dp_soc_set_swlm_enable() - Enable/Disable SWLM if initialized.
* @soc_hdl: CDP Soc handle
* @value: Enable/Disable value
*
* Returns: QDF_STATUS
*/
static QDF_STATUS dp_soc_set_swlm_enable(struct cdp_soc_t *soc_hdl,
uint8_t value)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
if (!soc->swlm.is_init) {
dp_err("SWLM is not initialized");
return QDF_STATUS_E_FAILURE;
}
soc->swlm.is_enabled = !!value;
return QDF_STATUS_SUCCESS;
}
/**
* dp_soc_is_swlm_enabled() - Check if SWLM is enabled.
* @soc_hdl: CDP Soc handle
*
* Returns: QDF_STATUS
*/
static uint8_t dp_soc_is_swlm_enabled(struct cdp_soc_t *soc_hdl)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
return soc->swlm.is_enabled;
}
#endif
/**
* dp_display_srng_info() - Dump the srng HP TP info
* @soc_hdl: CDP Soc handle
*
* This function dumps the SW hp/tp values for the important rings.
* HW hp/tp values are not being dumped, since it can lead to
* READ NOC error when UMAC is in low power state. MCC does not have
* device force wake working yet.
*
* Return: none
*/
static void dp_display_srng_info(struct cdp_soc_t *soc_hdl)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
hal_soc_handle_t hal_soc = soc->hal_soc;
uint32_t hp, tp, i;
dp_info("SRNG HP-TP data:");
for (i = 0; i < soc->num_tcl_data_rings; i++) {
hal_get_sw_hptp(hal_soc, soc->tcl_data_ring[i].hal_srng,
&hp, &tp);
dp_info("TCL DATA ring[%d]: hp=0x%x, tp=0x%x", i, hp, tp);
hal_get_sw_hptp(hal_soc, soc->tx_comp_ring[i].hal_srng,
&hp, &tp);
dp_info("TX comp ring[%d]: hp=0x%x, tp=0x%x", i, hp, tp);
}
for (i = 0; i < soc->num_reo_dest_rings; i++) {
hal_get_sw_hptp(hal_soc, soc->reo_dest_ring[i].hal_srng,
&hp, &tp);
dp_info("REO DST ring[%d]: hp=0x%x, tp=0x%x", i, hp, tp);
}
hal_get_sw_hptp(hal_soc, soc->reo_exception_ring.hal_srng, &hp, &tp);
dp_info("REO exception ring: hp=0x%x, tp=0x%x", hp, tp);
hal_get_sw_hptp(hal_soc, soc->rx_rel_ring.hal_srng, &hp, &tp);
dp_info("WBM RX release ring: hp=0x%x, tp=0x%x", hp, tp);
hal_get_sw_hptp(hal_soc, soc->wbm_desc_rel_ring.hal_srng, &hp, &tp);
dp_info("WBM desc release ring: hp=0x%x, tp=0x%x", hp, tp);
}
/**
* dp_soc_get_dp_txrx_handle() - get context for external-dp from dp soc
* @soc_handle: datapath soc handle
*
* Return: opaque pointer to external dp (non-core DP)
*/
static void *dp_soc_get_dp_txrx_handle(struct cdp_soc *soc_handle)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
return soc->external_txrx_handle;
}
/**
* dp_soc_set_dp_txrx_handle() - set external dp handle in soc
* @soc_handle: datapath soc handle
* @txrx_handle: opaque pointer to external dp (non-core DP)
*
* Return: void
*/
static void
dp_soc_set_dp_txrx_handle(struct cdp_soc *soc_handle, void *txrx_handle)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
soc->external_txrx_handle = txrx_handle;
}
/**
* dp_soc_map_pdev_to_lmac() - Save pdev_id to lmac_id mapping
* @soc_hdl: datapath soc handle
* @pdev_id: id of the datapath pdev handle
* @lmac_id: lmac id
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_soc_map_pdev_to_lmac
(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
uint32_t lmac_id)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
wlan_cfg_set_hw_mac_idx(soc->wlan_cfg_ctx,
pdev_id,
lmac_id);
/*Set host PDEV ID for lmac_id*/
wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
pdev_id,
lmac_id);
return QDF_STATUS_SUCCESS;
}
/**
* dp_soc_handle_pdev_mode_change() - Update pdev to lmac mapping
* @soc_hdl: datapath soc handle
* @pdev_id: id of the datapath pdev handle
* @lmac_id: lmac id
*
* In the event of a dynamic mode change, update the pdev to lmac mapping
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_soc_handle_pdev_mode_change
(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
uint32_t lmac_id)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_vdev *vdev = NULL;
uint8_t hw_pdev_id, mac_id;
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc,
pdev_id);
int nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
if (qdf_unlikely(!pdev))
return QDF_STATUS_E_FAILURE;
pdev->lmac_id = lmac_id;
pdev->target_pdev_id =
dp_calculate_target_pdev_id_from_host_pdev_id(soc, pdev_id);
dp_info(" mode change %d %d\n", pdev->pdev_id, pdev->lmac_id);
/*Set host PDEV ID for lmac_id*/
wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
pdev->pdev_id,
lmac_id);
hw_pdev_id =
dp_get_target_pdev_id_for_host_pdev_id(soc,
pdev->pdev_id);
/*
* When NSS offload is enabled, send pdev_id->lmac_id
* and pdev_id to hw_pdev_id to NSS FW
*/
if (nss_config) {
mac_id = pdev->lmac_id;
if (soc->cdp_soc.ol_ops->pdev_update_lmac_n_target_pdev_id)
soc->cdp_soc.ol_ops->
pdev_update_lmac_n_target_pdev_id(
soc->ctrl_psoc,
&pdev_id, &mac_id, &hw_pdev_id);
}
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
HTT_TX_TCL_METADATA_PDEV_ID_SET(vdev->htt_tcl_metadata,
hw_pdev_id);
vdev->lmac_id = pdev->lmac_id;
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
return QDF_STATUS_SUCCESS;
}
/**
* dp_soc_set_pdev_status_down() - set pdev down/up status
* @soc: datapath soc handle
* @pdev_id: id of datapath pdev handle
* @is_pdev_down: pdev down/up status
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_soc_set_pdev_status_down(struct cdp_soc_t *soc, uint8_t pdev_id,
bool is_pdev_down)
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
pdev->is_pdev_down = is_pdev_down;
return QDF_STATUS_SUCCESS;
}
/**
* dp_get_cfg_capabilities() - get dp capabilities
* @soc_handle: datapath soc handle
* @dp_caps: enum for dp capabilities
*
* Return: bool to determine if dp caps is enabled
*/
static bool
dp_get_cfg_capabilities(struct cdp_soc_t *soc_handle,
enum cdp_capabilities dp_caps)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
return wlan_cfg_get_dp_caps(soc->wlan_cfg_ctx, dp_caps);
}
#ifdef FEATURE_AST
static QDF_STATUS
dp_peer_teardown_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
uint8_t *peer_mac)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
QDF_STATUS status = QDF_STATUS_SUCCESS;
struct dp_peer *peer =
dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
DP_MOD_ID_CDP);
/* Peer can be null for monitor vap mac address */
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
"%s: Invalid peer\n", __func__);
return QDF_STATUS_E_FAILURE;
}
dp_peer_update_state(soc, peer, DP_PEER_STATE_LOGICAL_DELETE);
qdf_spin_lock_bh(&soc->ast_lock);
dp_peer_delete_ast_entries(soc, peer);
qdf_spin_unlock_bh(&soc->ast_lock);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return status;
}
#endif
#ifdef ATH_SUPPORT_NAC_RSSI
/**
* dp_vdev_get_neighbour_rssi(): Store RSSI for configured NAC
* @soc_hdl: DP soc handle
* @vdev_id: id of DP vdev handle
* @mac_addr: neighbour mac
* @rssi: rssi value
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_vdev_get_neighbour_rssi(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
char *mac_addr,
uint8_t *rssi)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
struct dp_pdev *pdev;
struct dp_neighbour_peer *peer = NULL;
QDF_STATUS status = QDF_STATUS_E_FAILURE;
if (!vdev)
return status;
pdev = vdev->pdev;
*rssi = 0;
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem) {
if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
mac_addr, QDF_MAC_ADDR_SIZE) == 0) {
*rssi = peer->rssi;
status = QDF_STATUS_SUCCESS;
break;
}
}
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return status;
}
static QDF_STATUS
dp_config_for_nac_rssi(struct cdp_soc_t *cdp_soc,
uint8_t vdev_id,
enum cdp_nac_param_cmd cmd, char *bssid,
char *client_macaddr,
uint8_t chan_num)
{
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
struct dp_pdev *pdev;
if (!vdev)
return QDF_STATUS_E_FAILURE;
pdev = (struct dp_pdev *)vdev->pdev;
pdev->nac_rssi_filtering = 1;
/* Store address of NAC (neighbour peer) which will be checked
* against TA of received packets.
*/
if (cmd == CDP_NAC_PARAM_ADD) {
dp_update_filter_neighbour_peers(cdp_soc, vdev->vdev_id,
DP_NAC_PARAM_ADD,
(uint8_t *)client_macaddr);
} else if (cmd == CDP_NAC_PARAM_DEL) {
dp_update_filter_neighbour_peers(cdp_soc, vdev->vdev_id,
DP_NAC_PARAM_DEL,
(uint8_t *)client_macaddr);
}
if (soc->cdp_soc.ol_ops->config_bssid_in_fw_for_nac_rssi)
soc->cdp_soc.ol_ops->config_bssid_in_fw_for_nac_rssi
(soc->ctrl_psoc, pdev->pdev_id,
vdev->vdev_id, cmd, bssid, client_macaddr);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
#endif
/**
* dp_enable_peer_based_pktlog() - Set Flag for peer based filtering
* for pktlog
* @soc: cdp_soc handle
* @pdev_id: id of dp pdev handle
* @mac_addr: Peer mac address
* @enb_dsb: Enable or disable peer based filtering
*
* Return: QDF_STATUS
*/
static int
dp_enable_peer_based_pktlog(struct cdp_soc_t *soc, uint8_t pdev_id,
uint8_t *mac_addr, uint8_t enb_dsb)
{
struct dp_peer *peer;
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
peer = dp_peer_find_hash_find((struct dp_soc *)soc, mac_addr,
0, DP_VDEV_ALL, DP_MOD_ID_CDP);
if (!peer) {
dp_err("Invalid Peer");
return QDF_STATUS_E_FAILURE;
}
peer->peer_based_pktlog_filter = enb_dsb;
pdev->dp_peer_based_pktlog = enb_dsb;
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
#ifndef WLAN_SUPPORT_RX_TAG_STATISTICS
/**
* dp_dump_pdev_rx_protocol_tag_stats - dump the number of packets tagged for
* given protocol type (RX_PROTOCOL_TAG_ALL indicates for all protocol)
* @soc: cdp_soc handle
* @pdev_id: id of cdp_pdev handle
* @protocol_type: protocol type for which stats should be displayed
*
* Return: none
*/
static inline void
dp_dump_pdev_rx_protocol_tag_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
uint16_t protocol_type)
{
}
#endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
#ifndef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
/**
* dp_update_pdev_rx_protocol_tag - Add/remove a protocol tag that should be
* applied to the desired protocol type packets
* @soc: soc handle
* @pdev_id: id of cdp_pdev handle
* @enable_rx_protocol_tag - bitmask that indicates what protocol types
* are enabled for tagging. zero indicates disable feature, non-zero indicates
* enable feature
* @protocol_type: new protocol type for which the tag is being added
* @tag: user configured tag for the new protocol
*
* Return: Success
*/
static inline QDF_STATUS
dp_update_pdev_rx_protocol_tag(struct cdp_soc_t *soc, uint8_t pdev_id,
uint32_t enable_rx_protocol_tag,
uint16_t protocol_type,
uint16_t tag)
{
return QDF_STATUS_SUCCESS;
}
#endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
#ifndef WLAN_SUPPORT_RX_FLOW_TAG
/**
* dp_set_rx_flow_tag - add/delete a flow
* @soc: soc handle
* @pdev_id: id of cdp_pdev handle
* @flow_info: flow tuple that is to be added to/deleted from flow search table
*
* Return: Success
*/
static inline QDF_STATUS
dp_set_rx_flow_tag(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
struct cdp_rx_flow_info *flow_info)
{
return QDF_STATUS_SUCCESS;
}
/**
* dp_dump_rx_flow_tag_stats - dump the number of packets tagged for
* given flow 5-tuple
* @cdp_soc: soc handle
* @pdev_id: id of cdp_pdev handle
* @flow_info: flow 5-tuple for which stats should be displayed
*
* Return: Success
*/
static inline QDF_STATUS
dp_dump_rx_flow_tag_stats(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
struct cdp_rx_flow_info *flow_info)
{
return QDF_STATUS_SUCCESS;
}
#endif /* WLAN_SUPPORT_RX_FLOW_TAG */
static QDF_STATUS dp_peer_map_attach_wifi3(struct cdp_soc_t *soc_hdl,
uint32_t max_peers,
uint32_t max_ast_index,
bool peer_map_unmap_v2)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
soc->max_peers = max_peers;
qdf_print ("%s max_peers %u, max_ast_index: %u\n",
__func__, max_peers, max_ast_index);
wlan_cfg_set_max_ast_idx(soc->wlan_cfg_ctx, max_ast_index);
if (dp_peer_find_attach(soc))
return QDF_STATUS_E_FAILURE;
soc->is_peer_map_unmap_v2 = peer_map_unmap_v2;
soc->peer_map_attach_success = TRUE;
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS dp_soc_set_param(struct cdp_soc_t *soc_hdl,
enum cdp_soc_param_t param,
uint32_t value)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
switch (param) {
case DP_SOC_PARAM_MSDU_EXCEPTION_DESC:
soc->num_msdu_exception_desc = value;
dp_info("num_msdu exception_desc %u",
value);
break;
case DP_SOC_PARAM_CMEM_FSE_SUPPORT:
if (wlan_cfg_is_fst_in_cmem_enabled(soc->wlan_cfg_ctx))
soc->fst_in_cmem = !!value;
dp_info("FW supports CMEM FSE %u", value);
break;
default:
dp_info("not handled param %d ", param);
break;
}
return QDF_STATUS_SUCCESS;
}
static void dp_soc_set_rate_stats_ctx(struct cdp_soc_t *soc_handle,
