Files
android_kernel_samsung_sm86…/dp/wifi3.0/dp_tx.c
Kenvish Butani bad3898323 qcacmn: Ini and Config command Support for MLO Link Peer Stats
Add support to enable/disable MLO Link Peer stats through
ini and cfg80211tool enable_ol stats command

Change-Id: Id1229a149befa416d060e1b07eee150e6b295abf
CRs-Fixed: 3397721
2023-03-08 07:43:00 -08:00

6537 líneas
172 KiB
C

/*
* Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include "htt.h"
#include "dp_htt.h"
#include "hal_hw_headers.h"
#include "dp_tx.h"
#include "dp_tx_desc.h"
#include "dp_peer.h"
#include "dp_types.h"
#include "hal_tx.h"
#include "qdf_mem.h"
#include "qdf_nbuf.h"
#include "qdf_net_types.h"
#include "qdf_module.h"
#include <wlan_cfg.h>
#include "dp_ipa.h"
#if defined(MESH_MODE_SUPPORT) || defined(FEATURE_PERPKT_INFO)
#include "if_meta_hdr.h"
#endif
#include "enet.h"
#include "dp_internal.h"
#ifdef ATH_SUPPORT_IQUE
#include "dp_txrx_me.h"
#endif
#include "dp_hist.h"
#ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
#include <wlan_dp_swlm.h>
#endif
#ifdef WIFI_MONITOR_SUPPORT
#include <dp_mon.h>
#endif
#ifdef FEATURE_WDS
#include "dp_txrx_wds.h"
#endif
#include "cdp_txrx_cmn_reg.h"
#ifdef CONFIG_SAWF
#include <dp_sawf.h>
#endif
/* Flag to skip CCE classify when mesh or tid override enabled */
#define DP_TX_SKIP_CCE_CLASSIFY \
(DP_TXRX_HLOS_TID_OVERRIDE_ENABLED | DP_TX_MESH_ENABLED)
/* TODO Add support in TSO */
#define DP_DESC_NUM_FRAG(x) 0
/* disable TQM_BYPASS */
#define TQM_BYPASS_WAR 0
#define DP_RETRY_COUNT 7
#ifdef WLAN_PEER_JITTER
#define DP_AVG_JITTER_WEIGHT_DENOM 4
#define DP_AVG_DELAY_WEIGHT_DENOM 3
#endif
#ifdef QCA_DP_TX_FW_METADATA_V2
#define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)\
HTT_TX_TCL_METADATA_V2_PDEV_ID_SET(_var, _val)
#define DP_TX_TCL_METADATA_VALID_HTT_SET(_var, _val) \
HTT_TX_TCL_METADATA_V2_VALID_HTT_SET(_var, _val)
#define DP_TX_TCL_METADATA_TYPE_SET(_var, _val) \
HTT_TX_TCL_METADATA_TYPE_V2_SET(_var, _val)
#define DP_TX_TCL_METADATA_HOST_INSPECTED_SET(_var, _val) \
HTT_TX_TCL_METADATA_V2_HOST_INSPECTED_SET(_var, _val)
#define DP_TX_TCL_METADATA_PEER_ID_SET(_var, _val) \
HTT_TX_TCL_METADATA_V2_PEER_ID_SET(_var, _val)
#define DP_TX_TCL_METADATA_VDEV_ID_SET(_var, _val) \
HTT_TX_TCL_METADATA_V2_VDEV_ID_SET(_var, _val)
#define DP_TCL_METADATA_TYPE_PEER_BASED \
HTT_TCL_METADATA_V2_TYPE_PEER_BASED
#define DP_TCL_METADATA_TYPE_VDEV_BASED \
HTT_TCL_METADATA_V2_TYPE_VDEV_BASED
#else
#define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)\
HTT_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)
#define DP_TX_TCL_METADATA_VALID_HTT_SET(_var, _val) \
HTT_TX_TCL_METADATA_VALID_HTT_SET(_var, _val)
#define DP_TX_TCL_METADATA_TYPE_SET(_var, _val) \
HTT_TX_TCL_METADATA_TYPE_SET(_var, _val)
#define DP_TX_TCL_METADATA_HOST_INSPECTED_SET(_var, _val) \
HTT_TX_TCL_METADATA_HOST_INSPECTED_SET(_var, _val)
#define DP_TX_TCL_METADATA_PEER_ID_SET(_var, _val) \
HTT_TX_TCL_METADATA_PEER_ID_SET(_var, _val)
#define DP_TX_TCL_METADATA_VDEV_ID_SET(_var, _val) \
HTT_TX_TCL_METADATA_VDEV_ID_SET(_var, _val)
#define DP_TCL_METADATA_TYPE_PEER_BASED \
HTT_TCL_METADATA_TYPE_PEER_BASED
#define DP_TCL_METADATA_TYPE_VDEV_BASED \
HTT_TCL_METADATA_TYPE_VDEV_BASED
#endif
#define DP_GET_HW_LINK_ID_FRM_PPDU_ID(PPDU_ID, LINK_ID_OFFSET, LINK_ID_BITS) \
(((PPDU_ID) >> (LINK_ID_OFFSET)) & ((1 << (LINK_ID_BITS)) - 1))
/*mapping between hal encrypt type and cdp_sec_type*/
uint8_t sec_type_map[MAX_CDP_SEC_TYPE] = {HAL_TX_ENCRYPT_TYPE_NO_CIPHER,
HAL_TX_ENCRYPT_TYPE_WEP_128,
HAL_TX_ENCRYPT_TYPE_WEP_104,
HAL_TX_ENCRYPT_TYPE_WEP_40,
HAL_TX_ENCRYPT_TYPE_TKIP_WITH_MIC,
HAL_TX_ENCRYPT_TYPE_TKIP_NO_MIC,
HAL_TX_ENCRYPT_TYPE_AES_CCMP_128,
HAL_TX_ENCRYPT_TYPE_WAPI,
HAL_TX_ENCRYPT_TYPE_AES_CCMP_256,
HAL_TX_ENCRYPT_TYPE_AES_GCMP_128,
HAL_TX_ENCRYPT_TYPE_AES_GCMP_256,
HAL_TX_ENCRYPT_TYPE_WAPI_GCM_SM4};
qdf_export_symbol(sec_type_map);
#ifdef WLAN_FEATURE_DP_TX_DESC_HISTORY
static inline enum dp_tx_event_type dp_tx_get_event_type(uint32_t flags)
{
enum dp_tx_event_type type;
if (flags & DP_TX_DESC_FLAG_FLUSH)
type = DP_TX_DESC_FLUSH;
else if (flags & DP_TX_DESC_FLAG_TX_COMP_ERR)
type = DP_TX_COMP_UNMAP_ERR;
else if (flags & DP_TX_DESC_FLAG_COMPLETED_TX)
type = DP_TX_COMP_UNMAP;
else
type = DP_TX_DESC_UNMAP;
return type;
}
static inline void
dp_tx_desc_history_add(struct dp_soc *soc, dma_addr_t paddr,
qdf_nbuf_t skb, uint32_t sw_cookie,
enum dp_tx_event_type type)
{
struct dp_tx_tcl_history *tx_tcl_history = &soc->tx_tcl_history;
struct dp_tx_comp_history *tx_comp_history = &soc->tx_comp_history;
struct dp_tx_desc_event *entry;
uint32_t idx;
uint16_t slot;
switch (type) {
case DP_TX_COMP_UNMAP:
case DP_TX_COMP_UNMAP_ERR:
case DP_TX_COMP_MSDU_EXT:
if (qdf_unlikely(!tx_comp_history->allocated))
return;
dp_get_frag_hist_next_atomic_idx(&tx_comp_history->index, &idx,
&slot,
DP_TX_COMP_HIST_SLOT_SHIFT,
DP_TX_COMP_HIST_PER_SLOT_MAX,
DP_TX_COMP_HISTORY_SIZE);
entry = &tx_comp_history->entry[slot][idx];
break;
case DP_TX_DESC_MAP:
case DP_TX_DESC_UNMAP:
case DP_TX_DESC_COOKIE:
case DP_TX_DESC_FLUSH:
if (qdf_unlikely(!tx_tcl_history->allocated))
return;
dp_get_frag_hist_next_atomic_idx(&tx_tcl_history->index, &idx,
&slot,
DP_TX_TCL_HIST_SLOT_SHIFT,
DP_TX_TCL_HIST_PER_SLOT_MAX,
DP_TX_TCL_HISTORY_SIZE);
entry = &tx_tcl_history->entry[slot][idx];
break;
default:
dp_info_rl("Invalid dp_tx_event_type: %d", type);
return;
}
entry->skb = skb;
entry->paddr = paddr;
entry->sw_cookie = sw_cookie;
entry->type = type;
entry->ts = qdf_get_log_timestamp();
}
static inline void
dp_tx_tso_seg_history_add(struct dp_soc *soc,
struct qdf_tso_seg_elem_t *tso_seg,
qdf_nbuf_t skb, uint32_t sw_cookie,
enum dp_tx_event_type type)
{
int i;
for (i = 1; i < tso_seg->seg.num_frags; i++) {
dp_tx_desc_history_add(soc, tso_seg->seg.tso_frags[i].paddr,
skb, sw_cookie, type);
}
if (!tso_seg->next)
dp_tx_desc_history_add(soc, tso_seg->seg.tso_frags[0].paddr,
skb, 0xFFFFFFFF, type);
}
static inline void
dp_tx_tso_history_add(struct dp_soc *soc, struct qdf_tso_info_t tso_info,
qdf_nbuf_t skb, uint32_t sw_cookie,
enum dp_tx_event_type type)
{
struct qdf_tso_seg_elem_t *curr_seg = tso_info.tso_seg_list;
uint32_t num_segs = tso_info.num_segs;
while (num_segs) {
dp_tx_tso_seg_history_add(soc, curr_seg, skb, sw_cookie, type);
curr_seg = curr_seg->next;
num_segs--;
}
}
#else
static inline enum dp_tx_event_type dp_tx_get_event_type(uint32_t flags)
{
return DP_TX_DESC_INVAL_EVT;
}
static inline void
dp_tx_desc_history_add(struct dp_soc *soc, dma_addr_t paddr,
qdf_nbuf_t skb, uint32_t sw_cookie,
enum dp_tx_event_type type)
{
}
static inline void
dp_tx_tso_seg_history_add(struct dp_soc *soc,
struct qdf_tso_seg_elem_t *tso_seg,
qdf_nbuf_t skb, uint32_t sw_cookie,
enum dp_tx_event_type type)
{
}
static inline void
dp_tx_tso_history_add(struct dp_soc *soc, struct qdf_tso_info_t tso_info,
qdf_nbuf_t skb, uint32_t sw_cookie,
enum dp_tx_event_type type)
{
}
#endif /* WLAN_FEATURE_DP_TX_DESC_HISTORY */
static int dp_get_rtpm_tput_policy_requirement(struct dp_soc *soc);
/**
* dp_is_tput_high() - Check if throughput is high
*
* @soc: core txrx main context
*
* The current function is based of the RTPM tput policy variable where RTPM is
* avoided based on throughput.
*/
static inline int dp_is_tput_high(struct dp_soc *soc)
{
return dp_get_rtpm_tput_policy_requirement(soc);
}
#if defined(FEATURE_TSO)
/**
* dp_tx_tso_unmap_segment() - Unmap TSO segment
*
* @soc: core txrx main context
* @seg_desc: tso segment descriptor
* @num_seg_desc: tso number segment descriptor
*/
static void dp_tx_tso_unmap_segment(
struct dp_soc *soc,
struct qdf_tso_seg_elem_t *seg_desc,
struct qdf_tso_num_seg_elem_t *num_seg_desc)
{
TSO_DEBUG("%s: Unmap the tso segment", __func__);
if (qdf_unlikely(!seg_desc)) {
DP_TRACE(ERROR, "%s %d TSO desc is NULL!",
__func__, __LINE__);
qdf_assert(0);
} else if (qdf_unlikely(!num_seg_desc)) {
DP_TRACE(ERROR, "%s %d TSO num desc is NULL!",
__func__, __LINE__);
qdf_assert(0);
} else {
bool is_last_seg;
/* no tso segment left to do dma unmap */
if (num_seg_desc->num_seg.tso_cmn_num_seg < 1)
return;
is_last_seg = (num_seg_desc->num_seg.tso_cmn_num_seg == 1) ?
true : false;
qdf_nbuf_unmap_tso_segment(soc->osdev,
seg_desc, is_last_seg);
num_seg_desc->num_seg.tso_cmn_num_seg--;
}
}
/**
* dp_tx_tso_desc_release() - Release the tso segment and tso_cmn_num_seg
* back to the freelist
*
* @soc: soc device handle
* @tx_desc: Tx software descriptor
*/
static void dp_tx_tso_desc_release(struct dp_soc *soc,
struct dp_tx_desc_s *tx_desc)
{
TSO_DEBUG("%s: Free the tso descriptor", __func__);
if (qdf_unlikely(!tx_desc->msdu_ext_desc->tso_desc)) {
dp_tx_err("SO desc is NULL!");
qdf_assert(0);
} else if (qdf_unlikely(!tx_desc->msdu_ext_desc->tso_num_desc)) {
dp_tx_err("TSO num desc is NULL!");
qdf_assert(0);
} else {
struct qdf_tso_num_seg_elem_t *tso_num_desc =
(struct qdf_tso_num_seg_elem_t *)tx_desc->
msdu_ext_desc->tso_num_desc;
/* Add the tso num segment into the free list */
if (tso_num_desc->num_seg.tso_cmn_num_seg == 0) {
dp_tso_num_seg_free(soc, tx_desc->pool_id,
tx_desc->msdu_ext_desc->
tso_num_desc);
tx_desc->msdu_ext_desc->tso_num_desc = NULL;
DP_STATS_INC(tx_desc->pdev, tso_stats.tso_comp, 1);
}
/* Add the tso segment into the free list*/
dp_tx_tso_desc_free(soc,
tx_desc->pool_id, tx_desc->msdu_ext_desc->
tso_desc);
tx_desc->msdu_ext_desc->tso_desc = NULL;
}
}
#else
static void dp_tx_tso_unmap_segment(
struct dp_soc *soc,
struct qdf_tso_seg_elem_t *seg_desc,
struct qdf_tso_num_seg_elem_t *num_seg_desc)
{
}
static void dp_tx_tso_desc_release(struct dp_soc *soc,
struct dp_tx_desc_s *tx_desc)
{
}
#endif
void
dp_tx_desc_release(struct dp_tx_desc_s *tx_desc, uint8_t desc_pool_id)
{
struct dp_pdev *pdev = tx_desc->pdev;
struct dp_soc *soc;
uint8_t comp_status = 0;
qdf_assert(pdev);
soc = pdev->soc;
dp_tx_outstanding_dec(pdev);
if (tx_desc->msdu_ext_desc) {
if (tx_desc->frm_type == dp_tx_frm_tso)
dp_tx_tso_desc_release(soc, tx_desc);
if (tx_desc->flags & DP_TX_DESC_FLAG_ME)
dp_tx_me_free_buf(tx_desc->pdev,
tx_desc->msdu_ext_desc->me_buffer);
dp_tx_ext_desc_free(soc, tx_desc->msdu_ext_desc, desc_pool_id);
}
if (tx_desc->flags & DP_TX_DESC_FLAG_TO_FW)
qdf_atomic_dec(&soc->num_tx_exception);
if (HAL_TX_COMP_RELEASE_SOURCE_TQM ==
tx_desc->buffer_src)
comp_status = hal_tx_comp_get_release_reason(&tx_desc->comp,
soc->hal_soc);
else
comp_status = HAL_TX_COMP_RELEASE_REASON_FW;
dp_tx_debug("Tx Completion Release desc %d status %d outstanding %d",
tx_desc->id, comp_status,
qdf_atomic_read(&pdev->num_tx_outstanding));
dp_tx_desc_free(soc, tx_desc, desc_pool_id);
return;
}
/**
* dp_tx_prepare_htt_metadata() - Prepare HTT metadata for special frames
* @vdev: DP vdev Handle
* @nbuf: skb
* @msdu_info: msdu_info required to create HTT metadata
*
* Prepares and fills HTT metadata in the frame pre-header for special frames
* that should be transmitted using varying transmit parameters.
* There are 2 VDEV modes that currently needs this special metadata -
* 1) Mesh Mode
* 2) DSRC Mode
*
* Return: HTT metadata size
*
*/
static uint8_t dp_tx_prepare_htt_metadata(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
struct dp_tx_msdu_info_s *msdu_info)
{
uint32_t *meta_data = msdu_info->meta_data;
struct htt_tx_msdu_desc_ext2_t *desc_ext =
(struct htt_tx_msdu_desc_ext2_t *) meta_data;
uint8_t htt_desc_size;
/* Size rounded of multiple of 8 bytes */
uint8_t htt_desc_size_aligned;
uint8_t *hdr = NULL;
/*
* Metadata - HTT MSDU Extension header
*/
htt_desc_size = sizeof(struct htt_tx_msdu_desc_ext2_t);
htt_desc_size_aligned = (htt_desc_size + 7) & ~0x7;
if (vdev->mesh_vdev || msdu_info->is_tx_sniffer ||
HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_GET(msdu_info->
meta_data[0]) ||
msdu_info->exception_fw) {
if (qdf_unlikely(qdf_nbuf_headroom(nbuf) <
htt_desc_size_aligned)) {
nbuf = qdf_nbuf_realloc_headroom(nbuf,
htt_desc_size_aligned);
if (!nbuf) {
/*
* qdf_nbuf_realloc_headroom won't do skb_clone
* as skb_realloc_headroom does. so, no free is
* needed here.
*/
DP_STATS_INC(vdev,
tx_i.dropped.headroom_insufficient,
1);
qdf_print(" %s[%d] skb_realloc_headroom failed",
__func__, __LINE__);
return 0;
}
}
/* Fill and add HTT metaheader */
hdr = qdf_nbuf_push_head(nbuf, htt_desc_size_aligned);
if (!hdr) {
dp_tx_err("Error in filling HTT metadata");
return 0;
}
qdf_mem_copy(hdr, desc_ext, htt_desc_size);
} else if (vdev->opmode == wlan_op_mode_ocb) {
/* Todo - Add support for DSRC */
}
return htt_desc_size_aligned;
}
/**
* dp_tx_prepare_tso_ext_desc() - Prepare MSDU extension descriptor for TSO
* @tso_seg: TSO segment to process
* @ext_desc: Pointer to MSDU extension descriptor
*
* Return: void
*/
#if defined(FEATURE_TSO)
static void dp_tx_prepare_tso_ext_desc(struct qdf_tso_seg_t *tso_seg,
void *ext_desc)
{
uint8_t num_frag;
uint32_t tso_flags;
/*
* Set tso_en, tcp_flags(NS, CWR, ECE, URG, ACK, PSH, RST, SYN, FIN),
* tcp_flag_mask
*
* Checksum enable flags are set in TCL descriptor and not in Extension
* Descriptor (H/W ignores checksum_en flags in MSDU ext descriptor)
*/
tso_flags = *(uint32_t *) &tso_seg->tso_flags;
hal_tx_ext_desc_set_tso_flags(ext_desc, tso_flags);
hal_tx_ext_desc_set_msdu_length(ext_desc, tso_seg->tso_flags.l2_len,
tso_seg->tso_flags.ip_len);
hal_tx_ext_desc_set_tcp_seq(ext_desc, tso_seg->tso_flags.tcp_seq_num);
hal_tx_ext_desc_set_ip_id(ext_desc, tso_seg->tso_flags.ip_id);
for (num_frag = 0; num_frag < tso_seg->num_frags; num_frag++) {
uint32_t lo = 0;
uint32_t hi = 0;
qdf_assert_always((tso_seg->tso_frags[num_frag].paddr) &&
(tso_seg->tso_frags[num_frag].length));
qdf_dmaaddr_to_32s(
tso_seg->tso_frags[num_frag].paddr, &lo, &hi);
hal_tx_ext_desc_set_buffer(ext_desc, num_frag, lo, hi,
tso_seg->tso_frags[num_frag].length);
}
return;
}
#else
static void dp_tx_prepare_tso_ext_desc(struct qdf_tso_seg_t *tso_seg,
void *ext_desc)
{
return;
}
#endif
#if defined(FEATURE_TSO)
/**
* dp_tx_free_tso_seg_list() - Loop through the tso segments
* allocated and free them
* @soc: soc handle
* @free_seg: list of tso segments
* @msdu_info: msdu descriptor
*
* Return: void
*/
static void dp_tx_free_tso_seg_list(
struct dp_soc *soc,
struct qdf_tso_seg_elem_t *free_seg,
struct dp_tx_msdu_info_s *msdu_info)
{
struct qdf_tso_seg_elem_t *next_seg;
while (free_seg) {
next_seg = free_seg->next;
dp_tx_tso_desc_free(soc,
msdu_info->tx_queue.desc_pool_id,
free_seg);
free_seg = next_seg;
}
}
/**
* dp_tx_free_tso_num_seg_list() - Loop through the tso num segments
* allocated and free them
* @soc: soc handle
* @free_num_seg: list of tso number segments
* @msdu_info: msdu descriptor
*
* Return: void
*/
static void dp_tx_free_tso_num_seg_list(
struct dp_soc *soc,
struct qdf_tso_num_seg_elem_t *free_num_seg,
struct dp_tx_msdu_info_s *msdu_info)
{
struct qdf_tso_num_seg_elem_t *next_num_seg;
while (free_num_seg) {
next_num_seg = free_num_seg->next;
dp_tso_num_seg_free(soc,
msdu_info->tx_queue.desc_pool_id,
free_num_seg);
free_num_seg = next_num_seg;
}
}
/**
* dp_tx_unmap_tso_seg_list() - Loop through the tso segments
* do dma unmap for each segment
* @soc: soc handle
* @free_seg: list of tso segments
* @num_seg_desc: tso number segment descriptor
*
* Return: void
*/
static void dp_tx_unmap_tso_seg_list(
struct dp_soc *soc,
struct qdf_tso_seg_elem_t *free_seg,
struct qdf_tso_num_seg_elem_t *num_seg_desc)
{
struct qdf_tso_seg_elem_t *next_seg;
if (qdf_unlikely(!num_seg_desc)) {
DP_TRACE(ERROR, "TSO number seg desc is NULL!");
return;
}
while (free_seg) {
next_seg = free_seg->next;
dp_tx_tso_unmap_segment(soc, free_seg, num_seg_desc);
free_seg = next_seg;
}
}
#ifdef FEATURE_TSO_STATS
/**
* dp_tso_get_stats_idx() - Retrieve the tso packet id
* @pdev: pdev handle
*
* Return: id
*/
static uint32_t dp_tso_get_stats_idx(struct dp_pdev *pdev)
{
uint32_t stats_idx;
stats_idx = (((uint32_t)qdf_atomic_inc_return(&pdev->tso_idx))
% CDP_MAX_TSO_PACKETS);
return stats_idx;
}
#else
static int dp_tso_get_stats_idx(struct dp_pdev *pdev)
{
return 0;
}
#endif /* FEATURE_TSO_STATS */
/**
* dp_tx_free_remaining_tso_desc() - do dma unmap for tso segments if any,
* free the tso segments descriptor and
* tso num segments descriptor
* @soc: soc handle
* @msdu_info: msdu descriptor
* @tso_seg_unmap: flag to show if dma unmap is necessary
*
* Return: void
*/
static void dp_tx_free_remaining_tso_desc(struct dp_soc *soc,
struct dp_tx_msdu_info_s *msdu_info,
bool tso_seg_unmap)
{
struct qdf_tso_info_t *tso_info = &msdu_info->u.tso_info;
struct qdf_tso_seg_elem_t *free_seg = tso_info->tso_seg_list;
struct qdf_tso_num_seg_elem_t *tso_num_desc =
tso_info->tso_num_seg_list;
/* do dma unmap for each segment */
if (tso_seg_unmap)
dp_tx_unmap_tso_seg_list(soc, free_seg, tso_num_desc);
/* free all tso number segment descriptor though looks only have 1 */
dp_tx_free_tso_num_seg_list(soc, tso_num_desc, msdu_info);
/* free all tso segment descriptor */
dp_tx_free_tso_seg_list(soc, free_seg, msdu_info);
}
/**
* dp_tx_prepare_tso() - Given a jumbo msdu, prepare the TSO info
* @vdev: virtual device handle
* @msdu: network buffer
* @msdu_info: meta data associated with the msdu
*
* Return: QDF_STATUS_SUCCESS success
*/
static QDF_STATUS dp_tx_prepare_tso(struct dp_vdev *vdev,
qdf_nbuf_t msdu, struct dp_tx_msdu_info_s *msdu_info)
{
struct qdf_tso_seg_elem_t *tso_seg;
int num_seg = qdf_nbuf_get_tso_num_seg(msdu);
struct dp_soc *soc = vdev->pdev->soc;
struct dp_pdev *pdev = vdev->pdev;
struct qdf_tso_info_t *tso_info;
struct qdf_tso_num_seg_elem_t *tso_num_seg;
tso_info = &msdu_info->u.tso_info;
tso_info->curr_seg = NULL;
tso_info->tso_seg_list = NULL;
tso_info->num_segs = num_seg;
msdu_info->frm_type = dp_tx_frm_tso;
tso_info->tso_num_seg_list = NULL;
TSO_DEBUG(" %s: num_seg: %d", __func__, num_seg);
while (num_seg) {
tso_seg = dp_tx_tso_desc_alloc(
soc, msdu_info->tx_queue.desc_pool_id);
if (tso_seg) {
tso_seg->next = tso_info->tso_seg_list;
tso_info->tso_seg_list = tso_seg;
num_seg--;
} else {
dp_err_rl("Failed to alloc tso seg desc");
DP_STATS_INC_PKT(vdev->pdev,
tso_stats.tso_no_mem_dropped, 1,
qdf_nbuf_len(msdu));
dp_tx_free_remaining_tso_desc(soc, msdu_info, false);
return QDF_STATUS_E_NOMEM;
}
}
TSO_DEBUG(" %s: num_seg: %d", __func__, num_seg);
tso_num_seg = dp_tso_num_seg_alloc(soc,
msdu_info->tx_queue.desc_pool_id);
if (tso_num_seg) {
tso_num_seg->next = tso_info->tso_num_seg_list;
tso_info->tso_num_seg_list = tso_num_seg;
} else {
DP_TRACE(ERROR, "%s: Failed to alloc - Number of segs desc",
__func__);
dp_tx_free_remaining_tso_desc(soc, msdu_info, false);
return QDF_STATUS_E_NOMEM;
}
msdu_info->num_seg =
qdf_nbuf_get_tso_info(soc->osdev, msdu, tso_info);
TSO_DEBUG(" %s: msdu_info->num_seg: %d", __func__,
msdu_info->num_seg);
if (!(msdu_info->num_seg)) {
/*
* Free allocated TSO seg desc and number seg desc,
* do unmap for segments if dma map has done.
