dp_rx_defrag.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113
  1. /*
  2. * Copyright (c) 2017-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_api.h"
  23. #include "qdf_trace.h"
  24. #include "qdf_nbuf.h"
  25. #include "dp_internal.h"
  26. #include "dp_rx_defrag.h"
  27. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  28. #include "dp_rx_defrag.h"
  29. #include "dp_ipa.h"
  30. #include "dp_rx_buffer_pool.h"
  31. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  32. "AES-CCM",
  33. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  34. IEEE80211_WEP_MICLEN,
  35. 0,
  36. };
  37. const struct dp_rx_defrag_cipher dp_f_tkip = {
  38. "TKIP",
  39. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  40. IEEE80211_WEP_CRCLEN,
  41. IEEE80211_WEP_MICLEN,
  42. };
  43. const struct dp_rx_defrag_cipher dp_f_wep = {
  44. "WEP",
  45. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  46. IEEE80211_WEP_CRCLEN,
  47. 0,
  48. };
  49. /*
  50. * dp_rx_defrag_frames_free(): Free fragment chain
  51. * @frames: Fragment chain
  52. *
  53. * Iterates through the fragment chain and frees them
  54. * Returns: None
  55. */
  56. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  57. {
  58. qdf_nbuf_t next, frag = frames;
  59. while (frag) {
  60. next = qdf_nbuf_next(frag);
  61. qdf_nbuf_free(frag);
  62. frag = next;
  63. }
  64. }
  65. /*
  66. * dp_rx_clear_saved_desc_info(): Clears descriptor info
  67. * @peer: Pointer to the peer data structure
  68. * @tid: Transmit ID (TID)
  69. *
  70. * Saves MPDU descriptor info and MSDU link pointer from REO
  71. * ring descriptor. The cache is created per peer, per TID
  72. *
  73. * Returns: None
  74. */
  75. static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
  76. {
  77. if (peer->rx_tid[tid].dst_ring_desc)
  78. qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
  79. peer->rx_tid[tid].dst_ring_desc = NULL;
  80. peer->rx_tid[tid].head_frag_desc = NULL;
  81. }
  82. static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
  83. unsigned int tid)
  84. {
  85. struct dp_soc *soc;
  86. struct dp_pdev *pdev;
  87. struct dp_srng *dp_rxdma_srng;
  88. struct rx_desc_pool *rx_desc_pool;
  89. union dp_rx_desc_list_elem_t *head = NULL;
  90. union dp_rx_desc_list_elem_t *tail = NULL;
  91. uint8_t pool_id;
  92. pdev = peer->vdev->pdev;
  93. soc = pdev->soc;
  94. if (peer->rx_tid[tid].head_frag_desc) {
  95. pool_id = peer->rx_tid[tid].head_frag_desc->pool_id;
  96. dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id];
  97. rx_desc_pool = &soc->rx_desc_buf[pool_id];
  98. dp_rx_add_to_free_desc_list(&head, &tail,
  99. peer->rx_tid[tid].head_frag_desc);
  100. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  101. 1, &head, &tail);
  102. }
  103. if (peer->rx_tid[tid].dst_ring_desc) {
  104. if (dp_rx_link_desc_return(soc,
  105. peer->rx_tid[tid].dst_ring_desc,
  106. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  107. QDF_STATUS_SUCCESS)
  108. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  109. "%s: Failed to return link desc", __func__);
  110. }
  111. }
  112. /*
  113. * dp_rx_reorder_flush_frag(): Flush the frag list
  114. * @peer: Pointer to the peer data structure
  115. * @tid: Transmit ID (TID)
  116. *
  117. * Flush the per-TID frag list
  118. *
  119. * Returns: None
  120. */
  121. void dp_rx_reorder_flush_frag(struct dp_peer *peer,
  122. unsigned int tid)
  123. {
  124. dp_info_rl("Flushing TID %d", tid);
  125. if (!peer) {
  126. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  127. "%s: NULL peer", __func__);
  128. return;
  129. }
  130. dp_rx_return_head_frag_desc(peer, tid);
  131. dp_rx_defrag_cleanup(peer, tid);
  132. }
  133. /*
  134. * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
  135. * @soc: DP SOC
  136. *
  137. * Flush fragments of all waitlisted TID's
  138. *
  139. * Returns: None
  140. */
  141. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  142. {
  143. struct dp_rx_tid *rx_reorder = NULL;
  144. struct dp_rx_tid *tmp;
  145. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  146. TAILQ_HEAD(, dp_rx_tid) temp_list;
  147. TAILQ_INIT(&temp_list);
  148. dp_debug("Current time %u", now_ms);
  149. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  150. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  151. defrag_waitlist_elem, tmp) {
  152. uint32_t tid;
  153. if (rx_reorder->defrag_timeout_ms > now_ms)
  154. break;
  155. tid = rx_reorder->tid;
  156. if (tid >= DP_MAX_TIDS) {
  157. qdf_assert(0);
  158. continue;
  159. }
  160. TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
  161. defrag_waitlist_elem);
  162. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  163. /* Move to temp list and clean-up later */
  164. TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
  165. defrag_waitlist_elem);
  166. }
  167. if (rx_reorder) {
  168. soc->rx.defrag.next_flush_ms =
  169. rx_reorder->defrag_timeout_ms;
  170. } else {
  171. soc->rx.defrag.next_flush_ms =
  172. now_ms + soc->rx.defrag.timeout_ms;
  173. }
  174. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  175. TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
  176. defrag_waitlist_elem, tmp) {
  177. struct dp_peer *peer, *temp_peer = NULL;
  178. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  179. TAILQ_REMOVE(&temp_list, rx_reorder,
  180. defrag_waitlist_elem);
  181. /* get address of current peer */
  182. peer =
  183. container_of(rx_reorder, struct dp_peer,
  184. rx_tid[rx_reorder->tid]);
  185. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  186. temp_peer = dp_peer_get_ref_by_id(soc, peer->peer_id,
  187. DP_MOD_ID_RX_ERR);
  188. if (temp_peer == peer) {
  189. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  190. dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
  191. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  192. }
  193. if (temp_peer)
  194. dp_peer_unref_delete(temp_peer, DP_MOD_ID_RX_ERR);
  195. }
  196. }
  197. /*
  198. * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
  199. * @peer: Pointer to the peer data structure
  200. * @tid: Transmit ID (TID)
  201. *
  202. * Appends per-tid fragments to global fragment wait list
  203. *
  204. * Returns: None
  205. */
  206. static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
  207. {
  208. struct dp_soc *psoc = peer->vdev->pdev->soc;
  209. struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
  210. dp_debug("Adding TID %u to waitlist for peer %pK at MAC address "QDF_MAC_ADDR_FMT,
  211. tid, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  212. /* TODO: use LIST macros instead of TAIL macros */
  213. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  214. if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
  215. psoc->rx.defrag.next_flush_ms = rx_reorder->defrag_timeout_ms;
  216. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
  217. defrag_waitlist_elem);
  218. DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
  219. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  220. }
  221. /*
  222. * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
  223. * @peer: Pointer to the peer data structure
  224. * @tid: Transmit ID (TID)
  225. *
  226. * Remove fragments from waitlist
  227. *
  228. * Returns: None
  229. */
  230. void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
  231. {
  232. struct dp_pdev *pdev = peer->vdev->pdev;
  233. struct dp_soc *soc = pdev->soc;
  234. struct dp_rx_tid *rx_reorder;
  235. struct dp_rx_tid *tmp;
  236. dp_debug("Removing TID %u to waitlist for peer %pK at MAC address "QDF_MAC_ADDR_FMT,
  237. tid, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  238. if (tid >= DP_MAX_TIDS) {
  239. dp_err("TID out of bounds: %d", tid);
  240. qdf_assert_always(0);
  241. }
  242. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  243. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  244. defrag_waitlist_elem, tmp) {
  245. struct dp_peer *peer_on_waitlist;
  246. /* get address of current peer */
  247. peer_on_waitlist =
  248. container_of(rx_reorder, struct dp_peer,
  249. rx_tid[rx_reorder->tid]);
  250. /* Ensure it is TID for same peer */
  251. if (peer_on_waitlist == peer && rx_reorder->tid == tid) {
  252. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  253. rx_reorder, defrag_waitlist_elem);
  254. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  255. }
  256. }
  257. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  258. }
  259. /*
  260. * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
  261. * @peer: Pointer to the peer data structure
  262. * @tid: Transmit ID (TID)
  263. * @head_addr: Pointer to head list
  264. * @tail_addr: Pointer to tail list
  265. * @frag: Incoming fragment
  266. * @all_frag_present: Flag to indicate whether all fragments are received
  267. *
  268. * Build a per-tid, per-sequence fragment list.