void *stats_ctx)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
soc->rate_stats_ctx = (struct cdp_soc_rate_stats_ctx *)stats_ctx;
}
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
/**
* dp_peer_flush_rate_stats_req(): Flush peer rate stats
* @soc: Datapath SOC handle
* @peer: Datapath peer
* @arg: argument to iter function
*
* Return: QDF_STATUS
*/
static void
dp_peer_flush_rate_stats_req(struct dp_soc *soc, struct dp_peer *peer,
void *arg)
{
if (peer->bss_peer)
return;
dp_wdi_event_handler(
WDI_EVENT_FLUSH_RATE_STATS_REQ,
soc, peer->rdkstats_ctx,
peer->peer_id,
WDI_NO_VAL, peer->vdev->pdev->pdev_id);
}
/**
* dp_flush_rate_stats_req(): Flush peer rate stats in pdev
* @soc_hdl: Datapath SOC handle
* @pdev_id: pdev_id
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
uint8_t pdev_id)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
dp_pdev_iterate_peer(pdev, dp_peer_flush_rate_stats_req, NULL,
DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
#else
static inline QDF_STATUS
dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
uint8_t pdev_id)
{
return QDF_STATUS_SUCCESS;
}
#endif
static void *dp_peer_get_rdkstats_ctx(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint8_t *mac_addr)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_peer *peer;
void *rdkstats_ctx = NULL;
if (mac_addr) {
peer = dp_peer_find_hash_find(soc, mac_addr,
0, vdev_id,
DP_MOD_ID_CDP);
if (!peer)
return NULL;
rdkstats_ctx = peer->rdkstats_ctx;
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
}
return rdkstats_ctx;
}
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
static QDF_STATUS dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
uint8_t pdev_id,
void *buf)
{
dp_wdi_event_handler(WDI_EVENT_PEER_FLUSH_RATE_STATS,
(struct dp_soc *)soc, buf, HTT_INVALID_PEER,
WDI_NO_VAL, pdev_id);
return QDF_STATUS_SUCCESS;
}
#else
static inline QDF_STATUS
dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
uint8_t pdev_id,
void *buf)
{
return QDF_STATUS_SUCCESS;
}
#endif
static void *dp_soc_get_rate_stats_ctx(struct cdp_soc_t *soc_handle)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
return soc->rate_stats_ctx;
}
/*
* dp_get_cfg() - get dp cfg
* @soc: cdp soc handle
* @cfg: cfg enum
*
* Return: cfg value
*/
static uint32_t dp_get_cfg(struct cdp_soc_t *soc, enum cdp_dp_cfg cfg)
{
struct dp_soc *dpsoc = (struct dp_soc *)soc;
uint32_t value = 0;
switch (cfg) {
case cfg_dp_enable_data_stall:
value = dpsoc->wlan_cfg_ctx->enable_data_stall_detection;
break;
case cfg_dp_enable_p2p_ip_tcp_udp_checksum_offload:
value = dpsoc->wlan_cfg_ctx->p2p_tcp_udp_checksumoffload;
break;
case cfg_dp_enable_nan_ip_tcp_udp_checksum_offload:
value = dpsoc->wlan_cfg_ctx->nan_tcp_udp_checksumoffload;
break;
case cfg_dp_enable_ip_tcp_udp_checksum_offload:
value = dpsoc->wlan_cfg_ctx->tcp_udp_checksumoffload;
break;
case cfg_dp_disable_legacy_mode_csum_offload:
value = dpsoc->wlan_cfg_ctx->
legacy_mode_checksumoffload_disable;
break;
case cfg_dp_tso_enable:
value = dpsoc->wlan_cfg_ctx->tso_enabled;
break;
case cfg_dp_lro_enable:
value = dpsoc->wlan_cfg_ctx->lro_enabled;
break;
case cfg_dp_gro_enable:
value = dpsoc->wlan_cfg_ctx->gro_enabled;
break;
case cfg_dp_sg_enable:
value = dpsoc->wlan_cfg_ctx->sg_enabled;
break;
case cfg_dp_tx_flow_start_queue_offset:
value = dpsoc->wlan_cfg_ctx->tx_flow_start_queue_offset;
break;
case cfg_dp_tx_flow_stop_queue_threshold:
value = dpsoc->wlan_cfg_ctx->tx_flow_stop_queue_threshold;
break;
case cfg_dp_disable_intra_bss_fwd:
value = dpsoc->wlan_cfg_ctx->disable_intra_bss_fwd;
break;
case cfg_dp_pktlog_buffer_size:
value = dpsoc->wlan_cfg_ctx->pktlog_buffer_size;
break;
case cfg_dp_wow_check_rx_pending:
value = dpsoc->wlan_cfg_ctx->wow_check_rx_pending_enable;
break;
default:
value = 0;
}
return value;
}
#ifdef PEER_FLOW_CONTROL
/**
* dp_tx_flow_ctrl_configure_pdev() - Configure flow control params
* @soc_handle: datapath soc handle
* @pdev_id: id of datapath pdev handle
* @param: ol ath params
* @value: value of the flag
* @buff: Buffer to be passed
*
* Implemented this function same as legacy function. In legacy code, single
* function is used to display stats and update pdev params.
*
* Return: 0 for success. nonzero for failure.
*/
static uint32_t dp_tx_flow_ctrl_configure_pdev(struct cdp_soc_t *soc_handle,
uint8_t pdev_id,
enum _dp_param_t param,
uint32_t value, void *buff)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (qdf_unlikely(!pdev))
return 1;
soc = pdev->soc;
if (!soc)
return 1;
switch (param) {
#ifdef QCA_ENH_V3_STATS_SUPPORT
case DP_PARAM_VIDEO_DELAY_STATS_FC:
if (value)
pdev->delay_stats_flag = true;
else
pdev->delay_stats_flag = false;
break;
case DP_PARAM_VIDEO_STATS_FC:
qdf_print("------- TID Stats ------\n");
dp_pdev_print_tid_stats(pdev);
qdf_print("------ Delay Stats ------\n");
dp_pdev_print_delay_stats(pdev);
break;
#endif
case DP_PARAM_TOTAL_Q_SIZE:
{
uint32_t tx_min, tx_max;
tx_min = wlan_cfg_get_min_tx_desc(soc->wlan_cfg_ctx);
tx_max = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
if (!buff) {
if ((value >= tx_min) && (value <= tx_max)) {
pdev->num_tx_allowed = value;
} else {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_INFO,
"Failed to update num_tx_allowed, Q_min = %d Q_max = %d",
tx_min, tx_max);
break;
}
} else {
*(int *)buff = pdev->num_tx_allowed;
}
}
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s: not handled param %d ", __func__, param);
break;
}
return 0;
}
#endif
/**
* dp_set_pdev_pcp_tid_map_wifi3(): update pcp tid map in pdev
* @psoc: dp soc handle
* @pdev_id: id of DP_PDEV handle
* @pcp: pcp value
* @tid: tid value passed by the user
*
* Return: QDF_STATUS_SUCCESS on success
*/
static QDF_STATUS dp_set_pdev_pcp_tid_map_wifi3(ol_txrx_soc_handle psoc,
uint8_t pdev_id,
uint8_t pcp, uint8_t tid)
{
struct dp_soc *soc = (struct dp_soc *)psoc;
soc->pcp_tid_map[pcp] = tid;
hal_tx_update_pcp_tid_map(soc->hal_soc, pcp, tid);
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_vdev_pcp_tid_map_wifi3(): update pcp tid map in vdev
* @soc: DP soc handle
* @vdev_id: id of DP_VDEV handle
* @pcp: pcp value
* @tid: tid value passed by the user
*
* Return: QDF_STATUS_SUCCESS on success
*/
static QDF_STATUS dp_set_vdev_pcp_tid_map_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint8_t pcp, uint8_t tid)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev)
return QDF_STATUS_E_FAILURE;
vdev->pcp_tid_map[pcp] = tid;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
#ifdef QCA_SUPPORT_FULL_MON
static inline QDF_STATUS
dp_config_full_mon_mode(struct cdp_soc_t *soc_handle,
uint8_t val)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
soc->full_mon_mode = val;
qdf_alert("Configure full monitor mode val: %d ", val);
return QDF_STATUS_SUCCESS;
}
#else
static inline QDF_STATUS
dp_config_full_mon_mode(struct cdp_soc_t *soc_handle,
uint8_t val)
{
return 0;
}
#endif
static struct cdp_cmn_ops dp_ops_cmn = {
.txrx_soc_attach_target = dp_soc_attach_target_wifi3,
.txrx_vdev_attach = dp_vdev_attach_wifi3,
.txrx_vdev_detach = dp_vdev_detach_wifi3,
.txrx_pdev_attach = dp_pdev_attach_wifi3,
.txrx_pdev_post_attach = dp_pdev_post_attach_wifi3,
.txrx_pdev_detach = dp_pdev_detach_wifi3,
.txrx_pdev_deinit = dp_pdev_deinit_wifi3,
.txrx_peer_create = dp_peer_create_wifi3,
.txrx_peer_setup = dp_peer_setup_wifi3,
#ifdef FEATURE_AST
.txrx_peer_teardown = dp_peer_teardown_wifi3,
#else
.txrx_peer_teardown = NULL,
#endif
.txrx_peer_add_ast = dp_peer_add_ast_wifi3,
.txrx_peer_update_ast = dp_peer_update_ast_wifi3,
.txrx_peer_get_ast_info_by_soc = dp_peer_get_ast_info_by_soc_wifi3,
.txrx_peer_get_ast_info_by_pdev =
dp_peer_get_ast_info_by_pdevid_wifi3,
.txrx_peer_ast_delete_by_soc =
dp_peer_ast_entry_del_by_soc,
.txrx_peer_ast_delete_by_pdev =
dp_peer_ast_entry_del_by_pdev,
.txrx_peer_delete = dp_peer_delete_wifi3,
.txrx_vdev_register = dp_vdev_register_wifi3,
.txrx_soc_detach = dp_soc_detach_wifi3,
.txrx_soc_deinit = dp_soc_deinit_wifi3,
.txrx_soc_init = dp_soc_init_wifi3,
#ifndef QCA_HOST_MODE_WIFI_DISABLED
.txrx_tso_soc_attach = dp_tso_soc_attach,
.txrx_tso_soc_detach = dp_tso_soc_detach,
.tx_send = dp_tx_send,
.tx_send_exc = dp_tx_send_exception,
#endif
.txrx_pdev_init = dp_pdev_init_wifi3,
.txrx_get_vdev_mac_addr = dp_get_vdev_mac_addr_wifi3,
.txrx_get_mon_vdev_from_pdev = dp_get_mon_vdev_from_pdev_wifi3,
.txrx_get_ctrl_pdev_from_vdev = dp_get_ctrl_pdev_from_vdev_wifi3,
.txrx_ath_getstats = dp_get_device_stats,
.addba_requestprocess = dp_addba_requestprocess_wifi3,
.addba_responsesetup = dp_addba_responsesetup_wifi3,
.addba_resp_tx_completion = dp_addba_resp_tx_completion_wifi3,
.delba_process = dp_delba_process_wifi3,
.set_addba_response = dp_set_addba_response,
.flush_cache_rx_queue = NULL,
/* TODO: get API's for dscp-tid need to be added*/
.set_vdev_dscp_tid_map = dp_set_vdev_dscp_tid_map_wifi3,
.set_pdev_dscp_tid_map = dp_set_pdev_dscp_tid_map_wifi3,
.txrx_get_total_per = dp_get_total_per,
.txrx_stats_request = dp_txrx_stats_request,
.txrx_set_monitor_mode = dp_vdev_set_monitor_mode,
.txrx_get_peer_mac_from_peer_id = dp_get_peer_mac_from_peer_id,
.display_stats = dp_txrx_dump_stats,
.txrx_intr_attach = dp_soc_interrupt_attach_wrapper,
.txrx_intr_detach = dp_soc_interrupt_detach,
.set_pn_check = dp_set_pn_check_wifi3,
.set_key_sec_type = dp_set_key_sec_type_wifi3,
.update_config_parameters = dp_update_config_parameters,
/* TODO: Add other functions */
.txrx_data_tx_cb_set = dp_txrx_data_tx_cb_set,
.get_dp_txrx_handle = dp_pdev_get_dp_txrx_handle,
.set_dp_txrx_handle = dp_pdev_set_dp_txrx_handle,
.get_vdev_dp_ext_txrx_handle = dp_vdev_get_dp_ext_handle,
.set_vdev_dp_ext_txrx_handle = dp_vdev_set_dp_ext_handle,
.get_soc_dp_txrx_handle = dp_soc_get_dp_txrx_handle,
.set_soc_dp_txrx_handle = dp_soc_set_dp_txrx_handle,
.map_pdev_to_lmac = dp_soc_map_pdev_to_lmac,
.handle_mode_change = dp_soc_handle_pdev_mode_change,
.set_pdev_status_down = dp_soc_set_pdev_status_down,
.txrx_set_ba_aging_timeout = dp_set_ba_aging_timeout,
.txrx_get_ba_aging_timeout = dp_get_ba_aging_timeout,
.txrx_peer_reset_ast = dp_wds_reset_ast_wifi3,
.txrx_peer_reset_ast_table = dp_wds_reset_ast_table_wifi3,
.txrx_peer_flush_ast_table = dp_wds_flush_ast_table_wifi3,
.txrx_peer_map_attach = dp_peer_map_attach_wifi3,
.set_soc_param = dp_soc_set_param,
.txrx_get_os_rx_handles_from_vdev =
dp_get_os_rx_handles_from_vdev_wifi3,
.delba_tx_completion = dp_delba_tx_completion_wifi3,
.get_dp_capabilities = dp_get_cfg_capabilities,
.txrx_get_cfg = dp_get_cfg,
.set_rate_stats_ctx = dp_soc_set_rate_stats_ctx,
.get_rate_stats_ctx = dp_soc_get_rate_stats_ctx,
.txrx_peer_flush_rate_stats = dp_peer_flush_rate_stats,
.txrx_flush_rate_stats_request = dp_flush_rate_stats_req,
.txrx_peer_get_rdkstats_ctx = dp_peer_get_rdkstats_ctx,
.set_pdev_pcp_tid_map = dp_set_pdev_pcp_tid_map_wifi3,
.set_vdev_pcp_tid_map = dp_set_vdev_pcp_tid_map_wifi3,
.txrx_cp_peer_del_response = dp_cp_peer_del_resp_handler,
#ifdef QCA_MULTIPASS_SUPPORT
.set_vlan_groupkey = dp_set_vlan_groupkey,
#endif
.get_peer_mac_list = dp_get_peer_mac_list,
#ifdef QCA_SUPPORT_WDS_EXTENDED
.get_wds_ext_peer_id = dp_wds_ext_get_peer_id,
.set_wds_ext_peer_rx = dp_wds_ext_set_peer_rx,
#endif /* QCA_SUPPORT_WDS_EXTENDED */
};
static struct cdp_ctrl_ops dp_ops_ctrl = {
.txrx_peer_authorize = dp_peer_authorize,
#ifdef VDEV_PEER_PROTOCOL_COUNT
.txrx_enable_peer_protocol_count = dp_enable_vdev_peer_protocol_count,
.txrx_set_peer_protocol_drop_mask =
dp_enable_vdev_peer_protocol_drop_mask,
.txrx_is_peer_protocol_count_enabled =
dp_is_vdev_peer_protocol_count_enabled,
.txrx_get_peer_protocol_drop_mask = dp_get_vdev_peer_protocol_drop_mask,
#endif
.txrx_set_vdev_param = dp_set_vdev_param,
.txrx_set_psoc_param = dp_set_psoc_param,
.txrx_get_psoc_param = dp_get_psoc_param,
.txrx_set_pdev_reo_dest = dp_set_pdev_reo_dest,
.txrx_get_pdev_reo_dest = dp_get_pdev_reo_dest,
#if defined(ATH_SUPPORT_NAC_RSSI) || defined(ATH_SUPPORT_NAC)
.txrx_update_filter_neighbour_peers =
dp_update_filter_neighbour_peers,
#endif /* ATH_SUPPORT_NAC_RSSI || ATH_SUPPORT_NAC */
.txrx_get_sec_type = dp_get_sec_type,
.txrx_wdi_event_sub = dp_wdi_event_sub,
.txrx_wdi_event_unsub = dp_wdi_event_unsub,
#ifdef WDI_EVENT_ENABLE
.txrx_get_pldev = dp_get_pldev,
#endif
.txrx_set_pdev_param = dp_set_pdev_param,
.txrx_get_pdev_param = dp_get_pdev_param,
.txrx_set_peer_param = dp_set_peer_param,
.txrx_get_peer_param = dp_get_peer_param,