*/
DP_TRACE(ERROR, "%s: Failed to get tso info", __func__);
dp_tx_free_remaining_tso_desc(soc, msdu_info, true);
return QDF_STATUS_E_INVAL;
}
dp_tx_tso_history_add(soc, msdu_info->u.tso_info,
msdu, 0, DP_TX_DESC_MAP);
tso_info->curr_seg = tso_info->tso_seg_list;
tso_info->msdu_stats_idx = dp_tso_get_stats_idx(pdev);
dp_tso_packet_update(pdev, tso_info->msdu_stats_idx,
msdu, msdu_info->num_seg);
dp_tso_segment_stats_update(pdev, tso_info->tso_seg_list,
tso_info->msdu_stats_idx);
dp_stats_tso_segment_histogram_update(pdev, msdu_info->num_seg);
return QDF_STATUS_SUCCESS;
}
#else
static QDF_STATUS dp_tx_prepare_tso(struct dp_vdev *vdev,
qdf_nbuf_t msdu, struct dp_tx_msdu_info_s *msdu_info)
{
return QDF_STATUS_E_NOMEM;
}
#endif
QDF_COMPILE_TIME_ASSERT(dp_tx_htt_metadata_len_check,
(DP_TX_MSDU_INFO_META_DATA_DWORDS * 4 >=
sizeof(struct htt_tx_msdu_desc_ext2_t)));
/**
* dp_tx_prepare_ext_desc() - Allocate and prepare MSDU extension descriptor
* @vdev: DP Vdev handle
* @msdu_info: MSDU info to be setup in MSDU extension descriptor
* @desc_pool_id: Descriptor Pool ID
*
* Return:
*/
static
struct dp_tx_ext_desc_elem_s *dp_tx_prepare_ext_desc(struct dp_vdev *vdev,
struct dp_tx_msdu_info_s *msdu_info, uint8_t desc_pool_id)
{
uint8_t i;
uint8_t cached_ext_desc[HAL_TX_EXT_DESC_WITH_META_DATA];
struct dp_tx_seg_info_s *seg_info;
struct dp_tx_ext_desc_elem_s *msdu_ext_desc;
struct dp_soc *soc = vdev->pdev->soc;
/* Allocate an extension descriptor */
msdu_ext_desc = dp_tx_ext_desc_alloc(soc, desc_pool_id);
qdf_mem_zero(&cached_ext_desc[0], HAL_TX_EXT_DESC_WITH_META_DATA);
if (!msdu_ext_desc) {
DP_STATS_INC(vdev, tx_i.dropped.desc_na.num, 1);
return NULL;
}
if (msdu_info->exception_fw &&
qdf_unlikely(vdev->mesh_vdev)) {
qdf_mem_copy(&cached_ext_desc[HAL_TX_EXTENSION_DESC_LEN_BYTES],
&msdu_info->meta_data[0],
sizeof(struct htt_tx_msdu_desc_ext2_t));
qdf_atomic_inc(&soc->num_tx_exception);
msdu_ext_desc->flags |= DP_TX_EXT_DESC_FLAG_METADATA_VALID;
}
switch (msdu_info->frm_type) {
case dp_tx_frm_sg:
case dp_tx_frm_me:
case dp_tx_frm_raw:
seg_info = msdu_info->u.sg_info.curr_seg;
/* Update the buffer pointers in MSDU Extension Descriptor */
for (i = 0; i < seg_info->frag_cnt; i++) {
hal_tx_ext_desc_set_buffer(&cached_ext_desc[0], i,
seg_info->frags[i].paddr_lo,
seg_info->frags[i].paddr_hi,
seg_info->frags[i].len);
}
break;
case dp_tx_frm_tso:
dp_tx_prepare_tso_ext_desc(&msdu_info->u.tso_info.curr_seg->seg,
&cached_ext_desc[0]);
break;
default:
break;
}
QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
cached_ext_desc, HAL_TX_EXT_DESC_WITH_META_DATA);
hal_tx_ext_desc_sync(&cached_ext_desc[0],
msdu_ext_desc->vaddr);
return msdu_ext_desc;
}
/**
* dp_tx_trace_pkt() - Trace TX packet at DP layer
* @soc: datapath SOC
* @skb: skb to be traced
* @msdu_id: msdu_id of the packet
* @vdev_id: vdev_id of the packet
*
* Return: None
*/
#ifdef DP_DISABLE_TX_PKT_TRACE
static void dp_tx_trace_pkt(struct dp_soc *soc,
qdf_nbuf_t skb, uint16_t msdu_id,
uint8_t vdev_id)
{
}
#else
static void dp_tx_trace_pkt(struct dp_soc *soc,
qdf_nbuf_t skb, uint16_t msdu_id,
uint8_t vdev_id)
{
if (dp_is_tput_high(soc))
return;
QDF_NBUF_CB_TX_PACKET_TRACK(skb) = QDF_NBUF_TX_PKT_DATA_TRACK;
QDF_NBUF_CB_TX_DP_TRACE(skb) = 1;
DPTRACE(qdf_dp_trace_ptr(skb,
QDF_DP_TRACE_LI_DP_TX_PACKET_PTR_RECORD,
QDF_TRACE_DEFAULT_PDEV_ID,
qdf_nbuf_data_addr(skb),
sizeof(qdf_nbuf_data(skb)),
msdu_id, vdev_id, 0));
qdf_dp_trace_log_pkt(vdev_id, skb, QDF_TX, QDF_TRACE_DEFAULT_PDEV_ID);
DPTRACE(qdf_dp_trace_data_pkt(skb, QDF_TRACE_DEFAULT_PDEV_ID,
QDF_DP_TRACE_LI_DP_TX_PACKET_RECORD,
msdu_id, QDF_TX));
}
#endif
#ifdef WLAN_DP_FEATURE_MARK_ICMP_REQ_TO_FW
/**
* dp_tx_is_nbuf_marked_exception() - Check if the packet has been marked as
* exception by the upper layer (OS_IF)
* @soc: DP soc handle
* @nbuf: packet to be transmitted
*
* Return: 1 if the packet is marked as exception,
* 0, if the packet is not marked as exception.
*/
static inline int dp_tx_is_nbuf_marked_exception(struct dp_soc *soc,
qdf_nbuf_t nbuf)
{
return QDF_NBUF_CB_TX_PACKET_TO_FW(nbuf);
}
#else
static inline int dp_tx_is_nbuf_marked_exception(struct dp_soc *soc,
qdf_nbuf_t nbuf)
{
return 0;
}
#endif
#ifdef DP_TRAFFIC_END_INDICATION
/**
* dp_tx_get_traffic_end_indication_pkt() - Allocate and prepare packet to send
* as indication to fw to inform that
* data stream has ended
* @vdev: DP vdev handle
* @nbuf: original buffer from network stack
*
* Return: NULL on failure,
* nbuf on success
*/
static inline qdf_nbuf_t
dp_tx_get_traffic_end_indication_pkt(struct dp_vdev *vdev,
qdf_nbuf_t nbuf)
{
/* Packet length should be enough to copy upto L3 header */
uint8_t end_nbuf_len = 64;
uint8_t htt_desc_size_aligned;
uint8_t htt_desc_size;
qdf_nbuf_t end_nbuf;
if (qdf_unlikely(QDF_NBUF_CB_GET_PACKET_TYPE(nbuf) ==
QDF_NBUF_CB_PACKET_TYPE_END_INDICATION)) {
htt_desc_size = sizeof(struct htt_tx_msdu_desc_ext2_t);
htt_desc_size_aligned = (htt_desc_size + 7) & ~0x7;
end_nbuf = qdf_nbuf_queue_remove(&vdev->end_ind_pkt_q);
if (!end_nbuf) {
end_nbuf = qdf_nbuf_alloc(NULL,
(htt_desc_size_aligned +
end_nbuf_len),
htt_desc_size_aligned,
8, false);
if (!end_nbuf) {
dp_err("Packet allocation failed");
goto out;
}
} else {
qdf_nbuf_reset(end_nbuf, htt_desc_size_aligned, 8);
}
qdf_mem_copy(qdf_nbuf_data(end_nbuf), qdf_nbuf_data(nbuf),
end_nbuf_len);
qdf_nbuf_set_pktlen(end_nbuf, end_nbuf_len);
return end_nbuf;
}
out:
return NULL;
}
/**
* dp_tx_send_traffic_end_indication_pkt() - Send indication packet to FW
* via exception path.
* @vdev: DP vdev handle
* @end_nbuf: skb to send as indication
* @msdu_info: msdu_info of original nbuf
* @peer_id: peer id
*
* Return: None
*/
static inline void
dp_tx_send_traffic_end_indication_pkt(struct dp_vdev *vdev,
qdf_nbuf_t end_nbuf,
struct dp_tx_msdu_info_s *msdu_info,
uint16_t peer_id)
{
struct dp_tx_msdu_info_s e_msdu_info = {0};
qdf_nbuf_t nbuf;
struct htt_tx_msdu_desc_ext2_t *desc_ext =
(struct htt_tx_msdu_desc_ext2_t *)(e_msdu_info.meta_data);
e_msdu_info.tx_queue = msdu_info->tx_queue;
e_msdu_info.tid = msdu_info->tid;
e_msdu_info.exception_fw = 1;
desc_ext->host_tx_desc_pool = 1;
desc_ext->traffic_end_indication = 1;
nbuf = dp_tx_send_msdu_single(vdev, end_nbuf, &e_msdu_info,
peer_id, NULL);
if (nbuf) {
dp_err("Traffic end indication packet tx failed");
qdf_nbuf_free(nbuf);
}
}
/**
* dp_tx_traffic_end_indication_set_desc_flag() - Set tx descriptor flag to
* mark it traffic end indication
* packet.
* @tx_desc: Tx descriptor pointer
* @msdu_info: msdu_info structure pointer
*
* Return: None
*/
static inline void
dp_tx_traffic_end_indication_set_desc_flag(struct dp_tx_desc_s *tx_desc,
struct dp_tx_msdu_info_s *msdu_info)
{
struct htt_tx_msdu_desc_ext2_t *desc_ext =
(struct htt_tx_msdu_desc_ext2_t *)(msdu_info->meta_data);
if (qdf_unlikely(desc_ext->traffic_end_indication))
tx_desc->flags |= DP_TX_DESC_FLAG_TRAFFIC_END_IND;
}
/**
* dp_tx_traffic_end_indication_enq_ind_pkt() - Enqueue the packet instead of
* freeing which are associated
* with traffic end indication
* flagged descriptor.
* @soc: dp soc handle
* @desc: Tx descriptor pointer
* @nbuf: buffer pointer
*
* Return: True if packet gets enqueued else false
*/
static bool
dp_tx_traffic_end_indication_enq_ind_pkt(struct dp_soc *soc,
struct dp_tx_desc_s *desc,
qdf_nbuf_t nbuf)
{
struct dp_vdev *vdev = NULL;
if (qdf_unlikely((desc->flags &
DP_TX_DESC_FLAG_TRAFFIC_END_IND) != 0)) {
vdev = dp_vdev_get_ref_by_id(soc, desc->vdev_id,
DP_MOD_ID_TX_COMP);
if (vdev) {
qdf_nbuf_queue_add(&vdev->end_ind_pkt_q, nbuf);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_COMP);
return true;
}
}
return false;
}
/**
* dp_tx_traffic_end_indication_is_enabled() - get the feature
* enable/disable status
* @vdev: dp vdev handle
*
* Return: True if feature is enable else false
*/
static inline bool
dp_tx_traffic_end_indication_is_enabled(struct dp_vdev *vdev)
{
return qdf_unlikely(vdev->traffic_end_ind_en);
}
static inline qdf_nbuf_t
dp_tx_send_msdu_single_wrapper(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
struct dp_tx_msdu_info_s *msdu_info,
uint16_t peer_id, qdf_nbuf_t end_nbuf)
{
if (dp_tx_traffic_end_indication_is_enabled(vdev))
end_nbuf = dp_tx_get_traffic_end_indication_pkt(vdev, nbuf);
nbuf = dp_tx_send_msdu_single(vdev, nbuf, msdu_info, peer_id, NULL);
if (qdf_unlikely(end_nbuf))
dp_tx_send_traffic_end_indication_pkt(vdev, end_nbuf,
msdu_info, peer_id);
return nbuf;
}
#else
static inline qdf_nbuf_t
dp_tx_get_traffic_end_indication_pkt(struct dp_vdev *vdev,
qdf_nbuf_t nbuf)
{
return NULL;
}
static inline void
dp_tx_send_traffic_end_indication_pkt(struct dp_vdev *vdev,
qdf_nbuf_t end_nbuf,
struct dp_tx_msdu_info_s *msdu_info,
uint16_t peer_id)
{}
static inline void
dp_tx_traffic_end_indication_set_desc_flag(struct dp_tx_desc_s *tx_desc,
struct dp_tx_msdu_info_s *msdu_info)
{}
static inline bool
dp_tx_traffic_end_indication_enq_ind_pkt(struct dp_soc *soc,
struct dp_tx_desc_s *desc,
qdf_nbuf_t nbuf)
{
return false;
}
static inline bool
dp_tx_traffic_end_indication_is_enabled(struct dp_vdev *vdev)
{
return false;
}
static inline qdf_nbuf_t
dp_tx_send_msdu_single_wrapper(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
struct dp_tx_msdu_info_s *msdu_info,
uint16_t peer_id, qdf_nbuf_t end_nbuf)
{
return dp_tx_send_msdu_single(vdev, nbuf, msdu_info, peer_id, NULL);
}
#endif
#if defined(QCA_SUPPORT_WDS_EXTENDED)
static bool
dp_tx_is_wds_ast_override_en(struct dp_soc *soc,
struct cdp_tx_exception_metadata *tx_exc_metadata)
{
if (soc->features.wds_ext_ast_override_enable &&
tx_exc_metadata && tx_exc_metadata->is_wds_extended)
return true;
return false;
}
#else
static bool
dp_tx_is_wds_ast_override_en(struct dp_soc *soc,
struct cdp_tx_exception_metadata *tx_exc_metadata)
{
return false;
}
#endif
/**
* dp_tx_prepare_desc_single() - Allocate and prepare Tx descriptor
* @vdev: DP vdev handle
* @nbuf: skb
* @desc_pool_id: Descriptor pool ID
* @msdu_info: Metadata to the fw
* @tx_exc_metadata: Handle that holds exception path metadata
*
* Allocate and prepare Tx descriptor with msdu information.
*
* Return: Pointer to Tx Descriptor on success,
* NULL on failure
*/
static
struct dp_tx_desc_s *dp_tx_prepare_desc_single(struct dp_vdev *vdev,
qdf_nbuf_t nbuf, uint8_t desc_pool_id,
struct dp_tx_msdu_info_s *msdu_info,
struct cdp_tx_exception_metadata *tx_exc_metadata)
{
uint8_t align_pad;
uint8_t is_exception = 0;
uint8_t htt_hdr_size;
struct dp_tx_desc_s *tx_desc;
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
if (dp_tx_limit_check(vdev, nbuf))
return NULL;
/* Allocate software Tx descriptor */
tx_desc = dp_tx_desc_alloc(soc, desc_pool_id);
if (qdf_unlikely(!tx_desc)) {
DP_STATS_INC(vdev, tx_i.dropped.desc_na.num, 1);
DP_STATS_INC(vdev, tx_i.dropped.desc_na_exc_alloc_fail.num, 1);
return NULL;
}
dp_tx_outstanding_inc(pdev);
/* Initialize the SW tx descriptor */
tx_desc->nbuf = nbuf;
tx_desc->frm_type = dp_tx_frm_std;
tx_desc->tx_encap_type = ((tx_exc_metadata &&
(tx_exc_metadata->tx_encap_type != CDP_INVALID_TX_ENCAP_TYPE)) ?
tx_exc_metadata->tx_encap_type : vdev->tx_encap_type);
tx_desc->vdev_id = vdev->vdev_id;
tx_desc->pdev = pdev;
tx_desc->msdu_ext_desc = NULL;
tx_desc->pkt_offset = 0;
tx_desc->length = qdf_nbuf_headlen(nbuf);
tx_desc->shinfo_addr = skb_end_pointer(nbuf);
dp_tx_trace_pkt(soc, nbuf, tx_desc->id, vdev->vdev_id);
if (qdf_unlikely(vdev->multipass_en)) {
if (!dp_tx_multipass_process(soc, vdev, nbuf, msdu_info))
goto failure;
}
/* Packets marked by upper layer (OS-IF) to be sent to FW */
if (dp_tx_is_nbuf_marked_exception(soc, nbuf))
is_exception = 1;
/* for BE chipsets if wds extension was enbled will not mark FW
* in desc will mark ast index based search for ast index.
*/
if (dp_tx_is_wds_ast_override_en(soc, tx_exc_metadata))
return tx_desc;
/*
* For special modes (vdev_type == ocb or mesh), data frames should be
* transmitted using varying transmit parameters (tx spec) which include
* transmit rate, power, priority, channel, channel bandwidth , nss etc.
* These are filled in HTT MSDU descriptor and sent in frame pre-header.
* These frames are sent as exception packets to firmware.
*
* HW requirement is that metadata should always point to a
* 8-byte aligned address. So we add alignment pad to start of buffer.
* HTT Metadata should be ensured to be multiple of 8-bytes,
* to get 8-byte aligned start address along with align_pad added
*
* |-----------------------------|
* | |
* |-----------------------------| <-----Buffer Pointer Address given
* | | ^ in HW descriptor (aligned)
* | HTT Metadata | |
* | | |
* | | | Packet Offset given in descriptor
* | | |
* |-----------------------------| |
* | Alignment Pad | v
* |-----------------------------| <----- Actual buffer start address
* | SKB Data | (Unaligned)
* | |
* | |
* | |
* | |
* | |
* |-----------------------------|
*/
if (qdf_unlikely((msdu_info->exception_fw)) ||
(vdev->opmode == wlan_op_mode_ocb) ||
(tx_exc_metadata &&
tx_exc_metadata->is_tx_sniffer)) {
align_pad = ((unsigned long) qdf_nbuf_data(nbuf)) & 0x7;
if (qdf_unlikely(qdf_nbuf_headroom(nbuf) < align_pad)) {
DP_STATS_INC(vdev,
tx_i.dropped.headroom_insufficient, 1);
goto failure;
}
if (qdf_nbuf_push_head(nbuf, align_pad) == NULL) {
dp_tx_err("qdf_nbuf_push_head failed");
goto failure;
}
htt_hdr_size = dp_tx_prepare_htt_metadata(vdev, nbuf,
msdu_info);
if (htt_hdr_size == 0)
goto failure;
tx_desc->length = qdf_nbuf_headlen(nbuf);
tx_desc->pkt_offset = align_pad + htt_hdr_size;
tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
dp_tx_traffic_end_indication_set_desc_flag(tx_desc,
msdu_info);
is_exception = 1;
tx_desc->length -= tx_desc->pkt_offset;
}
#if !TQM_BYPASS_WAR
if (is_exception || tx_exc_metadata)
#endif
{
/* Temporary WAR due to TQM VP issues */
tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
qdf_atomic_inc(&soc->num_tx_exception);
}
return tx_desc;
failure:
dp_tx_desc_release(tx_desc, desc_pool_id);
return NULL;
}
/**
* dp_tx_prepare_desc() - Allocate and prepare Tx descriptor for multisegment
* frame
* @vdev: DP vdev handle
* @nbuf: skb
* @msdu_info: Info to be setup in MSDU descriptor and MSDU extension descriptor
* @desc_pool_id : Descriptor Pool ID
*
* Allocate and prepare Tx descriptor with msdu and fragment descritor
* information. For frames with fragments, allocate and prepare
* an MSDU extension descriptor
*
* Return: Pointer to Tx Descriptor on success,
* NULL on failure
*/
static struct dp_tx_desc_s *dp_tx_prepare_desc(struct dp_vdev *vdev,
qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info,
uint8_t desc_pool_id)
{
struct dp_tx_desc_s *tx_desc;
struct dp_tx_ext_desc_elem_s *msdu_ext_desc;
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
if (dp_tx_limit_check(vdev, nbuf))
return NULL;
/* Allocate software Tx descriptor */
tx_desc = dp_tx_desc_alloc(soc, desc_pool_id);
if (!tx_desc) {
DP_STATS_INC(vdev, tx_i.dropped.desc_na.num, 1);
return NULL;
}
dp_tx_tso_seg_history_add(soc, msdu_info->u.tso_info.curr_seg,
nbuf, tx_desc->id, DP_TX_DESC_COOKIE);
dp_tx_outstanding_inc(pdev);
/* Initialize the SW tx descriptor */
tx_desc->nbuf = nbuf;
tx_desc->frm_type = msdu_info->frm_type;
tx_desc->tx_encap_type = vdev->tx_encap_type;
tx_desc->vdev_id = vdev->vdev_id;
tx_desc->pdev = pdev;
tx_desc->pkt_offset = 0;
dp_tx_trace_pkt(soc, nbuf, tx_desc->id, vdev->vdev_id);
/* Handle scattered frames - TSO/SG/ME */
/* Allocate and prepare an extension descriptor for scattered frames */
msdu_ext_desc = dp_tx_prepare_ext_desc(vdev, msdu_info, desc_pool_id);
if (!msdu_ext_desc) {
dp_tx_info("Tx Extension Descriptor Alloc Fail");
goto failure;
}
#if TQM_BYPASS_WAR
/* Temporary WAR due to TQM VP issues */
tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
qdf_atomic_inc(&soc->num_tx_exception);
#endif
if (qdf_unlikely(msdu_info->exception_fw))
tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
tx_desc->msdu_ext_desc = msdu_ext_desc;
tx_desc->flags |= DP_TX_DESC_FLAG_FRAG;
msdu_ext_desc->tso_desc = msdu_info->u.tso_info.curr_seg;
msdu_ext_desc->tso_num_desc = msdu_info->u.tso_info.tso_num_seg_list;
tx_desc->dma_addr = msdu_ext_desc->paddr;
if (msdu_ext_desc->flags & DP_TX_EXT_DESC_FLAG_METADATA_VALID)
tx_desc->length = HAL_TX_EXT_DESC_WITH_META_DATA;
else
tx_desc->length = HAL_TX_EXTENSION_DESC_LEN_BYTES;
return tx_desc;
failure:
dp_tx_desc_release(tx_desc, desc_pool_id);
return NULL;
}
/**
* dp_tx_prepare_raw() - Prepare RAW packet TX
* @vdev: DP vdev handle
* @nbuf: buffer pointer
* @seg_info: Pointer to Segment info Descriptor to be prepared
* @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension
* descriptor
*
* Return:
*/
static qdf_nbuf_t dp_tx_prepare_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
struct dp_tx_seg_info_s *seg_info, struct dp_tx_msdu_info_s *msdu_info)
{
qdf_nbuf_t curr_nbuf = NULL;
uint16_t total_len = 0;
qdf_dma_addr_t paddr;
int32_t i;
int32_t mapped_buf_num = 0;
struct dp_tx_sg_info_s *sg_info = &msdu_info->u.sg_info;
qdf_dot3_qosframe_t *qos_wh = (qdf_dot3_qosframe_t *) nbuf->data;
DP_STATS_INC_PKT(vdev, tx_i.raw.raw_pkt, 1, qdf_nbuf_len(nbuf));
/* Continue only if frames are of DATA type */
if (!DP_FRAME_IS_DATA(qos_wh)) {
DP_STATS_INC(vdev, tx_i.raw.invalid_raw_pkt_datatype, 1);
dp_tx_debug("Pkt. recd is of not data type");
goto error;
}
/* SWAR for HW: Enable WEP bit in the AMSDU frames for RAW mode */
if (vdev->raw_mode_war &&
(qos_wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) &&
(qos_wh->i_qos[0] & IEEE80211_QOS_AMSDU))
qos_wh->i_fc[1] |= IEEE80211_FC1_WEP;
for (curr_nbuf = nbuf, i = 0; curr_nbuf;
curr_nbuf = qdf_nbuf_next(curr_nbuf), i++) {
/*
* Number of nbuf's must not exceed the size of the frags
* array in seg_info.