  269. *
  270. * Returns: Success, if inserted
  271. */
  272. static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
  273. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
  274. uint8_t *all_frag_present)
  275. {
  276. qdf_nbuf_t next;
  277. qdf_nbuf_t prev = NULL;
  278. qdf_nbuf_t cur;
  279. uint16_t head_fragno, cur_fragno, next_fragno;
  280. uint8_t last_morefrag = 1, count = 0;
  281. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  282. uint8_t *rx_desc_info;
  283. qdf_assert(frag);
  284. qdf_assert(head_addr);
  285. qdf_assert(tail_addr);
  286. *all_frag_present = 0;
  287. rx_desc_info = qdf_nbuf_data(frag);
  288. cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  289. dp_debug("cur_fragno %d\n", cur_fragno);
  290. /* If this is the first fragment */
  291. if (!(*head_addr)) {
  292. *head_addr = *tail_addr = frag;
  293. qdf_nbuf_set_next(*tail_addr, NULL);
  294. rx_tid->curr_frag_num = cur_fragno;
  295. goto insert_done;
  296. }
  297. /* In sequence fragment */
  298. if (cur_fragno > rx_tid->curr_frag_num) {
  299. qdf_nbuf_set_next(*tail_addr, frag);
  300. *tail_addr = frag;
  301. qdf_nbuf_set_next(*tail_addr, NULL);
  302. rx_tid->curr_frag_num = cur_fragno;
  303. } else {
  304. /* Out of sequence fragment */
  305. cur = *head_addr;
  306. rx_desc_info = qdf_nbuf_data(cur);
  307. head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  308. if (cur_fragno == head_fragno) {
  309. qdf_nbuf_free(frag);
  310. goto insert_fail;
  311. } else if (head_fragno > cur_fragno) {
  312. qdf_nbuf_set_next(frag, cur);
  313. cur = frag;
  314. *head_addr = frag; /* head pointer to be updated */
  315. } else {
  316. while ((cur_fragno > head_fragno) && cur) {
  317. prev = cur;
  318. cur = qdf_nbuf_next(cur);
  319. if (cur) {
  320. rx_desc_info = qdf_nbuf_data(cur);
  321. head_fragno =
  322. dp_rx_frag_get_mpdu_frag_number(
  323. rx_desc_info);
  324. }
  325. }
  326. if (cur_fragno == head_fragno) {
  327. qdf_nbuf_free(frag);
  328. goto insert_fail;
  329. }
  330. qdf_nbuf_set_next(prev, frag);
  331. qdf_nbuf_set_next(frag, cur);
  332. }
  333. }
  334. next = qdf_nbuf_next(*head_addr);
  335. rx_desc_info = qdf_nbuf_data(*tail_addr);
  336. last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
  337. /* TODO: optimize the loop */
  338. if (!last_morefrag) {
  339. /* Check if all fragments are present */
  340. do {
  341. rx_desc_info = qdf_nbuf_data(next);
  342. next_fragno =
  343. dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  344. count++;
  345. if (next_fragno != count)
  346. break;
  347. next = qdf_nbuf_next(next);
  348. } while (next);
  349. if (!next) {
  350. *all_frag_present = 1;
  351. return QDF_STATUS_SUCCESS;
  352. } else {
  353. /* revisit */
  354. }
  355. }
  356. insert_done:
  357. return QDF_STATUS_SUCCESS;
  358. insert_fail:
  359. return QDF_STATUS_E_FAILURE;
  360. }
  361. /*
  362. * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
  363. * @msdu: Pointer to the fragment
  364. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  365. *
  366. * decap tkip encrypted fragment
  367. *
  368. * Returns: QDF_STATUS
  369. */
  370. static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  371. {
  372. uint8_t *ivp, *orig_hdr;
  373. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  374. /* start of 802.11 header info */
  375. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  376. /* TKIP header is located post 802.11 header */
  377. ivp = orig_hdr + hdrlen;
  378. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  379. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  380. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  381. return QDF_STATUS_E_DEFRAG_ERROR;
  382. }
  383. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  384. return QDF_STATUS_SUCCESS;
  385. }
  386. /*
  387. * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
  388. * @nbuf: Pointer to the fragment buffer
  389. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  390. *
  391. * Remove MIC information from CCMP fragment
  392. *
  393. * Returns: QDF_STATUS
  394. */
  395. static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
  396. {
  397. uint8_t *ivp, *orig_hdr;
  398. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  399. /* start of the 802.11 header */
  400. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  401. /* CCMP header is located after 802.11 header */
  402. ivp = orig_hdr + hdrlen;
  403. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  404. return QDF_STATUS_E_DEFRAG_ERROR;
  405. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  406. return QDF_STATUS_SUCCESS;
  407. }
  408. /*
  409. * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
  410. * @nbuf: Pointer to the fragment
  411. * @hdrlen: length of the header information
  412. *
  413. * decap CCMP encrypted fragment
  414. *
  415. * Returns: QDF_STATUS
  416. */
  417. static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
  418. {
  419. uint8_t *ivp, *origHdr;
  420. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  421. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  422. ivp = origHdr + hdrlen;
  423. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  424. return QDF_STATUS_E_DEFRAG_ERROR;
  425. /* Let's pull the header later */
  426. return QDF_STATUS_SUCCESS;
  427. }
  428. /*
  429. * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
  430. * @msdu: Pointer to the fragment
  431. * @hdrlen: length of the header information
  432. *
  433. * decap WEP encrypted fragment
  434. *
  435. * Returns: QDF_STATUS
  436. */
  437. static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  438. {
  439. uint8_t *origHdr;
  440. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  441. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  442. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  443. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  444. return QDF_STATUS_SUCCESS;
  445. }
  446. /*
  447. * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
  448. * @soc: soc handle
  449. * @nbuf: Pointer to the fragment
  450. *
  451. * Calculate the header size of the received fragment
  452. *
  453. * Returns: header size (uint16_t)
  454. */
  455. static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
  456. {
  457. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  458. uint16_t size = sizeof(struct ieee80211_frame);
  459. uint16_t fc = 0;
  460. uint32_t to_ds, fr_ds;
  461. uint8_t frm_ctrl_valid;
  462. uint16_t frm_ctrl_field;
  463. to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
  464. fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
  465. frm_ctrl_valid =
  466. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  467. rx_tlv_hdr);
  468. frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
  469. if (to_ds && fr_ds)
  470. size += QDF_MAC_ADDR_SIZE;
  471. if (frm_ctrl_valid) {
  472. fc = frm_ctrl_field;
  473. /* use 1-st byte for validation */
  474. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  475. size += sizeof(uint16_t);
  476. /* use 2-nd byte for validation */
  477. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  478. size += sizeof(struct ieee80211_htc);
  479. }
  480. }
  481. return size;
  482. }
  483. /*
  484. * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
  485. * @wh0: Pointer to the wireless header of the fragment
  486. * @hdr: Array to hold the pseudo header
  487. *
  488. * Calculate a pseudo MIC header
  489. *
  490. * Returns: None
  491. */
  492. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  493. uint8_t hdr[])
  494. {
  495. const struct ieee80211_frame_addr4 *wh =
  496. (const struct ieee80211_frame_addr4 *)wh0;
  497. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  498. case IEEE80211_FC1_DIR_NODS:
  499. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  500. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  501. wh->i_addr2);
  502. break;
  503. case IEEE80211_FC1_DIR_TODS:
  504. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  505. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  506. wh->i_addr2);
  507. break;
  508. case IEEE80211_FC1_DIR_FROMDS:
  509. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  510. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  511. wh->i_addr3);
  512. break;
  513. case IEEE80211_FC1_DIR_DSTODS:
  514. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  515. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  516. wh->i_addr4);
  517. break;
  518. }
  519. /*
  520. * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  521. * it could also be set for deauth, disassoc, action, etc. for
  522. * a mgt type frame. It comes into picture for MFP.