#ifdef VDEV_PEER_PROTOCOL_COUNT
.txrx_peer_protocol_cnt = dp_peer_stats_update_protocol_cnt,
#endif
#ifdef ATH_SUPPORT_NAC_RSSI
.txrx_vdev_config_for_nac_rssi = dp_config_for_nac_rssi,
.txrx_vdev_get_neighbour_rssi = dp_vdev_get_neighbour_rssi,
#endif
#ifdef WLAN_SUPPORT_MSCS
.txrx_record_mscs_params = dp_record_mscs_params,
#endif
.set_key = dp_set_michael_key,
.txrx_get_vdev_param = dp_get_vdev_param,
.enable_peer_based_pktlog = dp_enable_peer_based_pktlog,
.calculate_delay_stats = dp_calculate_delay_stats,
#ifdef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
.txrx_update_pdev_rx_protocol_tag = dp_update_pdev_rx_protocol_tag,
#ifdef WLAN_SUPPORT_RX_TAG_STATISTICS
.txrx_dump_pdev_rx_protocol_tag_stats =
dp_dump_pdev_rx_protocol_tag_stats,
#endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
#endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
#ifdef WLAN_SUPPORT_RX_FLOW_TAG
.txrx_set_rx_flow_tag = dp_set_rx_flow_tag,
.txrx_dump_rx_flow_tag_stats = dp_dump_rx_flow_tag_stats,
#endif /* WLAN_SUPPORT_RX_FLOW_TAG */
#ifdef QCA_MULTIPASS_SUPPORT
.txrx_peer_set_vlan_id = dp_peer_set_vlan_id,
#endif /*QCA_MULTIPASS_SUPPORT*/
#if defined(WLAN_TX_PKT_CAPTURE_ENH) || defined(WLAN_RX_PKT_CAPTURE_ENH)
.txrx_update_peer_pkt_capture_params =
dp_peer_update_pkt_capture_params,
#endif /* WLAN_TX_PKT_CAPTURE_ENH || WLAN_RX_PKT_CAPTURE_ENH */
};
static struct cdp_me_ops dp_ops_me = {
#ifndef QCA_HOST_MODE_WIFI_DISABLED
#ifdef ATH_SUPPORT_IQUE
.tx_me_alloc_descriptor = dp_tx_me_alloc_descriptor,
.tx_me_free_descriptor = dp_tx_me_free_descriptor,
.tx_me_convert_ucast = dp_tx_me_send_convert_ucast,
#endif
#endif
};
static struct cdp_mon_ops dp_ops_mon = {
.txrx_reset_monitor_mode = dp_reset_monitor_mode,
/* Added support for HK advance filter */
.txrx_set_advance_monitor_filter = dp_pdev_set_advance_monitor_filter,
.txrx_deliver_tx_mgmt = dp_deliver_tx_mgmt,
.config_full_mon_mode = dp_config_full_mon_mode,
};
static struct cdp_host_stats_ops dp_ops_host_stats = {
.txrx_per_peer_stats = dp_get_host_peer_stats,
.get_fw_peer_stats = dp_get_fw_peer_stats,
.get_htt_stats = dp_get_htt_stats,
#ifdef FEATURE_PERPKT_INFO
.txrx_enable_enhanced_stats = dp_enable_enhanced_stats,
.txrx_disable_enhanced_stats = dp_disable_enhanced_stats,
#endif /* FEATURE_PERPKT_INFO */
.txrx_stats_publish = dp_txrx_stats_publish,
.txrx_get_vdev_stats = dp_txrx_get_vdev_stats,
.txrx_get_peer_stats = dp_txrx_get_peer_stats,
.txrx_get_peer_stats_param = dp_txrx_get_peer_stats_param,
.txrx_reset_peer_stats = dp_txrx_reset_peer_stats,
.txrx_get_pdev_stats = dp_txrx_get_pdev_stats,
.txrx_get_ratekbps = dp_txrx_get_ratekbps,
.txrx_update_vdev_stats = dp_txrx_update_vdev_host_stats,
/* TODO */
};
static struct cdp_raw_ops dp_ops_raw = {
/* TODO */
};
#ifdef PEER_FLOW_CONTROL
static struct cdp_pflow_ops dp_ops_pflow = {
dp_tx_flow_ctrl_configure_pdev,
};
#endif /* CONFIG_WIN */
#if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
static struct cdp_cfr_ops dp_ops_cfr = {
.txrx_cfr_filter = dp_cfr_filter,
.txrx_get_cfr_rcc = dp_get_cfr_rcc,
.txrx_set_cfr_rcc = dp_set_cfr_rcc,
.txrx_get_cfr_dbg_stats = dp_get_cfr_dbg_stats,
.txrx_clear_cfr_dbg_stats = dp_clear_cfr_dbg_stats,
.txrx_enable_mon_reap_timer = dp_enable_mon_reap_timer,
};
#endif
#ifdef WLAN_SUPPORT_MSCS
static struct cdp_mscs_ops dp_ops_mscs = {
.mscs_peer_lookup_n_get_priority = dp_mscs_peer_lookup_n_get_priority,
};
#endif
#ifdef FEATURE_RUNTIME_PM
/**
* dp_runtime_suspend() - ensure DP is ready to runtime suspend
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
*
* DP is ready to runtime suspend if there are no pending TX packets.
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_runtime_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev is NULL");
return QDF_STATUS_E_INVAL;
}
/* Abort if there are any pending TX packets */
if (dp_get_tx_pending(dp_pdev_to_cdp_pdev(pdev)) > 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("Abort suspend due to pending TX packets"));
return QDF_STATUS_E_AGAIN;
}
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_stop(&soc->int_timer);
return QDF_STATUS_SUCCESS;
}
/**
* dp_flush_ring_hptp() - Update ring shadow
* register HP/TP address when runtime
* resume
* @opaque_soc: DP soc context
*
* Return: None
*/
static
void dp_flush_ring_hptp(struct dp_soc *soc, hal_ring_handle_t hal_srng)
{
if (hal_srng && hal_srng_get_clear_event(hal_srng,
HAL_SRNG_FLUSH_EVENT)) {
/* Acquire the lock */
hal_srng_access_start(soc->hal_soc, hal_srng);
hal_srng_access_end(soc->hal_soc, hal_srng);
hal_srng_set_flush_last_ts(hal_srng);
}
}
/**
* dp_runtime_resume() - ensure DP is ready to runtime resume
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
*
* Resume DP for runtime PM.
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_runtime_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
int i;
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
for (i = 0; i < MAX_TCL_DATA_RINGS; i++) {
dp_flush_ring_hptp(soc, soc->tcl_data_ring[i].hal_srng);
}
dp_flush_ring_hptp(soc, soc->reo_cmd_ring.hal_srng);
return QDF_STATUS_SUCCESS;
}
#endif /* FEATURE_RUNTIME_PM */
/**
* dp_tx_get_success_ack_stats() - get tx success completion count
* @soc_hdl: Datapath soc handle
* @vdevid: vdev identifier
*
* Return: tx success ack count
*/
static uint32_t dp_tx_get_success_ack_stats(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct cdp_vdev_stats *vdev_stats = NULL;
uint32_t tx_success;
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Invalid vdev id %d"), vdev_id);
return 0;
}
vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
if (!vdev_stats) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"DP alloc failure - unable to get alloc vdev stats");
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return 0;
}
dp_aggregate_vdev_stats(vdev, vdev_stats);
tx_success = vdev_stats->tx.tx_success.num;
qdf_mem_free(vdev_stats);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return tx_success;
}
#ifdef WLAN_SUPPORT_DATA_STALL
/**
* dp_register_data_stall_detect_cb() - register data stall callback
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
* @data_stall_detect_callback: data stall callback function
*
* Return: QDF_STATUS Enumeration
*/
static
QDF_STATUS dp_register_data_stall_detect_cb(
struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
data_stall_detect_cb data_stall_detect_callback)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev NULL!");
return QDF_STATUS_E_INVAL;
}
pdev->data_stall_detect_callback = data_stall_detect_callback;
return QDF_STATUS_SUCCESS;
}
/**
* dp_deregister_data_stall_detect_cb() - de-register data stall callback
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
* @data_stall_detect_callback: data stall callback function
*
* Return: QDF_STATUS Enumeration
*/
static
QDF_STATUS dp_deregister_data_stall_detect_cb(
struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
data_stall_detect_cb data_stall_detect_callback)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev NULL!");
return QDF_STATUS_E_INVAL;
}
pdev->data_stall_detect_callback = NULL;
return QDF_STATUS_SUCCESS;
}
/**
* dp_txrx_post_data_stall_event() - post data stall event
* @soc_hdl: Datapath soc handle
* @indicator: Module triggering data stall
* @data_stall_type: data stall event type
* @pdev_id: pdev id
* @vdev_id_bitmap: vdev id bitmap
* @recovery_type: data stall recovery type
*
* Return: None
*/
static void
dp_txrx_post_data_stall_event(struct cdp_soc_t *soc_hdl,
enum data_stall_log_event_indicator indicator,
enum data_stall_log_event_type data_stall_type,
uint32_t pdev_id, uint32_t vdev_id_bitmap,
enum data_stall_log_recovery_type recovery_type)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct data_stall_event_info data_stall_info;
struct dp_pdev *pdev;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev NULL!");
return;
}
if (!pdev->data_stall_detect_callback) {
dp_err("data stall cb not registered!");
return;
}
dp_info("data_stall_type: %x pdev_id: %d",
data_stall_type, pdev_id);
data_stall_info.indicator = indicator;
data_stall_info.data_stall_type = data_stall_type;
data_stall_info.vdev_id_bitmap = vdev_id_bitmap;
data_stall_info.pdev_id = pdev_id;
data_stall_info.recovery_type = recovery_type;
pdev->data_stall_detect_callback(&data_stall_info);
}
#endif /* WLAN_SUPPORT_DATA_STALL */
#ifdef WLAN_FEATURE_STATS_EXT
/* rx hw stats event wait timeout in ms */
#define DP_REO_STATUS_STATS_TIMEOUT 1500
/**
* dp_txrx_ext_stats_request - request dp txrx extended stats request
* @soc_hdl: soc handle
* @pdev_id: pdev id
* @req: stats request
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_txrx_ext_stats_request(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
struct cdp_txrx_ext_stats *req)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev is null");
return QDF_STATUS_E_INVAL;
}
dp_aggregate_pdev_stats(pdev);
req->tx_msdu_enqueue = pdev->stats.tx_i.processed.num;
req->tx_msdu_overflow = pdev->stats.tx_i.dropped.ring_full;
req->rx_mpdu_received = soc->ext_stats.rx_mpdu_received;
req->rx_mpdu_delivered = soc->ext_stats.rx_mpdu_received;
req->rx_mpdu_missed = soc->ext_stats.rx_mpdu_missed;
/* only count error source from RXDMA */
req->rx_mpdu_error = pdev->stats.err.rxdma_error;
return QDF_STATUS_SUCCESS;
}
/**
* dp_rx_hw_stats_cb - request rx hw stats response callback
* @soc: soc handle
* @cb_ctxt: callback context
* @reo_status: reo command response status
*
* Return: None
*/
static void dp_rx_hw_stats_cb(struct dp_soc *soc, void *cb_ctxt,
union hal_reo_status *reo_status)
{
struct dp_req_rx_hw_stats_t *rx_hw_stats = cb_ctxt;
struct hal_reo_queue_status *queue_status = &reo_status->queue_status;
bool is_query_timeout;
qdf_spin_lock_bh(&soc->rx_hw_stats_lock);
is_query_timeout = rx_hw_stats->is_query_timeout;
/* free the cb_ctxt if all pending tid stats query is received */
if (qdf_atomic_dec_and_test(&rx_hw_stats->pending_tid_stats_cnt)) {
if (!is_query_timeout) {
qdf_event_set(&soc->rx_hw_stats_event);
soc->is_last_stats_ctx_init = false;
}
qdf_mem_free(rx_hw_stats);
}
if (queue_status->header.status != HAL_REO_CMD_SUCCESS) {
dp_info("REO stats failure %d",
queue_status->header.status);
qdf_spin_unlock_bh(&soc->rx_hw_stats_lock);
return;
}
if (!is_query_timeout) {
soc->ext_stats.rx_mpdu_received +=
queue_status->mpdu_frms_cnt;
soc->ext_stats.rx_mpdu_missed +=
queue_status->late_recv_mpdu_cnt;
}
qdf_spin_unlock_bh(&soc->rx_hw_stats_lock);
}
/**
* dp_request_rx_hw_stats - request rx hardware stats
* @soc_hdl: soc handle
* @vdev_id: vdev id
*
* Return: None
*/
static QDF_STATUS
dp_request_rx_hw_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
struct dp_peer *peer = NULL;
QDF_STATUS status;
struct dp_req_rx_hw_stats_t *rx_hw_stats;
int rx_stats_sent_cnt = 0;
uint32_t last_rx_mpdu_received;
uint32_t last_rx_mpdu_missed;
if (!vdev) {
dp_err("vdev is null for vdev_id: %u", vdev_id);
status = QDF_STATUS_E_INVAL;
goto out;
}
peer = dp_vdev_bss_peer_ref_n_get(soc, vdev, DP_MOD_ID_CDP);
if (!peer) {
dp_err("Peer is NULL");
status = QDF_STATUS_E_INVAL;
goto out;
}
rx_hw_stats = qdf_mem_malloc(sizeof(*rx_hw_stats));
if (!rx_hw_stats) {
dp_err("malloc failed for hw stats structure");
status = QDF_STATUS_E_INVAL;
goto out;
}
qdf_event_reset(&soc->rx_hw_stats_event);
qdf_spin_lock_bh(&soc->rx_hw_stats_lock);
/* save the last soc cumulative stats and reset it to 0 */
last_rx_mpdu_received = soc->ext_stats.rx_mpdu_received;
last_rx_mpdu_missed = soc->ext_stats.rx_mpdu_missed;
soc->ext_stats.rx_mpdu_received = 0;
soc->ext_stats.rx_mpdu_missed = 0;
rx_stats_sent_cnt =
dp_peer_rxtid_stats(peer, dp_rx_hw_stats_cb, rx_hw_stats);
if (!rx_stats_sent_cnt) {
dp_err("no tid stats sent successfully");
qdf_mem_free(rx_hw_stats);
qdf_spin_unlock_bh(&soc->rx_hw_stats_lock);
status = QDF_STATUS_E_INVAL;
goto out;
}
qdf_atomic_set(&rx_hw_stats->pending_tid_stats_cnt,
rx_stats_sent_cnt);
rx_hw_stats->is_query_timeout = false;
soc->is_last_stats_ctx_init = true;
qdf_spin_unlock_bh(&soc->rx_hw_stats_lock);
status = qdf_wait_single_event(&soc->rx_hw_stats_event,
DP_REO_STATUS_STATS_TIMEOUT);
qdf_spin_lock_bh(&soc->rx_hw_stats_lock);
if (status != QDF_STATUS_SUCCESS) {
dp_info("rx hw stats event timeout");
if (soc->is_last_stats_ctx_init)
rx_hw_stats->is_query_timeout = true;
/**
* If query timeout happened, use the last saved stats
* for this time query.