*/
if (i >= DP_TX_MAX_NUM_FRAGS) {
dp_err_rl("nbuf cnt exceeds the max number of segs");
DP_STATS_INC(vdev, tx_i.raw.num_frags_overflow_err, 1);
goto error;
}
if (QDF_STATUS_SUCCESS !=
qdf_nbuf_map_nbytes_single(vdev->osdev,
curr_nbuf,
QDF_DMA_TO_DEVICE,
curr_nbuf->len)) {
dp_tx_err("%s dma map error ", __func__);
DP_STATS_INC(vdev, tx_i.raw.dma_map_error, 1);
goto error;
}
/* Update the count of mapped nbuf's */
mapped_buf_num++;
paddr = qdf_nbuf_get_frag_paddr(curr_nbuf, 0);
seg_info->frags[i].paddr_lo = paddr;
seg_info->frags[i].paddr_hi = ((uint64_t)paddr >> 32);
seg_info->frags[i].len = qdf_nbuf_len(curr_nbuf);
seg_info->frags[i].vaddr = (void *) curr_nbuf;
total_len += qdf_nbuf_len(curr_nbuf);
}
seg_info->frag_cnt = i;
seg_info->total_len = total_len;
seg_info->next = NULL;
sg_info->curr_seg = seg_info;
msdu_info->frm_type = dp_tx_frm_raw;
msdu_info->num_seg = 1;
return nbuf;
error:
i = 0;
while (nbuf) {
curr_nbuf = nbuf;
if (i < mapped_buf_num) {
qdf_nbuf_unmap_nbytes_single(vdev->osdev, curr_nbuf,
QDF_DMA_TO_DEVICE,
curr_nbuf->len);
i++;
}
nbuf = qdf_nbuf_next(nbuf);
qdf_nbuf_free(curr_nbuf);
}
return NULL;
}
/**
* dp_tx_raw_prepare_unset() - unmap the chain of nbufs belonging to RAW frame.
* @soc: DP soc handle
* @nbuf: Buffer pointer
*
* unmap the chain of nbufs that belong to this RAW frame.
*
* Return: None
*/
static void dp_tx_raw_prepare_unset(struct dp_soc *soc,
qdf_nbuf_t nbuf)
{
qdf_nbuf_t cur_nbuf = nbuf;
do {
qdf_nbuf_unmap_nbytes_single(soc->osdev, cur_nbuf,
QDF_DMA_TO_DEVICE,
cur_nbuf->len);
cur_nbuf = qdf_nbuf_next(cur_nbuf);
} while (cur_nbuf);
}
#ifdef VDEV_PEER_PROTOCOL_COUNT
void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
qdf_nbuf_t nbuf)
{
qdf_nbuf_t nbuf_local;
struct dp_vdev *vdev_local = vdev_hdl;
do {
if (qdf_likely(!((vdev_local)->peer_protocol_count_track)))
break;
nbuf_local = nbuf;
if (qdf_unlikely(((vdev_local)->tx_encap_type) ==
htt_cmn_pkt_type_raw))
break;
else if (qdf_unlikely(qdf_nbuf_is_nonlinear((nbuf_local))))
break;
else if (qdf_nbuf_is_tso((nbuf_local)))
break;
dp_vdev_peer_stats_update_protocol_cnt((vdev_local),
(nbuf_local),
NULL, 1, 0);
} while (0);
}
#endif
#ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
void dp_tx_update_stats(struct dp_soc *soc,
struct dp_tx_desc_s *tx_desc,
uint8_t ring_id)
{
uint32_t stats_len = dp_tx_get_pkt_len(tx_desc);
DP_STATS_INC_PKT(soc, tx.egress[ring_id], 1, stats_len);
}
int
dp_tx_attempt_coalescing(struct dp_soc *soc, struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc,
uint8_t tid,
struct dp_tx_msdu_info_s *msdu_info,
uint8_t ring_id)
{
struct dp_swlm *swlm = &soc->swlm;
union swlm_data swlm_query_data;
struct dp_swlm_tcl_data tcl_data;
QDF_STATUS status;
int ret;
if (!swlm->is_enabled)
return msdu_info->skip_hp_update;
tcl_data.nbuf = tx_desc->nbuf;
tcl_data.tid = tid;
tcl_data.ring_id = ring_id;
tcl_data.pkt_len = dp_tx_get_pkt_len(tx_desc);
tcl_data.num_ll_connections = vdev->num_latency_critical_conn;
swlm_query_data.tcl_data = &tcl_data;
status = dp_swlm_tcl_pre_check(soc, &tcl_data);
if (QDF_IS_STATUS_ERROR(status)) {
dp_swlm_tcl_reset_session_data(soc, ring_id);
DP_STATS_INC(swlm, tcl[ring_id].coalesce_fail, 1);
return 0;
}
ret = dp_swlm_query_policy(soc, TCL_DATA, swlm_query_data);
if (ret) {
DP_STATS_INC(swlm, tcl[ring_id].coalesce_success, 1);
} else {
DP_STATS_INC(swlm, tcl[ring_id].coalesce_fail, 1);
}
return ret;
}
void
dp_tx_ring_access_end(struct dp_soc *soc, hal_ring_handle_t hal_ring_hdl,
int coalesce)
{
if (coalesce)
dp_tx_hal_ring_access_end_reap(soc, hal_ring_hdl);
else
dp_tx_hal_ring_access_end(soc, hal_ring_hdl);
}
static inline void
dp_tx_is_hp_update_required(uint32_t i, struct dp_tx_msdu_info_s *msdu_info)
{
if (((i + 1) < msdu_info->num_seg))
msdu_info->skip_hp_update = 1;
else
msdu_info->skip_hp_update = 0;
}
static inline void
dp_flush_tcp_hp(struct dp_soc *soc, uint8_t ring_id)
{
hal_ring_handle_t hal_ring_hdl =
dp_tx_get_hal_ring_hdl(soc, ring_id);
if (dp_tx_hal_ring_access_start(soc, hal_ring_hdl)) {
dp_err("Fillmore: SRNG access start failed");
return;
}
dp_tx_ring_access_end_wrapper(soc, hal_ring_hdl, 0);
}
static inline void
dp_tx_check_and_flush_hp(struct dp_soc *soc,
QDF_STATUS status,
struct dp_tx_msdu_info_s *msdu_info)
{
if (QDF_IS_STATUS_ERROR(status) && !msdu_info->skip_hp_update) {
dp_flush_tcp_hp(soc,
(msdu_info->tx_queue.ring_id & DP_TX_QUEUE_MASK));
}
}
#else
static inline void
dp_tx_is_hp_update_required(uint32_t i, struct dp_tx_msdu_info_s *msdu_info)
{
}
static inline void
dp_tx_check_and_flush_hp(struct dp_soc *soc,
QDF_STATUS status,
struct dp_tx_msdu_info_s *msdu_info)
{
}
#endif
#ifdef FEATURE_RUNTIME_PM
static inline int dp_get_rtpm_tput_policy_requirement(struct dp_soc *soc)
{
int ret;
ret = qdf_atomic_read(&soc->rtpm_high_tput_flag) &&
(hif_rtpm_get_state() <= HIF_RTPM_STATE_ON);
return ret;
}
void
dp_tx_ring_access_end_wrapper(struct dp_soc *soc,
hal_ring_handle_t hal_ring_hdl,
int coalesce)
{
int ret;
/*
* Avoid runtime get and put APIs under high throughput scenarios.
*/
if (dp_get_rtpm_tput_policy_requirement(soc)) {
dp_tx_ring_access_end(soc, hal_ring_hdl, coalesce);
return;
}
ret = hif_rtpm_get(HIF_RTPM_GET_ASYNC, HIF_RTPM_ID_DP);
if (QDF_IS_STATUS_SUCCESS(ret)) {
if (hif_system_pm_state_check(soc->hif_handle)) {
dp_tx_hal_ring_access_end_reap(soc, hal_ring_hdl);
hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
hal_srng_inc_flush_cnt(hal_ring_hdl);
} else {
dp_tx_ring_access_end(soc, hal_ring_hdl, coalesce);
}
hif_rtpm_put(HIF_RTPM_PUT_ASYNC, HIF_RTPM_ID_DP);
} else {
dp_runtime_get(soc);
dp_tx_hal_ring_access_end_reap(soc, hal_ring_hdl);
hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
qdf_atomic_inc(&soc->tx_pending_rtpm);
hal_srng_inc_flush_cnt(hal_ring_hdl);
dp_runtime_put(soc);
}
}
#else
#ifdef DP_POWER_SAVE
void
dp_tx_ring_access_end_wrapper(struct dp_soc *soc,
hal_ring_handle_t hal_ring_hdl,
int coalesce)
{
if (hif_system_pm_state_check(soc->hif_handle)) {
dp_tx_hal_ring_access_end_reap(soc, hal_ring_hdl);
hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
hal_srng_inc_flush_cnt(hal_ring_hdl);
} else {
dp_tx_ring_access_end(soc, hal_ring_hdl, coalesce);
}
}
#endif
static inline int dp_get_rtpm_tput_policy_requirement(struct dp_soc *soc)
{
return 0;
}
#endif
/**
* dp_tx_get_tid() - Obtain TID to be used for this frame
* @vdev: DP vdev handle
* @nbuf: skb
* @msdu_info: msdu descriptor
*
* Extract the DSCP or PCP information from frame and map into TID value.
*
* Return: void
*/
static void dp_tx_get_tid(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
struct dp_tx_msdu_info_s *msdu_info)
{
uint8_t tos = 0, dscp_tid_override = 0;
uint8_t *hdr_ptr, *L3datap;
uint8_t is_mcast = 0;
qdf_ether_header_t *eh = NULL;
qdf_ethervlan_header_t *evh = NULL;
uint16_t ether_type;
qdf_llc_t *llcHdr;
struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
DP_TX_TID_OVERRIDE(msdu_info, nbuf);
if (qdf_likely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
eh = (qdf_ether_header_t *)nbuf->data;
hdr_ptr = (uint8_t *)(eh->ether_dhost);
L3datap = hdr_ptr + sizeof(qdf_ether_header_t);
} else {
qdf_dot3_qosframe_t *qos_wh =
(qdf_dot3_qosframe_t *) nbuf->data;
msdu_info->tid = qos_wh->i_fc[0] & DP_FC0_SUBTYPE_QOS ?
qos_wh->i_qos[0] & DP_QOS_TID : 0;
return;
}
is_mcast = DP_FRAME_IS_MULTICAST(hdr_ptr);
ether_type = eh->ether_type;
llcHdr = (qdf_llc_t *)(nbuf->data + sizeof(qdf_ether_header_t));
/*
* Check if packet is dot3 or eth2 type.
*/
if (DP_FRAME_IS_LLC(ether_type) && DP_FRAME_IS_SNAP(llcHdr)) {
ether_type = (uint16_t)*(nbuf->data + 2*QDF_MAC_ADDR_SIZE +
sizeof(*llcHdr));
if (ether_type == htons(ETHERTYPE_VLAN)) {
L3datap = hdr_ptr + sizeof(qdf_ethervlan_header_t) +
sizeof(*llcHdr);
ether_type = (uint16_t)*(nbuf->data + 2*QDF_MAC_ADDR_SIZE
+ sizeof(*llcHdr) +
sizeof(qdf_net_vlanhdr_t));
} else {
L3datap = hdr_ptr + sizeof(qdf_ether_header_t) +
sizeof(*llcHdr);
}
} else {
if (ether_type == htons(ETHERTYPE_VLAN)) {
evh = (qdf_ethervlan_header_t *) eh;
ether_type = evh->ether_type;
L3datap = hdr_ptr + sizeof(qdf_ethervlan_header_t);
}
}
/*
* Find priority from IP TOS DSCP field
*/
if (qdf_nbuf_is_ipv4_pkt(nbuf)) {
qdf_net_iphdr_t *ip = (qdf_net_iphdr_t *) L3datap;
if (qdf_nbuf_is_ipv4_dhcp_pkt(nbuf)) {
/* Only for unicast frames */
if (!is_mcast) {
/* send it on VO queue */
msdu_info->tid = DP_VO_TID;
}
} else {
/*
* IP frame: exclude ECN bits 0-1 and map DSCP bits 2-7
* from TOS byte.
*/
tos = ip->ip_tos;
dscp_tid_override = 1;
}
} else if (qdf_nbuf_is_ipv6_pkt(nbuf)) {
/* TODO
* use flowlabel
*igmpmld cases to be handled in phase 2
*/
unsigned long ver_pri_flowlabel;
unsigned long pri;
ver_pri_flowlabel = *(unsigned long *) L3datap;
pri = (ntohl(ver_pri_flowlabel) & IPV6_FLOWINFO_PRIORITY) >>
DP_IPV6_PRIORITY_SHIFT;
tos = pri;
dscp_tid_override = 1;
} else if (qdf_nbuf_is_ipv4_eapol_pkt(nbuf))
msdu_info->tid = DP_VO_TID;
else if (qdf_nbuf_is_ipv4_arp_pkt(nbuf)) {
/* Only for unicast frames */
if (!is_mcast) {
/* send ucast arp on VO queue */
msdu_info->tid = DP_VO_TID;
}
}
/*
* Assign all MCAST packets to BE
*/
if (qdf_unlikely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
if (is_mcast) {
tos = 0;
dscp_tid_override = 1;
}
}
if (dscp_tid_override == 1) {
tos = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
msdu_info->tid = pdev->dscp_tid_map[vdev->dscp_tid_map_id][tos];
}
if (msdu_info->tid >= CDP_MAX_DATA_TIDS)
msdu_info->tid = CDP_MAX_DATA_TIDS - 1;
return;
}
/**
* dp_tx_classify_tid() - Obtain TID to be used for this frame
* @vdev: DP vdev handle
* @nbuf: skb
* @msdu_info: msdu descriptor
*
* Software based TID classification is required when more than 2 DSCP-TID
* mapping tables are needed.
* Hardware supports 2 DSCP-TID mapping tables for HKv1 and 48 for HKv2.
*
* Return: void
*/
static inline void dp_tx_classify_tid(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
struct dp_tx_msdu_info_s *msdu_info)
{
DP_TX_TID_OVERRIDE(msdu_info, nbuf);
/*
* skip_sw_tid_classification flag will set in below cases-
* 1. vdev->dscp_tid_map_id < pdev->soc->num_hw_dscp_tid_map
* 2. hlos_tid_override enabled for vdev
* 3. mesh mode enabled for vdev
*/
if (qdf_likely(vdev->skip_sw_tid_classification)) {
/* Update tid in msdu_info from skb priority */
if (qdf_unlikely(vdev->skip_sw_tid_classification
& DP_TXRX_HLOS_TID_OVERRIDE_ENABLED)) {
uint32_t tid = qdf_nbuf_get_priority(nbuf);
if (tid == DP_TX_INVALID_QOS_TAG)
return;
msdu_info->tid = tid;
return;
}
return;
}
dp_tx_get_tid(vdev, nbuf, msdu_info);
}
#ifdef FEATURE_WLAN_TDLS
/**
* dp_tx_update_tdls_flags() - Update descriptor flags for TDLS frame
* @soc: datapath SOC
* @vdev: datapath vdev
* @tx_desc: TX descriptor
*
* Return: None
*/
static void dp_tx_update_tdls_flags(struct dp_soc *soc,
struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc)
{
if (vdev) {
if (vdev->is_tdls_frame) {
tx_desc->flags |= DP_TX_DESC_FLAG_TDLS_FRAME;
vdev->is_tdls_frame = false;
}
}
}
static uint8_t dp_htt_tx_comp_get_status(struct dp_soc *soc, char *htt_desc)
{
uint8_t tx_status = HTT_TX_FW2WBM_TX_STATUS_MAX;
switch (soc->arch_id) {
case CDP_ARCH_TYPE_LI:
tx_status = HTT_TX_WBM_COMPLETION_V2_TX_STATUS_GET(htt_desc[0]);
break;
case CDP_ARCH_TYPE_BE:
tx_status = HTT_TX_WBM_COMPLETION_V3_TX_STATUS_GET(htt_desc[0]);
break;
default:
dp_err("Incorrect CDP_ARCH %d", soc->arch_id);
QDF_BUG(0);
}
return tx_status;
}
/**
* dp_non_std_htt_tx_comp_free_buff() - Free the non std tx packet buffer
* @soc: dp_soc handle
* @tx_desc: TX descriptor
*
* Return: None
*/
static void dp_non_std_htt_tx_comp_free_buff(struct dp_soc *soc,
struct dp_tx_desc_s *tx_desc)
{
uint8_t tx_status = 0;
uint8_t htt_tx_status[HAL_TX_COMP_HTT_STATUS_LEN];
qdf_nbuf_t nbuf = tx_desc->nbuf;
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, tx_desc->vdev_id,
DP_MOD_ID_TDLS);
if (qdf_unlikely(!vdev)) {
dp_err_rl("vdev is null!");
goto error;
}
hal_tx_comp_get_htt_desc(&tx_desc->comp, htt_tx_status);
tx_status = dp_htt_tx_comp_get_status(soc, htt_tx_status);
dp_debug("vdev_id: %d tx_status: %d", tx_desc->vdev_id, tx_status);
if (vdev->tx_non_std_data_callback.func) {
qdf_nbuf_set_next(nbuf, NULL);
vdev->tx_non_std_data_callback.func(
vdev->tx_non_std_data_callback.ctxt,
nbuf, tx_status);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TDLS);
return;
} else {
dp_err_rl("callback func is null");
}
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TDLS);
error:
qdf_nbuf_unmap_single(soc->osdev, nbuf, QDF_DMA_TO_DEVICE);
qdf_nbuf_free(nbuf);
}
/**
* dp_tx_msdu_single_map() - do nbuf map
* @vdev: DP vdev handle
* @tx_desc: DP TX descriptor pointer
* @nbuf: skb pointer
*
* For TDLS frame, use qdf_nbuf_map_single() to align with the unmap
* operation done in other component.