  523. */
  524. if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
  525. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
  526. IEEE80211_FC1_DIR_DSTODS) {
  527. const struct ieee80211_qosframe_addr4 *qwh =
  528. (const struct ieee80211_qosframe_addr4 *)wh;
  529. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  530. } else {
  531. const struct ieee80211_qosframe *qwh =
  532. (const struct ieee80211_qosframe *)wh;
  533. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  534. }
  535. } else {
  536. hdr[12] = 0;
  537. }
  538. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  539. }
  540. /*
  541. * dp_rx_defrag_mic(): Calculate MIC header
  542. * @key: Pointer to the key
  543. * @wbuf: fragment buffer
  544. * @off: Offset
  545. * @data_len: Data length
  546. * @mic: Array to hold MIC
  547. *
  548. * Calculate a pseudo MIC header
  549. *
  550. * Returns: QDF_STATUS
  551. */
  552. static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
  553. uint16_t off, uint16_t data_len, uint8_t mic[])
  554. {
  555. uint8_t hdr[16] = { 0, };
  556. uint32_t l, r;
  557. const uint8_t *data;
  558. uint32_t space;
  559. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  560. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  561. + rx_desc_len), hdr);
  562. l = dp_rx_get_le32(key);
  563. r = dp_rx_get_le32(key + 4);
  564. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  565. l ^= dp_rx_get_le32(hdr);
  566. dp_rx_michael_block(l, r);
  567. l ^= dp_rx_get_le32(&hdr[4]);
  568. dp_rx_michael_block(l, r);
  569. l ^= dp_rx_get_le32(&hdr[8]);
  570. dp_rx_michael_block(l, r);
  571. l ^= dp_rx_get_le32(&hdr[12]);
  572. dp_rx_michael_block(l, r);
  573. /* first buffer has special handling */
  574. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  575. space = qdf_nbuf_len(wbuf) - off;
  576. for (;; ) {
  577. if (space > data_len)
  578. space = data_len;
  579. /* collect 32-bit blocks from current buffer */
  580. while (space >= sizeof(uint32_t)) {
  581. l ^= dp_rx_get_le32(data);
  582. dp_rx_michael_block(l, r);
  583. data += sizeof(uint32_t);
  584. space -= sizeof(uint32_t);
  585. data_len -= sizeof(uint32_t);
  586. }
  587. if (data_len < sizeof(uint32_t))
  588. break;
  589. wbuf = qdf_nbuf_next(wbuf);
  590. if (!wbuf)
  591. return QDF_STATUS_E_DEFRAG_ERROR;
  592. if (space != 0) {
  593. const uint8_t *data_next;
  594. /*
  595. * Block straddles buffers, split references.
  596. */
  597. data_next =
  598. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  599. if ((qdf_nbuf_len(wbuf)) <
  600. sizeof(uint32_t) - space) {
  601. return QDF_STATUS_E_DEFRAG_ERROR;
  602. }
  603. switch (space) {
  604. case 1:
  605. l ^= dp_rx_get_le32_split(data[0],
  606. data_next[0], data_next[1],
  607. data_next[2]);
  608. data = data_next + 3;
  609. space = (qdf_nbuf_len(wbuf) - off) - 3;
  610. break;
  611. case 2:
  612. l ^= dp_rx_get_le32_split(data[0], data[1],
  613. data_next[0], data_next[1]);
  614. data = data_next + 2;
  615. space = (qdf_nbuf_len(wbuf) - off) - 2;
  616. break;
  617. case 3:
  618. l ^= dp_rx_get_le32_split(data[0], data[1],
  619. data[2], data_next[0]);
  620. data = data_next + 1;
  621. space = (qdf_nbuf_len(wbuf) - off) - 1;
  622. break;
  623. }
  624. dp_rx_michael_block(l, r);
  625. data_len -= sizeof(uint32_t);
  626. } else {
  627. /*
  628. * Setup for next buffer.
  629. */
  630. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  631. space = qdf_nbuf_len(wbuf) - off;
  632. }
  633. }
  634. /* Last block and padding (0x5a, 4..7 x 0) */
  635. switch (data_len) {
  636. case 0:
  637. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  638. break;
  639. case 1:
  640. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  641. break;
  642. case 2:
  643. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  644. break;
  645. case 3:
  646. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  647. break;
  648. }
  649. dp_rx_michael_block(l, r);
  650. dp_rx_michael_block(l, r);
  651. dp_rx_put_le32(mic, l);
  652. dp_rx_put_le32(mic + 4, r);
  653. return QDF_STATUS_SUCCESS;
  654. }
  655. /*
  656. * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
  657. * @key: Pointer to the key
  658. * @msdu: fragment buffer
  659. * @hdrlen: Length of the header information
  660. *
  661. * Remove MIC information from the TKIP frame
  662. *
  663. * Returns: QDF_STATUS
  664. */
  665. static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
  666. qdf_nbuf_t msdu, uint16_t hdrlen)
  667. {
  668. QDF_STATUS status;
  669. uint32_t pktlen = 0, prev_data_len;
  670. uint8_t mic[IEEE80211_WEP_MICLEN];
  671. uint8_t mic0[IEEE80211_WEP_MICLEN];
  672. qdf_nbuf_t prev = NULL, prev0, next;
  673. uint8_t len0 = 0;
  674. next = msdu;
  675. prev0 = msdu;
  676. while (next) {
  677. pktlen += (qdf_nbuf_len(next) - hdrlen);
  678. prev = next;
  679. dp_debug("pktlen %u",
  680. (uint32_t)(qdf_nbuf_len(next) - hdrlen));
  681. next = qdf_nbuf_next(next);
  682. if (next && !qdf_nbuf_next(next))
  683. prev0 = prev;
  684. }
  685. if (!prev) {
  686. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  687. "%s Defrag chaining failed !\n", __func__);
  688. return QDF_STATUS_E_DEFRAG_ERROR;
  689. }
  690. prev_data_len = qdf_nbuf_len(prev) - hdrlen;
  691. if (prev_data_len < dp_f_tkip.ic_miclen) {
  692. if (prev0 == prev) {
  693. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  694. "%s Fragments don't have MIC header !\n", __func__);
  695. return QDF_STATUS_E_DEFRAG_ERROR;
  696. }
  697. len0 = dp_f_tkip.ic_miclen - (uint8_t)prev_data_len;
  698. qdf_nbuf_copy_bits(prev0, qdf_nbuf_len(prev0) - len0, len0,
  699. (caddr_t)mic0);
  700. qdf_nbuf_trim_tail(prev0, len0);
  701. }
  702. qdf_nbuf_copy_bits(prev, (qdf_nbuf_len(prev) -
  703. (dp_f_tkip.ic_miclen - len0)),
  704. (dp_f_tkip.ic_miclen - len0),
  705. (caddr_t)(&mic0[len0]));
  706. qdf_nbuf_trim_tail(prev, (dp_f_tkip.ic_miclen - len0));
  707. pktlen -= dp_f_tkip.ic_miclen;
  708. if (((qdf_nbuf_len(prev) - hdrlen) == 0) && prev != msdu) {
  709. qdf_nbuf_free(prev);
  710. qdf_nbuf_set_next(prev0, NULL);
  711. }
  712. status = dp_rx_defrag_mic(key, msdu, hdrlen,
  713. pktlen, mic);
  714. if (QDF_IS_STATUS_ERROR(status))
  715. return status;
  716. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  717. return QDF_STATUS_E_DEFRAG_ERROR;
  718. return QDF_STATUS_SUCCESS;
  719. }
  720. /*
  721. * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
  722. * @nbuf: buffer pointer
  723. * @hdrsize: size of the header to be pulled
  724. *
  725. * Pull the RXTLV & the 802.11 headers
  726. *
  727. * Returns: None
  728. */
  729. static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
  730. {
  731. struct rx_pkt_tlvs *rx_pkt_tlv =
  732. (struct rx_pkt_tlvs *)qdf_nbuf_data(nbuf);
  733. struct rx_mpdu_info *rx_mpdu_info_details =
  734. &rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  735. dp_debug("pn_31_0 0x%x pn_63_32 0x%x pn_95_64 0x%x pn_127_96 0x%x\n",
  736. rx_mpdu_info_details->pn_31_0, rx_mpdu_info_details->pn_63_32,
  737. rx_mpdu_info_details->pn_95_64,
  738. rx_mpdu_info_details->pn_127_96);
  739. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN + hdrsize);
  740. dp_debug("final pktlen %d .11len %d",
  741. (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  742. }
  743. /*
  744. * dp_rx_defrag_pn_check(): Check the PN of current fragmented with prev PN
  745. * @msdu: msdu to get the current PN
  746. * @cur_pn128: PN extracted from current msdu
  747. * @prev_pn128: Prev PN
  748. *
  749. * Returns: 0 on success, non zero on failure
  750. */
  751. static int dp_rx_defrag_pn_check(qdf_nbuf_t msdu,
  752. uint64_t *cur_pn128, uint64_t *prev_pn128)
  753. {
  754. struct rx_pkt_tlvs *rx_pkt_tlv =
  755. (struct rx_pkt_tlvs *)qdf_nbuf_data(msdu);
  756. struct rx_mpdu_info *rx_mpdu_info_details =
  757. &rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  758. int out_of_order = 0;