*/
soc->ext_stats.rx_mpdu_received = last_rx_mpdu_received;
soc->ext_stats.rx_mpdu_missed = last_rx_mpdu_missed;
}
qdf_spin_unlock_bh(&soc->rx_hw_stats_lock);
out:
if (peer)
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
if (vdev)
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return status;
}
#endif /* WLAN_FEATURE_STATS_EXT */
#ifdef DP_PEER_EXTENDED_API
static struct cdp_misc_ops dp_ops_misc = {
#ifdef FEATURE_WLAN_TDLS
.tx_non_std = dp_tx_non_std,
#endif /* FEATURE_WLAN_TDLS */
.get_opmode = dp_get_opmode,
#ifdef FEATURE_RUNTIME_PM
.runtime_suspend = dp_runtime_suspend,
.runtime_resume = dp_runtime_resume,
#endif /* FEATURE_RUNTIME_PM */
.pkt_log_init = dp_pkt_log_init,
.pkt_log_con_service = dp_pkt_log_con_service,
.get_num_rx_contexts = dp_get_num_rx_contexts,
.get_tx_ack_stats = dp_tx_get_success_ack_stats,
#ifdef WLAN_SUPPORT_DATA_STALL
.txrx_data_stall_cb_register = dp_register_data_stall_detect_cb,
.txrx_data_stall_cb_deregister = dp_deregister_data_stall_detect_cb,
.txrx_post_data_stall_event = dp_txrx_post_data_stall_event,
#endif
#ifdef WLAN_FEATURE_STATS_EXT
.txrx_ext_stats_request = dp_txrx_ext_stats_request,
.request_rx_hw_stats = dp_request_rx_hw_stats,
#endif /* WLAN_FEATURE_STATS_EXT */
.vdev_inform_ll_conn = dp_vdev_inform_ll_conn,
#ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
.set_swlm_enable = dp_soc_set_swlm_enable,
.is_swlm_enabled = dp_soc_is_swlm_enabled,
#endif
.display_txrx_hw_info = dp_display_srng_info,
};
#endif
#ifdef DP_FLOW_CTL
static struct cdp_flowctl_ops dp_ops_flowctl = {
/* WIFI 3.0 DP implement as required. */
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
.flow_pool_map_handler = dp_tx_flow_pool_map,
.flow_pool_unmap_handler = dp_tx_flow_pool_unmap,
.register_pause_cb = dp_txrx_register_pause_cb,
.dump_flow_pool_info = dp_tx_dump_flow_pool_info,
.tx_desc_thresh_reached = dp_tx_desc_thresh_reached,
#endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
};
static struct cdp_lflowctl_ops dp_ops_l_flowctl = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
#endif
#ifdef IPA_OFFLOAD
static struct cdp_ipa_ops dp_ops_ipa = {
.ipa_get_resource = dp_ipa_get_resource,
.ipa_set_doorbell_paddr = dp_ipa_set_doorbell_paddr,
.ipa_op_response = dp_ipa_op_response,
.ipa_register_op_cb = dp_ipa_register_op_cb,
.ipa_deregister_op_cb = dp_ipa_deregister_op_cb,
.ipa_get_stat = dp_ipa_get_stat,
.ipa_tx_data_frame = dp_tx_send_ipa_data_frame,
.ipa_enable_autonomy = dp_ipa_enable_autonomy,
.ipa_disable_autonomy = dp_ipa_disable_autonomy,
.ipa_setup = dp_ipa_setup,
.ipa_cleanup = dp_ipa_cleanup,
.ipa_setup_iface = dp_ipa_setup_iface,
.ipa_cleanup_iface = dp_ipa_cleanup_iface,
.ipa_enable_pipes = dp_ipa_enable_pipes,
.ipa_disable_pipes = dp_ipa_disable_pipes,
.ipa_set_perf_level = dp_ipa_set_perf_level,
.ipa_rx_intrabss_fwd = dp_ipa_rx_intrabss_fwd,
.ipa_tx_buf_smmu_mapping = dp_ipa_tx_buf_smmu_mapping,
.ipa_tx_buf_smmu_unmapping = dp_ipa_tx_buf_smmu_unmapping
};
#endif
#ifdef DP_POWER_SAVE
static QDF_STATUS dp_bus_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
int timeout = SUSPEND_DRAIN_WAIT;
int drain_wait_delay = 50; /* 50 ms */
if (qdf_unlikely(!pdev)) {
dp_err("pdev is NULL");
return QDF_STATUS_E_INVAL;
}
/* Abort if there are any pending TX packets */
while (dp_get_tx_pending((struct cdp_pdev *)pdev) > 0) {
qdf_sleep(drain_wait_delay);
if (timeout <= 0) {
dp_err("TX frames are pending, abort suspend");
return QDF_STATUS_E_TIMEOUT;
}
timeout = timeout - drain_wait_delay;
}
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_stop(&soc->int_timer);
/* Stop monitor reap timer and reap any pending frames in ring */
if (((pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED) ||
dp_is_enable_reap_timer_non_pkt(pdev)) &&
soc->reap_timer_init) {
qdf_timer_sync_cancel(&soc->mon_reap_timer);
dp_service_mon_rings(soc, DP_MON_REAP_BUDGET);
}
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS dp_bus_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (qdf_unlikely(!pdev)) {
dp_err("pdev is NULL");
return QDF_STATUS_E_INVAL;
}
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
/* Start monitor reap timer */
if (((pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED) ||
dp_is_enable_reap_timer_non_pkt(pdev)) &&
soc->reap_timer_init)
qdf_timer_mod(&soc->mon_reap_timer,
DP_INTR_POLL_TIMER_MS);
return QDF_STATUS_SUCCESS;
}
/**
* dp_process_wow_ack_rsp() - process wow ack response
* @soc_hdl: datapath soc handle
* @pdev_id: data path pdev handle id
*
* Return: none
*/
static void dp_process_wow_ack_rsp(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (qdf_unlikely(!pdev)) {
dp_err("pdev is NULL");
return;
}
/*
* As part of wow enable FW disables the mon status ring and in wow ack
* response from FW reap mon status ring to make sure no packets pending
* in the ring.
*/
if (((pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED) ||
dp_is_enable_reap_timer_non_pkt(pdev)) &&
soc->reap_timer_init) {
dp_service_mon_rings(soc, DP_MON_REAP_BUDGET);
}
}
/**
* dp_process_target_suspend_req() - process target suspend request
* @soc_hdl: datapath soc handle
* @pdev_id: data path pdev handle id
*
* Return: none
*/
static void dp_process_target_suspend_req(struct cdp_soc_t *soc_hdl,
uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (qdf_unlikely(!pdev)) {
dp_err("pdev is NULL");
return;
}
/* Stop monitor reap timer and reap any pending frames in ring */
if (((pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED) ||
dp_is_enable_reap_timer_non_pkt(pdev)) &&
soc->reap_timer_init) {
qdf_timer_sync_cancel(&soc->mon_reap_timer);
dp_service_mon_rings(soc, DP_MON_REAP_BUDGET);
}
}
static struct cdp_bus_ops dp_ops_bus = {
.bus_suspend = dp_bus_suspend,
.bus_resume = dp_bus_resume,
.process_wow_ack_rsp = dp_process_wow_ack_rsp,
.process_target_suspend_req = dp_process_target_suspend_req
};
#endif
#ifdef DP_FLOW_CTL
static struct cdp_throttle_ops dp_ops_throttle = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_cfg_ops dp_ops_cfg = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
#endif
#ifdef DP_PEER_EXTENDED_API
static struct cdp_ocb_ops dp_ops_ocb = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_mob_stats_ops dp_ops_mob_stats = {
.clear_stats = dp_txrx_clear_dump_stats,
};
static struct cdp_peer_ops dp_ops_peer = {
.register_peer = dp_register_peer,
.clear_peer = dp_clear_peer,
.find_peer_exist = dp_find_peer_exist,
.find_peer_exist_on_vdev = dp_find_peer_exist_on_vdev,
.find_peer_exist_on_other_vdev = dp_find_peer_exist_on_other_vdev,
.peer_state_update = dp_peer_state_update,
.get_vdevid = dp_get_vdevid,
.get_vdev_by_peer_addr = dp_get_vdev_by_peer_addr,
.peer_get_peer_mac_addr = dp_peer_get_peer_mac_addr,
.get_peer_state = dp_get_peer_state,
};
#endif
static struct cdp_ops dp_txrx_ops = {
.cmn_drv_ops = &dp_ops_cmn,
.ctrl_ops = &dp_ops_ctrl,
.me_ops = &dp_ops_me,
.mon_ops = &dp_ops_mon,
.host_stats_ops = &dp_ops_host_stats,
.wds_ops = &dp_ops_wds,
.raw_ops = &dp_ops_raw,
#ifdef PEER_FLOW_CONTROL
.pflow_ops = &dp_ops_pflow,
#endif /* PEER_FLOW_CONTROL */
#ifdef DP_PEER_EXTENDED_API
.misc_ops = &dp_ops_misc,
.ocb_ops = &dp_ops_ocb,
.peer_ops = &dp_ops_peer,
.mob_stats_ops = &dp_ops_mob_stats,
#endif
#ifdef DP_FLOW_CTL
.cfg_ops = &dp_ops_cfg,
.flowctl_ops = &dp_ops_flowctl,
.l_flowctl_ops = &dp_ops_l_flowctl,
.throttle_ops = &dp_ops_throttle,
#endif
#ifdef IPA_OFFLOAD
.ipa_ops = &dp_ops_ipa,
#endif
#ifdef DP_POWER_SAVE
.bus_ops = &dp_ops_bus,
#endif
#if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
.cfr_ops = &dp_ops_cfr,
#endif
#ifdef WLAN_SUPPORT_MSCS
.mscs_ops = &dp_ops_mscs,
#endif
};
/*
* dp_soc_set_txrx_ring_map()
* @dp_soc: DP handler for soc
*
* Return: Void
*/
void dp_soc_set_txrx_ring_map(struct dp_soc *soc)
{
uint32_t i;
for (i = 0; i < WLAN_CFG_INT_NUM_CONTEXTS; i++) {
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_DEFAULT_MAP][i];
}
}
#if defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6018) || \
defined(QCA_WIFI_QCA5018)
/**
* dp_soc_attach_wifi3() - Attach txrx SOC
* @ctrl_psoc: Opaque SOC handle from control plane
* @htc_handle: Opaque HTC handle
* @hif_handle: Opaque HIF handle
* @qdf_osdev: QDF device
* @ol_ops: Offload Operations
* @device_id: Device ID
*
* Return: DP SOC handle on success, NULL on failure
*/
struct cdp_soc_t *
dp_soc_attach_wifi3(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
struct hif_opaque_softc *hif_handle,
HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
struct ol_if_ops *ol_ops, uint16_t device_id)
{
struct dp_soc *dp_soc = NULL;
dp_soc = dp_soc_attach(ctrl_psoc, hif_handle, htc_handle, qdf_osdev,
ol_ops, device_id);
return dp_soc_to_cdp_soc_t(dp_soc);
}
static inline void dp_soc_set_def_pdev(struct dp_soc *soc)
{
int lmac_id;
for (lmac_id = 0; lmac_id < MAX_NUM_LMAC_HW; lmac_id++) {
/*Set default host PDEV ID for lmac_id*/
wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
INVALID_PDEV_ID, lmac_id);
}
}
/**
* dp_soc_attach() - Attach txrx SOC
* @ctrl_psoc: Opaque SOC handle from control plane
* @hif_handle: Opaque HIF handle
* @htc_handle: Opaque HTC handle
* @qdf_osdev: QDF device
* @ol_ops: Offload Operations
* @device_id: Device ID
*
* Return: DP SOC handle on success, NULL on failure
*/
static struct dp_soc *
dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
struct hif_opaque_softc *hif_handle, HTC_HANDLE htc_handle,
qdf_device_t qdf_osdev, struct ol_if_ops *ol_ops,
uint16_t device_id)
{
int int_ctx;
struct dp_soc *soc = NULL;
if (!hif_handle) {
dp_err("HIF handle is NULL");
goto fail0;
}
soc = qdf_mem_malloc(sizeof(*soc));
if (!soc) {
dp_err("DP SOC memory allocation failed");
goto fail0;
}
soc->hif_handle = hif_handle;
soc->hal_soc = hif_get_hal_handle(soc->hif_handle);
if (!soc->hal_soc)
goto fail1;
int_ctx = 0;
soc->device_id = device_id;
soc->cdp_soc.ops = &dp_txrx_ops;
soc->cdp_soc.ol_ops = ol_ops;
soc->ctrl_psoc = ctrl_psoc;
soc->osdev = qdf_osdev;
soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_MAPS;
/* Reset wbm sg list and flags */
dp_rx_wbm_sg_list_reset(soc);
dp_soc_rx_history_attach(soc);
wlan_set_srng_cfg(&soc->wlan_srng_cfg);
soc->wlan_cfg_ctx = wlan_cfg_soc_attach(soc->ctrl_psoc);
if (!soc->wlan_cfg_ctx) {
dp_err("wlan_cfg_ctx failed\n");
goto fail1;
}
dp_soc_cfg_attach(soc);
if (dp_hw_link_desc_pool_banks_alloc(soc, WLAN_INVALID_PDEV_ID)) {
dp_err("failed to allocate link desc pool banks");
goto fail2;
}
if (dp_hw_link_desc_ring_alloc(soc)) {
dp_err("failed to allocate link_desc_ring");
goto fail3;
}
if (dp_soc_srng_alloc(soc)) {
dp_err("failed to allocate soc srng rings");
goto fail4;
}
if (dp_soc_tx_desc_sw_pools_alloc(soc)) {
dp_err("dp_soc_tx_desc_sw_pools_alloc failed");
goto fail5;
}
dp_soc_swlm_attach(soc);
dp_soc_set_interrupt_mode(soc);
dp_soc_set_def_pdev(soc);
dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
qdf_dma_mem_stats_read(),
qdf_heap_mem_stats_read(),
qdf_skb_total_mem_stats_read());
return soc;
fail5:
dp_soc_srng_free(soc);
fail4:
dp_hw_link_desc_ring_free(soc);
fail3:
dp_hw_link_desc_pool_banks_free(soc, WLAN_INVALID_PDEV_ID);
fail2:
wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
fail1:
qdf_mem_free(soc);
fail0:
return NULL;
}
/**
* dp_soc_init() - Initialize txrx SOC
* @dp_soc: Opaque DP SOC handle
* @htc_handle: Opaque HTC handle
* @hif_handle: Opaque HIF handle
*
* Return: DP SOC handle on success, NULL on failure
*/
void *dp_soc_init(struct dp_soc *soc, HTC_HANDLE htc_handle,
struct hif_opaque_softc *hif_handle)
{
struct htt_soc *htt_soc = (struct htt_soc *)soc->htt_handle;
bool is_monitor_mode = false;
struct hal_reo_params reo_params;
uint8_t i;
wlan_minidump_log(soc, sizeof(*soc), soc->ctrl_psoc,
WLAN_MD_DP_SOC, "dp_soc");
htt_soc = htt_soc_attach(soc, htc_handle);
if (!htt_soc)
goto fail0;
soc->htt_handle = htt_soc;
if (htt_soc_htc_prealloc(htt_soc) != QDF_STATUS_SUCCESS)
goto fail1;
htt_set_htc_handle(htt_soc, htc_handle);
soc->hif_handle = hif_handle;
soc->hal_soc = hif_get_hal_handle(soc->hif_handle);
if (!soc->hal_soc)
goto fail2;
dp_soc_cfg_init(soc);
/* Reset/Initialize wbm sg list and flags */
dp_rx_wbm_sg_list_reset(soc);
/* Note: Any SRNG ring initialization should happen only after
* Interrupt mode is set and followed by filling up the
* interrupt mask. IT SHOULD ALWAYS BE IN THIS ORDER.