*
* Return: QDF_STATUS
*/
static inline QDF_STATUS dp_tx_msdu_single_map(struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc,
qdf_nbuf_t nbuf)
{
if (qdf_likely(!(tx_desc->flags & DP_TX_DESC_FLAG_TDLS_FRAME)))
return qdf_nbuf_map_nbytes_single(vdev->osdev,
nbuf,
QDF_DMA_TO_DEVICE,
nbuf->len);
else
return qdf_nbuf_map_single(vdev->osdev, nbuf,
QDF_DMA_TO_DEVICE);
}
#else
static inline void dp_tx_update_tdls_flags(struct dp_soc *soc,
struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc)
{
}
static inline void dp_non_std_htt_tx_comp_free_buff(struct dp_soc *soc,
struct dp_tx_desc_s *tx_desc)
{
}
static inline QDF_STATUS dp_tx_msdu_single_map(struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc,
qdf_nbuf_t nbuf)
{
return qdf_nbuf_map_nbytes_single(vdev->osdev,
nbuf,
QDF_DMA_TO_DEVICE,
nbuf->len);
}
#endif
static inline
qdf_dma_addr_t dp_tx_nbuf_map_regular(struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc,
qdf_nbuf_t nbuf)
{
QDF_STATUS ret = QDF_STATUS_E_FAILURE;
ret = dp_tx_msdu_single_map(vdev, tx_desc, nbuf);
if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret)))
return 0;
return qdf_nbuf_mapped_paddr_get(nbuf);
}
static inline
void dp_tx_nbuf_unmap_regular(struct dp_soc *soc, struct dp_tx_desc_s *desc)
{
qdf_nbuf_unmap_nbytes_single_paddr(soc->osdev,
desc->nbuf,
desc->dma_addr,
QDF_DMA_TO_DEVICE,
desc->length);
}
#ifdef QCA_DP_TX_RMNET_OPTIMIZATION
static inline bool
is_nbuf_frm_rmnet(qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info)
{
struct net_device *ingress_dev;
skb_frag_t *frag;
uint16_t buf_len = 0;
uint16_t linear_data_len = 0;
uint8_t *payload_addr = NULL;
ingress_dev = dev_get_by_index(dev_net(nbuf->dev), nbuf->skb_iif);
if ((ingress_dev->priv_flags & IFF_PHONY_HEADROOM)) {
dev_put(ingress_dev);
frag = &(skb_shinfo(nbuf)->frags[0]);
buf_len = skb_frag_size(frag);
payload_addr = (uint8_t *)skb_frag_address(frag);
linear_data_len = skb_headlen(nbuf);
buf_len += linear_data_len;
payload_addr = payload_addr - linear_data_len;
memcpy(payload_addr, nbuf->data, linear_data_len);
msdu_info->frm_type = dp_tx_frm_rmnet;
msdu_info->buf_len = buf_len;
msdu_info->payload_addr = payload_addr;
return true;
}
dev_put(ingress_dev);
return false;
}
static inline
qdf_dma_addr_t dp_tx_rmnet_nbuf_map(struct dp_tx_msdu_info_s *msdu_info,
struct dp_tx_desc_s *tx_desc)
{
qdf_dma_addr_t paddr;
paddr = (qdf_dma_addr_t)qdf_mem_virt_to_phys(msdu_info->payload_addr);
tx_desc->length = msdu_info->buf_len;
qdf_nbuf_dma_clean_range((void *)msdu_info->payload_addr,
(void *)(msdu_info->payload_addr +
msdu_info->buf_len));
tx_desc->flags |= DP_TX_DESC_FLAG_RMNET;
return paddr;
}
#else
static inline bool
is_nbuf_frm_rmnet(qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info)
{
return false;
}
static inline
qdf_dma_addr_t dp_tx_rmnet_nbuf_map(struct dp_tx_msdu_info_s *msdu_info,
struct dp_tx_desc_s *tx_desc)
{
return 0;
}
#endif
#if defined(QCA_DP_TX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
static inline
qdf_dma_addr_t dp_tx_nbuf_map(struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc,
qdf_nbuf_t nbuf)
{
if (qdf_likely(tx_desc->flags & DP_TX_DESC_FLAG_SIMPLE)) {
qdf_nbuf_dma_clean_range((void *)nbuf->data,
(void *)(nbuf->data + nbuf->len));
return (qdf_dma_addr_t)qdf_mem_virt_to_phys(nbuf->data);
} else {
return dp_tx_nbuf_map_regular(vdev, tx_desc, nbuf);
}
}
static inline
void dp_tx_nbuf_unmap(struct dp_soc *soc,
struct dp_tx_desc_s *desc)
{
if (qdf_unlikely(!(desc->flags &
(DP_TX_DESC_FLAG_SIMPLE | DP_TX_DESC_FLAG_RMNET))))
return dp_tx_nbuf_unmap_regular(soc, desc);
}
#else
static inline
qdf_dma_addr_t dp_tx_nbuf_map(struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc,
qdf_nbuf_t nbuf)
{
return dp_tx_nbuf_map_regular(vdev, tx_desc, nbuf);
}
static inline
void dp_tx_nbuf_unmap(struct dp_soc *soc,
struct dp_tx_desc_s *desc)
{
return dp_tx_nbuf_unmap_regular(soc, desc);
}
#endif
#if defined(WLAN_TX_PKT_CAPTURE_ENH) || defined(FEATURE_PERPKT_INFO)
static inline
void dp_tx_enh_unmap(struct dp_soc *soc, struct dp_tx_desc_s *desc)
{
dp_tx_nbuf_unmap(soc, desc);
desc->flags |= DP_TX_DESC_FLAG_UNMAP_DONE;
}
static inline void dp_tx_unmap(struct dp_soc *soc, struct dp_tx_desc_s *desc)
{
if (qdf_likely(!(desc->flags & DP_TX_DESC_FLAG_UNMAP_DONE)))
dp_tx_nbuf_unmap(soc, desc);
}
#else
static inline
void dp_tx_enh_unmap(struct dp_soc *soc, struct dp_tx_desc_s *desc)
{
}
static inline void dp_tx_unmap(struct dp_soc *soc, struct dp_tx_desc_s *desc)
{
dp_tx_nbuf_unmap(soc, desc);
}
#endif
#ifdef MESH_MODE_SUPPORT
/**
* dp_tx_update_mesh_flags() - Update descriptor flags for mesh VAP
* @soc: datapath SOC
* @vdev: datapath vdev
* @tx_desc: TX descriptor
*
* Return: None
*/
static inline void dp_tx_update_mesh_flags(struct dp_soc *soc,
struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc)
{
if (qdf_unlikely(vdev->mesh_vdev))
tx_desc->flags |= DP_TX_DESC_FLAG_MESH_MODE;
}
/**
* dp_mesh_tx_comp_free_buff() - Free the mesh tx packet buffer
* @soc: dp_soc handle
* @tx_desc: TX descriptor
* @delayed_free: delay the nbuf free
*
* Return: nbuf to be freed late
*/
static inline qdf_nbuf_t dp_mesh_tx_comp_free_buff(struct dp_soc *soc,
struct dp_tx_desc_s *tx_desc,
bool delayed_free)
{
qdf_nbuf_t nbuf = tx_desc->nbuf;
struct dp_vdev *vdev = NULL;
vdev = dp_vdev_get_ref_by_id(soc, tx_desc->vdev_id, DP_MOD_ID_MESH);
if (tx_desc->flags & DP_TX_DESC_FLAG_TO_FW) {
if (vdev)
DP_STATS_INC(vdev, tx_i.mesh.completion_fw, 1);
if (delayed_free)
return nbuf;
qdf_nbuf_free(nbuf);
} else {
if (vdev && vdev->osif_tx_free_ext) {
vdev->osif_tx_free_ext((nbuf));
} else {
if (delayed_free)
return nbuf;
qdf_nbuf_free(nbuf);
}
}
if (vdev)
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MESH);
return NULL;
}
#else
static inline void dp_tx_update_mesh_flags(struct dp_soc *soc,
struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc)
{
}
static inline qdf_nbuf_t dp_mesh_tx_comp_free_buff(struct dp_soc *soc,
struct dp_tx_desc_s *tx_desc,
bool delayed_free)
{
return NULL;
}
#endif
int dp_tx_frame_is_drop(struct dp_vdev *vdev, uint8_t *srcmac, uint8_t *dstmac)
{
struct dp_pdev *pdev = NULL;
struct dp_ast_entry *src_ast_entry = NULL;
struct dp_ast_entry *dst_ast_entry = NULL;
struct dp_soc *soc = NULL;
qdf_assert(vdev);
pdev = vdev->pdev;
qdf_assert(pdev);
soc = pdev->soc;
dst_ast_entry = dp_peer_ast_hash_find_by_pdevid
(soc, dstmac, vdev->pdev->pdev_id);
src_ast_entry = dp_peer_ast_hash_find_by_pdevid
(soc, srcmac, vdev->pdev->pdev_id);
if (dst_ast_entry && src_ast_entry) {
if (dst_ast_entry->peer_id ==
src_ast_entry->peer_id)
return 1;
}
return 0;
}
#if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP) && \
defined(WLAN_MCAST_MLO)
/* MLO peer id for reinject*/
#define DP_MLO_MCAST_REINJECT_PEER_ID 0XFFFD
/* MLO vdev id inc offset */
#define DP_MLO_VDEV_ID_OFFSET 0x80
#ifdef QCA_SUPPORT_WDS_EXTENDED
static inline bool
dp_tx_wds_ext_check(struct cdp_tx_exception_metadata *tx_exc_metadata)
{
if (tx_exc_metadata && tx_exc_metadata->is_wds_extended)
return true;
return false;
}
#else
static inline bool
dp_tx_wds_ext_check(struct cdp_tx_exception_metadata *tx_exc_metadata)
{
return false;
}
#endif
static inline void
dp_tx_bypass_reinjection(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
struct cdp_tx_exception_metadata *tx_exc_metadata)
{
/* wds ext enabled will not set the TO_FW bit */
if (dp_tx_wds_ext_check(tx_exc_metadata))
return;
if (!(tx_desc->flags & DP_TX_DESC_FLAG_TO_FW)) {
tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
qdf_atomic_inc(&soc->num_tx_exception);
}
}
static inline void
dp_tx_update_mcast_param(uint16_t peer_id,
uint16_t *htt_tcl_metadata,
struct dp_vdev *vdev,
struct dp_tx_msdu_info_s *msdu_info)
{
if (peer_id == DP_MLO_MCAST_REINJECT_PEER_ID) {
*htt_tcl_metadata = 0;
DP_TX_TCL_METADATA_TYPE_SET(
*htt_tcl_metadata,
HTT_TCL_METADATA_V2_TYPE_GLOBAL_SEQ_BASED);
HTT_TX_TCL_METADATA_GLBL_SEQ_NO_SET(*htt_tcl_metadata,
msdu_info->gsn);
msdu_info->vdev_id = vdev->vdev_id + DP_MLO_VDEV_ID_OFFSET;
if (qdf_unlikely(vdev->nawds_enabled ||
dp_vdev_is_wds_ext_enabled(vdev)))
HTT_TX_TCL_METADATA_GLBL_SEQ_HOST_INSPECTED_SET(
*htt_tcl_metadata, 1);
} else {
msdu_info->vdev_id = vdev->vdev_id;
}
}
#else
static inline void
dp_tx_bypass_reinjection(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
struct cdp_tx_exception_metadata *tx_exc_metadata)
{
}
static inline void
dp_tx_update_mcast_param(uint16_t peer_id,
uint16_t *htt_tcl_metadata,
struct dp_vdev *vdev,
struct dp_tx_msdu_info_s *msdu_info)
{
}
#endif
#ifdef DP_TX_SW_DROP_STATS_INC
static void tx_sw_drop_stats_inc(struct dp_pdev *pdev,
qdf_nbuf_t nbuf,
enum cdp_tx_sw_drop drop_code)
{
/* EAPOL Drop stats */
if (qdf_nbuf_is_ipv4_eapol_pkt(nbuf)) {
switch (drop_code) {
case TX_DESC_ERR:
DP_STATS_INC(pdev, eap_drop_stats.tx_desc_err, 1);
break;
case TX_HAL_RING_ACCESS_ERR:
DP_STATS_INC(pdev,
eap_drop_stats.tx_hal_ring_access_err, 1);
break;
case TX_DMA_MAP_ERR:
DP_STATS_INC(pdev, eap_drop_stats.tx_dma_map_err, 1);
break;
case TX_HW_ENQUEUE:
DP_STATS_INC(pdev, eap_drop_stats.tx_hw_enqueue, 1);
break;
case TX_SW_ENQUEUE:
DP_STATS_INC(pdev, eap_drop_stats.tx_sw_enqueue, 1);
break;
default:
dp_info_rl("Invalid eapol_drop code: %d", drop_code);
break;
}
}
}
#else
static void tx_sw_drop_stats_inc(struct dp_pdev *pdev,
qdf_nbuf_t nbuf,
enum cdp_tx_sw_drop drop_code)
{
}
#endif
qdf_nbuf_t
dp_tx_send_msdu_single(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
struct dp_tx_msdu_info_s *msdu_info, uint16_t peer_id,
struct cdp_tx_exception_metadata *tx_exc_metadata)
{
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
struct dp_tx_desc_s *tx_desc;
QDF_STATUS status;
struct dp_tx_queue *tx_q = &(msdu_info->tx_queue);
uint16_t htt_tcl_metadata = 0;
enum cdp_tx_sw_drop drop_code = TX_MAX_DROP;
uint8_t tid = msdu_info->tid;
struct cdp_tid_tx_stats *tid_stats = NULL;
qdf_dma_addr_t paddr;
/* Setup Tx descriptor for an MSDU, and MSDU extension descriptor */
tx_desc = dp_tx_prepare_desc_single(vdev, nbuf, tx_q->desc_pool_id,
msdu_info, tx_exc_metadata);
if (!tx_desc) {
dp_err_rl("Tx_desc prepare Fail vdev_id %d vdev %pK queue %d",
vdev->vdev_id, vdev, tx_q->desc_pool_id);
drop_code = TX_DESC_ERR;
goto fail_return;
}
dp_tx_update_tdls_flags(soc, vdev, tx_desc);
if (qdf_unlikely(peer_id == DP_INVALID_PEER)) {
htt_tcl_metadata = vdev->htt_tcl_metadata;
DP_TX_TCL_METADATA_HOST_INSPECTED_SET(htt_tcl_metadata, 1);
} else if (qdf_unlikely(peer_id != HTT_INVALID_PEER)) {
DP_TX_TCL_METADATA_TYPE_SET(htt_tcl_metadata,
DP_TCL_METADATA_TYPE_PEER_BASED);
DP_TX_TCL_METADATA_PEER_ID_SET(htt_tcl_metadata,
peer_id);
dp_tx_bypass_reinjection(soc, tx_desc, tx_exc_metadata);
} else
htt_tcl_metadata = vdev->htt_tcl_metadata;
if (msdu_info->exception_fw)
DP_TX_TCL_METADATA_VALID_HTT_SET(htt_tcl_metadata, 1);
dp_tx_desc_update_fast_comp_flag(soc, tx_desc,
!pdev->enhanced_stats_en);
dp_tx_update_mesh_flags(soc, vdev, tx_desc);
if (qdf_unlikely(msdu_info->frm_type == dp_tx_frm_rmnet))
paddr = dp_tx_rmnet_nbuf_map(msdu_info, tx_desc);
else
paddr = dp_tx_nbuf_map(vdev, tx_desc, nbuf);
if (!paddr) {
/* Handle failure */
dp_err("qdf_nbuf_map failed");
DP_STATS_INC(vdev, tx_i.dropped.dma_error, 1);
drop_code = TX_DMA_MAP_ERR;
goto release_desc;
}
tx_desc->dma_addr = paddr;
dp_tx_desc_history_add(soc, tx_desc->dma_addr, nbuf,
tx_desc->id, DP_TX_DESC_MAP);
dp_tx_update_mcast_param(peer_id, &htt_tcl_metadata, vdev, msdu_info);
/* Enqueue the Tx MSDU descriptor to HW for transmit */
status = soc->arch_ops.tx_hw_enqueue(soc, vdev, tx_desc,
htt_tcl_metadata,
tx_exc_metadata, msdu_info);
if (status != QDF_STATUS_SUCCESS) {
dp_tx_err_rl("Tx_hw_enqueue Fail tx_desc %pK queue %d",
tx_desc, tx_q->ring_id);
dp_tx_desc_history_add(soc, tx_desc->dma_addr, nbuf,
tx_desc->id, DP_TX_DESC_UNMAP);
dp_tx_nbuf_unmap(soc, tx_desc);
drop_code = TX_HW_ENQUEUE;
goto release_desc;
}
tx_sw_drop_stats_inc(pdev, nbuf, drop_code);
return NULL;
release_desc:
dp_tx_desc_release(tx_desc, tx_q->desc_pool_id);
fail_return:
dp_tx_get_tid(vdev, nbuf, msdu_info);
tx_sw_drop_stats_inc(pdev, nbuf, drop_code);
tid_stats = &pdev->stats.tid_stats.
tid_tx_stats[tx_q->ring_id][tid];
tid_stats->swdrop_cnt[drop_code]++;
return nbuf;
}
/**
* dp_tdls_tx_comp_free_buff() - Free non std buffer when TDLS flag is set
* @soc: Soc handle
* @desc: software Tx descriptor to be processed
*
* Return: 0 if Success
*/
#ifdef FEATURE_WLAN_TDLS
static inline int
dp_tdls_tx_comp_free_buff(struct dp_soc *soc, struct dp_tx_desc_s *desc)
{
/* If it is TDLS mgmt, don't unmap or free the frame */
if (desc->flags & DP_TX_DESC_FLAG_TDLS_FRAME) {
dp_non_std_htt_tx_comp_free_buff(soc, desc);
return 0;
}
return 1;
}
#else
static inline int
dp_tdls_tx_comp_free_buff(struct dp_soc *soc, struct dp_tx_desc_s *desc)
{
return 1;
}
#endif
qdf_nbuf_t dp_tx_comp_free_buf(struct dp_soc *soc, struct dp_tx_desc_s *desc,
bool delayed_free)
{
qdf_nbuf_t nbuf = desc->nbuf;
enum dp_tx_event_type type = dp_tx_get_event_type(desc->flags);
/* nbuf already freed in vdev detach path */
if (!nbuf)
return NULL;
if (!dp_tdls_tx_comp_free_buff(soc, desc))
return NULL;
/* 0 : MSDU buffer, 1 : MLE */
if (desc->msdu_ext_desc) {
/* TSO free */
if (hal_tx_ext_desc_get_tso_enable(
desc->msdu_ext_desc->vaddr)) {
dp_tx_desc_history_add(soc, desc->dma_addr, desc->nbuf,
desc->id, DP_TX_COMP_MSDU_EXT);
dp_tx_tso_seg_history_add(soc,
desc->msdu_ext_desc->tso_desc,
desc->nbuf, desc->id, type);
/* unmap eash TSO seg before free the nbuf */
dp_tx_tso_unmap_segment(soc,
desc->msdu_ext_desc->tso_desc,
desc->msdu_ext_desc->
tso_num_desc);
goto nbuf_free;
}
if (qdf_unlikely(desc->frm_type == dp_tx_frm_sg)) {
void *msdu_ext_desc = desc->msdu_ext_desc->vaddr;
qdf_dma_addr_t iova;
uint32_t frag_len;
uint32_t i;
qdf_nbuf_unmap_nbytes_single(soc->osdev, nbuf,
QDF_DMA_TO_DEVICE,
qdf_nbuf_headlen(nbuf));
for (i = 1; i < DP_TX_MAX_NUM_FRAGS; i++) {
hal_tx_ext_desc_get_frag_info(msdu_ext_desc, i,
&iova,
&frag_len);
if (!iova || !frag_len)
break;
qdf_mem_unmap_page(soc->osdev, iova, frag_len,
QDF_DMA_TO_DEVICE);
}
goto nbuf_free;
}
}
/* If it's ME frame, dont unmap the cloned nbuf's */
if ((desc->flags & DP_TX_DESC_FLAG_ME) && qdf_nbuf_is_cloned(nbuf))
goto nbuf_free;
dp_tx_desc_history_add(soc, desc->dma_addr, desc->nbuf, desc->id, type);
dp_tx_unmap(soc, desc);
if (desc->flags & DP_TX_DESC_FLAG_MESH_MODE)
return dp_mesh_tx_comp_free_buff(soc, desc, delayed_free);
if (dp_tx_traffic_end_indication_enq_ind_pkt(soc, desc, nbuf))
return NULL;
nbuf_free:
if (delayed_free)
return nbuf;
qdf_nbuf_free(nbuf);
return NULL;
}
/**
* dp_tx_sg_unmap_buf() - Unmap scatter gather fragments
* @soc: DP soc handle
* @nbuf: skb
* @msdu_info: MSDU info
*
* Return: None
*/
static inline void
dp_tx_sg_unmap_buf(struct dp_soc *soc, qdf_nbuf_t nbuf,
struct dp_tx_msdu_info_s *msdu_info)
{
uint32_t cur_idx;
struct dp_tx_seg_info_s *seg = msdu_info->u.sg_info.curr_seg;
qdf_nbuf_unmap_nbytes_single(soc->osdev, nbuf, QDF_DMA_TO_DEVICE,
qdf_nbuf_headlen(nbuf));
for (cur_idx = 1; cur_idx < seg->frag_cnt; cur_idx++)
qdf_mem_unmap_page(soc->osdev, (qdf_dma_addr_t)
(seg->frags[cur_idx].paddr_lo | ((uint64_t)
seg->frags[cur_idx].paddr_hi) << 32),
seg->frags[cur_idx].len,
QDF_DMA_TO_DEVICE);
}
#if QDF_LOCK_STATS
noinline
#else
#endif
qdf_nbuf_t dp_tx_send_msdu_multiple(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
struct dp_tx_msdu_info_s *msdu_info)
{
uint32_t i;
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
struct dp_tx_desc_s *tx_desc;
bool is_cce_classified = false;
QDF_STATUS status;
uint16_t htt_tcl_metadata = 0;
struct dp_tx_queue *tx_q = &msdu_info->tx_queue;
struct cdp_tid_tx_stats *tid_stats = NULL;
uint8_t prep_desc_fail = 0, hw_enq_fail = 0;
if (msdu_info->frm_type == dp_tx_frm_me)
nbuf = msdu_info->u.sg_info.curr_seg->nbuf;
i = 0;
/* Print statement to track i and num_seg */
/*
* For each segment (maps to 1 MSDU) , prepare software and hardware
* descriptors using information in msdu_info
*/
while (i < msdu_info->num_seg) {
/*
* Setup Tx descriptor for an MSDU, and MSDU extension
* descriptor
*/
tx_desc = dp_tx_prepare_desc(vdev, nbuf, msdu_info,
tx_q->desc_pool_id);
if (!tx_desc) {
if (msdu_info->frm_type == dp_tx_frm_me) {
prep_desc_fail++;
dp_tx_me_free_buf(pdev,
(void *)(msdu_info->u.sg_info
.curr_seg->frags[0].vaddr));
if (prep_desc_fail == msdu_info->num_seg) {
/*
* Unmap is needed only if descriptor
* preparation failed for all segments.
*/
qdf_nbuf_unmap(soc->osdev,
msdu_info->u.sg_info.
curr_seg->nbuf,
QDF_DMA_TO_DEVICE);
}
/*
* Free the nbuf for the current segment
* and make it point to the next in the list.
* For me, there are as many segments as there
* are no of clients.
*/
qdf_nbuf_free(msdu_info->u.sg_info
.curr_seg->nbuf);
if (msdu_info->u.sg_info.curr_seg->next) {
msdu_info->u.sg_info.curr_seg =
msdu_info->u.sg_info
.curr_seg->next;
nbuf = msdu_info->u.sg_info
.curr_seg->nbuf;
}
i++;
continue;
}
if (msdu_info->frm_type == dp_tx_frm_tso) {
dp_tx_tso_seg_history_add(
soc,
msdu_info->u.tso_info.curr_seg,
nbuf, 0, DP_TX_DESC_UNMAP);
dp_tx_tso_unmap_segment(soc,
msdu_info->u.tso_info.
curr_seg,
msdu_info->u.tso_info.
tso_num_seg_list);
if (msdu_info->u.tso_info.curr_seg->next) {
msdu_info->u.tso_info.curr_seg =
msdu_info->u.tso_info.curr_seg->next;
i++;
continue;
}
}
if (msdu_info->frm_type == dp_tx_frm_sg)
dp_tx_sg_unmap_buf(soc, nbuf, msdu_info);
goto done;
}
if (msdu_info->frm_type == dp_tx_frm_me) {
tx_desc->msdu_ext_desc->me_buffer =
(struct dp_tx_me_buf_t *)msdu_info->
u.sg_info.curr_seg->frags[0].vaddr;
tx_desc->flags |= DP_TX_DESC_FLAG_ME;
}
if (is_cce_classified)
tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
htt_tcl_metadata = vdev->htt_tcl_metadata;
if (msdu_info->exception_fw) {
DP_TX_TCL_METADATA_VALID_HTT_SET(htt_tcl_metadata, 1);
}
dp_tx_is_hp_update_required(i, msdu_info);
/*
* For frames with multiple segments (TSO, ME), jump to next
* segment.
*/
if (msdu_info->frm_type == dp_tx_frm_tso) {
if (msdu_info->u.tso_info.curr_seg->next) {
msdu_info->u.tso_info.curr_seg =
msdu_info->u.tso_info.curr_seg->next;
/*
* If this is a jumbo nbuf, then increment the
* number of nbuf users for each additional
* segment of the msdu. This will ensure that
* the skb is freed only after receiving tx
* completion for all segments of an nbuf
*/
qdf_nbuf_inc_users(nbuf);
/* Check with MCL if this is needed */
/* nbuf = msdu_info->u.tso_info.curr_seg->nbuf;
*/
}
}
dp_tx_update_mcast_param(DP_INVALID_PEER,
&htt_tcl_metadata,
vdev,
msdu_info);
/*
* Enqueue the Tx MSDU descriptor to HW for transmit
*/
status = soc->arch_ops.tx_hw_enqueue(soc, vdev, tx_desc,
htt_tcl_metadata,
NULL, msdu_info);
dp_tx_check_and_flush_hp(soc, status, msdu_info);
if (status != QDF_STATUS_SUCCESS) {
dp_info_rl("Tx_hw_enqueue Fail tx_desc %pK queue %d",
tx_desc, tx_q->ring_id);
dp_tx_get_tid(vdev, nbuf, msdu_info);
tid_stats = &pdev->stats.tid_stats.
tid_tx_stats[tx_q->ring_id][msdu_info->tid];
tid_stats->swdrop_cnt[TX_HW_ENQUEUE]++;
if (msdu_info->frm_type == dp_tx_frm_me) {
hw_enq_fail++;
if (hw_enq_fail == msdu_info->num_seg) {
/*
* Unmap is needed only if enqueue
* failed for all segments.
*/
qdf_nbuf_unmap(soc->osdev,
msdu_info->u.sg_info.
curr_seg->nbuf,
QDF_DMA_TO_DEVICE);
}
/*
* Free the nbuf for the current segment
* and make it point to the next in the list.
* For me, there are as many segments as there
* are no of clients.