  759. cur_pn128[0] = rx_mpdu_info_details->pn_31_0;
  760. cur_pn128[0] |=
  761. ((uint64_t)rx_mpdu_info_details->pn_63_32 << 32);
  762. cur_pn128[1] = rx_mpdu_info_details->pn_95_64;
  763. cur_pn128[1] |=
  764. ((uint64_t)rx_mpdu_info_details->pn_127_96 << 32);
  765. if (cur_pn128[1] == prev_pn128[1])
  766. out_of_order = (cur_pn128[0] - prev_pn128[0] != 1);
  767. else
  768. out_of_order = (cur_pn128[1] - prev_pn128[1] != 1);
  769. return out_of_order;
  770. }
  771. /*
  772. * dp_rx_construct_fraglist(): Construct a nbuf fraglist
  773. * @peer: Pointer to the peer
  774. * @head: Pointer to list of fragments
  775. * @hdrsize: Size of the header to be pulled
  776. *
  777. * Construct a nbuf fraglist
  778. *
  779. * Returns: None
  780. */
  781. static int
  782. dp_rx_construct_fraglist(struct dp_peer *peer, int tid, qdf_nbuf_t head,
  783. uint16_t hdrsize)
  784. {
  785. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  786. qdf_nbuf_t rx_nbuf = msdu;
  787. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  788. uint32_t len = 0;
  789. uint64_t cur_pn128[2] = {0, 0}, prev_pn128[2];
  790. int out_of_order = 0;
  791. int index;
  792. int needs_pn_check = 0;
  793. prev_pn128[0] = rx_tid->pn128[0];
  794. prev_pn128[1] = rx_tid->pn128[1];
  795. index = hal_rx_msdu_is_wlan_mcast(msdu) ? dp_sec_mcast : dp_sec_ucast;
  796. if (qdf_likely(peer->security[index].sec_type != cdp_sec_type_none))
  797. needs_pn_check = 1;
  798. while (msdu) {
  799. if (qdf_likely(needs_pn_check))
  800. out_of_order = dp_rx_defrag_pn_check(msdu,
  801. &cur_pn128[0],
  802. &prev_pn128[0]);
  803. if (qdf_unlikely(out_of_order)) {
  804. dp_info_rl("cur_pn128[0] 0x%llx cur_pn128[1] 0x%llx prev_pn128[0] 0x%llx prev_pn128[1] 0x%llx",
  805. cur_pn128[0], cur_pn128[1],
  806. prev_pn128[0], prev_pn128[1]);
  807. return QDF_STATUS_E_FAILURE;
  808. }
  809. prev_pn128[0] = cur_pn128[0];
  810. prev_pn128[1] = cur_pn128[1];
  811. /*
  812. * Broadcast and multicast frames should never be fragmented.
  813. * Iterating through all msdus and dropping fragments if even
  814. * one of them has mcast/bcast destination address.
  815. */
  816. if (hal_rx_msdu_is_wlan_mcast(msdu)) {
  817. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  818. "Dropping multicast/broadcast fragments");
  819. return QDF_STATUS_E_FAILURE;
  820. }
  821. dp_rx_frag_pull_hdr(msdu, hdrsize);
  822. len += qdf_nbuf_len(msdu);
  823. msdu = qdf_nbuf_next(msdu);
  824. }
  825. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  826. qdf_nbuf_set_next(head, NULL);
  827. qdf_nbuf_set_is_frag(head, 1);
  828. dp_debug("head len %d ext len %d data len %d ",
  829. (uint32_t)qdf_nbuf_len(head),
  830. (uint32_t)qdf_nbuf_len(rx_nbuf),
  831. (uint32_t)(head->data_len));
  832. return QDF_STATUS_SUCCESS;
  833. }
  834. /**
  835. * dp_rx_defrag_err() - rx err handler
  836. * @pdev: handle to pdev object
  837. * @vdev_id: vdev id
  838. * @peer_mac_addr: peer mac address
  839. * @tid: TID
  840. * @tsf32: TSF
  841. * @err_type: error type
  842. * @rx_frame: rx frame
  843. * @pn: PN Number
  844. * @key_id: key id
  845. *
  846. * This function handles rx error and send MIC error notification
  847. *
  848. * Return: None
  849. */
  850. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  851. {
  852. struct ol_if_ops *tops = NULL;
  853. struct dp_pdev *pdev = vdev->pdev;
  854. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  855. uint8_t *orig_hdr;
  856. struct ieee80211_frame *wh;
  857. struct cdp_rx_mic_err_info mic_failure_info;
  858. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  859. wh = (struct ieee80211_frame *)orig_hdr;
  860. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
  861. (struct qdf_mac_addr *)&wh->i_addr1);
  862. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
  863. (struct qdf_mac_addr *)&wh->i_addr2);
  864. mic_failure_info.key_id = 0;
  865. mic_failure_info.multicast =
  866. IEEE80211_IS_MULTICAST(wh->i_addr1);
  867. qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
  868. mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
  869. mic_failure_info.data = (uint8_t *)wh;
  870. mic_failure_info.vdev_id = vdev->vdev_id;
  871. tops = pdev->soc->cdp_soc.ol_ops;
  872. if (tops->rx_mic_error)
  873. tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
  874. &mic_failure_info);
  875. }
  876. /*
  877. * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
  878. * @soc: dp soc handle
  879. * @nbuf: Pointer to the fragment buffer
  880. * @hdrsize: Size of headers
  881. *
  882. * Transcap the fragment from 802.11 to 802.3
  883. *
  884. * Returns: None
  885. */
  886. static void
  887. dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc, struct dp_peer *peer, int tid,
  888. qdf_nbuf_t nbuf, uint16_t hdrsize)
  889. {
  890. struct llc_snap_hdr_t *llchdr;
  891. struct ethernet_hdr_t *eth_hdr;
  892. uint8_t ether_type[2];
  893. uint16_t fc = 0;
  894. union dp_align_mac_addr mac_addr;
  895. uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
  896. struct rx_pkt_tlvs *rx_pkt_tlv =
  897. (struct rx_pkt_tlvs *)qdf_nbuf_data(nbuf);
  898. struct rx_mpdu_info *rx_mpdu_info_details =
  899. &rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  900. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  901. dp_debug("head_nbuf pn_31_0 0x%x pn_63_32 0x%x pn_95_64 0x%x pn_127_96 0x%x\n",
  902. rx_mpdu_info_details->pn_31_0, rx_mpdu_info_details->pn_63_32,
  903. rx_mpdu_info_details->pn_95_64,
  904. rx_mpdu_info_details->pn_127_96);
  905. rx_tid->pn128[0] = rx_mpdu_info_details->pn_31_0;
  906. rx_tid->pn128[0] |= ((uint64_t)rx_mpdu_info_details->pn_63_32 << 32);
  907. rx_tid->pn128[1] = rx_mpdu_info_details->pn_95_64;
  908. rx_tid->pn128[1] |= ((uint64_t)rx_mpdu_info_details->pn_127_96 << 32);
  909. if (!rx_desc_info) {
  910. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  911. "%s: Memory alloc failed ! ", __func__);
  912. QDF_ASSERT(0);
  913. return;
  914. }
  915. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
  916. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  917. RX_PKT_TLVS_LEN + hdrsize);
  918. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  919. qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
  920. sizeof(struct llc_snap_hdr_t) -
  921. sizeof(struct ethernet_hdr_t)));
  922. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  923. if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  924. rx_desc_info))
  925. fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
  926. dp_debug("Frame control type: 0x%x", fc);
  927. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  928. case IEEE80211_FC1_DIR_NODS:
  929. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  930. &mac_addr.raw[0]);
  931. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  932. QDF_MAC_ADDR_SIZE);
  933. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  934. &mac_addr.raw[0]);
  935. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  936. QDF_MAC_ADDR_SIZE);
  937. break;
  938. case IEEE80211_FC1_DIR_TODS:
  939. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  940. &mac_addr.raw[0]);
  941. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  942. QDF_MAC_ADDR_SIZE);
  943. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  944. &mac_addr.raw[0]);
  945. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  946. QDF_MAC_ADDR_SIZE);
  947. break;
  948. case IEEE80211_FC1_DIR_FROMDS:
  949. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  950. &mac_addr.raw[0]);
  951. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  952. QDF_MAC_ADDR_SIZE);
  953. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  954. &mac_addr.raw[0]);
  955. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  956. QDF_MAC_ADDR_SIZE);
  957. break;
  958. case IEEE80211_FC1_DIR_DSTODS:
  959. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  960. &mac_addr.raw[0]);