*/
dp_soc_set_interrupt_mode(soc);
if (soc->cdp_soc.ol_ops->get_con_mode &&
soc->cdp_soc.ol_ops->get_con_mode() ==
QDF_GLOBAL_MONITOR_MODE)
is_monitor_mode = true;
wlan_cfg_fill_interrupt_mask(soc->wlan_cfg_ctx, soc->intr_mode,
is_monitor_mode);
/* initialize WBM_IDLE_LINK ring */
if (dp_hw_link_desc_ring_init(soc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_hw_link_desc_ring_init failed"));
goto fail3;
}
dp_link_desc_ring_replenish(soc, WLAN_INVALID_PDEV_ID);
if (dp_soc_srng_init(soc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_soc_srng_init failed"));
goto fail4;
}
if (htt_soc_initialize(soc->htt_handle, soc->ctrl_psoc,
htt_get_htc_handle(htt_soc),
soc->hal_soc, soc->osdev) == NULL)
goto fail5;
/* Initialize descriptors in TCL Rings */
for (i = 0; i < soc->num_tcl_data_rings; i++) {
hal_tx_init_data_ring(soc->hal_soc,
soc->tcl_data_ring[i].hal_srng);
}
if (dp_soc_tx_desc_sw_pools_init(soc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_tx_soc_attach failed"));
goto fail6;
}
wlan_cfg_set_rx_hash(soc->wlan_cfg_ctx,
cfg_get(soc->ctrl_psoc, CFG_DP_RX_HASH));
soc->cce_disable = false;
qdf_mem_zero(&soc->vdev_id_map, sizeof(soc->vdev_id_map));
qdf_spinlock_create(&soc->vdev_map_lock);
qdf_atomic_init(&soc->num_tx_outstanding);
qdf_atomic_init(&soc->num_tx_exception);
soc->num_tx_allowed =
wlan_cfg_get_dp_soc_tx_device_limit(soc->wlan_cfg_ctx);
if (soc->cdp_soc.ol_ops->get_dp_cfg_param) {
int ret = soc->cdp_soc.ol_ops->get_dp_cfg_param(soc->ctrl_psoc,
CDP_CFG_MAX_PEER_ID);
if (ret != -EINVAL)
wlan_cfg_set_max_peer_id(soc->wlan_cfg_ctx, ret);
ret = soc->cdp_soc.ol_ops->get_dp_cfg_param(soc->ctrl_psoc,
CDP_CFG_CCE_DISABLE);
if (ret == 1)
soc->cce_disable = true;
}
/*
* Skip registering hw ring interrupts for WMAC2 on IPQ6018
* and IPQ5018 WMAC2 is not there in these platforms.
*/
if (hal_get_target_type(soc->hal_soc) == TARGET_TYPE_QCA6018 ||
soc->disable_mac2_intr)
dp_soc_disable_unused_mac_intr_mask(soc, 0x2);
/*
* Skip registering hw ring interrupts for WMAC1 on IPQ5018
* WMAC1 is not there in this platform.
*/
if (soc->disable_mac1_intr)
dp_soc_disable_unused_mac_intr_mask(soc, 0x1);
/* Setup HW REO */
qdf_mem_zero(&reo_params, sizeof(reo_params));
if (wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
/*
* Reo ring remap is not required if both radios
* are offloaded to NSS
*/
if (dp_reo_remap_config(soc,
&reo_params.remap1,
&reo_params.remap2))
reo_params.rx_hash_enabled = true;
else
reo_params.rx_hash_enabled = false;
}
/* setup the global rx defrag waitlist */
TAILQ_INIT(&soc->rx.defrag.waitlist);
soc->rx.defrag.timeout_ms =
wlan_cfg_get_rx_defrag_min_timeout(soc->wlan_cfg_ctx);
soc->rx.defrag.next_flush_ms = 0;
soc->rx.flags.defrag_timeout_check =
wlan_cfg_get_defrag_timeout_check(soc->wlan_cfg_ctx);
qdf_spinlock_create(&soc->rx.defrag.defrag_lock);
/*
* set the fragment destination ring
*/
dp_reo_frag_dst_set(soc, &reo_params.frag_dst_ring);
if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
reo_params.alt_dst_ind_0 = REO_REMAP_RELEASE;
hal_reo_setup(soc->hal_soc, &reo_params);
hal_reo_set_err_dst_remap(soc->hal_soc);
qdf_atomic_set(&soc->cmn_init_done, 1);
dp_soc_wds_attach(soc);
qdf_nbuf_queue_init(&soc->htt_stats.msg);
qdf_spinlock_create(&soc->ast_lock);
qdf_spinlock_create(&soc->reo_desc_freelist_lock);
qdf_list_create(&soc->reo_desc_freelist, REO_DESC_FREELIST_SIZE);
INIT_RX_HW_STATS_LOCK(soc);
/* fill the tx/rx cpu ring map*/
dp_soc_set_txrx_ring_map(soc);
TAILQ_INIT(&soc->inactive_peer_list);
qdf_spinlock_create(&soc->inactive_peer_list_lock);
TAILQ_INIT(&soc->inactive_vdev_list);
qdf_spinlock_create(&soc->inactive_vdev_list_lock);
qdf_spinlock_create(&soc->htt_stats.lock);
/* initialize work queue for stats processing */
qdf_create_work(0, &soc->htt_stats.work, htt_t2h_stats_handler, soc);
dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
qdf_dma_mem_stats_read(),
qdf_heap_mem_stats_read(),
qdf_skb_total_mem_stats_read());
return soc;
fail6:
htt_soc_htc_dealloc(soc->htt_handle);
fail5:
dp_soc_srng_deinit(soc);
fail4:
dp_hw_link_desc_ring_deinit(soc);
fail3:
dp_hw_link_desc_ring_free(soc);
fail2:
htt_htc_pkt_pool_free(htt_soc);
fail1:
htt_soc_detach(htt_soc);
fail0:
return NULL;
}
/**
* dp_soc_init_wifi3() - Initialize txrx SOC
* @soc: Opaque DP SOC handle
* @ctrl_psoc: Opaque SOC handle from control plane(Unused)
* @hif_handle: Opaque HIF handle
* @htc_handle: Opaque HTC handle
* @qdf_osdev: QDF device (Unused)
* @ol_ops: Offload Operations (Unused)
* @device_id: Device ID (Unused)
*
* Return: DP SOC handle on success, NULL on failure
*/
void *dp_soc_init_wifi3(struct cdp_soc_t *soc,
struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
struct hif_opaque_softc *hif_handle,
HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
struct ol_if_ops *ol_ops, uint16_t device_id)
{
return dp_soc_init((struct dp_soc *)soc, htc_handle, hif_handle);
}
#endif
/*
* dp_get_pdev_for_mac_id() - Return pdev for mac_id
*
* @soc: handle to DP soc
* @mac_id: MAC id
*
* Return: Return pdev corresponding to MAC
*/
void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id)
{
if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
return (mac_id < MAX_PDEV_CNT) ? soc->pdev_list[mac_id] : NULL;
/* Typically for MCL as there only 1 PDEV*/
return soc->pdev_list[0];
}
/*
* dp_is_hw_dbs_enable() - Procedure to check if DBS is supported
* @soc: DP SoC context
* @max_mac_rings: No of MAC rings
*
* Return: None
*/
void dp_is_hw_dbs_enable(struct dp_soc *soc,
int *max_mac_rings)
{
bool dbs_enable = false;
if (soc->cdp_soc.ol_ops->is_hw_dbs_2x2_capable)
dbs_enable = soc->cdp_soc.ol_ops->
is_hw_dbs_2x2_capable((void *)soc->ctrl_psoc);
*max_mac_rings = (dbs_enable)?(*max_mac_rings):1;
}
#if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
/*
* dp_cfr_filter() - Configure HOST RX monitor status ring for CFR
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
* @enable: Enable/Disable CFR
* @filter_val: Flag to select Filter for monitor mode
*/
static void dp_cfr_filter(struct cdp_soc_t *soc_hdl,
uint8_t pdev_id,
bool enable,
struct cdp_monitor_filter *filter_val)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = NULL;
struct htt_rx_ring_tlv_filter htt_tlv_filter = {0};
int max_mac_rings;
uint8_t mac_id = 0;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev is NULL");
return;
}
if (pdev->monitor_vdev) {
dp_info("No action is needed since monitor mode is enabled\n");
return;
}
soc = pdev->soc;
pdev->cfr_rcc_mode = false;
max_mac_rings = wlan_cfg_get_num_mac_rings(pdev->wlan_cfg_ctx);
dp_is_hw_dbs_enable(soc, &max_mac_rings);
dp_debug("Max_mac_rings %d", max_mac_rings);
dp_info("enable : %d, mode: 0x%x", enable, filter_val->mode);
if (enable) {
pdev->cfr_rcc_mode = true;
htt_tlv_filter.ppdu_start = 1;
htt_tlv_filter.ppdu_end = 1;
htt_tlv_filter.ppdu_end_user_stats = 1;
htt_tlv_filter.ppdu_end_user_stats_ext = 1;
htt_tlv_filter.ppdu_end_status_done = 1;
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.offset_valid = false;
htt_tlv_filter.enable_fp =
(filter_val->mode & MON_FILTER_PASS) ? 1 : 0;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_mo =
(filter_val->mode & MON_FILTER_OTHER) ? 1 : 0;
htt_tlv_filter.fp_mgmt_filter = filter_val->fp_mgmt;
htt_tlv_filter.fp_ctrl_filter = filter_val->fp_ctrl;
htt_tlv_filter.fp_data_filter = filter_val->fp_data;
htt_tlv_filter.mo_mgmt_filter = filter_val->mo_mgmt;
htt_tlv_filter.mo_ctrl_filter = filter_val->mo_ctrl;
htt_tlv_filter.mo_data_filter = filter_val->mo_data;
}
for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
int mac_for_pdev =
dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle,
mac_for_pdev,
soc->rxdma_mon_status_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_STATUS,
RX_MON_STATUS_BUF_SIZE,
&htt_tlv_filter);
}
}
/**
* dp_get_cfr_rcc() - get cfr rcc config
* @soc_hdl: Datapath soc handle
* @pdev_id: id of objmgr pdev
*
* Return: true/false based on cfr mode setting
*/
static
bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = NULL;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev is NULL");
return false;
}
return pdev->cfr_rcc_mode;
}
/**
* dp_set_cfr_rcc() - enable/disable cfr rcc config
* @soc_hdl: Datapath soc handle
* @pdev_id: id of objmgr pdev
* @enable: Enable/Disable cfr rcc mode
*
* Return: none
*/
static
void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, bool enable)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = NULL;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev is NULL");
return;
}
pdev->cfr_rcc_mode = enable;
}
/*
* dp_get_cfr_dbg_stats - Get the debug statistics for CFR
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
* @cfr_rcc_stats: CFR RCC debug statistics buffer
*
* Return: none
*/
static inline void
dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
struct cdp_cfr_rcc_stats *cfr_rcc_stats)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("Invalid pdev");
return;
}
qdf_mem_copy(cfr_rcc_stats, &pdev->stats.rcc,
sizeof(struct cdp_cfr_rcc_stats));
}
/*
* dp_clear_cfr_dbg_stats - Clear debug statistics for CFR
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
*
* Return: none
*/
static void dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl,
uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("dp pdev is NULL");
return;
}
qdf_mem_zero(&pdev->stats.rcc, sizeof(pdev->stats.rcc));
}
/*
* dp_enable_mon_reap_timer() - enable/disable reap timer
* @soc_hdl: Datapath soc handle
* @pdev_id: id of objmgr pdev
* @enable: Enable/Disable reap timer of monitor status ring
*
* Return: none
*/
static void
dp_enable_mon_reap_timer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
bool enable)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = NULL;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev is NULL");
return;
}
pdev->enable_reap_timer_non_pkt = enable;
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED) {
dp_debug("pktlog enabled %d", pdev->rx_pktlog_mode);
return;
}
if (!soc->reap_timer_init) {
dp_err("reap timer not init");
return;
}
if (enable)
qdf_timer_mod(&soc->mon_reap_timer,
DP_INTR_POLL_TIMER_MS);
else
qdf_timer_sync_cancel(&soc->mon_reap_timer);
}
#endif
/*
* dp_is_enable_reap_timer_non_pkt() - check if mon reap timer is
* enabled by non-pkt log or not
* @pdev: point to dp pdev
*
* Return: true if mon reap timer is enabled by non-pkt log
*/
static bool dp_is_enable_reap_timer_non_pkt(struct dp_pdev *pdev)
{
if (!pdev) {
dp_err("null pdev");
return false;
}
return pdev->enable_reap_timer_non_pkt;
}
/*
* dp_set_pktlog_wifi3() - attach txrx vdev
* @pdev: Datapath PDEV handle
* @event: which event's notifications are being subscribed to
* @enable: WDI event subscribe or not. (True or False)
*
* Return: Success, NULL on failure
*/
#ifdef WDI_EVENT_ENABLE
int dp_set_pktlog_wifi3(struct dp_pdev *pdev, uint32_t event,
bool enable)
{
struct dp_soc *soc = NULL;
int max_mac_rings = wlan_cfg_get_num_mac_rings
(pdev->wlan_cfg_ctx);
uint8_t mac_id = 0;
soc = pdev->soc;
dp_is_hw_dbs_enable(soc, &max_mac_rings);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
FL("Max_mac_rings %d "),
max_mac_rings);
if (enable) {
switch (event) {
case WDI_EVENT_RX_DESC:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
pdev->rx_pktlog_mode = DP_RX_PKTLOG_FULL;
return 0;
}
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_FULL) {
pdev->rx_pktlog_mode = DP_RX_PKTLOG_FULL;
dp_mon_filter_setup_rx_pkt_log_full(pdev);
if (dp_mon_filter_update(pdev) !=
QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("Pktlog full filters set failed"));
dp_mon_filter_reset_rx_pkt_log_full(pdev);
pdev->rx_pktlog_mode = DP_RX_PKTLOG_DISABLED;
return 0;
}
if (soc->reap_timer_init &&
(!dp_is_enable_reap_timer_non_pkt(pdev)))
qdf_timer_mod(&soc->mon_reap_timer,
DP_INTR_POLL_TIMER_MS);
}
break;
case WDI_EVENT_LITE_RX:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
pdev->rx_pktlog_mode = DP_RX_PKTLOG_LITE;
return 0;
}
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_LITE) {
pdev->rx_pktlog_mode = DP_RX_PKTLOG_LITE;
/*
* Set the packet log lite mode filter.