*/
qdf_nbuf_free(msdu_info->u.sg_info
.curr_seg->nbuf);
dp_tx_desc_release(tx_desc, tx_q->desc_pool_id);
if (msdu_info->u.sg_info.curr_seg->next) {
msdu_info->u.sg_info.curr_seg =
msdu_info->u.sg_info
.curr_seg->next;
nbuf = msdu_info->u.sg_info
.curr_seg->nbuf;
} else
break;
i++;
continue;
}
/*
* For TSO frames, the nbuf users increment done for
* the current segment has to be reverted, since the
* hw enqueue for this segment failed
*/
if (msdu_info->frm_type == dp_tx_frm_tso &&
msdu_info->u.tso_info.curr_seg) {
/*
* unmap and free current,
* retransmit remaining segments
*/
dp_tx_comp_free_buf(soc, tx_desc, false);
i++;
dp_tx_desc_release(tx_desc, tx_q->desc_pool_id);
continue;
}
if (msdu_info->frm_type == dp_tx_frm_sg)
dp_tx_sg_unmap_buf(soc, nbuf, msdu_info);
dp_tx_desc_release(tx_desc, tx_q->desc_pool_id);
goto done;
}
/*
* TODO
* if tso_info structure can be modified to have curr_seg
* as first element, following 2 blocks of code (for TSO and SG)
* can be combined into 1
*/
/*
* For Multicast-Unicast converted packets,
* each converted frame (for a client) is represented as
* 1 segment
*/
if ((msdu_info->frm_type == dp_tx_frm_sg) ||
(msdu_info->frm_type == dp_tx_frm_me)) {
if (msdu_info->u.sg_info.curr_seg->next) {
msdu_info->u.sg_info.curr_seg =
msdu_info->u.sg_info.curr_seg->next;
nbuf = msdu_info->u.sg_info.curr_seg->nbuf;
} else
break;
}
i++;
}
nbuf = NULL;
done:
return nbuf;
}
/**
* dp_tx_prepare_sg()- Extract SG info from NBUF and prepare msdu_info
* for SG frames
* @vdev: DP vdev handle
* @nbuf: skb
* @seg_info: Pointer to Segment info Descriptor to be prepared
* @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension desc.
*
* Return: NULL on success,
* nbuf when it fails to send
*/
static qdf_nbuf_t dp_tx_prepare_sg(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
struct dp_tx_seg_info_s *seg_info, struct dp_tx_msdu_info_s *msdu_info)
{
uint32_t cur_frag, nr_frags, i;
qdf_dma_addr_t paddr;
struct dp_tx_sg_info_s *sg_info;
sg_info = &msdu_info->u.sg_info;
nr_frags = qdf_nbuf_get_nr_frags(nbuf);
if (QDF_STATUS_SUCCESS !=
qdf_nbuf_map_nbytes_single(vdev->osdev, nbuf,
QDF_DMA_TO_DEVICE,
qdf_nbuf_headlen(nbuf))) {
dp_tx_err("dma map error");
DP_STATS_INC(vdev, tx_i.sg.dma_map_error, 1);
qdf_nbuf_free(nbuf);
return NULL;
}
paddr = qdf_nbuf_mapped_paddr_get(nbuf);
seg_info->frags[0].paddr_lo = paddr;
seg_info->frags[0].paddr_hi = ((uint64_t) paddr) >> 32;
seg_info->frags[0].len = qdf_nbuf_headlen(nbuf);
seg_info->frags[0].vaddr = (void *) nbuf;
for (cur_frag = 0; cur_frag < nr_frags; cur_frag++) {
if (QDF_STATUS_SUCCESS != qdf_nbuf_frag_map(vdev->osdev,
nbuf, 0,
QDF_DMA_TO_DEVICE,
cur_frag)) {
dp_tx_err("frag dma map error");
DP_STATS_INC(vdev, tx_i.sg.dma_map_error, 1);
goto map_err;
}
paddr = qdf_nbuf_get_tx_frag_paddr(nbuf);
seg_info->frags[cur_frag + 1].paddr_lo = paddr;
seg_info->frags[cur_frag + 1].paddr_hi =
((uint64_t) paddr) >> 32;
seg_info->frags[cur_frag + 1].len =
qdf_nbuf_get_frag_size(nbuf, cur_frag);
}
seg_info->frag_cnt = (cur_frag + 1);
seg_info->total_len = qdf_nbuf_len(nbuf);
seg_info->next = NULL;
sg_info->curr_seg = seg_info;
msdu_info->frm_type = dp_tx_frm_sg;
msdu_info->num_seg = 1;
return nbuf;
map_err:
/* restore paddr into nbuf before calling unmap */
qdf_nbuf_mapped_paddr_set(nbuf,
(qdf_dma_addr_t)(seg_info->frags[0].paddr_lo |
((uint64_t)
seg_info->frags[0].paddr_hi) << 32));
qdf_nbuf_unmap_nbytes_single(vdev->osdev, nbuf,
QDF_DMA_TO_DEVICE,
seg_info->frags[0].len);
for (i = 1; i <= cur_frag; i++) {
qdf_mem_unmap_page(vdev->osdev, (qdf_dma_addr_t)
(seg_info->frags[i].paddr_lo | ((uint64_t)
seg_info->frags[i].paddr_hi) << 32),
seg_info->frags[i].len,
QDF_DMA_TO_DEVICE);
}
qdf_nbuf_free(nbuf);
return NULL;
}
/**
* dp_tx_add_tx_sniffer_meta_data()- Add tx_sniffer meta hdr info
* @vdev: DP vdev handle
* @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension desc.
* @ppdu_cookie: PPDU cookie that should be replayed in the ppdu completions
*
* Return: NULL on failure,
* nbuf when extracted successfully
*/
static
void dp_tx_add_tx_sniffer_meta_data(struct dp_vdev *vdev,
struct dp_tx_msdu_info_s *msdu_info,
uint16_t ppdu_cookie)
{
struct htt_tx_msdu_desc_ext2_t *meta_data =
(struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
qdf_mem_zero(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t));
HTT_TX_MSDU_EXT2_DESC_FLAG_SEND_AS_STANDALONE_SET
(msdu_info->meta_data[5], 1);
HTT_TX_MSDU_EXT2_DESC_FLAG_HOST_OPAQUE_VALID_SET
(msdu_info->meta_data[5], 1);
HTT_TX_MSDU_EXT2_DESC_HOST_OPAQUE_COOKIE_SET
(msdu_info->meta_data[6], ppdu_cookie);
msdu_info->exception_fw = 1;
msdu_info->is_tx_sniffer = 1;
}
#ifdef MESH_MODE_SUPPORT
/**
* dp_tx_extract_mesh_meta_data()- Extract mesh meta hdr info from nbuf
* and prepare msdu_info for mesh frames.
* @vdev: DP vdev handle
* @nbuf: skb
* @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension desc.
*
* Return: NULL on failure,
* nbuf when extracted successfully
*/
static
qdf_nbuf_t dp_tx_extract_mesh_meta_data(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
struct dp_tx_msdu_info_s *msdu_info)
{
struct meta_hdr_s *mhdr;
struct htt_tx_msdu_desc_ext2_t *meta_data =
(struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
mhdr = (struct meta_hdr_s *)qdf_nbuf_data(nbuf);
if (CB_FTYPE_MESH_TX_INFO != qdf_nbuf_get_tx_ftype(nbuf)) {
msdu_info->exception_fw = 0;
goto remove_meta_hdr;
}
msdu_info->exception_fw = 1;
qdf_mem_zero(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t));
meta_data->host_tx_desc_pool = 1;
meta_data->update_peer_cache = 1;
meta_data->learning_frame = 1;
if (!(mhdr->flags & METAHDR_FLAG_AUTO_RATE)) {
meta_data->power = mhdr->power;
meta_data->mcs_mask = 1 << mhdr->rate_info[0].mcs;
meta_data->nss_mask = 1 << mhdr->rate_info[0].nss;
meta_data->pream_type = mhdr->rate_info[0].preamble_type;
meta_data->retry_limit = mhdr->rate_info[0].max_tries;
meta_data->dyn_bw = 1;
meta_data->valid_pwr = 1;
meta_data->valid_mcs_mask = 1;
meta_data->valid_nss_mask = 1;
meta_data->valid_preamble_type = 1;
meta_data->valid_retries = 1;
meta_data->valid_bw_info = 1;
}
if (mhdr->flags & METAHDR_FLAG_NOENCRYPT) {
meta_data->encrypt_type = 0;
meta_data->valid_encrypt_type = 1;
meta_data->learning_frame = 0;
}
meta_data->valid_key_flags = 1;
meta_data->key_flags = (mhdr->keyix & 0x3);
remove_meta_hdr:
if (qdf_nbuf_pull_head(nbuf, sizeof(struct meta_hdr_s)) == NULL) {
dp_tx_err("qdf_nbuf_pull_head failed");
qdf_nbuf_free(nbuf);
return NULL;
}
msdu_info->tid = qdf_nbuf_get_priority(nbuf);
dp_tx_info("Meta hdr %0x %0x %0x %0x %0x %0x"
" tid %d to_fw %d",
msdu_info->meta_data[0],
msdu_info->meta_data[1],
msdu_info->meta_data[2],
msdu_info->meta_data[3],
msdu_info->meta_data[4],
msdu_info->meta_data[5],
msdu_info->tid, msdu_info->exception_fw);
return nbuf;
}
#else
static
qdf_nbuf_t dp_tx_extract_mesh_meta_data(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
struct dp_tx_msdu_info_s *msdu_info)
{
return nbuf;
}
#endif
/**
* dp_check_exc_metadata() - Checks if parameters are valid
* @tx_exc: holds all exception path parameters
*
* Return: true when all the parameters are valid else false
*
*/
static bool dp_check_exc_metadata(struct cdp_tx_exception_metadata *tx_exc)
{
bool invalid_tid = (tx_exc->tid >= DP_MAX_TIDS && tx_exc->tid !=
HTT_INVALID_TID);
bool invalid_encap_type =
(tx_exc->tx_encap_type > htt_cmn_pkt_num_types &&
tx_exc->tx_encap_type != CDP_INVALID_TX_ENCAP_TYPE);
bool invalid_sec_type = (tx_exc->sec_type > cdp_num_sec_types &&
tx_exc->sec_type != CDP_INVALID_SEC_TYPE);
bool invalid_cookie = (tx_exc->is_tx_sniffer == 1 &&
tx_exc->ppdu_cookie == 0);
if (tx_exc->is_intrabss_fwd)
return true;
if (invalid_tid || invalid_encap_type || invalid_sec_type ||
invalid_cookie) {
return false;
}
return true;
}
#ifdef ATH_SUPPORT_IQUE
bool dp_tx_mcast_enhance(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
{
qdf_ether_header_t *eh;
/* Mcast to Ucast Conversion*/
if (qdf_likely(!vdev->mcast_enhancement_en))
return true;
eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost) &&
!DP_FRAME_IS_BROADCAST((eh)->ether_dhost)) {
dp_verbose_debug("Mcast frm for ME %pK", vdev);
qdf_nbuf_set_next(nbuf, NULL);
DP_STATS_INC_PKT(vdev, tx_i.mcast_en.mcast_pkt, 1,
qdf_nbuf_len(nbuf));
if (dp_tx_prepare_send_me(vdev, nbuf) ==
QDF_STATUS_SUCCESS) {
return false;
}
if (qdf_unlikely(vdev->igmp_mcast_enhanc_en > 0)) {
if (dp_tx_prepare_send_igmp_me(vdev, nbuf) ==
QDF_STATUS_SUCCESS) {
return false;
}
}
}
return true;
}
#else
bool dp_tx_mcast_enhance(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
{
return true;
}
#endif
#ifdef QCA_SUPPORT_WDS_EXTENDED
/**
* dp_tx_mcast_drop() - Drop mcast frame if drop_tx_mcast is set in WDS_EXT
* @vdev: vdev handle
* @nbuf: skb
*
* Return: true if frame is dropped, false otherwise
*/
static inline bool dp_tx_mcast_drop(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
{
/* Drop tx mcast and WDS Extended feature check */
if (qdf_unlikely((vdev->drop_tx_mcast) && (vdev->wds_ext_enabled))) {
qdf_ether_header_t *eh = (qdf_ether_header_t *)
qdf_nbuf_data(nbuf);
if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost)) {
DP_STATS_INC(vdev, tx_i.dropped.tx_mcast_drop, 1);
return true;
}
}
return false;
}
#else
static inline bool dp_tx_mcast_drop(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
{
return false;
}
#endif
/**
* dp_tx_per_pkt_vdev_id_check() - vdev id check for frame
* @nbuf: qdf_nbuf_t
* @vdev: struct dp_vdev *
*
* Allow packet for processing only if it is for peer client which is
* connected with same vap. Drop packet if client is connected to
* different vap.
*
* Return: QDF_STATUS
*/
static inline QDF_STATUS
dp_tx_per_pkt_vdev_id_check(qdf_nbuf_t nbuf, struct dp_vdev *vdev)
{
struct dp_ast_entry *dst_ast_entry = NULL;
qdf_ether_header_t *eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost) ||
DP_FRAME_IS_BROADCAST((eh)->ether_dhost))
return QDF_STATUS_SUCCESS;
qdf_spin_lock_bh(&vdev->pdev->soc->ast_lock);
dst_ast_entry = dp_peer_ast_hash_find_by_vdevid(vdev->pdev->soc,
eh->ether_dhost,
vdev->vdev_id);
/* If there is no ast entry, return failure */
if (qdf_unlikely(!dst_ast_entry)) {
qdf_spin_unlock_bh(&vdev->pdev->soc->ast_lock);
return QDF_STATUS_E_FAILURE;
}
qdf_spin_unlock_bh(&vdev->pdev->soc->ast_lock);
return QDF_STATUS_SUCCESS;
}
/**
* dp_tx_nawds_handler() - NAWDS handler
*
* @soc: DP soc handle
* @vdev: DP vdev handle
* @msdu_info: msdu_info required to create HTT metadata
* @nbuf: skb
* @sa_peer_id:
*
* This API transfers the multicast frames with the peer id
* on NAWDS enabled peer.
*
* Return: none
*/
void dp_tx_nawds_handler(struct dp_soc *soc, struct dp_vdev *vdev,
struct dp_tx_msdu_info_s *msdu_info,
qdf_nbuf_t nbuf, uint16_t sa_peer_id)
{
struct dp_peer *peer = NULL;
qdf_nbuf_t nbuf_clone = NULL;
uint16_t peer_id = DP_INVALID_PEER;
struct dp_txrx_peer *txrx_peer;
uint8_t link_id = 0;
/* This check avoids pkt forwarding which is entered
* in the ast table but still doesn't have valid peerid.
*/
if (sa_peer_id == HTT_INVALID_PEER)
return;
qdf_spin_lock_bh(&vdev->peer_list_lock);
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
txrx_peer = dp_get_txrx_peer(peer);
if (!txrx_peer)
continue;
if (!txrx_peer->bss_peer && txrx_peer->nawds_enabled) {
peer_id = peer->peer_id;
if (!dp_peer_is_primary_link_peer(peer))
continue;
/* In the case of wds ext peer mcast traffic will be
* sent as part of VLAN interface
*/
if (dp_peer_is_wds_ext_peer(txrx_peer))
continue;
/* Multicast packets needs to be
* dropped in case of intra bss forwarding
*/
if (sa_peer_id == txrx_peer->peer_id) {
dp_tx_debug("multicast packet");
DP_PEER_PER_PKT_STATS_INC(txrx_peer,
tx.nawds_mcast_drop,
1, link_id);
continue;
}
nbuf_clone = qdf_nbuf_clone(nbuf);
if (!nbuf_clone) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("nbuf clone failed"));
break;
}
nbuf_clone = dp_tx_send_msdu_single(vdev, nbuf_clone,
msdu_info, peer_id,
NULL);
if (nbuf_clone) {
dp_tx_debug("pkt send failed");
qdf_nbuf_free(nbuf_clone);
} else {
if (peer_id != DP_INVALID_PEER)
DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer,
tx.nawds_mcast,
1, qdf_nbuf_len(nbuf), link_id);
}
}
}
qdf_spin_unlock_bh(&vdev->peer_list_lock);
}
qdf_nbuf_t
dp_tx_send_exception(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
qdf_nbuf_t nbuf,
struct cdp_tx_exception_metadata *tx_exc_metadata)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_tx_msdu_info_s msdu_info;
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_TX_EXCEPTION);
if (qdf_unlikely(!vdev))
goto fail;
qdf_mem_zero(&msdu_info, sizeof(msdu_info));
if (!tx_exc_metadata)
goto fail;
msdu_info.tid = tx_exc_metadata->tid;
dp_verbose_debug("skb "QDF_MAC_ADDR_FMT,
QDF_MAC_ADDR_REF(nbuf->data));
DP_STATS_INC_PKT(vdev, tx_i.rcvd, 1, qdf_nbuf_len(nbuf));
if (qdf_unlikely(!dp_check_exc_metadata(tx_exc_metadata))) {
dp_tx_err("Invalid parameters in exception path");
goto fail;
}
/* for peer based metadata check if peer is valid */
if (tx_exc_metadata->peer_id != CDP_INVALID_PEER) {
struct dp_peer *peer = NULL;
peer = dp_peer_get_ref_by_id(vdev->pdev->soc,
tx_exc_metadata->peer_id,
DP_MOD_ID_TX_EXCEPTION);
if (qdf_unlikely(!peer)) {
DP_STATS_INC(vdev,
tx_i.dropped.invalid_peer_id_in_exc_path,
1);
goto fail;
}
dp_peer_unref_delete(peer, DP_MOD_ID_TX_EXCEPTION);
}
/* Basic sanity checks for unsupported packets */
/* MESH mode */
if (qdf_unlikely(vdev->mesh_vdev)) {
dp_tx_err("Mesh mode is not supported in exception path");
goto fail;
}
/*
* Classify the frame and call corresponding
* "prepare" function which extracts the segment (TSO)
* and fragmentation information (for TSO , SG, ME, or Raw)
* into MSDU_INFO structure which is later used to fill
* SW and HW descriptors.
*/
if (qdf_nbuf_is_tso(nbuf)) {
dp_verbose_debug("TSO frame %pK", vdev);
DP_STATS_INC_PKT(vdev->pdev, tso_stats.num_tso_pkts, 1,
qdf_nbuf_len(nbuf));
if (dp_tx_prepare_tso(vdev, nbuf, &msdu_info)) {
DP_STATS_INC_PKT(vdev->pdev, tso_stats.dropped_host, 1,
qdf_nbuf_len(nbuf));
goto fail;
}
DP_STATS_INC(vdev, tx_i.rcvd.num, msdu_info.num_seg - 1);
goto send_multiple;
}
/* SG */
if (qdf_unlikely(qdf_nbuf_is_nonlinear(nbuf))) {
struct dp_tx_seg_info_s seg_info = {0};
nbuf = dp_tx_prepare_sg(vdev, nbuf, &seg_info, &msdu_info);
if (!nbuf)
goto fail;
dp_verbose_debug("non-TSO SG frame %pK", vdev);
DP_STATS_INC_PKT(vdev, tx_i.sg.sg_pkt, 1,
qdf_nbuf_len(nbuf));
goto send_multiple;
}
if (qdf_likely(tx_exc_metadata->is_tx_sniffer)) {
DP_STATS_INC_PKT(vdev, tx_i.sniffer_rcvd, 1,
qdf_nbuf_len(nbuf));
dp_tx_add_tx_sniffer_meta_data(vdev, &msdu_info,
tx_exc_metadata->ppdu_cookie);
}
/*
* Get HW Queue to use for this frame.
* TCL supports upto 4 DMA rings, out of which 3 rings are
* dedicated for data and 1 for command.
* "queue_id" maps to one hardware ring.
* With each ring, we also associate a unique Tx descriptor pool
* to minimize lock contention for these resources.
*/
dp_tx_get_queue(vdev, nbuf, &msdu_info.tx_queue);
/*
* if the packet is mcast packet send through mlo_macst handler
* for all prnt_vdevs
*/
if (soc->arch_ops.dp_tx_mlo_mcast_send) {
nbuf = soc->arch_ops.dp_tx_mlo_mcast_send(soc, vdev,
nbuf,
tx_exc_metadata);
if (!nbuf)
goto fail;
}
if (qdf_likely(tx_exc_metadata->is_intrabss_fwd)) {
if (qdf_unlikely(vdev->nawds_enabled)) {
/*
* This is a multicast packet
*/
dp_tx_nawds_handler(soc, vdev, &msdu_info, nbuf,
tx_exc_metadata->peer_id);
DP_STATS_INC_PKT(vdev, tx_i.nawds_mcast,
1, qdf_nbuf_len(nbuf));
}
nbuf = dp_tx_send_msdu_single(vdev, nbuf, &msdu_info,
DP_INVALID_PEER, NULL);
} else {
/*
* Check exception descriptors
*/
if (dp_tx_exception_limit_check(vdev))
goto fail;
/* Single linear frame */
/*
* If nbuf is a simple linear frame, use send_single function to
* prepare direct-buffer type TCL descriptor and enqueue to TCL
* SRNG. There is no need to setup a MSDU extension descriptor.