  961. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  962. QDF_MAC_ADDR_SIZE);
  963. hal_rx_mpdu_get_addr4(soc->hal_soc, rx_desc_info,
  964. &mac_addr.raw[0]);
  965. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  966. QDF_MAC_ADDR_SIZE);
  967. break;
  968. default:
  969. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  970. "%s: Unknown frame control type: 0x%x", __func__, fc);
  971. }
  972. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  973. sizeof(ether_type));
  974. qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
  975. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
  976. qdf_mem_free(rx_desc_info);
  977. }
  978. #ifdef RX_DEFRAG_DO_NOT_REINJECT
  979. /*
  980. * dp_rx_defrag_deliver(): Deliver defrag packet to stack
  981. * @peer: Pointer to the peer
  982. * @tid: Transmit Identifier
  983. * @head: Nbuf to be delivered
  984. *
  985. * Returns: None
  986. */
  987. static inline void dp_rx_defrag_deliver(struct dp_peer *peer,
  988. unsigned int tid,
  989. qdf_nbuf_t head)
  990. {
  991. struct dp_vdev *vdev = peer->vdev;
  992. struct dp_soc *soc = vdev->pdev->soc;
  993. qdf_nbuf_t deliver_list_head = NULL;
  994. qdf_nbuf_t deliver_list_tail = NULL;
  995. uint8_t *rx_tlv_hdr;
  996. rx_tlv_hdr = qdf_nbuf_data(head);
  997. QDF_NBUF_CB_RX_VDEV_ID(head) = vdev->vdev_id;
  998. qdf_nbuf_set_tid_val(head, tid);
  999. qdf_nbuf_pull_head(head, RX_PKT_TLVS_LEN);
  1000. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail,
  1001. head);
  1002. dp_rx_deliver_to_stack(soc, vdev, peer, deliver_list_head,
  1003. deliver_list_tail);
  1004. }
  1005. /*
  1006. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  1007. * @peer: Pointer to the peer
  1008. * @tid: Transmit Identifier
  1009. * @head: Buffer to be reinjected back
  1010. *
  1011. * Reinject the fragment chain back into REO
  1012. *
  1013. * Returns: QDF_STATUS
  1014. */
  1015. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  1016. unsigned int tid, qdf_nbuf_t head)
  1017. {
  1018. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1019. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1020. dp_rx_defrag_deliver(peer, tid, head);
  1021. rx_reorder_array_elem->head = NULL;
  1022. rx_reorder_array_elem->tail = NULL;
  1023. dp_rx_return_head_frag_desc(peer, tid);
  1024. return QDF_STATUS_SUCCESS;
  1025. }
  1026. #else
  1027. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1028. /**
  1029. * dp_rx_reinject_ring_record_entry() - Record reinject ring history
  1030. * @soc: Datapath soc structure
  1031. * @paddr: paddr of the buffer reinjected to SW2REO ring
  1032. * @sw_cookie: SW cookie of the buffer reinjected to SW2REO ring
  1033. * @rbm: Return buffer manager of the buffer reinjected to SW2REO ring
  1034. *
  1035. * Returns: None
  1036. */
  1037. static inline void
  1038. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1039. uint32_t sw_cookie, uint8_t rbm)
  1040. {
  1041. struct dp_buf_info_record *record;
  1042. uint32_t idx;
  1043. if (qdf_unlikely(!soc->rx_reinject_ring_history))
  1044. return;
  1045. idx = dp_history_get_next_index(&soc->rx_reinject_ring_history->index,
  1046. DP_RX_REINJECT_HIST_MAX);
  1047. /* No NULL check needed for record since its an array */
  1048. record = &soc->rx_reinject_ring_history->entry[idx];
  1049. record->timestamp = qdf_get_log_timestamp();
  1050. record->hbi.paddr = paddr;
  1051. record->hbi.sw_cookie = sw_cookie;
  1052. record->hbi.rbm = rbm;
  1053. }
  1054. #else
  1055. static inline void
  1056. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1057. uint32_t sw_cookie, uint8_t rbm)
  1058. {
  1059. }
  1060. #endif
  1061. /*
  1062. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  1063. * @peer: Pointer to the peer
  1064. * @tid: Transmit Identifier
  1065. * @head: Buffer to be reinjected back
  1066. *
  1067. * Reinject the fragment chain back into REO
  1068. *
  1069. * Returns: QDF_STATUS
  1070. */
  1071. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  1072. unsigned int tid, qdf_nbuf_t head)
  1073. {
  1074. struct dp_pdev *pdev = peer->vdev->pdev;
  1075. struct dp_soc *soc = pdev->soc;
  1076. struct hal_buf_info buf_info;
  1077. void *link_desc_va;
  1078. void *msdu0, *msdu_desc_info;
  1079. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  1080. void *dst_mpdu_desc_info, *dst_qdesc_addr;
  1081. qdf_dma_addr_t paddr;
  1082. uint32_t nbuf_len, seq_no, dst_ind;
  1083. uint32_t *mpdu_wrd;
  1084. uint32_t ret, cookie;
  1085. hal_ring_desc_t dst_ring_desc =
  1086. peer->rx_tid[tid].dst_ring_desc;
  1087. hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
  1088. struct dp_rx_desc *rx_desc = peer->rx_tid[tid].head_frag_desc;
  1089. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1090. peer->rx_tid[tid].array;
  1091. qdf_nbuf_t nbuf_head;
  1092. struct rx_desc_pool *rx_desc_pool = NULL;
  1093. void *buf_addr_info = HAL_RX_REO_BUF_ADDR_INFO_GET(dst_ring_desc);
  1094. /* do duplicate link desc address check */
  1095. dp_rx_link_desc_refill_duplicate_check(
  1096. soc,
  1097. &soc->last_op_info.reo_reinject_link_desc,
  1098. buf_addr_info);
  1099. nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
  1100. if (qdf_unlikely(!nbuf_head)) {
  1101. dp_err_rl("IPA RX REO reinject failed");
  1102. return QDF_STATUS_E_FAILURE;
  1103. }
  1104. /* update new allocated skb in case IPA is enabled */
  1105. if (nbuf_head != head) {
  1106. head = nbuf_head;
  1107. rx_desc->nbuf = head;
  1108. rx_reorder_array_elem->head = head;
  1109. }
  1110. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  1111. if (!ent_ring_desc) {
  1112. dp_err_rl("HAL src ring next entry NULL");
  1113. return QDF_STATUS_E_FAILURE;
  1114. }
  1115. hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
  1116. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  1117. qdf_assert_always(link_desc_va);
  1118. msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
  1119. nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
  1120. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  1121. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  1122. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  1123. /* msdu reconfig */
  1124. msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
  1125. dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
  1126. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  1127. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1128. FIRST_MSDU_IN_MPDU_FLAG, 1);
  1129. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1130. LAST_MSDU_IN_MPDU_FLAG, 1);
  1131. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1132. MSDU_CONTINUATION, 0x0);
  1133. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1134. REO_DESTINATION_INDICATION, dst_ind);
  1135. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1136. MSDU_LENGTH, nbuf_len);
  1137. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1138. SA_IS_VALID, 1);
  1139. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1140. DA_IS_VALID, 1);
  1141. /* change RX TLV's */
  1142. hal_rx_msdu_start_msdu_len_set(
  1143. qdf_nbuf_data(head), nbuf_len);
  1144. cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
  1145. rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id];
  1146. /* map the nbuf before reinject it into HW */
  1147. ret = qdf_nbuf_map_nbytes_single(soc->osdev, head,
  1148. QDF_DMA_FROM_DEVICE,
  1149. rx_desc_pool->buf_size);
  1150. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  1151. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1152. "%s: nbuf map failed !", __func__);
  1153. return QDF_STATUS_E_FAILURE;
  1154. }
  1155. dp_ipa_handle_rx_buf_smmu_mapping(soc, head,
  1156. rx_desc_pool->buf_size,
  1157. true);
  1158. /*
  1159. * As part of rx frag handler bufffer was unmapped and rx desc
  1160. * unmapped is set to 1. So again for defrag reinject frame reset
  1161. * it back to 0.