*/
dp_mon_filter_setup_rx_pkt_log_lite(pdev);
if (dp_mon_filter_update(pdev) != QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("Pktlog lite filters set failed"));
dp_mon_filter_reset_rx_pkt_log_lite(pdev);
pdev->rx_pktlog_mode =
DP_RX_PKTLOG_DISABLED;
return 0;
}
if (soc->reap_timer_init &&
(!dp_is_enable_reap_timer_non_pkt(pdev)))
qdf_timer_mod(&soc->mon_reap_timer,
DP_INTR_POLL_TIMER_MS);
}
break;
case WDI_EVENT_LITE_T2H:
for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(
mac_id, pdev->pdev_id);
pdev->pktlog_ppdu_stats = true;
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_TXLITE_STATS_BITMASK_CFG,
mac_for_pdev);
}
break;
default:
/* Nothing needs to be done for other pktlog types */
break;
}
} else {
switch (event) {
case WDI_EVENT_RX_DESC:
case WDI_EVENT_LITE_RX:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
pdev->rx_pktlog_mode = DP_RX_PKTLOG_DISABLED;
return 0;
}
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED) {
pdev->rx_pktlog_mode = DP_RX_PKTLOG_DISABLED;
dp_mon_filter_reset_rx_pkt_log_full(pdev);
if (dp_mon_filter_update(pdev) !=
QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("Pktlog filters reset failed"));
return 0;
}
dp_mon_filter_reset_rx_pkt_log_lite(pdev);
if (dp_mon_filter_update(pdev) !=
QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("Pktlog filters reset failed"));
return 0;
}
if (soc->reap_timer_init &&
(!dp_is_enable_reap_timer_non_pkt(pdev)))
qdf_timer_stop(&soc->mon_reap_timer);
}
break;
case WDI_EVENT_LITE_T2H:
/* To disable HTT_H2T_MSG_TYPE_PPDU_STATS_CFG in FW
* passing value 0. Once these macros will define in htt
* header file will use proper macros
*/
for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
int mac_for_pdev =
dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
pdev->pktlog_ppdu_stats = false;
if (!pdev->enhanced_stats_en && !pdev->tx_sniffer_enable && !pdev->mcopy_mode) {
dp_h2t_cfg_stats_msg_send(pdev, 0,
mac_for_pdev);
} else if (pdev->tx_sniffer_enable || pdev->mcopy_mode) {
dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_SNIFFER,
mac_for_pdev);
} else if (pdev->enhanced_stats_en) {
dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_ENH_STATS,
mac_for_pdev);
}
}
break;
default:
/* Nothing needs to be done for other pktlog types */
break;
}
}
return 0;
}
#endif
/**
* dp_bucket_index() - Return index from array
*
* @delay: delay measured
* @array: array used to index corresponding delay
*
* Return: index
*/
static uint8_t dp_bucket_index(uint32_t delay, uint16_t *array)
{
uint8_t i = CDP_DELAY_BUCKET_0;
for (; i < CDP_DELAY_BUCKET_MAX - 1; i++) {
if (delay >= array[i] && delay <= array[i + 1])
return i;
}
return (CDP_DELAY_BUCKET_MAX - 1);
}
/**
* dp_fill_delay_buckets() - Fill delay statistics bucket for each
* type of delay
*
* @pdev: pdev handle
* @delay: delay in ms
* @tid: tid value
* @mode: type of tx delay mode
* @ring_id: ring number
* Return: pointer to cdp_delay_stats structure
*/
static struct cdp_delay_stats *
dp_fill_delay_buckets(struct dp_pdev *pdev, uint32_t delay,
uint8_t tid, uint8_t mode, uint8_t ring_id)
{
uint8_t delay_index = 0;
struct cdp_tid_tx_stats *tstats =
&pdev->stats.tid_stats.tid_tx_stats[ring_id][tid];
struct cdp_tid_rx_stats *rstats =
&pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
/*
* cdp_fw_to_hw_delay_range
* Fw to hw delay ranges in milliseconds
*/
uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = {
0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 250, 500};
/*
* cdp_sw_enq_delay_range
* Software enqueue delay ranges in milliseconds
*/
uint16_t cdp_sw_enq_delay[CDP_DELAY_BUCKET_MAX] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
/*
* cdp_intfrm_delay_range
* Interframe delay ranges in milliseconds
*/
uint16_t cdp_intfrm_delay[CDP_DELAY_BUCKET_MAX] = {
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60};
/*
* Update delay stats in proper bucket
*/
switch (mode) {
/* Software Enqueue delay ranges */
case CDP_DELAY_STATS_SW_ENQ:
delay_index = dp_bucket_index(delay, cdp_sw_enq_delay);
tstats->swq_delay.delay_bucket[delay_index]++;
return &tstats->swq_delay;
/* Tx Completion delay ranges */
case CDP_DELAY_STATS_FW_HW_TRANSMIT:
delay_index = dp_bucket_index(delay, cdp_fw_to_hw_delay);
tstats->hwtx_delay.delay_bucket[delay_index]++;
return &tstats->hwtx_delay;
/* Interframe tx delay ranges */
case CDP_DELAY_STATS_TX_INTERFRAME:
delay_index = dp_bucket_index(delay, cdp_intfrm_delay);
tstats->intfrm_delay.delay_bucket[delay_index]++;
return &tstats->intfrm_delay;
/* Interframe rx delay ranges */
case CDP_DELAY_STATS_RX_INTERFRAME:
delay_index = dp_bucket_index(delay, cdp_intfrm_delay);
rstats->intfrm_delay.delay_bucket[delay_index]++;
return &rstats->intfrm_delay;
/* Ring reap to indication to network stack */
case CDP_DELAY_STATS_REAP_STACK:
delay_index = dp_bucket_index(delay, cdp_intfrm_delay);
rstats->to_stack_delay.delay_bucket[delay_index]++;
return &rstats->to_stack_delay;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%s Incorrect delay mode: %d", __func__, mode);
}
return NULL;
}
/**
* dp_update_delay_stats() - Update delay statistics in structure
* and fill min, max and avg delay
*
* @pdev: pdev handle
* @delay: delay in ms
* @tid: tid value
* @mode: type of tx delay mode
* @ring id: ring number
* Return: none
*/
void dp_update_delay_stats(struct dp_pdev *pdev, uint32_t delay,
uint8_t tid, uint8_t mode, uint8_t ring_id)
{
struct cdp_delay_stats *dstats = NULL;
/*
* Delay ranges are different for different delay modes
* Get the correct index to update delay bucket
*/
dstats = dp_fill_delay_buckets(pdev, delay, tid, mode, ring_id);
if (qdf_unlikely(!dstats))
return;
if (delay != 0) {
/*
* Compute minimum,average and maximum
* delay
*/
if (delay < dstats->min_delay)
dstats->min_delay = delay;
if (delay > dstats->max_delay)
dstats->max_delay = delay;
/*
* Average over delay measured till now
*/
if (!dstats->avg_delay)
dstats->avg_delay = delay;
else
dstats->avg_delay = ((delay + dstats->avg_delay) / 2);
}
}
/**
* dp_get_peer_mac_list(): function to get peer mac list of vdev
* @soc: Datapath soc handle
* @vdev_id: vdev id
* @newmac: Table of the clients mac
* @mac_cnt: No. of MACs required
* @limit: Limit the number of clients
*
* return: no of clients
*/
uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
u_int16_t mac_cnt, bool limit)
{
struct dp_soc *dp_soc = (struct dp_soc *)soc;
struct dp_vdev *vdev =
dp_vdev_get_ref_by_id(dp_soc, vdev_id, DP_MOD_ID_CDP);
struct dp_peer *peer;
uint16_t new_mac_cnt = 0;
if (!vdev)
return new_mac_cnt;
if (limit && (vdev->num_peers > mac_cnt))
return 0;
qdf_spin_lock_bh(&vdev->peer_list_lock);
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (peer->bss_peer)
continue;
if (new_mac_cnt < mac_cnt) {
WLAN_ADDR_COPY(newmac[new_mac_cnt], peer->mac_addr.raw);
new_mac_cnt++;
}
}
qdf_spin_unlock_bh(&vdev->peer_list_lock);
dp_vdev_unref_delete(dp_soc, vdev, DP_MOD_ID_CDP);
return new_mac_cnt;
}
#ifdef QCA_SUPPORT_WDS_EXTENDED
uint16_t dp_wds_ext_get_peer_id(ol_txrx_soc_handle soc,
uint8_t vdev_id,
uint8_t *mac)
{
struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
mac, 0, vdev_id,
DP_MOD_ID_CDP);
uint16_t peer_id = HTT_INVALID_PEER;
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%s: Peer is NULL!\n", __func__);
return peer_id;
}
peer_id = peer->peer_id;
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return peer_id;
}
QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
uint8_t vdev_id,
uint8_t *mac,
ol_txrx_rx_fp rx,
ol_osif_peer_handle osif_peer)
{
struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
mac, 0, vdev_id,
DP_MOD_ID_CDP);
QDF_STATUS status = QDF_STATUS_E_INVAL;
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%s: Peer is NULL!\n", __func__);
return status;
}
if (rx) {
if (peer->osif_rx) {
status = QDF_STATUS_E_ALREADY;
} else {
peer->osif_rx = rx;
status = QDF_STATUS_SUCCESS;
}
} else {
if (peer->osif_rx) {
peer->osif_rx = NULL;
status = QDF_STATUS_SUCCESS;
} else {
status = QDF_STATUS_E_ALREADY;
}
}
peer->wds_ext.osif_peer = osif_peer;
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return status;
}
#endif /* QCA_SUPPORT_WDS_EXTENDED */
/**
* dp_pdev_srng_deinit() - de-initialize all pdev srng ring including
* monitor rings
* @pdev: Datapath pdev handle
*
*/
static void dp_pdev_srng_deinit(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
uint8_t i;
dp_srng_deinit(soc, &soc->rx_refill_buf_ring[pdev->lmac_id], RXDMA_BUF,
pdev->lmac_id);
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx))
dp_deinit_tx_pair_by_index(soc, IPA_TCL_DATA_RING_IDX);
for (i = 0; i < NUM_RXDMA_RINGS_PER_PDEV; i++) {
int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i, pdev->pdev_id);
wlan_minidump_remove(soc->rxdma_err_dst_ring[lmac_id].base_vaddr_unaligned);
dp_srng_deinit(soc, &soc->rxdma_err_dst_ring[lmac_id],
RXDMA_DST, lmac_id);
}
dp_mon_rings_deinit(pdev);
}
/**
* dp_pdev_srng_init() - initialize all pdev srng rings including
* monitor rings
* @pdev: Datapath pdev handle
*
* return: QDF_STATUS_SUCCESS on success
* QDF_STATUS_E_NOMEM on failure
*/
static QDF_STATUS dp_pdev_srng_init(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
uint32_t i;
soc_cfg_ctx = soc->wlan_cfg_ctx;
if (dp_srng_init(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
RXDMA_BUF, 0, pdev->lmac_id)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_init failed rx refill ring"));
goto fail1;
}
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
if (dp_init_tx_ring_pair_by_index(soc, IPA_TCL_DATA_RING_IDX))
goto fail1;
}
if (dp_mon_rings_init(soc, pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("MONITOR rings setup failed"));
goto fail1;
}
/* LMAC RxDMA to SW Rings configuration */
if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx))
/* Only valid for MCL */
pdev = soc->pdev_list[0];
for (i = 0; i < NUM_RXDMA_RINGS_PER_PDEV; i++) {
int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i, pdev->pdev_id);
struct dp_srng *srng = &soc->rxdma_err_dst_ring[lmac_id];
if (srng->hal_srng)
continue;
if (dp_srng_init(soc, srng, RXDMA_DST, 0, lmac_id)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_err_dst_ring"));
goto fail1;
}
wlan_minidump_log(soc->rxdma_err_dst_ring[lmac_id].base_vaddr_unaligned,
soc->rxdma_err_dst_ring[lmac_id].alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_RXDMA_ERR_DST,
"rxdma_err_dst");
}
return QDF_STATUS_SUCCESS;
fail1:
dp_pdev_srng_deinit(pdev);
return QDF_STATUS_E_NOMEM;
}
/**
* dp_pdev_srng_free() - free all pdev srng rings including monitor rings
* pdev: Datapath pdev handle
*
*/
static void dp_pdev_srng_free(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
uint8_t i;
dp_srng_free(soc, &soc->rx_refill_buf_ring[pdev->lmac_id]);
dp_mon_rings_free(pdev);
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx))
dp_free_tx_ring_pair_by_index(soc, IPA_TCL_DATA_RING_IDX);
for (i = 0; i < NUM_RXDMA_RINGS_PER_PDEV; i++) {
int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i, pdev->pdev_id);
dp_srng_free(soc, &soc->rxdma_err_dst_ring[lmac_id]);
}
}
/**
* dp_pdev_srng_alloc() - allocate memory for all pdev srng rings including
* monitor rings
* pdev: Datapath pdev handle
*
* return: QDF_STATUS_SUCCESS on success
* QDF_STATUS_E_NOMEM on failure
*/
static QDF_STATUS dp_pdev_srng_alloc(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
uint32_t ring_size;
uint32_t i;
soc_cfg_ctx = soc->wlan_cfg_ctx;
ring_size = wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
if (dp_srng_alloc(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
RXDMA_BUF, ring_size, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_alloc failed rx refill ring"));
goto fail1;
}
if (dp_mon_rings_alloc(soc, pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("MONITOR rings setup failed"));
goto fail1;
}
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
if (dp_alloc_tx_ring_pair_by_index(soc, IPA_TCL_DATA_RING_IDX))
goto fail1;
}
ring_size = wlan_cfg_get_dp_soc_rxdma_err_dst_ring_size(soc_cfg_ctx);
/* LMAC RxDMA to SW Rings configuration */
if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx))
/* Only valid for MCL */
pdev = soc->pdev_list[0];
for (i = 0; i < NUM_RXDMA_RINGS_PER_PDEV; i++) {
int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i, pdev->pdev_id);
struct dp_srng *srng = &soc->rxdma_err_dst_ring[lmac_id];
if (srng->base_vaddr_unaligned)
continue;
if (dp_srng_alloc(soc, srng, RXDMA_DST, ring_size, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_err_dst_ring"));
goto fail1;
}
}
return QDF_STATUS_SUCCESS;
fail1:
dp_pdev_srng_free(pdev);
return QDF_STATUS_E_NOMEM;
}
/**
* dp_soc_srng_deinit() - de-initialize soc srng rings
* @soc: Datapath soc handle
*
*/
static void dp_soc_srng_deinit(struct dp_soc *soc)
{
uint32_t i;
/* Free the ring memories */
/* Common rings */
wlan_minidump_remove(soc->wbm_desc_rel_ring.base_vaddr_unaligned);