*/
nbuf = dp_tx_send_msdu_single(vdev, nbuf, &msdu_info,
tx_exc_metadata->peer_id,
tx_exc_metadata);
}
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_EXCEPTION);
return nbuf;
send_multiple:
nbuf = dp_tx_send_msdu_multiple(vdev, nbuf, &msdu_info);
fail:
if (vdev)
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_EXCEPTION);
dp_verbose_debug("pkt send failed");
return nbuf;
}
qdf_nbuf_t
dp_tx_send_exception_vdev_id_check(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id, qdf_nbuf_t nbuf,
struct cdp_tx_exception_metadata *tx_exc_metadata)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_TX_EXCEPTION);
if (qdf_unlikely(!vdev))
goto fail;
if (qdf_unlikely(dp_tx_per_pkt_vdev_id_check(nbuf, vdev)
== QDF_STATUS_E_FAILURE)) {
DP_STATS_INC(vdev, tx_i.dropped.fail_per_pkt_vdev_id_check, 1);
goto fail;
}
/* Unref count as it will again be taken inside dp_tx_exception */
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_EXCEPTION);
return dp_tx_send_exception(soc_hdl, vdev_id, nbuf, tx_exc_metadata);
fail:
if (vdev)
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_EXCEPTION);
dp_verbose_debug("pkt send failed");
return nbuf;
}
#ifdef MESH_MODE_SUPPORT
qdf_nbuf_t dp_tx_send_mesh(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
qdf_nbuf_t nbuf)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct meta_hdr_s *mhdr;
qdf_nbuf_t nbuf_mesh = NULL;
qdf_nbuf_t nbuf_clone = NULL;
struct dp_vdev *vdev;
uint8_t no_enc_frame = 0;
nbuf_mesh = qdf_nbuf_unshare(nbuf);
if (!nbuf_mesh) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"qdf_nbuf_unshare failed");
return nbuf;
}
vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_MESH);
if (!vdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"vdev is NULL for vdev_id %d", vdev_id);
return nbuf;
}
nbuf = nbuf_mesh;
mhdr = (struct meta_hdr_s *)qdf_nbuf_data(nbuf);
if ((vdev->sec_type != cdp_sec_type_none) &&
(mhdr->flags & METAHDR_FLAG_NOENCRYPT))
no_enc_frame = 1;
if (mhdr->flags & METAHDR_FLAG_NOQOS)
qdf_nbuf_set_priority(nbuf, HTT_TX_EXT_TID_NON_QOS_MCAST_BCAST);
if ((mhdr->flags & METAHDR_FLAG_INFO_UPDATED) &&
!no_enc_frame) {
nbuf_clone = qdf_nbuf_clone(nbuf);
if (!nbuf_clone) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"qdf_nbuf_clone failed");
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MESH);
return nbuf;
}
qdf_nbuf_set_tx_ftype(nbuf_clone, CB_FTYPE_MESH_TX_INFO);
}
if (nbuf_clone) {
if (!dp_tx_send(soc_hdl, vdev_id, nbuf_clone)) {
DP_STATS_INC(vdev, tx_i.mesh.exception_fw, 1);
} else {
qdf_nbuf_free(nbuf_clone);
}
}
if (no_enc_frame)
qdf_nbuf_set_tx_ftype(nbuf, CB_FTYPE_MESH_TX_INFO);
else
qdf_nbuf_set_tx_ftype(nbuf, CB_FTYPE_INVALID);
nbuf = dp_tx_send(soc_hdl, vdev_id, nbuf);
if ((!nbuf) && no_enc_frame) {
DP_STATS_INC(vdev, tx_i.mesh.exception_fw, 1);
}
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MESH);
return nbuf;
}
#else
qdf_nbuf_t dp_tx_send_mesh(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
qdf_nbuf_t nbuf)
{
return dp_tx_send(soc_hdl, vdev_id, nbuf);
}
#endif
#ifdef QCA_DP_TX_NBUF_AND_NBUF_DATA_PREFETCH
static inline
void dp_tx_prefetch_nbuf_data(qdf_nbuf_t nbuf)
{
if (nbuf) {
qdf_prefetch(&nbuf->len);
qdf_prefetch(&nbuf->data);
}
}
#else
static inline
void dp_tx_prefetch_nbuf_data(qdf_nbuf_t nbuf)
{
}
#endif
#ifdef DP_UMAC_HW_RESET_SUPPORT
qdf_nbuf_t dp_tx_drop(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
qdf_nbuf_t nbuf)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = NULL;
vdev = soc->vdev_id_map[vdev_id];
if (qdf_unlikely(!vdev))
return nbuf;
DP_STATS_INC(vdev, tx_i.dropped.drop_ingress, 1);
return nbuf;
}
qdf_nbuf_t dp_tx_exc_drop(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
qdf_nbuf_t nbuf,
struct cdp_tx_exception_metadata *tx_exc_metadata)
{
return dp_tx_drop(soc_hdl, vdev_id, nbuf);
}
#endif
#ifdef FEATURE_DIRECT_LINK
/**
* dp_vdev_tx_mark_to_fw() - Mark to_fw bit for the tx packet
* @nbuf: skb
* @vdev: DP vdev handle
*
* Return: None
*/
static inline void dp_vdev_tx_mark_to_fw(qdf_nbuf_t nbuf, struct dp_vdev *vdev)
{
if (qdf_unlikely(vdev->to_fw))
QDF_NBUF_CB_TX_PACKET_TO_FW(nbuf) = 1;
}
#else
static inline void dp_vdev_tx_mark_to_fw(qdf_nbuf_t nbuf, struct dp_vdev *vdev)
{
}
#endif
qdf_nbuf_t dp_tx_send(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
qdf_nbuf_t nbuf)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
uint16_t peer_id = HTT_INVALID_PEER;
/*
* doing a memzero is causing additional function call overhead
* so doing static stack clearing
*/
struct dp_tx_msdu_info_s msdu_info = {0};
struct dp_vdev *vdev = NULL;
qdf_nbuf_t end_nbuf = NULL;
if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
return nbuf;
/*
* dp_vdev_get_ref_by_id does does a atomic operation avoid using
* this in per packet path.
*
* As in this path vdev memory is already protected with netdev
* tx lock
*/
vdev = soc->vdev_id_map[vdev_id];
if (qdf_unlikely(!vdev))
return nbuf;
dp_vdev_tx_mark_to_fw(nbuf, vdev);
/*
* Set Default Host TID value to invalid TID
* (TID override disabled)
*/
msdu_info.tid = HTT_TX_EXT_TID_INVALID;
DP_STATS_INC_PKT(vdev, tx_i.rcvd, 1, qdf_nbuf_len(nbuf));
if (qdf_unlikely(vdev->mesh_vdev)) {
qdf_nbuf_t nbuf_mesh = dp_tx_extract_mesh_meta_data(vdev, nbuf,
&msdu_info);
if (!nbuf_mesh) {
dp_verbose_debug("Extracting mesh metadata failed");
return nbuf;
}
nbuf = nbuf_mesh;
}
/*
* Get HW Queue to use for this frame.
* TCL supports upto 4 DMA rings, out of which 3 rings are
* dedicated for data and 1 for command.
* "queue_id" maps to one hardware ring.
* With each ring, we also associate a unique Tx descriptor pool
* to minimize lock contention for these resources.
*/
dp_tx_get_queue(vdev, nbuf, &msdu_info.tx_queue);
DP_STATS_INC(vdev, tx_i.rcvd_per_core[msdu_info.tx_queue.desc_pool_id],
1);
/*
* TCL H/W supports 2 DSCP-TID mapping tables.
* Table 1 - Default DSCP-TID mapping table
* Table 2 - 1 DSCP-TID override table
*
* If we need a different DSCP-TID mapping for this vap,
* call tid_classify to extract DSCP/ToS from frame and
* map to a TID and store in msdu_info. This is later used
* to fill in TCL Input descriptor (per-packet TID override).
*/
dp_tx_classify_tid(vdev, nbuf, &msdu_info);
/*
* Classify the frame and call corresponding
* "prepare" function which extracts the segment (TSO)
* and fragmentation information (for TSO , SG, ME, or Raw)
* into MSDU_INFO structure which is later used to fill
* SW and HW descriptors.
*/
if (qdf_nbuf_is_tso(nbuf)) {
dp_verbose_debug("TSO frame %pK", vdev);
DP_STATS_INC_PKT(vdev->pdev, tso_stats.num_tso_pkts, 1,
qdf_nbuf_len(nbuf));
if (dp_tx_prepare_tso(vdev, nbuf, &msdu_info)) {
DP_STATS_INC_PKT(vdev->pdev, tso_stats.dropped_host, 1,
qdf_nbuf_len(nbuf));
return nbuf;
}
DP_STATS_INC(vdev, tx_i.rcvd.num, msdu_info.num_seg - 1);
goto send_multiple;
}
/* SG */
if (qdf_unlikely(qdf_nbuf_is_nonlinear(nbuf))) {
if (qdf_nbuf_get_nr_frags(nbuf) > DP_TX_MAX_NUM_FRAGS - 1) {
if (qdf_unlikely(qdf_nbuf_linearize(nbuf)))
return nbuf;
} else {
struct dp_tx_seg_info_s seg_info = {0};
if (qdf_unlikely(is_nbuf_frm_rmnet(nbuf, &msdu_info)))
goto send_single;
nbuf = dp_tx_prepare_sg(vdev, nbuf, &seg_info,
&msdu_info);
if (!nbuf)
return NULL;
dp_verbose_debug("non-TSO SG frame %pK", vdev);
DP_STATS_INC_PKT(vdev, tx_i.sg.sg_pkt, 1,
qdf_nbuf_len(nbuf));
goto send_multiple;
}
}
if (qdf_unlikely(!dp_tx_mcast_enhance(vdev, nbuf)))
return NULL;
if (qdf_unlikely(dp_tx_mcast_drop(vdev, nbuf)))
return nbuf;
/* RAW */
if (qdf_unlikely(vdev->tx_encap_type == htt_cmn_pkt_type_raw)) {
struct dp_tx_seg_info_s seg_info = {0};
nbuf = dp_tx_prepare_raw(vdev, nbuf, &seg_info, &msdu_info);
if (!nbuf)
return NULL;
dp_verbose_debug("Raw frame %pK", vdev);
goto send_multiple;
}
if (qdf_unlikely(vdev->nawds_enabled)) {
qdf_ether_header_t *eh = (qdf_ether_header_t *)
qdf_nbuf_data(nbuf);
if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost)) {
uint16_t sa_peer_id = DP_INVALID_PEER;
if (!soc->ast_offload_support) {
struct dp_ast_entry *ast_entry = NULL;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_by_pdevid
(soc,
(uint8_t *)(eh->ether_shost),
vdev->pdev->pdev_id);
if (ast_entry)
sa_peer_id = ast_entry->peer_id;
qdf_spin_unlock_bh(&soc->ast_lock);
}
dp_tx_nawds_handler(soc, vdev, &msdu_info, nbuf,
sa_peer_id);
}
peer_id = DP_INVALID_PEER;
DP_STATS_INC_PKT(vdev, tx_i.nawds_mcast,
1, qdf_nbuf_len(nbuf));
}
send_single:
/* Single linear frame */
/*
* If nbuf is a simple linear frame, use send_single function to
* prepare direct-buffer type TCL descriptor and enqueue to TCL
* SRNG. There is no need to setup a MSDU extension descriptor.
*/
dp_tx_prefetch_nbuf_data(nbuf);
nbuf = dp_tx_send_msdu_single_wrapper(vdev, nbuf, &msdu_info,
peer_id, end_nbuf);
return nbuf;
send_multiple:
nbuf = dp_tx_send_msdu_multiple(vdev, nbuf, &msdu_info);
if (qdf_unlikely(nbuf && msdu_info.frm_type == dp_tx_frm_raw))
dp_tx_raw_prepare_unset(vdev->pdev->soc, nbuf);
return nbuf;
}
qdf_nbuf_t dp_tx_send_vdev_id_check(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id, qdf_nbuf_t nbuf)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = NULL;
if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
return nbuf;
/*
* dp_vdev_get_ref_by_id does does a atomic operation avoid using
* this in per packet path.
*
* As in this path vdev memory is already protected with netdev
* tx lock
*/
vdev = soc->vdev_id_map[vdev_id];
if (qdf_unlikely(!vdev))
return nbuf;
if (qdf_unlikely(dp_tx_per_pkt_vdev_id_check(nbuf, vdev)
== QDF_STATUS_E_FAILURE)) {
DP_STATS_INC(vdev, tx_i.dropped.fail_per_pkt_vdev_id_check, 1);
return nbuf;
}
return dp_tx_send(soc_hdl, vdev_id, nbuf);
}
#ifdef UMAC_SUPPORT_PROXY_ARP
/**
* dp_tx_proxy_arp() - Tx proxy arp handler
* @vdev: datapath vdev handle
* @nbuf: sk buffer
*
* Return: status
*/
static inline
int dp_tx_proxy_arp(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
{
if (vdev->osif_proxy_arp)
return vdev->osif_proxy_arp(vdev->osif_vdev, nbuf);
/*
* when UMAC_SUPPORT_PROXY_ARP is defined, we expect
* osif_proxy_arp has a valid function pointer assigned
* to it
*/
dp_tx_err("valid function pointer for osif_proxy_arp is expected!!\n");
return QDF_STATUS_NOT_INITIALIZED;
}
#else
static inline
int dp_tx_proxy_arp(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
{
return QDF_STATUS_SUCCESS;
}
#endif
#if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP) && \
!defined(CONFIG_MLO_SINGLE_DEV)
#ifdef WLAN_MCAST_MLO
static bool
dp_tx_reinject_mlo_hdl(struct dp_soc *soc, struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc,
qdf_nbuf_t nbuf,
uint8_t reinject_reason)
{
if (reinject_reason == HTT_TX_FW2WBM_REINJECT_REASON_MLO_MCAST) {
if (soc->arch_ops.dp_tx_mcast_handler)
soc->arch_ops.dp_tx_mcast_handler(soc, vdev, nbuf);
dp_tx_desc_release(tx_desc, tx_desc->pool_id);
return true;
}
return false;
}
#else /* WLAN_MCAST_MLO */
static inline bool
dp_tx_reinject_mlo_hdl(struct dp_soc *soc, struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc,
qdf_nbuf_t nbuf,
uint8_t reinject_reason)
{
return false;
}
#endif /* WLAN_MCAST_MLO */
#else
static inline bool
dp_tx_reinject_mlo_hdl(struct dp_soc *soc, struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc,
qdf_nbuf_t nbuf,
uint8_t reinject_reason)
{
return false;
}
#endif
void dp_tx_reinject_handler(struct dp_soc *soc,
struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc,
uint8_t *status,
uint8_t reinject_reason)
{
struct dp_peer *peer = NULL;
uint32_t peer_id = HTT_INVALID_PEER;
qdf_nbuf_t nbuf = tx_desc->nbuf;
qdf_nbuf_t nbuf_copy = NULL;
struct dp_tx_msdu_info_s msdu_info;
#ifdef WDS_VENDOR_EXTENSION
int is_mcast = 0, is_ucast = 0;
int num_peers_3addr = 0;
qdf_ether_header_t *eth_hdr = (qdf_ether_header_t *)(qdf_nbuf_data(nbuf));
struct ieee80211_frame_addr4 *wh = (struct ieee80211_frame_addr4 *)(qdf_nbuf_data(nbuf));
#endif
struct dp_txrx_peer *txrx_peer;
qdf_assert(vdev);
dp_tx_debug("Tx reinject path");
DP_STATS_INC_PKT(vdev, tx_i.reinject_pkts, 1,
qdf_nbuf_len(tx_desc->nbuf));
if (dp_tx_reinject_mlo_hdl(soc, vdev, tx_desc, nbuf, reinject_reason))
return;
#ifdef WDS_VENDOR_EXTENSION
if (qdf_unlikely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
is_mcast = (IS_MULTICAST(wh->i_addr1)) ? 1 : 0;
} else {
is_mcast = (IS_MULTICAST(eth_hdr->ether_dhost)) ? 1 : 0;
}
is_ucast = !is_mcast;
qdf_spin_lock_bh(&vdev->peer_list_lock);
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
txrx_peer = dp_get_txrx_peer(peer);
if (!txrx_peer || txrx_peer->bss_peer)
continue;
/* Detect wds peers that use 3-addr framing for mcast.
* if there are any, the bss_peer is used to send the
* the mcast frame using 3-addr format. all wds enabled
* peers that use 4-addr framing for mcast frames will
* be duplicated and sent as 4-addr frames below.
*/
if (!txrx_peer->wds_enabled ||
!txrx_peer->wds_ecm.wds_tx_mcast_4addr) {
num_peers_3addr = 1;
break;
}
}
qdf_spin_unlock_bh(&vdev->peer_list_lock);
#endif
if (qdf_unlikely(vdev->mesh_vdev)) {
DP_TX_FREE_SINGLE_BUF(vdev->pdev->soc, tx_desc->nbuf);
} else {
qdf_spin_lock_bh(&vdev->peer_list_lock);
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
txrx_peer = dp_get_txrx_peer(peer);
if (!txrx_peer)
continue;
if ((txrx_peer->peer_id != HTT_INVALID_PEER) &&
#ifdef WDS_VENDOR_EXTENSION
/*
* . if 3-addr STA, then send on BSS Peer
* . if Peer WDS enabled and accept 4-addr mcast,
* send mcast on that peer only
* . if Peer WDS enabled and accept 4-addr ucast,
* send ucast on that peer only
*/
((txrx_peer->bss_peer && num_peers_3addr && is_mcast) ||
(txrx_peer->wds_enabled &&
((is_mcast && txrx_peer->wds_ecm.wds_tx_mcast_4addr) ||
(is_ucast &&
txrx_peer->wds_ecm.wds_tx_ucast_4addr))))) {
#else
(txrx_peer->bss_peer &&
(dp_tx_proxy_arp(vdev, nbuf) == QDF_STATUS_SUCCESS))) {
#endif
peer_id = DP_INVALID_PEER;
nbuf_copy = qdf_nbuf_copy(nbuf);
if (!nbuf_copy) {
dp_tx_debug("nbuf copy failed");
break;
}
qdf_mem_zero(&msdu_info, sizeof(msdu_info));
dp_tx_get_queue(vdev, nbuf,
&msdu_info.tx_queue);
nbuf_copy = dp_tx_send_msdu_single(vdev,
nbuf_copy,
&msdu_info,
peer_id,
NULL);
if (nbuf_copy) {
dp_tx_debug("pkt send failed");
qdf_nbuf_free(nbuf_copy);
}
}
}
qdf_spin_unlock_bh(&vdev->peer_list_lock);
qdf_nbuf_unmap_nbytes_single(vdev->osdev, nbuf,
QDF_DMA_TO_DEVICE, nbuf->len);
qdf_nbuf_free(nbuf);
}
dp_tx_desc_release(tx_desc, tx_desc->pool_id);
}
void dp_tx_inspect_handler(struct dp_soc *soc,
struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc,
uint8_t *status)
{
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s Tx inspect path",
__func__);
DP_STATS_INC_PKT(vdev, tx_i.inspect_pkts, 1,
qdf_nbuf_len(tx_desc->nbuf));
DP_TX_FREE_SINGLE_BUF(soc, tx_desc->nbuf);
dp_tx_desc_release(tx_desc, tx_desc->pool_id);
}
#ifdef MESH_MODE_SUPPORT
/**
* dp_tx_comp_fill_tx_completion_stats() - Fill per packet Tx completion stats
* in mesh meta header
* @tx_desc: software descriptor head pointer
* @ts: pointer to tx completion stats
* Return: none
*/
static
void dp_tx_comp_fill_tx_completion_stats(struct dp_tx_desc_s *tx_desc,
struct hal_tx_completion_status *ts)
{
qdf_nbuf_t netbuf = tx_desc->nbuf;
if (!tx_desc->msdu_ext_desc) {
if (qdf_nbuf_pull_head(netbuf, tx_desc->pkt_offset) == NULL) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"netbuf %pK offset %d",
netbuf, tx_desc->pkt_offset);
return;
}
}
}
#else
static
void dp_tx_comp_fill_tx_completion_stats(struct dp_tx_desc_s *tx_desc,
struct hal_tx_completion_status *ts)
{
}
#endif
#ifdef CONFIG_SAWF
static void dp_tx_update_peer_sawf_stats(struct dp_soc *soc,
struct dp_vdev *vdev,
struct dp_txrx_peer *txrx_peer,
struct dp_tx_desc_s *tx_desc,
struct hal_tx_completion_status *ts,
uint8_t tid)
{
dp_sawf_tx_compl_update_peer_stats(soc, vdev, txrx_peer, tx_desc,
ts, tid);
}
static void dp_tx_compute_delay_avg(struct cdp_delay_tx_stats *tx_delay,
uint32_t nw_delay,
uint32_t sw_delay,
uint32_t hw_delay)
{
dp_peer_tid_delay_avg(tx_delay,
nw_delay,
sw_delay,
hw_delay);
}
#else
static void dp_tx_update_peer_sawf_stats(struct dp_soc *soc,
struct dp_vdev *vdev,
struct dp_txrx_peer *txrx_peer,
struct dp_tx_desc_s *tx_desc,
struct hal_tx_completion_status *ts,
uint8_t tid)
{
}
static inline void
dp_tx_compute_delay_avg(struct cdp_delay_tx_stats *tx_delay,
uint32_t nw_delay, uint32_t sw_delay,
uint32_t hw_delay)
{
}
#endif
#ifdef QCA_PEER_EXT_STATS
#ifdef WLAN_CONFIG_TX_DELAY
static void dp_tx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
struct dp_tx_desc_s *tx_desc,
struct hal_tx_completion_status *ts,
struct dp_vdev *vdev)
{
struct dp_soc *soc = vdev->pdev->soc;
struct cdp_delay_tx_stats *tx_delay = &stats->tx_delay;
int64_t timestamp_ingress, timestamp_hw_enqueue;
uint32_t sw_enqueue_delay, fwhw_transmit_delay = 0;
if (!ts->valid)
return;
timestamp_ingress = qdf_nbuf_get_timestamp_us(tx_desc->nbuf);
timestamp_hw_enqueue = qdf_ktime_to_us(tx_desc->timestamp);
sw_enqueue_delay = (uint32_t)(timestamp_hw_enqueue - timestamp_ingress);
dp_hist_update_stats(&tx_delay->tx_swq_delay, sw_enqueue_delay);
if (soc->arch_ops.dp_tx_compute_hw_delay)
if (!soc->arch_ops.dp_tx_compute_hw_delay(soc, vdev, ts,
&fwhw_transmit_delay))
dp_hist_update_stats(&tx_delay->hwtx_delay,
fwhw_transmit_delay);
dp_tx_compute_delay_avg(tx_delay, 0, sw_enqueue_delay,
fwhw_transmit_delay);
}
#else
/**
* dp_tx_compute_tid_delay() - Compute per TID delay
* @stats: Per TID delay stats
* @tx_desc: Software Tx descriptor
* @ts: Tx completion status
* @vdev: vdev
*
* Compute the software enqueue and hw enqueue delays and
* update the respective histograms
*
* Return: void
*/
static void dp_tx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
struct dp_tx_desc_s *tx_desc,
struct hal_tx_completion_status *ts,
struct dp_vdev *vdev)
{
struct cdp_delay_tx_stats *tx_delay = &stats->tx_delay;
int64_t current_timestamp, timestamp_ingress, timestamp_hw_enqueue;
uint32_t sw_enqueue_delay, fwhw_transmit_delay;
current_timestamp = qdf_ktime_to_ms(qdf_ktime_real_get());
timestamp_ingress = qdf_nbuf_get_timestamp(tx_desc->nbuf);
timestamp_hw_enqueue = qdf_ktime_to_ms(tx_desc->timestamp);
sw_enqueue_delay = (uint32_t)(timestamp_hw_enqueue - timestamp_ingress);
fwhw_transmit_delay = (uint32_t)(current_timestamp -
timestamp_hw_enqueue);
/*
* Update the Tx software enqueue delay and HW enque-Completion delay.
*/
dp_hist_update_stats(&tx_delay->tx_swq_delay, sw_enqueue_delay);
dp_hist_update_stats(&tx_delay->hwtx_delay, fwhw_transmit_delay);
}
#endif
/**
* dp_tx_update_peer_delay_stats() - Update the peer delay stats
* @txrx_peer: DP peer context
* @tx_desc: Tx software descriptor
* @ts: Tx completion status
* @ring_id: Rx CPU context ID/CPU_ID
*
* Update the peer extended stats. These are enhanced other
* delay stats per msdu level.