  1162. */
  1163. rx_desc->unmapped = 0;
  1164. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  1165. ret = dp_check_paddr(soc, &head, &paddr, rx_desc_pool);
  1166. if (ret == QDF_STATUS_E_FAILURE) {
  1167. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1168. "%s: x86 check failed !", __func__);
  1169. return QDF_STATUS_E_FAILURE;
  1170. }
  1171. hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_DEFRAG_RBM);
  1172. /* Lets fill entrance ring now !!! */
  1173. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  1174. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1175. "HAL RING Access For REO entrance SRNG Failed: %pK",
  1176. hal_srng);
  1177. return QDF_STATUS_E_FAILURE;
  1178. }
  1179. dp_rx_reinject_ring_record_entry(soc, paddr, cookie, DP_DEFRAG_RBM);
  1180. paddr = (uint64_t)buf_info.paddr;
  1181. /* buf addr */
  1182. hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
  1183. buf_info.sw_cookie,
  1184. HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
  1185. /* mpdu desc info */
  1186. ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
  1187. ent_ring_desc);
  1188. dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
  1189. dst_ring_desc);
  1190. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  1191. sizeof(struct rx_mpdu_desc_info));
  1192. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  1193. mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
  1194. seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
  1195. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1196. MSDU_COUNT, 0x1);
  1197. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1198. MPDU_SEQUENCE_NUMBER, seq_no);
  1199. /* unset frag bit */
  1200. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1201. FRAGMENT_FLAG, 0x0);
  1202. /* set sa/da valid bits */
  1203. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1204. SA_IS_VALID, 0x1);
  1205. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1206. DA_IS_VALID, 0x1);
  1207. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1208. RAW_MPDU, 0x0);
  1209. /* qdesc addr */
  1210. ent_qdesc_addr = (uint8_t *)ent_ring_desc +
  1211. REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  1212. dst_qdesc_addr = (uint8_t *)dst_ring_desc +
  1213. REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  1214. qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
  1215. HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
  1216. REO_DESTINATION_INDICATION, dst_ind);
  1217. hal_srng_access_end(soc->hal_soc, hal_srng);
  1218. DP_STATS_INC(soc, rx.reo_reinject, 1);
  1219. dp_debug("reinjection done !");
  1220. return QDF_STATUS_SUCCESS;
  1221. }
  1222. #endif
  1223. /*
  1224. * dp_rx_defrag(): Defragment the fragment chain
  1225. * @peer: Pointer to the peer
  1226. * @tid: Transmit Identifier
  1227. * @frag_list_head: Pointer to head list
  1228. * @frag_list_tail: Pointer to tail list
  1229. *
  1230. * Defragment the fragment chain
  1231. *
  1232. * Returns: QDF_STATUS
  1233. */
  1234. static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
  1235. qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
  1236. {
  1237. qdf_nbuf_t tmp_next, prev;
  1238. qdf_nbuf_t cur = frag_list_head, msdu;
  1239. uint32_t index, tkip_demic = 0;
  1240. uint16_t hdr_space;
  1241. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  1242. struct dp_vdev *vdev = peer->vdev;
  1243. struct dp_soc *soc = vdev->pdev->soc;
  1244. uint8_t status = 0;
  1245. hdr_space = dp_rx_defrag_hdrsize(soc, cur);
  1246. index = hal_rx_msdu_is_wlan_mcast(cur) ?
  1247. dp_sec_mcast : dp_sec_ucast;
  1248. /* Remove FCS from all fragments */
  1249. while (cur) {
  1250. tmp_next = qdf_nbuf_next(cur);
  1251. qdf_nbuf_set_next(cur, NULL);
  1252. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  1253. prev = cur;
  1254. qdf_nbuf_set_next(cur, tmp_next);
  1255. cur = tmp_next;
  1256. }
  1257. cur = frag_list_head;
  1258. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1259. "%s: index %d Security type: %d", __func__,
  1260. index, peer->security[index].sec_type);
  1261. switch (peer->security[index].sec_type) {
  1262. case cdp_sec_type_tkip:
  1263. tkip_demic = 1;
  1264. case cdp_sec_type_tkip_nomic:
  1265. while (cur) {
  1266. tmp_next = qdf_nbuf_next(cur);
  1267. if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
  1268. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1269. QDF_TRACE_LEVEL_ERROR,
  1270. "dp_rx_defrag: TKIP decap failed");
  1271. return QDF_STATUS_E_DEFRAG_ERROR;
  1272. }
  1273. cur = tmp_next;
  1274. }
  1275. /* If success, increment header to be stripped later */
  1276. hdr_space += dp_f_tkip.ic_header;
  1277. break;
  1278. case cdp_sec_type_aes_ccmp:
  1279. while (cur) {
  1280. tmp_next = qdf_nbuf_next(cur);
  1281. if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
  1282. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1283. QDF_TRACE_LEVEL_ERROR,
  1284. "dp_rx_defrag: CCMP demic failed");
  1285. return QDF_STATUS_E_DEFRAG_ERROR;
  1286. }
  1287. if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
  1288. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1289. QDF_TRACE_LEVEL_ERROR,
  1290. "dp_rx_defrag: CCMP decap failed");
  1291. return QDF_STATUS_E_DEFRAG_ERROR;
  1292. }
  1293. cur = tmp_next;
  1294. }
  1295. /* If success, increment header to be stripped later */
  1296. hdr_space += dp_f_ccmp.ic_header;
  1297. break;
  1298. case cdp_sec_type_wep40:
  1299. case cdp_sec_type_wep104:
  1300. case cdp_sec_type_wep128:
  1301. while (cur) {
  1302. tmp_next = qdf_nbuf_next(cur);
  1303. if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
  1304. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1305. QDF_TRACE_LEVEL_ERROR,
  1306. "dp_rx_defrag: WEP decap failed");
  1307. return QDF_STATUS_E_DEFRAG_ERROR;
  1308. }
  1309. cur = tmp_next;
  1310. }
  1311. /* If success, increment header to be stripped later */
  1312. hdr_space += dp_f_wep.ic_header;
  1313. break;
  1314. default:
  1315. break;
  1316. }
  1317. if (tkip_demic) {
  1318. msdu = frag_list_head;
  1319. qdf_mem_copy(key,
  1320. &peer->security[index].michael_key[0],
  1321. IEEE80211_WEP_MICLEN);
  1322. status = dp_rx_defrag_tkip_demic(key, msdu,
  1323. RX_PKT_TLVS_LEN +
  1324. hdr_space);
  1325. if (status) {
  1326. dp_rx_defrag_err(vdev, frag_list_head);
  1327. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1328. QDF_TRACE_LEVEL_ERROR,
  1329. "%s: TKIP demic failed status %d",
  1330. __func__, status);
  1331. return QDF_STATUS_E_DEFRAG_ERROR;
  1332. }
  1333. }
  1334. /* Convert the header to 802.3 header */
  1335. dp_rx_defrag_nwifi_to_8023(soc, peer, tid, frag_list_head, hdr_space);
  1336. if (qdf_nbuf_next(frag_list_head)) {
  1337. if (dp_rx_construct_fraglist(peer, tid, frag_list_head, hdr_space))
  1338. return QDF_STATUS_E_DEFRAG_ERROR;
  1339. }
  1340. return QDF_STATUS_SUCCESS;
  1341. }
  1342. /*
  1343. * dp_rx_defrag_cleanup(): Clean up activities
  1344. * @peer: Pointer to the peer
  1345. * @tid: Transmit Identifier
  1346. *
  1347. * Returns: None
  1348. */
  1349. void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
  1350. {
  1351. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1352. peer->rx_tid[tid].array;
  1353. if (rx_reorder_array_elem) {
  1354. /* Free up nbufs */
  1355. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1356. rx_reorder_array_elem->head = NULL;
  1357. rx_reorder_array_elem->tail = NULL;
  1358. } else {
  1359. dp_info("Cleanup self peer %pK and TID %u at MAC address "QDF_MAC_ADDR_FMT,