dp_srng_deinit(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE, 0);
/* Tx data rings */
for (i = 0; i < soc->num_tcl_data_rings; i++)
dp_deinit_tx_pair_by_index(soc, i);
/* TCL command and status rings */
if (soc->init_tcl_cmd_cred_ring) {
wlan_minidump_remove(soc->tcl_cmd_credit_ring.base_vaddr_unaligned);
dp_srng_deinit(soc, &soc->tcl_cmd_credit_ring,
TCL_CMD_CREDIT, 0);
}
wlan_minidump_remove(soc->tcl_status_ring.base_vaddr_unaligned);
dp_srng_deinit(soc, &soc->tcl_status_ring, TCL_STATUS, 0);
for (i = 0; i < soc->num_reo_dest_rings; i++) {
/* TODO: Get number of rings and ring sizes
* from wlan_cfg
*/
wlan_minidump_remove(soc->reo_dest_ring[i].base_vaddr_unaligned);
dp_srng_deinit(soc, &soc->reo_dest_ring[i], REO_DST, i);
}
/* REO reinjection ring */
wlan_minidump_remove(soc->reo_reinject_ring.base_vaddr_unaligned);
dp_srng_deinit(soc, &soc->reo_reinject_ring, REO_REINJECT, 0);
/* Rx release ring */
wlan_minidump_remove(soc->rx_rel_ring.base_vaddr_unaligned);
dp_srng_deinit(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 0);
/* Rx exception ring */
/* TODO: Better to store ring_type and ring_num in
* dp_srng during setup
*/
wlan_minidump_remove(soc->reo_exception_ring.base_vaddr_unaligned);
dp_srng_deinit(soc, &soc->reo_exception_ring, REO_EXCEPTION, 0);
/* REO command and status rings */
wlan_minidump_remove(soc->reo_cmd_ring.base_vaddr_unaligned);
dp_srng_deinit(soc, &soc->reo_cmd_ring, REO_CMD, 0);
wlan_minidump_remove(soc->reo_status_ring.base_vaddr_unaligned);
dp_srng_deinit(soc, &soc->reo_status_ring, REO_STATUS, 0);
}
/**
* dp_soc_srng_init() - Initialize soc level srng rings
* @soc: Datapath soc handle
*
* return: QDF_STATUS_SUCCESS on success
* QDF_STATUS_E_FAILURE on failure
*/
static QDF_STATUS dp_soc_srng_init(struct dp_soc *soc)
{
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
uint8_t i;
soc_cfg_ctx = soc->wlan_cfg_ctx;
dp_enable_verbose_debug(soc);
/* WBM descriptor release ring */
if (dp_srng_init(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE, 0, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_init failed for wbm_desc_rel_ring"));
goto fail1;
}
wlan_minidump_log(soc->wbm_desc_rel_ring.base_vaddr_unaligned,
soc->wbm_desc_rel_ring.alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_WBM_DESC_REL,
"wbm_desc_rel_ring");
if (soc->init_tcl_cmd_cred_ring) {
/* TCL command and status rings */
if (dp_srng_init(soc, &soc->tcl_cmd_credit_ring,
TCL_CMD_CREDIT, 0, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_init failed for tcl_cmd_ring"));
goto fail1;
}
wlan_minidump_log(soc->tcl_cmd_credit_ring.base_vaddr_unaligned,
soc->tcl_cmd_credit_ring.alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_TCL_CMD,
"wbm_desc_rel_ring");
}
if (dp_srng_init(soc, &soc->tcl_status_ring, TCL_STATUS, 0, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_init failed for tcl_status_ring"));
goto fail1;
}
wlan_minidump_log(soc->tcl_status_ring.base_vaddr_unaligned,
soc->tcl_status_ring.alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_TCL_STATUS,
"wbm_desc_rel_ring");
/* REO reinjection ring */
if (dp_srng_init(soc, &soc->reo_reinject_ring, REO_REINJECT, 0, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_init failed for reo_reinject_ring"));
goto fail1;
}
wlan_minidump_log(soc->reo_reinject_ring.base_vaddr_unaligned,
soc->reo_reinject_ring.alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_REO_REINJECT,
"reo_reinject_ring");
/* Rx release ring */
if (dp_srng_init(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 3, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_init failed for rx_rel_ring"));
goto fail1;
}
wlan_minidump_log(soc->rx_rel_ring.base_vaddr_unaligned,
soc->rx_rel_ring.alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_RX_REL,
"reo_release_ring");
/* Rx exception ring */
if (dp_srng_init(soc, &soc->reo_exception_ring,
REO_EXCEPTION, 0, MAX_REO_DEST_RINGS)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_init failed - reo_exception"));
goto fail1;
}
wlan_minidump_log(soc->reo_exception_ring.base_vaddr_unaligned,
soc->reo_exception_ring.alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_REO_EXCEPTION,
"reo_exception_ring");
/* REO command and status rings */
if (dp_srng_init(soc, &soc->reo_cmd_ring, REO_CMD, 0, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_init failed for reo_cmd_ring"));
goto fail1;
}
wlan_minidump_log(soc->reo_cmd_ring.base_vaddr_unaligned,
soc->reo_cmd_ring.alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_REO_CMD,
"reo_cmd_ring");
hal_reo_init_cmd_ring(soc->hal_soc, soc->reo_cmd_ring.hal_srng);
TAILQ_INIT(&soc->rx.reo_cmd_list);
qdf_spinlock_create(&soc->rx.reo_cmd_lock);
if (dp_srng_init(soc, &soc->reo_status_ring, REO_STATUS, 0, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_init failed for reo_status_ring"));
goto fail1;
}
wlan_minidump_log(soc->reo_status_ring.base_vaddr_unaligned,
soc->reo_status_ring.alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_REO_STATUS,
"reo_status_ring");
for (i = 0; i < soc->num_tcl_data_rings; i++) {
if (dp_init_tx_ring_pair_by_index(soc, i))
goto fail1;
}
dp_create_ext_stats_event(soc);
for (i = 0; i < soc->num_reo_dest_rings; i++) {
/* Initialize REO destination ring */
if (dp_srng_init(soc, &soc->reo_dest_ring[i], REO_DST, i, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_init failed for reo_dest_ringn"));
goto fail1;
}
wlan_minidump_log(soc->reo_dest_ring[i].base_vaddr_unaligned,
soc->reo_dest_ring[i].alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_REO_DEST,
"reo_dest_ring");
}
return QDF_STATUS_SUCCESS;
fail1:
/*
* Cleanup will be done as part of soc_detach, which will
* be called on pdev attach failure
*/
dp_soc_srng_deinit(soc);
return QDF_STATUS_E_FAILURE;
}
/**
* dp_soc_srng_free() - free soc level srng rings
* @soc: Datapath soc handle
*
*/
static void dp_soc_srng_free(struct dp_soc *soc)
{
uint32_t i;
dp_srng_free(soc, &soc->wbm_desc_rel_ring);
for (i = 0; i < soc->num_tcl_data_rings; i++)
dp_free_tx_ring_pair_by_index(soc, i);
if (soc->init_tcl_cmd_cred_ring)
dp_srng_free(soc, &soc->tcl_cmd_credit_ring);
dp_srng_free(soc, &soc->tcl_status_ring);
for (i = 0; i < soc->num_reo_dest_rings; i++)
dp_srng_free(soc, &soc->reo_dest_ring[i]);
dp_srng_free(soc, &soc->reo_reinject_ring);
dp_srng_free(soc, &soc->rx_rel_ring);
dp_srng_free(soc, &soc->reo_exception_ring);
dp_srng_free(soc, &soc->reo_cmd_ring);
dp_srng_free(soc, &soc->reo_status_ring);
}
/**
* dp_soc_srng_alloc() - Allocate memory for soc level srng rings
* @soc: Datapath soc handle
*
* return: QDF_STATUS_SUCCESS on success
* QDF_STATUS_E_NOMEM on failure
*/
static QDF_STATUS dp_soc_srng_alloc(struct dp_soc *soc)
{
uint32_t entries;
uint32_t i;
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
uint32_t cached = WLAN_CFG_DST_RING_CACHED_DESC;
uint32_t tx_comp_ring_size, tx_ring_size, reo_dst_ring_size;
soc_cfg_ctx = soc->wlan_cfg_ctx;
/* sw2wbm link descriptor release ring */
entries = wlan_cfg_get_dp_soc_wbm_release_ring_size(soc_cfg_ctx);
if (dp_srng_alloc(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_alloc failed for wbm_desc_rel_ring"));
goto fail1;
}
entries = wlan_cfg_get_dp_soc_tcl_cmd_credit_ring_size(soc_cfg_ctx);
/* TCL command and status rings */
if (soc->init_tcl_cmd_cred_ring) {
if (dp_srng_alloc(soc, &soc->tcl_cmd_credit_ring,
TCL_CMD_CREDIT, entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_alloc failed for tcl_cmd_ring"));
goto fail1;
}
}
entries = wlan_cfg_get_dp_soc_tcl_status_ring_size(soc_cfg_ctx);
if (dp_srng_alloc(soc, &soc->tcl_status_ring, TCL_STATUS, entries,
0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_alloc failed for tcl_status_ring"));
goto fail1;
}
/* REO reinjection ring */
entries = wlan_cfg_get_dp_soc_reo_reinject_ring_size(soc_cfg_ctx);
if (dp_srng_alloc(soc, &soc->reo_reinject_ring, REO_REINJECT,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_alloc failed for reo_reinject_ring"));
goto fail1;
}
/* Rx release ring */
entries = wlan_cfg_get_dp_soc_rx_release_ring_size(soc_cfg_ctx);
if (dp_srng_alloc(soc, &soc->rx_rel_ring, WBM2SW_RELEASE,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_alloc failed for rx_rel_ring"));
goto fail1;
}
/* Rx exception ring */
entries = wlan_cfg_get_dp_soc_reo_exception_ring_size(soc_cfg_ctx);
if (dp_srng_alloc(soc, &soc->reo_exception_ring, REO_EXCEPTION,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_alloc failed - reo_exception"));
goto fail1;
}
/* REO command and status rings */
entries = wlan_cfg_get_dp_soc_reo_cmd_ring_size(soc_cfg_ctx);
if (dp_srng_alloc(soc, &soc->reo_cmd_ring, REO_CMD, entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_alloc failed for reo_cmd_ring"));
goto fail1;
}
entries = wlan_cfg_get_dp_soc_reo_status_ring_size(soc_cfg_ctx);
if (dp_srng_alloc(soc, &soc->reo_status_ring, REO_STATUS,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_alloc failed for reo_status_ring"));
goto fail1;
}
tx_comp_ring_size = wlan_cfg_tx_comp_ring_size(soc_cfg_ctx);
tx_ring_size = wlan_cfg_tx_ring_size(soc_cfg_ctx);
reo_dst_ring_size = wlan_cfg_get_reo_dst_ring_size(soc_cfg_ctx);
/* Disable cached desc if NSS offload is enabled */
if (wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx))
cached = 0;
for (i = 0; i < soc->num_tcl_data_rings; i++) {
if (dp_alloc_tx_ring_pair_by_index(soc, i))
goto fail1;
}
for (i = 0; i < soc->num_reo_dest_rings; i++) {
/* Setup REO destination ring */
if (dp_srng_alloc(soc, &soc->reo_dest_ring[i], REO_DST,
reo_dst_ring_size, cached)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_alloc failed for reo_dest_ring"));
goto fail1;
}
}
return QDF_STATUS_SUCCESS;
fail1:
dp_soc_srng_free(soc);
return QDF_STATUS_E_NOMEM;
}
/**
* dp_soc_cfg_init() - initialize target specific configuration
* during dp_soc_init
* @soc: dp soc handle
*/
static void dp_soc_cfg_init(struct dp_soc *soc)
{
int target_type;
target_type = hal_get_target_type(soc->hal_soc);
switch (target_type) {
case TARGET_TYPE_QCA6290:
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA6290);
soc->ast_override_support = 1;
soc->da_war_enabled = false;
break;
case TARGET_TYPE_QCA6390:
case TARGET_TYPE_QCA6490:
case TARGET_TYPE_QCA6750:
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA6290);
wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, true);
soc->ast_override_support = 1;
if (soc->cdp_soc.ol_ops->get_con_mode &&
soc->cdp_soc.ol_ops->get_con_mode() ==
QDF_GLOBAL_MONITOR_MODE) {
int int_ctx;
for (int_ctx = 0; int_ctx < WLAN_CFG_INT_NUM_CONTEXTS; int_ctx++) {
soc->wlan_cfg_ctx->int_rx_ring_mask[int_ctx] = 0;
soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[int_ctx] = 0;
}
}
soc->wlan_cfg_ctx->rxdma1_enable = 0;
break;
case TARGET_TYPE_QCA8074:
wlan_cfg_set_mon_delayed_replenish_entries(soc->wlan_cfg_ctx,
MON_BUF_MIN_ENTRIES);
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA8074);
wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, true);
soc->da_war_enabled = true;
soc->is_rx_fse_full_cache_invalidate_war_enabled = true;
break;
case TARGET_TYPE_QCA8074V2:
case TARGET_TYPE_QCA6018:
wlan_cfg_set_mon_delayed_replenish_entries(soc->wlan_cfg_ctx,
MON_BUF_MIN_ENTRIES);
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA8074);
wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, false);
soc->hw_nac_monitor_support = 1;
soc->ast_override_support = 1;
soc->per_tid_basize_max_tid = 8;
soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_V2_MAPS;
soc->da_war_enabled = false;
soc->is_rx_fse_full_cache_invalidate_war_enabled = true;
break;
case TARGET_TYPE_QCN9000:
wlan_cfg_set_mon_delayed_replenish_entries(soc->wlan_cfg_ctx,
MON_BUF_MIN_ENTRIES);
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCN9000);
soc->ast_override_support = 1;
soc->da_war_enabled = false;
wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, false);
soc->hw_nac_monitor_support = 1;
soc->per_tid_basize_max_tid = 8;
soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_V2_MAPS;
soc->lmac_polled_mode = 0;
soc->wbm_release_desc_rx_sg_support = 1;
if (cfg_get(soc->ctrl_psoc, CFG_DP_FULL_MON_MODE))
dp_config_full_mon_mode((struct cdp_soc_t *)soc, 1);
break;
case TARGET_TYPE_QCA5018:
case TARGET_TYPE_QCN9100:
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA8074);
soc->ast_override_support = 1;
soc->da_war_enabled = false;
wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, false);
soc->hw_nac_monitor_support = 1;
soc->per_tid_basize_max_tid = 8;
soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_MAPS_11AX;
soc->disable_mac1_intr = 1;
soc->disable_mac2_intr = 1;
soc->wbm_release_desc_rx_sg_support = 1;
break;
default:
qdf_print("%s: Unknown tgt type %d\n", __func__, target_type);
qdf_assert_always(0);
break;
}
}
/**
* dp_soc_cfg_attach() - set target specific configuration in
* dp soc cfg.