*
* Return: void
*/
static void dp_tx_update_peer_delay_stats(struct dp_txrx_peer *txrx_peer,
struct dp_tx_desc_s *tx_desc,
struct hal_tx_completion_status *ts,
uint8_t ring_id)
{
struct dp_pdev *pdev = txrx_peer->vdev->pdev;
struct dp_soc *soc = NULL;
struct dp_peer_delay_stats *delay_stats = NULL;
uint8_t tid;
soc = pdev->soc;
if (qdf_likely(!wlan_cfg_is_peer_ext_stats_enabled(soc->wlan_cfg_ctx)))
return;
if (!txrx_peer->delay_stats)
return;
tid = ts->tid;
delay_stats = txrx_peer->delay_stats;
qdf_assert(ring < CDP_MAX_TXRX_CTX);
/*
* For non-TID packets use the TID 9
*/
if (qdf_unlikely(tid >= CDP_MAX_DATA_TIDS))
tid = CDP_MAX_DATA_TIDS - 1;
dp_tx_compute_tid_delay(&delay_stats->delay_tid_stats[tid][ring_id],
tx_desc, ts, txrx_peer->vdev);
}
#else
static inline
void dp_tx_update_peer_delay_stats(struct dp_txrx_peer *txrx_peer,
struct dp_tx_desc_s *tx_desc,
struct hal_tx_completion_status *ts,
uint8_t ring_id)
{
}
#endif
#ifdef WLAN_PEER_JITTER
/**
* dp_tx_jitter_get_avg_jitter() - compute the average jitter
* @curr_delay: Current delay
* @prev_delay: Previous delay
* @avg_jitter: Average Jitter
* Return: Newly Computed Average Jitter
*/
static uint32_t dp_tx_jitter_get_avg_jitter(uint32_t curr_delay,
uint32_t prev_delay,
uint32_t avg_jitter)
{
uint32_t curr_jitter;
int32_t jitter_diff;
curr_jitter = qdf_abs(curr_delay - prev_delay);
if (!avg_jitter)
return curr_jitter;
jitter_diff = curr_jitter - avg_jitter;
if (jitter_diff < 0)
avg_jitter = avg_jitter -
(qdf_abs(jitter_diff) >> DP_AVG_JITTER_WEIGHT_DENOM);
else
avg_jitter = avg_jitter +
(qdf_abs(jitter_diff) >> DP_AVG_JITTER_WEIGHT_DENOM);
return avg_jitter;
}
/**
* dp_tx_jitter_get_avg_delay() - compute the average delay
* @curr_delay: Current delay
* @avg_delay: Average delay
* Return: Newly Computed Average Delay
*/
static uint32_t dp_tx_jitter_get_avg_delay(uint32_t curr_delay,
uint32_t avg_delay)
{
int32_t delay_diff;
if (!avg_delay)
return curr_delay;
delay_diff = curr_delay - avg_delay;
if (delay_diff < 0)
avg_delay = avg_delay - (qdf_abs(delay_diff) >>
DP_AVG_DELAY_WEIGHT_DENOM);
else
avg_delay = avg_delay + (qdf_abs(delay_diff) >>
DP_AVG_DELAY_WEIGHT_DENOM);
return avg_delay;
}
#ifdef WLAN_CONFIG_TX_DELAY
/**
* dp_tx_compute_cur_delay() - get the current delay
* @soc: soc handle
* @vdev: vdev structure for data path state
* @ts: Tx completion status
* @curr_delay: current delay
* @tx_desc: tx descriptor
* Return: void
*/
static
QDF_STATUS dp_tx_compute_cur_delay(struct dp_soc *soc,
struct dp_vdev *vdev,
struct hal_tx_completion_status *ts,
uint32_t *curr_delay,
struct dp_tx_desc_s *tx_desc)
{
QDF_STATUS status = QDF_STATUS_E_FAILURE;
if (soc->arch_ops.dp_tx_compute_hw_delay)
status = soc->arch_ops.dp_tx_compute_hw_delay(soc, vdev, ts,
curr_delay);
return status;
}
#else
static
QDF_STATUS dp_tx_compute_cur_delay(struct dp_soc *soc,
struct dp_vdev *vdev,
struct hal_tx_completion_status *ts,
uint32_t *curr_delay,
struct dp_tx_desc_s *tx_desc)
{
int64_t current_timestamp, timestamp_hw_enqueue;
current_timestamp = qdf_ktime_to_us(qdf_ktime_real_get());
timestamp_hw_enqueue = qdf_ktime_to_us(tx_desc->timestamp);
*curr_delay = (uint32_t)(current_timestamp - timestamp_hw_enqueue);
return QDF_STATUS_SUCCESS;
}
#endif
/**
* dp_tx_compute_tid_jitter() - compute per tid per ring jitter
* @jitter: per tid per ring jitter stats
* @ts: Tx completion status
* @vdev: vdev structure for data path state
* @tx_desc: tx descriptor
* Return: void
*/
static void dp_tx_compute_tid_jitter(struct cdp_peer_tid_stats *jitter,
struct hal_tx_completion_status *ts,
struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc)
{
uint32_t curr_delay, avg_delay, avg_jitter, prev_delay;
struct dp_soc *soc = vdev->pdev->soc;
QDF_STATUS status = QDF_STATUS_E_FAILURE;
if (ts->status != HAL_TX_TQM_RR_FRAME_ACKED) {
jitter->tx_drop += 1;
return;
}
status = dp_tx_compute_cur_delay(soc, vdev, ts, &curr_delay,
tx_desc);
if (QDF_IS_STATUS_SUCCESS(status)) {
avg_delay = jitter->tx_avg_delay;
avg_jitter = jitter->tx_avg_jitter;
prev_delay = jitter->tx_prev_delay;
avg_jitter = dp_tx_jitter_get_avg_jitter(curr_delay,
prev_delay,
avg_jitter);
avg_delay = dp_tx_jitter_get_avg_delay(curr_delay, avg_delay);
jitter->tx_avg_delay = avg_delay;
jitter->tx_avg_jitter = avg_jitter;
jitter->tx_prev_delay = curr_delay;
jitter->tx_total_success += 1;
} else if (status == QDF_STATUS_E_FAILURE) {
jitter->tx_avg_err += 1;
}
}
/* dp_tx_update_peer_jitter_stats() - Update the peer jitter stats
* @txrx_peer: DP peer context
* @tx_desc: Tx software descriptor
* @ts: Tx completion status
* @ring_id: Rx CPU context ID/CPU_ID
* Return: void
*/
static void dp_tx_update_peer_jitter_stats(struct dp_txrx_peer *txrx_peer,
struct dp_tx_desc_s *tx_desc,
struct hal_tx_completion_status *ts,
uint8_t ring_id)
{
struct dp_pdev *pdev = txrx_peer->vdev->pdev;
struct dp_soc *soc = pdev->soc;
struct cdp_peer_tid_stats *jitter_stats = NULL;
uint8_t tid;
struct cdp_peer_tid_stats *rx_tid = NULL;
if (qdf_likely(!wlan_cfg_is_peer_jitter_stats_enabled(soc->wlan_cfg_ctx)))
return;
tid = ts->tid;
jitter_stats = txrx_peer->jitter_stats;
qdf_assert_always(jitter_stats);
qdf_assert(ring < CDP_MAX_TXRX_CTX);
/*
* For non-TID packets use the TID 9
*/
if (qdf_unlikely(tid >= CDP_MAX_DATA_TIDS))
tid = CDP_MAX_DATA_TIDS - 1;
rx_tid = &jitter_stats[tid * CDP_MAX_TXRX_CTX + ring_id];
dp_tx_compute_tid_jitter(rx_tid,
ts, txrx_peer->vdev, tx_desc);
}
#else
static void dp_tx_update_peer_jitter_stats(struct dp_txrx_peer *txrx_peer,
struct dp_tx_desc_s *tx_desc,
struct hal_tx_completion_status *ts,
uint8_t ring_id)
{
}
#endif
#ifdef HW_TX_DELAY_STATS_ENABLE
/**
* dp_update_tx_delay_stats() - update the delay stats
* @vdev: vdev handle
* @delay: delay in ms or us based on the flag delay_in_us
* @tid: tid value
* @mode: type of tx delay mode
* @ring_id: ring number
* @delay_in_us: flag to indicate whether the delay is in ms or us
*
* Return: none
*/
static inline
void dp_update_tx_delay_stats(struct dp_vdev *vdev, uint32_t delay, uint8_t tid,
uint8_t mode, uint8_t ring_id, bool delay_in_us)
{
struct cdp_tid_tx_stats *tstats =
&vdev->stats.tid_tx_stats[ring_id][tid];
dp_update_delay_stats(tstats, NULL, delay, tid, mode, ring_id,
delay_in_us);
}
#else
static inline
void dp_update_tx_delay_stats(struct dp_vdev *vdev, uint32_t delay, uint8_t tid,
uint8_t mode, uint8_t ring_id, bool delay_in_us)
{
struct cdp_tid_tx_stats *tstats =
&vdev->pdev->stats.tid_stats.tid_tx_stats[ring_id][tid];
dp_update_delay_stats(tstats, NULL, delay, tid, mode, ring_id,
delay_in_us);
}
#endif
void dp_tx_compute_delay(struct dp_vdev *vdev, struct dp_tx_desc_s *tx_desc,
uint8_t tid, uint8_t ring_id)
{
int64_t current_timestamp, timestamp_ingress, timestamp_hw_enqueue;
uint32_t sw_enqueue_delay, fwhw_transmit_delay, interframe_delay;
uint32_t fwhw_transmit_delay_us;
if (qdf_likely(!vdev->pdev->delay_stats_flag) &&
qdf_likely(!dp_is_vdev_tx_delay_stats_enabled(vdev)))
return;
if (dp_is_vdev_tx_delay_stats_enabled(vdev)) {
fwhw_transmit_delay_us =
qdf_ktime_to_us(qdf_ktime_real_get()) -
qdf_ktime_to_us(tx_desc->timestamp);
/*
* Delay between packet enqueued to HW and Tx completion in us
*/
dp_update_tx_delay_stats(vdev, fwhw_transmit_delay_us, tid,
CDP_DELAY_STATS_FW_HW_TRANSMIT,
ring_id, true);
/*
* For MCL, only enqueue to completion delay is required
* so return if the vdev flag is enabled.
*/
return;
}
current_timestamp = qdf_ktime_to_ms(qdf_ktime_real_get());
timestamp_hw_enqueue = qdf_ktime_to_ms(tx_desc->timestamp);
fwhw_transmit_delay = (uint32_t)(current_timestamp -
timestamp_hw_enqueue);
if (!timestamp_hw_enqueue)
return;
/*
* Delay between packet enqueued to HW and Tx completion in ms
*/
dp_update_tx_delay_stats(vdev, fwhw_transmit_delay, tid,
CDP_DELAY_STATS_FW_HW_TRANSMIT, ring_id,
false);
timestamp_ingress = qdf_nbuf_get_timestamp(tx_desc->nbuf);
sw_enqueue_delay = (uint32_t)(timestamp_hw_enqueue - timestamp_ingress);
interframe_delay = (uint32_t)(timestamp_ingress -
vdev->prev_tx_enq_tstamp);
/*
* Delay in software enqueue
*/
dp_update_tx_delay_stats(vdev, sw_enqueue_delay, tid,
CDP_DELAY_STATS_SW_ENQ, ring_id,
false);
/*
* Update interframe delay stats calculated at hardstart receive point.
* Value of vdev->prev_tx_enq_tstamp will be 0 for 1st frame, so
* interframe delay will not be calculate correctly for 1st frame.
* On the other side, this will help in avoiding extra per packet check
* of !vdev->prev_tx_enq_tstamp.
*/
dp_update_tx_delay_stats(vdev, interframe_delay, tid,
CDP_DELAY_STATS_TX_INTERFRAME, ring_id,
false);
vdev->prev_tx_enq_tstamp = timestamp_ingress;
}
#ifdef DISABLE_DP_STATS
static
inline void dp_update_no_ack_stats(qdf_nbuf_t nbuf,
struct dp_txrx_peer *txrx_peer,
uint8_t link_id)
{
}
#else
static inline void
dp_update_no_ack_stats(qdf_nbuf_t nbuf, struct dp_txrx_peer *txrx_peer,
uint8_t link_id)
{
enum qdf_proto_subtype subtype = QDF_PROTO_INVALID;
DPTRACE(qdf_dp_track_noack_check(nbuf, &subtype));
if (subtype != QDF_PROTO_INVALID)
DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.no_ack_count[subtype],
1, link_id);
}
#endif
#ifndef QCA_ENHANCED_STATS_SUPPORT
#ifdef DP_PEER_EXTENDED_API
static inline uint8_t
dp_tx_get_mpdu_retry_threshold(struct dp_txrx_peer *txrx_peer)
{
return txrx_peer->mpdu_retry_threshold;
}
#else
static inline uint8_t
dp_tx_get_mpdu_retry_threshold(struct dp_txrx_peer *txrx_peer)
{
return 0;
}
#endif
/**
* dp_tx_update_peer_extd_stats()- Update Tx extended path stats for peer
*
* @ts: Tx compltion status
* @txrx_peer: datapath txrx_peer handle
* @link_id: Link id
*
* Return: void
*/
static inline void
dp_tx_update_peer_extd_stats(struct hal_tx_completion_status *ts,
struct dp_txrx_peer *txrx_peer, uint8_t link_id)
{
uint8_t mcs, pkt_type, dst_mcs_idx;
uint8_t retry_threshold = dp_tx_get_mpdu_retry_threshold(txrx_peer);
mcs = ts->mcs;
pkt_type = ts->pkt_type;
/* do HW to SW pkt type conversion */
pkt_type = (pkt_type >= HAL_DOT11_MAX ? DOT11_MAX :
hal_2_dp_pkt_type_map[pkt_type]);
dst_mcs_idx = dp_get_mcs_array_index_by_pkt_type_mcs(pkt_type, mcs);
if (MCS_INVALID_ARRAY_INDEX != dst_mcs_idx)
DP_PEER_EXTD_STATS_INC(txrx_peer,
tx.pkt_type[pkt_type].mcs_count[dst_mcs_idx],
1, link_id);
DP_PEER_EXTD_STATS_INC(txrx_peer, tx.sgi_count[ts->sgi], 1, link_id);
DP_PEER_EXTD_STATS_INC(txrx_peer, tx.bw[ts->bw], 1, link_id);
DP_PEER_EXTD_STATS_UPD(txrx_peer, tx.last_ack_rssi, ts->ack_frame_rssi,
link_id);
DP_PEER_EXTD_STATS_INC(txrx_peer,
tx.wme_ac_type[TID_TO_WME_AC(ts->tid)], 1,
link_id);
DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.stbc, 1, ts->stbc, link_id);
DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.ldpc, 1, ts->ldpc, link_id);
DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.retries, 1, ts->transmit_cnt > 1,
link_id);
if (ts->first_msdu) {
DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.retries_mpdu, 1,
ts->transmit_cnt > 1, link_id);
if (!retry_threshold)
return;
DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.mpdu_success_with_retries,
qdf_do_div(ts->transmit_cnt,
retry_threshold),
ts->transmit_cnt > retry_threshold,
link_id);
}
}
#else
static inline void
dp_tx_update_peer_extd_stats(struct hal_tx_completion_status *ts,
struct dp_txrx_peer *txrx_peer, uint8_t link_id)
{
}
#endif
#ifdef WLAN_FEATURE_11BE_MLO
static inline int
dp_tx_get_link_id_from_ppdu_id(struct dp_soc *soc,
struct hal_tx_completion_status *ts,
struct dp_txrx_peer *txrx_peer,
struct dp_vdev *vdev)
{
uint8_t hw_link_id = 0;
uint32_t ppdu_id;
uint8_t link_id_offset, link_id_bits;
if (!txrx_peer->is_mld_peer || !vdev->pdev->link_peer_stats)
return 0;
link_id_offset = soc->link_id_offset;
link_id_bits = soc->link_id_bits;
ppdu_id = ts->ppdu_id;
hw_link_id = DP_GET_HW_LINK_ID_FRM_PPDU_ID(ppdu_id, link_id_offset,
link_id_bits);
return (hw_link_id + 1);
}
#else
static inline int
dp_tx_get_link_id_from_ppdu_id(struct dp_soc *soc,
struct hal_tx_completion_status *ts,
struct dp_txrx_peer *txrx_peer,
struct dp_vdev *vdev)
{
return 0;
}
#endif
/**
* dp_tx_update_peer_stats() - Update peer stats from Tx completion indications
* per wbm ring
*
* @tx_desc: software descriptor head pointer
* @ts: Tx completion status
* @txrx_peer: peer handle
* @ring_id: ring number
* @link_id: Link id
*
* Return: None
*/
static inline void
dp_tx_update_peer_stats(struct dp_tx_desc_s *tx_desc,
struct hal_tx_completion_status *ts,
struct dp_txrx_peer *txrx_peer, uint8_t ring_id,
uint8_t link_id)
{
struct dp_pdev *pdev = txrx_peer->vdev->pdev;
uint8_t tid = ts->tid;
uint32_t length;
struct cdp_tid_tx_stats *tid_stats;
if (!pdev)
return;
if (qdf_unlikely(tid >= CDP_MAX_DATA_TIDS))
tid = CDP_MAX_DATA_TIDS - 1;
tid_stats = &pdev->stats.tid_stats.tid_tx_stats[ring_id][tid];
if (ts->release_src != HAL_TX_COMP_RELEASE_SOURCE_TQM) {
dp_err_rl("Release source:%d is not from TQM", ts->release_src);
DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.release_src_not_tqm, 1,
link_id);
return;
}
length = qdf_nbuf_len(tx_desc->nbuf);
DP_PEER_STATS_FLAT_INC_PKT(txrx_peer, comp_pkt, 1, length);
if (qdf_unlikely(pdev->delay_stats_flag) ||
qdf_unlikely(dp_is_vdev_tx_delay_stats_enabled(txrx_peer->vdev)))
dp_tx_compute_delay(txrx_peer->vdev, tx_desc, tid, ring_id);
if (ts->status < CDP_MAX_TX_TQM_STATUS) {
tid_stats->tqm_status_cnt[ts->status]++;
}
if (qdf_likely(ts->status == HAL_TX_TQM_RR_FRAME_ACKED)) {
DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.retry_count, 1,
ts->transmit_cnt > 1, link_id);
DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.multiple_retry_count,
1, ts->transmit_cnt > 2, link_id);
DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.ofdma, 1, ts->ofdma,
link_id);
DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.amsdu_cnt, 1,
ts->msdu_part_of_amsdu, link_id);
DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.non_amsdu_cnt, 1,
!ts->msdu_part_of_amsdu, link_id);
txrx_peer->stats[link_id].per_pkt_stats.tx.last_tx_ts =
qdf_system_ticks();
dp_tx_update_peer_extd_stats(ts, txrx_peer, link_id);
return;
}
/*
* tx_failed is ideally supposed to be updated from HTT ppdu
* completion stats. But in IPQ807X/IPQ6018 chipsets owing to
* hw limitation there are no completions for failed cases.
* Hence updating tx_failed from data path. Please note that
* if tx_failed is fixed to be from ppdu, then this has to be
* removed
*/
DP_PEER_STATS_FLAT_INC(txrx_peer, tx_failed, 1);
DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.failed_retry_count, 1,
ts->transmit_cnt > DP_RETRY_COUNT,
link_id);
dp_update_no_ack_stats(tx_desc->nbuf, txrx_peer, link_id);
if (ts->status == HAL_TX_TQM_RR_REM_CMD_AGED) {
DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.age_out, 1,
link_id);
} else if (ts->status == HAL_TX_TQM_RR_REM_CMD_REM) {
DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, tx.dropped.fw_rem, 1,
length, link_id);
} else if (ts->status == HAL_TX_TQM_RR_REM_CMD_NOTX) {
DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_rem_notx, 1,
link_id);
} else if (ts->status == HAL_TX_TQM_RR_REM_CMD_TX) {
DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_rem_tx, 1,
link_id);
} else if (ts->status == HAL_TX_TQM_RR_FW_REASON1) {
DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_reason1, 1,
link_id);
} else if (ts->status == HAL_TX_TQM_RR_FW_REASON2) {
DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_reason2, 1,
link_id);
} else if (ts->status == HAL_TX_TQM_RR_FW_REASON3) {
DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_reason3, 1,
link_id);
} else if (ts->status == HAL_TX_TQM_RR_REM_CMD_DISABLE_QUEUE) {
DP_PEER_PER_PKT_STATS_INC(txrx_peer,
tx.dropped.fw_rem_queue_disable, 1,
link_id);
} else if (ts->status == HAL_TX_TQM_RR_REM_CMD_TILL_NONMATCHING) {
DP_PEER_PER_PKT_STATS_INC(txrx_peer,
tx.dropped.fw_rem_no_match, 1,
link_id);
} else if (ts->status == HAL_TX_TQM_RR_DROP_THRESHOLD) {
DP_PEER_PER_PKT_STATS_INC(txrx_peer,
tx.dropped.drop_threshold, 1,
link_id);
} else if (ts->status == HAL_TX_TQM_RR_LINK_DESC_UNAVAILABLE) {
DP_PEER_PER_PKT_STATS_INC(txrx_peer,
tx.dropped.drop_link_desc_na, 1,
link_id);
} else if (ts->status == HAL_TX_TQM_RR_DROP_OR_INVALID_MSDU) {
DP_PEER_PER_PKT_STATS_INC(txrx_peer,
tx.dropped.invalid_drop, 1,
link_id);
} else if (ts->status == HAL_TX_TQM_RR_MULTICAST_DROP) {
DP_PEER_PER_PKT_STATS_INC(txrx_peer,
tx.dropped.mcast_vdev_drop, 1,
link_id);
} else {
DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.invalid_rr, 1,
link_id);
}
}
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
/**
* dp_tx_flow_pool_lock() - take flow pool lock
* @soc: core txrx main context
* @tx_desc: tx desc
*
* Return: None
*/
static inline
void dp_tx_flow_pool_lock(struct dp_soc *soc,
struct dp_tx_desc_s *tx_desc)
{
struct dp_tx_desc_pool_s *pool;
uint8_t desc_pool_id;
desc_pool_id = tx_desc->pool_id;
pool = &soc->tx_desc[desc_pool_id];
qdf_spin_lock_bh(&pool->flow_pool_lock);
}
/**
* dp_tx_flow_pool_unlock() - release flow pool lock
* @soc: core txrx main context
* @tx_desc: tx desc
*
* Return: None
*/
static inline
void dp_tx_flow_pool_unlock(struct dp_soc *soc,
struct dp_tx_desc_s *tx_desc)
{
struct dp_tx_desc_pool_s *pool;
uint8_t desc_pool_id;
desc_pool_id = tx_desc->pool_id;
pool = &soc->tx_desc[desc_pool_id];
qdf_spin_unlock_bh(&pool->flow_pool_lock);
}
#else
static inline
void dp_tx_flow_pool_lock(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc)
{
}
static inline
void dp_tx_flow_pool_unlock(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc)
{
}
#endif
/**
* dp_tx_notify_completion() - Notify tx completion for this desc
* @soc: core txrx main context
* @vdev: datapath vdev handle
* @tx_desc: tx desc
* @netbuf: buffer
* @status: tx status
*
* Return: none
*/
static inline void dp_tx_notify_completion(struct dp_soc *soc,
struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc,
qdf_nbuf_t netbuf,
uint8_t status)
{
void *osif_dev;
ol_txrx_completion_fp tx_compl_cbk = NULL;
uint16_t flag = BIT(QDF_TX_RX_STATUS_DOWNLOAD_SUCC);
qdf_assert(tx_desc);
if (!vdev ||
!vdev->osif_vdev) {
return;
}
osif_dev = vdev->osif_vdev;
tx_compl_cbk = vdev->tx_comp;
if (status == HAL_TX_TQM_RR_FRAME_ACKED)
flag |= BIT(QDF_TX_RX_STATUS_OK);
if (tx_compl_cbk)
tx_compl_cbk(netbuf, osif_dev, flag);
}
/**
* dp_tx_sojourn_stats_process() - Collect sojourn stats
* @pdev: pdev handle
* @txrx_peer: DP peer context
* @tid: tid value
* @txdesc_ts: timestamp from txdesc
* @ppdu_id: ppdu id
* @link_id: link id
*
* Return: none
*/
#ifdef FEATURE_PERPKT_INFO
static inline void dp_tx_sojourn_stats_process(struct dp_pdev *pdev,
struct dp_txrx_peer *txrx_peer,
uint8_t tid,
uint64_t txdesc_ts,
uint32_t ppdu_id,
uint8_t link_id)
{
uint64_t delta_ms;
struct cdp_tx_sojourn_stats *sojourn_stats;
struct dp_peer *primary_link_peer = NULL;
struct dp_soc *link_peer_soc = NULL;
if (qdf_unlikely(!pdev->enhanced_stats_en))
return;
if (qdf_unlikely(tid == HTT_INVALID_TID ||
tid >= CDP_DATA_TID_MAX))
return;
if (qdf_unlikely(!pdev->sojourn_buf))
return;
primary_link_peer = dp_get_primary_link_peer_by_id(pdev->soc,
txrx_peer->peer_id,
DP_MOD_ID_TX_COMP);
if (qdf_unlikely(!primary_link_peer))
return;
sojourn_stats = (struct cdp_tx_sojourn_stats *)
qdf_nbuf_data(pdev->sojourn_buf);
link_peer_soc = primary_link_peer->vdev->pdev->soc;
sojourn_stats->cookie = (void *)
dp_monitor_peer_get_peerstats_ctx(link_peer_soc,
primary_link_peer);
delta_ms = qdf_ktime_to_ms(qdf_ktime_real_get()) -
txdesc_ts;
qdf_ewma_tx_lag_add(&txrx_peer->stats[link_id].per_pkt_stats.tx.avg_sojourn_msdu[tid],
delta_ms);
sojourn_stats->sum_sojourn_msdu[tid] = delta_ms;
sojourn_stats->num_msdus[tid] = 1;
sojourn_stats->avg_sojourn_msdu[tid].internal =
txrx_peer->stats[link_id].