  1360. peer, tid, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  1361. }
  1362. /* Free up saved ring descriptors */
  1363. dp_rx_clear_saved_desc_info(peer, tid);
  1364. peer->rx_tid[tid].defrag_timeout_ms = 0;
  1365. peer->rx_tid[tid].curr_frag_num = 0;
  1366. peer->rx_tid[tid].curr_seq_num = 0;
  1367. }
  1368. /*
  1369. * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
  1370. * @ring_desc: Pointer to the dst ring descriptor
  1371. * @peer: Pointer to the peer
  1372. * @tid: Transmit Identifier
  1373. *
  1374. * Returns: None
  1375. */
  1376. static QDF_STATUS
  1377. dp_rx_defrag_save_info_from_ring_desc(hal_ring_desc_t ring_desc,
  1378. struct dp_rx_desc *rx_desc,
  1379. struct dp_peer *peer,
  1380. unsigned int tid)
  1381. {
  1382. void *dst_ring_desc = qdf_mem_malloc(
  1383. sizeof(struct reo_destination_ring));
  1384. if (!dst_ring_desc) {
  1385. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1386. "%s: Memory alloc failed !", __func__);
  1387. QDF_ASSERT(0);
  1388. return QDF_STATUS_E_NOMEM;
  1389. }
  1390. qdf_mem_copy(dst_ring_desc, ring_desc,
  1391. sizeof(struct reo_destination_ring));
  1392. peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1393. peer->rx_tid[tid].head_frag_desc = rx_desc;
  1394. return QDF_STATUS_SUCCESS;
  1395. }
  1396. /*
  1397. * dp_rx_defrag_store_fragment(): Store incoming fragments
  1398. * @soc: Pointer to the SOC data structure
  1399. * @ring_desc: Pointer to the ring descriptor
  1400. * @mpdu_desc_info: MPDU descriptor info
  1401. * @tid: Traffic Identifier
  1402. * @rx_desc: Pointer to rx descriptor
  1403. * @rx_bfs: Number of bfs consumed
  1404. *
  1405. * Returns: QDF_STATUS
  1406. */
  1407. static QDF_STATUS
  1408. dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1409. hal_ring_desc_t ring_desc,
  1410. union dp_rx_desc_list_elem_t **head,
  1411. union dp_rx_desc_list_elem_t **tail,
  1412. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1413. unsigned int tid, struct dp_rx_desc *rx_desc,
  1414. uint32_t *rx_bfs)
  1415. {
  1416. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1417. struct dp_pdev *pdev;
  1418. struct dp_peer *peer = NULL;
  1419. uint16_t peer_id;
  1420. uint8_t fragno, more_frag, all_frag_present = 0;
  1421. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1422. QDF_STATUS status;
  1423. struct dp_rx_tid *rx_tid;
  1424. uint8_t mpdu_sequence_control_valid;
  1425. uint8_t mpdu_frame_control_valid;
  1426. qdf_nbuf_t frag = rx_desc->nbuf;
  1427. uint32_t msdu_len;
  1428. if (qdf_nbuf_len(frag) > 0) {
  1429. dp_info("Dropping unexpected packet with skb_len: %d,"
  1430. "data len: %d, cookie: %d",
  1431. (uint32_t)qdf_nbuf_len(frag), frag->data_len,
  1432. rx_desc->cookie);
  1433. DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
  1434. goto discard_frag;
  1435. }
  1436. if (dp_rx_buffer_pool_refill(soc, frag, rx_desc->pool_id)) {
  1437. /* fragment queued back to the pool, free the link desc */
  1438. goto err_free_desc;
  1439. }
  1440. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_desc->rx_buf_start);
  1441. qdf_nbuf_set_pktlen(frag, (msdu_len + RX_PKT_TLVS_LEN));
  1442. qdf_nbuf_append_ext_list(frag, NULL, 0);
  1443. /* Check if the packet is from a valid peer */
  1444. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1445. mpdu_desc_info->peer_meta_data);
  1446. peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_RX_ERR);
  1447. if (!peer) {
  1448. /* We should not receive anything from unknown peer
  1449. * however, that might happen while we are in the monitor mode.
  1450. * We don't need to handle that here
  1451. */
  1452. dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
  1453. peer_id);
  1454. DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
  1455. goto discard_frag;
  1456. }
  1457. if (tid >= DP_MAX_TIDS) {
  1458. dp_info("TID out of bounds: %d", tid);
  1459. qdf_assert_always(0);
  1460. goto discard_frag;
  1461. }
  1462. pdev = peer->vdev->pdev;
  1463. rx_tid = &peer->rx_tid[tid];
  1464. mpdu_sequence_control_valid =
  1465. hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
  1466. rx_desc->rx_buf_start);
  1467. /* Invalid MPDU sequence control field, MPDU is of no use */
  1468. if (!mpdu_sequence_control_valid) {
  1469. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1470. "Invalid MPDU seq control field, dropping MPDU");
  1471. qdf_assert(0);
  1472. goto discard_frag;
  1473. }
  1474. mpdu_frame_control_valid =
  1475. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  1476. rx_desc->rx_buf_start);
  1477. /* Invalid frame control field */
  1478. if (!mpdu_frame_control_valid) {
  1479. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1480. "Invalid frame control field, dropping MPDU");
  1481. qdf_assert(0);
  1482. goto discard_frag;
  1483. }
  1484. /* Current mpdu sequence */
  1485. more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
  1486. /* HW does not populate the fragment number as of now
  1487. * need to get from the 802.11 header
  1488. */
  1489. fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
  1490. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1491. if (!rx_reorder_array_elem) {
  1492. dp_err_rl("Rcvd Fragmented pkt before tid setup for peer %pK",
  1493. peer);
  1494. goto discard_frag;
  1495. }
  1496. /*
  1497. * !more_frag: no more fragments to be delivered
  1498. * !frag_no: packet is not fragmented
  1499. * !rx_reorder_array_elem->head: no saved fragments so far
  1500. */
  1501. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1502. /* We should not get into this situation here.
  1503. * It means an unfragmented packet with fragment flag
  1504. * is delivered over the REO exception ring.
  1505. * Typically it follows normal rx path.
  1506. */
  1507. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1508. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1509. qdf_assert(0);
  1510. goto discard_frag;
  1511. }
  1512. /* Check if the fragment is for the same sequence or a different one */
  1513. dp_debug("rx_tid %d", tid);
  1514. if (rx_reorder_array_elem->head) {
  1515. dp_debug("rxseq %d\n", rxseq);
  1516. if (rxseq != rx_tid->curr_seq_num) {
  1517. dp_debug("mismatch cur_seq %d rxseq %d\n",
  1518. rx_tid->curr_seq_num, rxseq);
  1519. /* Drop stored fragments if out of sequence
  1520. * fragment is received
  1521. */
  1522. dp_rx_reorder_flush_frag(peer, tid);
  1523. DP_STATS_INC(soc, rx.rx_frag_oor, 1);
  1524. dp_debug("cur rxseq %d\n", rxseq);
  1525. /*
  1526. * The sequence number for this fragment becomes the
  1527. * new sequence number to be processed
  1528. */
  1529. rx_tid->curr_seq_num = rxseq;
  1530. }
  1531. } else {
  1532. dp_debug("cur rxseq %d\n", rxseq);
  1533. /* Start of a new sequence */
  1534. dp_rx_defrag_cleanup(peer, tid);
  1535. rx_tid->curr_seq_num = rxseq;
  1536. /* store PN number also */
  1537. }
  1538. /*
  1539. * If the earlier sequence was dropped, this will be the fresh start.
  1540. * Else, continue with next fragment in a given sequence
  1541. */
  1542. status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
  1543. &rx_reorder_array_elem->tail, frag,
  1544. &all_frag_present);
  1545. /*
  1546. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1547. * packet sequence has more than 6 MSDUs for some reason, we will
  1548. * have to use the next MSDU link descriptor and chain them together
  1549. * before reinjection.
  1550. * ring_desc is validated in dp_rx_err_process.