* @soc: dp soc handle
*/
static void dp_soc_cfg_attach(struct dp_soc *soc)
{
int target_type;
int nss_cfg = 0;
target_type = hal_get_target_type(soc->hal_soc);
switch (target_type) {
case TARGET_TYPE_QCA6290:
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA6290);
break;
case TARGET_TYPE_QCA6390:
case TARGET_TYPE_QCA6490:
case TARGET_TYPE_QCA6750:
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA6290);
soc->wlan_cfg_ctx->rxdma1_enable = 0;
break;
case TARGET_TYPE_QCA8074:
wlan_cfg_set_tso_desc_attach_defer(soc->wlan_cfg_ctx, 1);
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA8074);
break;
case TARGET_TYPE_QCA8074V2:
case TARGET_TYPE_QCA6018:
case TARGET_TYPE_QCN9100:
case TARGET_TYPE_QCA5018:
wlan_cfg_set_tso_desc_attach_defer(soc->wlan_cfg_ctx, 1);
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA8074);
wlan_cfg_set_rxdma1_enable(soc->wlan_cfg_ctx);
break;
case TARGET_TYPE_QCN9000:
wlan_cfg_set_tso_desc_attach_defer(soc->wlan_cfg_ctx, 1);
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCN9000);
wlan_cfg_set_rxdma1_enable(soc->wlan_cfg_ctx);
break;
default:
qdf_print("%s: Unknown tgt type %d\n", __func__, target_type);
qdf_assert_always(0);
break;
}
if (soc->cdp_soc.ol_ops->get_soc_nss_cfg)
nss_cfg = soc->cdp_soc.ol_ops->get_soc_nss_cfg(soc->ctrl_psoc);
wlan_cfg_set_dp_soc_nss_cfg(soc->wlan_cfg_ctx, nss_cfg);
if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
wlan_cfg_set_num_tx_desc_pool(soc->wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_ext_desc_pool(soc->wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_desc(soc->wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_ext_desc(soc->wlan_cfg_ctx, 0);
soc->init_tcl_cmd_cred_ring = false;
soc->num_tcl_data_rings =
wlan_cfg_num_nss_tcl_data_rings(soc->wlan_cfg_ctx);
soc->num_reo_dest_rings =
wlan_cfg_num_nss_reo_dest_rings(soc->wlan_cfg_ctx);
} else {
soc->init_tcl_cmd_cred_ring = true;
soc->num_tcl_data_rings =
wlan_cfg_num_tcl_data_rings(soc->wlan_cfg_ctx);
soc->num_reo_dest_rings =
wlan_cfg_num_reo_dest_rings(soc->wlan_cfg_ctx);
}
}
static inline void dp_pdev_set_default_reo(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
switch (pdev->pdev_id) {
case 0:
pdev->reo_dest =
wlan_cfg_radio0_default_reo_get(soc->wlan_cfg_ctx);
break;
case 1:
pdev->reo_dest =
wlan_cfg_radio1_default_reo_get(soc->wlan_cfg_ctx);
break;
case 2:
pdev->reo_dest =
wlan_cfg_radio2_default_reo_get(soc->wlan_cfg_ctx);
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid pdev_id %d for reo selection", pdev->pdev_id);
break;
}
}
static inline QDF_STATUS dp_pdev_init(struct cdp_soc_t *txrx_soc,
HTC_HANDLE htc_handle,
qdf_device_t qdf_osdev,
uint8_t pdev_id)
{
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
int nss_cfg;
void *sojourn_buf;
QDF_STATUS ret;
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
struct dp_pdev *pdev = soc->pdev_list[pdev_id];
soc_cfg_ctx = soc->wlan_cfg_ctx;
pdev->soc = soc;
pdev->pdev_id = pdev_id;
pdev->filter = dp_mon_filter_alloc(pdev);
if (!pdev->filter) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Memory allocation failed for monitor filters"));
ret = QDF_STATUS_E_NOMEM;
goto fail0;
}
/*
* Variable to prevent double pdev deinitialization during
* radio detach execution .i.e. in the absence of any vdev.
*/
pdev->pdev_deinit = 0;
if (dp_wdi_event_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"dp_wdi_evet_attach failed");
goto fail1;
}
if (dp_pdev_srng_init(pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Failed to initialize pdev srng rings"));
goto fail2;
}
/* Initialize descriptors in TCL Rings used by IPA */
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx))
hal_tx_init_data_ring(soc->hal_soc,
soc->tcl_data_ring[IPA_TCL_DATA_RING_IDX].hal_srng);
/*
* Initialize command/credit ring descriptor
* Command/CREDIT ring also used for sending DATA cmds
*/
if (soc->init_tcl_cmd_cred_ring)
hal_tx_init_cmd_credit_ring(soc->hal_soc,
soc->tcl_cmd_credit_ring.hal_srng);
dp_tx_pdev_init(pdev);
/*
* Variable to prevent double pdev deinitialization during
* radio detach execution .i.e. in the absence of any vdev.
*/
pdev->invalid_peer = qdf_mem_malloc(sizeof(struct dp_peer));
if (!pdev->invalid_peer) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Invalid peer memory allocation failed"));
goto fail3;
}
/*
* set nss pdev config based on soc config
*/
nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
(nss_cfg & (1 << pdev_id)));
pdev->target_pdev_id =
dp_calculate_target_pdev_id_from_host_pdev_id(soc, pdev_id);
if (soc->preferred_hw_mode == WMI_HOST_HW_MODE_2G_PHYB &&
pdev->lmac_id == PHYB_2G_LMAC_ID) {
pdev->target_pdev_id = PHYB_2G_TARGET_PDEV_ID;
}
/* Reset the cpu ring map if radio is NSS offloaded */
if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
dp_soc_reset_cpu_ring_map(soc);
dp_soc_reset_intr_mask(soc);
}
TAILQ_INIT(&pdev->vdev_list);
qdf_spinlock_create(&pdev->vdev_list_lock);
pdev->vdev_count = 0;
qdf_spinlock_create(&pdev->tx_mutex);
qdf_spinlock_create(&pdev->neighbour_peer_mutex);
TAILQ_INIT(&pdev->neighbour_peers_list);
pdev->neighbour_peers_added = false;
pdev->monitor_configured = false;
pdev->mon_chan_band = REG_BAND_UNKNOWN;
pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MON_INVALID_LMAC_ID;
pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MON_INVALID_LMAC_ID;
pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MON_INVALID_LMAC_ID;
DP_STATS_INIT(pdev);
/* Monitor filter init */
pdev->mon_filter_mode = MON_FILTER_ALL;
pdev->fp_mgmt_filter = FILTER_MGMT_ALL;
pdev->fp_ctrl_filter = FILTER_CTRL_ALL;
pdev->fp_data_filter = FILTER_DATA_ALL;
pdev->mo_mgmt_filter = FILTER_MGMT_ALL;
pdev->mo_ctrl_filter = FILTER_CTRL_ALL;
pdev->mo_data_filter = FILTER_DATA_ALL;
dp_local_peer_id_pool_init(pdev);
dp_dscp_tid_map_setup(pdev);
dp_pcp_tid_map_setup(pdev);
/* set the reo destination during initialization */
dp_pdev_set_default_reo(pdev);
/*
* initialize ppdu tlv list
*/
TAILQ_INIT(&pdev->ppdu_info_list);
TAILQ_INIT(&pdev->sched_comp_ppdu_list);
pdev->tlv_count = 0;
pdev->list_depth = 0;
qdf_mem_zero(&pdev->sojourn_stats, sizeof(struct cdp_tx_sojourn_stats));
pdev->sojourn_buf = qdf_nbuf_alloc(pdev->soc->osdev,
sizeof(struct cdp_tx_sojourn_stats), 0, 4,
TRUE);
if (!pdev->sojourn_buf) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Failed to allocate sojourn buf"));
goto fail4;
}
sojourn_buf = qdf_nbuf_data(pdev->sojourn_buf);
qdf_mem_zero(sojourn_buf, sizeof(struct cdp_tx_sojourn_stats));
/* initlialize cal client timer */
dp_cal_client_attach(&pdev->cal_client_ctx,
dp_pdev_to_cdp_pdev(pdev),
pdev->soc->osdev,
&dp_iterate_update_peer_list);
qdf_event_create(&pdev->fw_peer_stats_event);
pdev->num_tx_allowed = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
if (dp_htt_ppdu_stats_attach(pdev) != QDF_STATUS_SUCCESS)
goto fail5;
if (dp_rxdma_ring_setup(soc, pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("RXDMA ring config failed"));
goto fail6;
}
if (dp_setup_ipa_rx_refill_buf_ring(soc, pdev))
goto fail7;
if (dp_ipa_ring_resource_setup(soc, pdev))
goto fail8;
if (dp_ipa_uc_attach(soc, pdev) != QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_ipa_uc_attach failed"));
goto fail8;
}
ret = dp_rx_fst_attach(soc, pdev);
if ((ret != QDF_STATUS_SUCCESS) &&
(ret != QDF_STATUS_E_NOSUPPORT)) {
QDF_TRACE(QDF_MODULE_ID_ANY, QDF_TRACE_LEVEL_ERROR,
"RX Flow Search Table attach failed: pdev %d err %d",
pdev_id, ret);
goto fail9;
}
/* initialize sw rx descriptors */
dp_rx_pdev_desc_pool_init(pdev);
/* initialize sw monitor rx descriptors */
dp_rx_pdev_mon_desc_pool_init(pdev);
/* allocate buffers and replenish the RxDMA ring */
dp_rx_pdev_buffers_alloc(pdev);
/* allocate buffers and replenish the monitor RxDMA ring */
dp_rx_pdev_mon_buffers_alloc(pdev);
dp_init_tso_stats(pdev);
dp_tx_ppdu_stats_attach(pdev);
dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
qdf_dma_mem_stats_read(),
qdf_heap_mem_stats_read(),
qdf_skb_total_mem_stats_read());
return QDF_STATUS_SUCCESS;
fail9:
dp_ipa_uc_detach(soc, pdev);
fail8:
dp_cleanup_ipa_rx_refill_buf_ring(soc, pdev);
fail7:
dp_rxdma_ring_cleanup(soc, pdev);
fail6:
dp_htt_ppdu_stats_detach(pdev);
fail5:
qdf_nbuf_free(pdev->sojourn_buf);
fail4:
qdf_spinlock_destroy(&pdev->neighbour_peer_mutex);
qdf_spinlock_destroy(&pdev->tx_mutex);
qdf_spinlock_destroy(&pdev->vdev_list_lock);
qdf_mem_free(pdev->invalid_peer);
fail3:
dp_pdev_srng_deinit(pdev);
fail2:
dp_wdi_event_detach(pdev);
fail1:
dp_mon_filter_dealloc(pdev);
fail0:
return QDF_STATUS_E_FAILURE;
}
/*
* dp_pdev_init_wifi3() - Init txrx pdev
* @htc_handle: HTC handle for host-target interface
* @qdf_osdev: QDF OS device
* @force: Force deinit
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_pdev_init_wifi3(struct cdp_soc_t *txrx_soc,
HTC_HANDLE htc_handle,
qdf_device_t qdf_osdev,
uint8_t pdev_id)
{
return dp_pdev_init(txrx_soc, htc_handle, qdf_osdev, pdev_id);
}