  1551. */
  1552. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1553. (rx_reorder_array_elem->head == frag)) {
  1554. status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
  1555. rx_desc, peer, tid);
  1556. if (status != QDF_STATUS_SUCCESS) {
  1557. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1558. "%s: Unable to store ring desc !", __func__);
  1559. goto discard_frag;
  1560. }
  1561. } else {
  1562. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1563. (*rx_bfs)++;
  1564. /* Return the non-head link desc */
  1565. if (dp_rx_link_desc_return(soc, ring_desc,
  1566. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1567. QDF_STATUS_SUCCESS)
  1568. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1569. "%s: Failed to return link desc", __func__);
  1570. }
  1571. if (pdev->soc->rx.flags.defrag_timeout_check)
  1572. dp_rx_defrag_waitlist_remove(peer, tid);
  1573. /* Yet to receive more fragments for this sequence number */
  1574. if (!all_frag_present) {
  1575. uint32_t now_ms =
  1576. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1577. peer->rx_tid[tid].defrag_timeout_ms =
  1578. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1579. dp_rx_defrag_waitlist_add(peer, tid);
  1580. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1581. return QDF_STATUS_SUCCESS;
  1582. }
  1583. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1584. "All fragments received for sequence: %d", rxseq);
  1585. /* Process the fragments */
  1586. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1587. rx_reorder_array_elem->tail);
  1588. if (QDF_IS_STATUS_ERROR(status)) {
  1589. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1590. "Fragment processing failed");
  1591. dp_rx_add_to_free_desc_list(head, tail,
  1592. peer->rx_tid[tid].head_frag_desc);
  1593. (*rx_bfs)++;
  1594. if (dp_rx_link_desc_return(soc,
  1595. peer->rx_tid[tid].dst_ring_desc,
  1596. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1597. QDF_STATUS_SUCCESS)
  1598. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1599. "%s: Failed to return link desc",
  1600. __func__);
  1601. dp_rx_defrag_cleanup(peer, tid);
  1602. goto end;
  1603. }
  1604. /* Re-inject the fragments back to REO for further processing */
  1605. status = dp_rx_defrag_reo_reinject(peer, tid,
  1606. rx_reorder_array_elem->head);
  1607. if (QDF_IS_STATUS_SUCCESS(status)) {
  1608. rx_reorder_array_elem->head = NULL;
  1609. rx_reorder_array_elem->tail = NULL;
  1610. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1611. "Fragmented sequence successfully reinjected");
  1612. } else {
  1613. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1614. "Fragmented sequence reinjection failed");
  1615. dp_rx_return_head_frag_desc(peer, tid);
  1616. }
  1617. dp_rx_defrag_cleanup(peer, tid);
  1618. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1619. return QDF_STATUS_SUCCESS;
  1620. discard_frag:
  1621. qdf_nbuf_free(frag);
  1622. err_free_desc:
  1623. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1624. if (dp_rx_link_desc_return(soc, ring_desc,
  1625. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1626. QDF_STATUS_SUCCESS)
  1627. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1628. "%s: Failed to return link desc", __func__);
  1629. (*rx_bfs)++;
  1630. end:
  1631. if (peer)
  1632. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1633. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1634. return QDF_STATUS_E_DEFRAG_ERROR;
  1635. }
  1636. /**
  1637. * dp_rx_frag_handle() - Handles fragmented Rx frames
  1638. *
  1639. * @soc: core txrx main context
  1640. * @ring_desc: opaque pointer to the REO error ring descriptor
  1641. * @mpdu_desc_info: MPDU descriptor information from ring descriptor
  1642. * @head: head of the local descriptor free-list
  1643. * @tail: tail of the local descriptor free-list
  1644. * @quota: No. of units (packets) that can be serviced in one shot.
  1645. *
  1646. * This function implements RX 802.11 fragmentation handling
  1647. * The handling is mostly same as legacy fragmentation handling.
  1648. * If required, this function can re-inject the frames back to
  1649. * REO ring (with proper setting to by-pass fragmentation check
  1650. * but use duplicate detection / re-ordering and routing these frames
  1651. * to a different core.
  1652. *
  1653. * Return: uint32_t: No. of elements processed
  1654. */
  1655. uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
  1656. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1657. struct dp_rx_desc *rx_desc,
  1658. uint8_t *mac_id,
  1659. uint32_t quota)
  1660. {
  1661. uint32_t rx_bufs_used = 0;
  1662. qdf_nbuf_t msdu = NULL;
  1663. uint32_t tid;
  1664. uint32_t rx_bfs = 0;
  1665. struct dp_pdev *pdev;
  1666. QDF_STATUS status = QDF_STATUS_SUCCESS;
  1667. struct rx_desc_pool *rx_desc_pool;
  1668. qdf_assert(soc);
  1669. qdf_assert(mpdu_desc_info);
  1670. qdf_assert(rx_desc);
  1671. dp_debug("Number of MSDUs to process, num_msdus: %d",
  1672. mpdu_desc_info->msdu_count);
  1673. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1674. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1675. "Not sufficient MSDUs to process");
  1676. return rx_bufs_used;
  1677. }
  1678. /* all buffers in MSDU link belong to same pdev */
  1679. pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id);
  1680. if (!pdev) {
  1681. dp_nofl_debug("pdev is null for pool_id = %d",
  1682. rx_desc->pool_id);
  1683. return rx_bufs_used;
  1684. }
  1685. *mac_id = rx_desc->pool_id;
  1686. msdu = rx_desc->nbuf;
  1687. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  1688. if (rx_desc->unmapped)
  1689. return rx_bufs_used;
  1690. dp_ipa_rx_buf_smmu_mapping_lock(soc);
  1691. dp_ipa_handle_rx_buf_smmu_mapping(soc, rx_desc->nbuf,
  1692. rx_desc_pool->buf_size,
  1693. false);
  1694. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  1695. QDF_DMA_FROM_DEVICE,
  1696. rx_desc_pool->buf_size);
  1697. rx_desc->unmapped = 1;
  1698. dp_ipa_rx_buf_smmu_mapping_unlock(soc);
  1699. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1700. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
  1701. /* Process fragment-by-fragment */
  1702. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1703. &pdev->free_list_head,
  1704. &pdev->free_list_tail,
  1705. mpdu_desc_info,
  1706. tid, rx_desc, &rx_bfs);
  1707. if (rx_bfs)
  1708. rx_bufs_used += rx_bfs;
  1709. if (!QDF_IS_STATUS_SUCCESS(status))
  1710. dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1711. mpdu_desc_info->mpdu_seq,
  1712. mpdu_desc_info->msdu_count,
  1713. mpdu_desc_info->mpdu_flags);
  1714. return rx_bufs_used;
  1715. }
  1716. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1717. struct dp_peer *peer, uint16_t tid,
  1718. uint16_t rxseq, qdf_nbuf_t nbuf)
  1719. {
  1720. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1721. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1722. uint8_t all_frag_present;
  1723. uint32_t msdu_len;
  1724. QDF_STATUS status;
  1725. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1726. /*
  1727. * HW may fill in unexpected peer_id in RX PKT TLV,
  1728. * if this peer_id related peer is valid by coincidence,
  1729. * but actually this peer won't do dp_peer_rx_init(like SAP vdev
  1730. * self peer), then invalid access to rx_reorder_array_elem happened.
  1731. */
  1732. if (!rx_reorder_array_elem) {
  1733. dp_verbose_debug(
  1734. "peer id:%d mac: "QDF_MAC_ADDR_FMT" drop rx frame!",
  1735. peer->peer_id,
  1736. QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  1737. DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
  1738. qdf_nbuf_free(nbuf);
  1739. goto fail;
  1740. }
  1741. if (rx_reorder_array_elem->head &&
  1742. rxseq != rx_tid->curr_seq_num) {
  1743. /* Drop stored fragments if out of sequence
  1744. * fragment is received
  1745. */
  1746. dp_rx_reorder_flush_frag(peer, tid);
  1747. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1748. "%s: No list found for TID %d Seq# %d",
  1749. __func__, tid, rxseq);
  1750. qdf_nbuf_free(nbuf);
  1751. goto fail;
  1752. }
  1753. msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
  1754. qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
  1755. status = dp_rx_defrag_fraglist_insert(peer, tid,
  1756. &rx_reorder_array_elem->head,
  1757. &rx_reorder_array_elem->tail, nbuf,
  1758. &all_frag_present);
  1759. if (QDF_IS_STATUS_ERROR(status)) {
  1760. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1761. "%s Fragment insert failed", __func__);
  1762. goto fail;
  1763. }
  1764. if (soc->rx.flags.defrag_timeout_check)
  1765. dp_rx_defrag_waitlist_remove(peer, tid);
  1766. if (!all_frag_present) {
  1767. uint32_t now_ms =
  1768. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1769. peer->rx_tid[tid].defrag_timeout_ms =
  1770. now_ms + soc->rx.defrag.timeout_ms;
  1771. dp_rx_defrag_waitlist_add(peer, tid);
  1772. return QDF_STATUS_SUCCESS;
  1773. }
  1774. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1775. rx_reorder_array_elem->tail);
  1776. if (QDF_IS_STATUS_ERROR(status)) {
  1777. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1778. "%s Fragment processing failed", __func__);
  1779. dp_rx_return_head_frag_desc(peer, tid);
  1780. dp_rx_defrag_cleanup(peer, tid);
  1781. goto fail;
  1782. }
  1783. /* Re-inject the fragments back to REO for further processing */
  1784. status = dp_rx_defrag_reo_reinject(peer, tid,
  1785. rx_reorder_array_elem->head);
  1786. if (QDF_IS_STATUS_SUCCESS(status)) {
  1787. rx_reorder_array_elem->head = NULL;
  1788. rx_reorder_array_elem->tail = NULL;
  1789. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1790. "%s: Frag seq successfully reinjected",
  1791. __func__);
  1792. } else {
  1793. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1794. "%s: Frag seq reinjection failed", __func__);
  1795. dp_rx_return_head_frag_desc(peer, tid);
  1796. }
  1797. dp_rx_defrag_cleanup(peer, tid);
  1798. return QDF_STATUS_SUCCESS;
  1799. fail:
  1800. return QDF_STATUS_E_DEFRAG_ERROR;
  1801. }