per_pkt_stats.tx.avg_sojourn_msdu[tid].internal;
dp_wdi_event_handler(WDI_EVENT_TX_SOJOURN_STAT, pdev->soc,
pdev->sojourn_buf, HTT_INVALID_PEER,
WDI_NO_VAL, pdev->pdev_id);
sojourn_stats->sum_sojourn_msdu[tid] = 0;
sojourn_stats->num_msdus[tid] = 0;
sojourn_stats->avg_sojourn_msdu[tid].internal = 0;
dp_peer_unref_delete(primary_link_peer, DP_MOD_ID_TX_COMP);
}
#else
static inline void dp_tx_sojourn_stats_process(struct dp_pdev *pdev,
struct dp_txrx_peer *txrx_peer,
uint8_t tid,
uint64_t txdesc_ts,
uint32_t ppdu_id)
{
}
#endif
#ifdef WLAN_FEATURE_PKT_CAPTURE_V2
void dp_send_completion_to_pkt_capture(struct dp_soc *soc,
struct dp_tx_desc_s *desc,
struct hal_tx_completion_status *ts)
{
dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_TX_DATA, soc,
desc, ts->peer_id,
WDI_NO_VAL, desc->pdev->pdev_id);
}
#endif
void
dp_tx_comp_process_desc(struct dp_soc *soc,
struct dp_tx_desc_s *desc,
struct hal_tx_completion_status *ts,
struct dp_txrx_peer *txrx_peer)
{
uint64_t time_latency = 0;
uint16_t peer_id = DP_INVALID_PEER_ID;
/*
* m_copy/tx_capture modes are not supported for
* scatter gather packets
*/
if (qdf_unlikely(!!desc->pdev->latency_capture_enable)) {
time_latency = (qdf_ktime_to_ms(qdf_ktime_real_get()) -
qdf_ktime_to_ms(desc->timestamp));
}
dp_send_completion_to_pkt_capture(soc, desc, ts);
if (dp_tx_pkt_tracepoints_enabled())
qdf_trace_dp_packet(desc->nbuf, QDF_TX,
desc->msdu_ext_desc ?
desc->msdu_ext_desc->tso_desc : NULL,
qdf_ktime_to_ms(desc->timestamp));
if (!(desc->msdu_ext_desc)) {
dp_tx_enh_unmap(soc, desc);
if (txrx_peer)
peer_id = txrx_peer->peer_id;
if (QDF_STATUS_SUCCESS ==
dp_monitor_tx_add_to_comp_queue(soc, desc, ts, peer_id)) {
return;
}
if (QDF_STATUS_SUCCESS ==
dp_get_completion_indication_for_stack(soc,
desc->pdev,
txrx_peer, ts,
desc->nbuf,
time_latency)) {
dp_send_completion_to_stack(soc,
desc->pdev,
ts->peer_id,
ts->ppdu_id,
desc->nbuf);
return;
}
}
desc->flags |= DP_TX_DESC_FLAG_COMPLETED_TX;
dp_tx_comp_free_buf(soc, desc, false);
}
#ifdef DISABLE_DP_STATS
/**
* dp_tx_update_connectivity_stats() - update tx connectivity stats
* @soc: core txrx main context
* @vdev: virtual device instance
* @tx_desc: tx desc
* @status: tx status
*
* Return: none
*/
static inline
void dp_tx_update_connectivity_stats(struct dp_soc *soc,
struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc,
uint8_t status)
{
}
#else
static inline
void dp_tx_update_connectivity_stats(struct dp_soc *soc,
struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc,
uint8_t status)
{
void *osif_dev;
ol_txrx_stats_rx_fp stats_cbk;
uint8_t pkt_type;
qdf_assert(tx_desc);
if (!vdev ||
!vdev->osif_vdev ||
!vdev->stats_cb)
return;
osif_dev = vdev->osif_vdev;
stats_cbk = vdev->stats_cb;
stats_cbk(tx_desc->nbuf, osif_dev, PKT_TYPE_TX_HOST_FW_SENT, &pkt_type);
if (status == HAL_TX_TQM_RR_FRAME_ACKED)
stats_cbk(tx_desc->nbuf, osif_dev, PKT_TYPE_TX_ACK_CNT,
&pkt_type);
}
#endif
#if defined(WLAN_FEATURE_TSF_UPLINK_DELAY) || defined(WLAN_CONFIG_TX_DELAY)
/* Mask for bit29 ~ bit31 */
#define DP_TX_TS_BIT29_31_MASK 0xE0000000
/* Timestamp value (unit us) if bit29 is set */
#define DP_TX_TS_BIT29_SET_VALUE BIT(29)
/**
* dp_tx_adjust_enqueue_buffer_ts() - adjust the enqueue buffer_timestamp
* @ack_ts: OTA ack timestamp, unit us.
* @enqueue_ts: TCL enqueue TX data to TQM timestamp, unit us.
* @base_delta_ts: base timestamp delta for ack_ts and enqueue_ts
*
* this function will restore the bit29 ~ bit31 3 bits value for
* buffer_timestamp in wbm2sw ring entry, currently buffer_timestamp only
* can support 0x7FFF * 1024 us (29 bits), but if the timestamp is >
* 0x7FFF * 1024 us, bit29~ bit31 will be lost.
*
* Return: the adjusted buffer_timestamp value
*/
static inline
uint32_t dp_tx_adjust_enqueue_buffer_ts(uint32_t ack_ts,
uint32_t enqueue_ts,
uint32_t base_delta_ts)
{
uint32_t ack_buffer_ts;
uint32_t ack_buffer_ts_bit29_31;
uint32_t adjusted_enqueue_ts;
/* corresponding buffer_timestamp value when receive OTA Ack */
ack_buffer_ts = ack_ts - base_delta_ts;
ack_buffer_ts_bit29_31 = ack_buffer_ts & DP_TX_TS_BIT29_31_MASK;
/* restore the bit29 ~ bit31 value */
adjusted_enqueue_ts = ack_buffer_ts_bit29_31 | enqueue_ts;
/*
* if actual enqueue_ts value occupied 29 bits only, this enqueue_ts
* value + real UL delay overflow 29 bits, then 30th bit (bit-29)
* should not be marked, otherwise extra 0x20000000 us is added to
* enqueue_ts.
*/
if (qdf_unlikely(adjusted_enqueue_ts > ack_buffer_ts))
adjusted_enqueue_ts -= DP_TX_TS_BIT29_SET_VALUE;
return adjusted_enqueue_ts;
}
QDF_STATUS
dp_tx_compute_hw_delay_us(struct hal_tx_completion_status *ts,
uint32_t delta_tsf,
uint32_t *delay_us)
{
uint32_t buffer_ts;
uint32_t delay;
if (!delay_us)
return QDF_STATUS_E_INVAL;
/* Tx_rate_stats_info_valid is 0 and tsf is invalid then */
if (!ts->valid)
return QDF_STATUS_E_INVAL;
/* buffer_timestamp is in units of 1024 us and is [31:13] of
* WBM_RELEASE_RING_4. After left shift 10 bits, it's
* valid up to 29 bits.
*/
buffer_ts = ts->buffer_timestamp << 10;
buffer_ts = dp_tx_adjust_enqueue_buffer_ts(ts->tsf,
buffer_ts, delta_tsf);
delay = ts->tsf - buffer_ts - delta_tsf;
if (qdf_unlikely(delay & 0x80000000)) {
dp_err_rl("delay = 0x%x (-ve)\n"
"release_src = %d\n"
"ppdu_id = 0x%x\n"
"peer_id = 0x%x\n"
"tid = 0x%x\n"
"release_reason = %d\n"
"tsf = %u (0x%x)\n"
"buffer_timestamp = %u (0x%x)\n"
"delta_tsf = %u (0x%x)\n",
delay, ts->release_src, ts->ppdu_id, ts->peer_id,
ts->tid, ts->status, ts->tsf, ts->tsf,
ts->buffer_timestamp, ts->buffer_timestamp,
delta_tsf, delta_tsf);
delay = 0;
goto end;
}
delay &= 0x1FFFFFFF; /* mask 29 BITS */
if (delay > 0x1000000) {
dp_info_rl("----------------------\n"
"Tx completion status:\n"
"----------------------\n"
"release_src = %d\n"
"ppdu_id = 0x%x\n"
"release_reason = %d\n"
"tsf = %u (0x%x)\n"
"buffer_timestamp = %u (0x%x)\n"
"delta_tsf = %u (0x%x)\n",
ts->release_src, ts->ppdu_id, ts->status,
ts->tsf, ts->tsf, ts->buffer_timestamp,
ts->buffer_timestamp, delta_tsf, delta_tsf);
return QDF_STATUS_E_FAILURE;
}
end:
*delay_us = delay;
return QDF_STATUS_SUCCESS;
}
void dp_set_delta_tsf(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
uint32_t delta_tsf)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev) {
dp_err_rl("vdev %d does not exist", vdev_id);
return;
}
vdev->delta_tsf = delta_tsf;
dp_debug("vdev id %u delta_tsf %u", vdev_id, delta_tsf);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
}
#endif
#ifdef WLAN_FEATURE_TSF_UPLINK_DELAY
QDF_STATUS dp_set_tsf_ul_delay_report(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id, bool enable)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev) {
dp_err_rl("vdev %d does not exist", vdev_id);
return QDF_STATUS_E_FAILURE;
}
qdf_atomic_set(&vdev->ul_delay_report, enable);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
QDF_STATUS dp_get_uplink_delay(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
uint32_t *val)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev;
uint32_t delay_accum;
uint32_t pkts_accum;
vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
if (!vdev) {
dp_err_rl("vdev %d does not exist", vdev_id);
return QDF_STATUS_E_FAILURE;
}
if (!qdf_atomic_read(&vdev->ul_delay_report)) {
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_E_FAILURE;
}
/* Average uplink delay based on current accumulated values */
delay_accum = qdf_atomic_read(&vdev->ul_delay_accum);
pkts_accum = qdf_atomic_read(&vdev->ul_pkts_accum);
*val = delay_accum / pkts_accum;
dp_debug("uplink_delay %u delay_accum %u pkts_accum %u", *val,
delay_accum, pkts_accum);
/* Reset accumulated values to 0 */
qdf_atomic_set(&vdev->ul_delay_accum, 0);
qdf_atomic_set(&vdev->ul_pkts_accum, 0);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
static void dp_tx_update_uplink_delay(struct dp_soc *soc, struct dp_vdev *vdev,
struct hal_tx_completion_status *ts)
{
uint32_t ul_delay;
if (qdf_unlikely(!vdev)) {
dp_info_rl("vdev is null or delete in progress");
return;
}
if (!qdf_atomic_read(&vdev->ul_delay_report))
return;
if (QDF_IS_STATUS_ERROR(dp_tx_compute_hw_delay_us(ts,
vdev->delta_tsf,
&ul_delay)))
return;
ul_delay /= 1000; /* in unit of ms */
qdf_atomic_add(ul_delay, &vdev->ul_delay_accum);
qdf_atomic_inc(&vdev->ul_pkts_accum);
}
#else /* !WLAN_FEATURE_TSF_UPLINK_DELAY */
static inline
void dp_tx_update_uplink_delay(struct dp_soc *soc, struct dp_vdev *vdev,
struct hal_tx_completion_status *ts)
{
}
#endif /* WLAN_FEATURE_TSF_UPLINK_DELAY */
void dp_tx_comp_process_tx_status(struct dp_soc *soc,
struct dp_tx_desc_s *tx_desc,
struct hal_tx_completion_status *ts,
struct dp_txrx_peer *txrx_peer,
uint8_t ring_id)
{
uint32_t length;
qdf_ether_header_t *eh;
struct dp_vdev *vdev = NULL;
qdf_nbuf_t nbuf = tx_desc->nbuf;
enum qdf_dp_tx_rx_status dp_status;
uint8_t link_id = 0;
if (!nbuf) {
dp_info_rl("invalid tx descriptor. nbuf NULL");
goto out;
}
eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
length = dp_tx_get_pkt_len(tx_desc);
dp_status = dp_tx_hw_to_qdf(ts->status);
DPTRACE(qdf_dp_trace_ptr(tx_desc->nbuf,
QDF_DP_TRACE_LI_DP_FREE_PACKET_PTR_RECORD,
QDF_TRACE_DEFAULT_PDEV_ID,
qdf_nbuf_data_addr(nbuf),
sizeof(qdf_nbuf_data(nbuf)),
tx_desc->id, ts->status, dp_status));
dp_tx_comp_debug("-------------------- \n"
"Tx Completion Stats: \n"
"-------------------- \n"
"ack_frame_rssi = %d \n"
"first_msdu = %d \n"
"last_msdu = %d \n"
"msdu_part_of_amsdu = %d \n"
"rate_stats valid = %d \n"
"bw = %d \n"
"pkt_type = %d \n"
"stbc = %d \n"
"ldpc = %d \n"
"sgi = %d \n"
"mcs = %d \n"
"ofdma = %d \n"
"tones_in_ru = %d \n"
"tsf = %d \n"
"ppdu_id = %d \n"
"transmit_cnt = %d \n"
"tid = %d \n"
"peer_id = %d\n"
"tx_status = %d\n",
ts->ack_frame_rssi, ts->first_msdu,
ts->last_msdu, ts->msdu_part_of_amsdu,
ts->valid, ts->bw, ts->pkt_type, ts->stbc,
ts->ldpc, ts->sgi, ts->mcs, ts->ofdma,
ts->tones_in_ru, ts->tsf, ts->ppdu_id,
ts->transmit_cnt, ts->tid, ts->peer_id,
ts->status);
/* Update SoC level stats */
DP_STATS_INCC(soc, tx.dropped_fw_removed, 1,
(ts->status == HAL_TX_TQM_RR_REM_CMD_REM));
if (!txrx_peer) {
dp_info_rl("peer is null or deletion in progress");
DP_STATS_INC_PKT(soc, tx.tx_invalid_peer, 1, length);
goto out;
}
vdev = txrx_peer->vdev;
#ifdef DP_MLO_LINK_STATS_SUPPORT
link_id = dp_tx_get_link_id_from_ppdu_id(soc, ts, txrx_peer, vdev);
if (link_id < 1 || link_id > DP_MAX_MLO_LINKS)
link_id = 0;
#endif
dp_tx_update_connectivity_stats(soc, vdev, tx_desc, ts->status);
dp_tx_update_uplink_delay(soc, vdev, ts);
/* check tx complete notification */
if (qdf_nbuf_tx_notify_comp_get(nbuf))
dp_tx_notify_completion(soc, vdev, tx_desc,
nbuf, ts->status);
/* Update per-packet stats for mesh mode */
if (qdf_unlikely(vdev->mesh_vdev) &&
!(tx_desc->flags & DP_TX_DESC_FLAG_TO_FW))
dp_tx_comp_fill_tx_completion_stats(tx_desc, ts);
/* Update peer level stats */
if (qdf_unlikely(txrx_peer->bss_peer &&
vdev->opmode == wlan_op_mode_ap)) {
if (ts->status != HAL_TX_TQM_RR_REM_CMD_REM) {
DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, tx.mcast, 1,
length, link_id);
if (txrx_peer->vdev->tx_encap_type ==
htt_cmn_pkt_type_ethernet &&
QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer,
tx.bcast, 1,
length, link_id);
}
}
} else {
DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, tx.ucast, 1, length,
link_id);
if (ts->status == HAL_TX_TQM_RR_FRAME_ACKED) {
DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, tx.tx_success,
1, length, link_id);
if (qdf_unlikely(txrx_peer->in_twt)) {
DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer,
tx.tx_success_twt,
1, length,
link_id);
}
}
}
dp_tx_update_peer_stats(tx_desc, ts, txrx_peer, ring_id, link_id);
dp_tx_update_peer_delay_stats(txrx_peer, tx_desc, ts, ring_id);
dp_tx_update_peer_jitter_stats(txrx_peer, tx_desc, ts, ring_id);
dp_tx_update_peer_sawf_stats(soc, vdev, txrx_peer, tx_desc,
ts, ts->tid);
dp_tx_send_pktlog(soc, vdev->pdev, tx_desc, nbuf, dp_status);
#ifdef QCA_SUPPORT_RDK_STATS
if (soc->peerstats_enabled)
dp_tx_sojourn_stats_process(vdev->pdev, txrx_peer, ts->tid,
qdf_ktime_to_ms(tx_desc->timestamp),
ts->ppdu_id, link_id);
#endif
out:
return;
}
#if defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT) && \
defined(QCA_ENHANCED_STATS_SUPPORT)
void dp_tx_update_peer_basic_stats(struct dp_txrx_peer *txrx_peer,
uint32_t length, uint8_t tx_status,
bool update)
{
if (update || (!txrx_peer->hw_txrx_stats_en)) {
DP_PEER_STATS_FLAT_INC_PKT(txrx_peer, comp_pkt, 1, length);
if (tx_status != HAL_TX_TQM_RR_FRAME_ACKED)
DP_PEER_STATS_FLAT_INC(txrx_peer, tx_failed, 1);
}
}
#elif defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT)
void dp_tx_update_peer_basic_stats(struct dp_txrx_peer *txrx_peer,
uint32_t length, uint8_t tx_status,
bool update)
{
if (!txrx_peer->hw_txrx_stats_en) {
DP_PEER_STATS_FLAT_INC_PKT(txrx_peer, comp_pkt, 1, length);
if (tx_status != HAL_TX_TQM_RR_FRAME_ACKED)
DP_PEER_STATS_FLAT_INC(txrx_peer, tx_failed, 1);
}
}
#else
void dp_tx_update_peer_basic_stats(struct dp_txrx_peer *txrx_peer,
uint32_t length, uint8_t tx_status,
bool update)
{
DP_PEER_STATS_FLAT_INC_PKT(txrx_peer, comp_pkt, 1, length);
if (tx_status != HAL_TX_TQM_RR_FRAME_ACKED)
DP_PEER_STATS_FLAT_INC(txrx_peer, tx_failed, 1);
}
#endif
/**
* dp_tx_prefetch_next_nbuf_data(): Prefetch nbuf and nbuf data
* @next: descriptor of the nrxt buffer
*
* Return: none
*/
#ifdef QCA_DP_RX_NBUF_AND_NBUF_DATA_PREFETCH
static inline
void dp_tx_prefetch_next_nbuf_data(struct dp_tx_desc_s *next)
{
qdf_nbuf_t nbuf = NULL;
if (next)
nbuf = next->nbuf;
if (nbuf)
qdf_prefetch(nbuf);
}
#else
static inline
void dp_tx_prefetch_next_nbuf_data(struct dp_tx_desc_s *next)
{
}
#endif
/**
* dp_tx_mcast_reinject_handler() - Tx reinjected multicast packets handler
* @soc: core txrx main context
* @desc: software descriptor
*
* Return: true when packet is reinjected
*/
#if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP) && \
defined(WLAN_MCAST_MLO) && !defined(CONFIG_MLO_SINGLE_DEV)
static inline bool
dp_tx_mcast_reinject_handler(struct dp_soc *soc, struct dp_tx_desc_s *desc)
{
struct dp_vdev *vdev = NULL;
if (desc->tx_status == HAL_TX_TQM_RR_MULTICAST_DROP) {
if (!soc->arch_ops.dp_tx_mcast_handler ||
!soc->arch_ops.dp_tx_is_mcast_primary)
return false;
vdev = dp_vdev_get_ref_by_id(soc, desc->vdev_id,
DP_MOD_ID_REINJECT);
if (qdf_unlikely(!vdev)) {
dp_tx_comp_info_rl("Unable to get vdev ref %d",
desc->id);
return false;
}
if (!(soc->arch_ops.dp_tx_is_mcast_primary(soc, vdev))) {
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_REINJECT);
return false;
}
DP_STATS_INC_PKT(vdev, tx_i.reinject_pkts, 1,
qdf_nbuf_len(desc->nbuf));
soc->arch_ops.dp_tx_mcast_handler(soc, vdev, desc->nbuf);
dp_tx_desc_release(desc, desc->pool_id);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_REINJECT);
return true;
}
return false;
}
#else
static inline bool
dp_tx_mcast_reinject_handler(struct dp_soc *soc, struct dp_tx_desc_s *desc)
{
return false;
}
#endif
#ifdef QCA_DP_TX_NBUF_LIST_FREE
static inline void
dp_tx_nbuf_queue_head_init(qdf_nbuf_queue_head_t *nbuf_queue_head)
{
qdf_nbuf_queue_head_init(nbuf_queue_head);
}
static inline void
dp_tx_nbuf_dev_queue_free(qdf_nbuf_queue_head_t *nbuf_queue_head,
struct dp_tx_desc_s *desc)
{
qdf_nbuf_t nbuf = NULL;
nbuf = desc->nbuf;
if (qdf_likely(desc->flags & DP_TX_DESC_FLAG_FAST))
qdf_nbuf_dev_queue_head(nbuf_queue_head, nbuf);
else
qdf_nbuf_free(nbuf);
}
static inline void
dp_tx_nbuf_dev_queue_free_no_flag(qdf_nbuf_queue_head_t *nbuf_queue_head,
qdf_nbuf_t nbuf)
{
if (!nbuf)
return;
if (nbuf->is_from_recycler)
qdf_nbuf_dev_queue_head(nbuf_queue_head, nbuf);
else
qdf_nbuf_free(nbuf);
}
static inline void
dp_tx_nbuf_dev_kfree_list(qdf_nbuf_queue_head_t *nbuf_queue_head)
{
qdf_nbuf_dev_kfree_list(nbuf_queue_head);
}
#else
static inline void
dp_tx_nbuf_queue_head_init(qdf_nbuf_queue_head_t *nbuf_queue_head)
{
}
static inline void
dp_tx_nbuf_dev_queue_free(qdf_nbuf_queue_head_t *nbuf_queue_head,
struct dp_tx_desc_s *desc)
{
qdf_nbuf_free(desc->nbuf);
}
static inline void
dp_tx_nbuf_dev_queue_free_no_flag(qdf_nbuf_queue_head_t *nbuf_queue_head,
qdf_nbuf_t nbuf)
{
qdf_nbuf_free(nbuf);
}
static inline void
dp_tx_nbuf_dev_kfree_list(qdf_nbuf_queue_head_t *nbuf_queue_head)
{
}
#endif
void
dp_tx_comp_process_desc_list(struct dp_soc *soc,
struct dp_tx_desc_s *comp_head, uint8_t ring_id)
{
struct dp_tx_desc_s *desc;
struct dp_tx_desc_s *next;
struct hal_tx_completion_status ts;
struct dp_txrx_peer *txrx_peer = NULL;
uint16_t peer_id = DP_INVALID_PEER;
dp_txrx_ref_handle txrx_ref_handle = NULL;
qdf_nbuf_queue_head_t h;
desc = comp_head;
dp_tx_nbuf_queue_head_init(&h);
while (desc) {
next = desc->next;
dp_tx_prefetch_next_nbuf_data(next);
if (peer_id != desc->peer_id) {
if (txrx_peer)
dp_txrx_peer_unref_delete(txrx_ref_handle,
DP_MOD_ID_TX_COMP);
peer_id = desc->peer_id;
txrx_peer =
dp_txrx_peer_get_ref_by_id(soc, peer_id,
&txrx_ref_handle,
DP_MOD_ID_TX_COMP);
}
if (dp_tx_mcast_reinject_handler(soc, desc)) {
desc = next;
continue;
}
if (desc->flags & DP_TX_DESC_FLAG_PPEDS) {
qdf_nbuf_t nbuf;
if (qdf_likely(txrx_peer))
dp_tx_update_peer_basic_stats(txrx_peer,
desc->length,
desc->tx_status,
false);
nbuf = dp_ppeds_tx_desc_free(soc, desc);
dp_tx_nbuf_dev_queue_free_no_flag(&h, nbuf);
desc = next;
continue;
}
if (qdf_likely(desc->flags & DP_TX_DESC_FLAG_SIMPLE)) {
struct dp_pdev *pdev = desc->pdev;
if (qdf_likely(txrx_peer))
dp_tx_update_peer_basic_stats(txrx_peer,
desc->length,
desc->tx_status,
false);
qdf_assert(pdev);
dp_tx_outstanding_dec(pdev);
/*
* Calling a QDF WRAPPER here is creating significant
* performance impact so avoided the wrapper call here
*/
dp_tx_desc_history_add(soc, desc->dma_addr, desc->nbuf,
desc->id, DP_TX_COMP_UNMAP);
dp_tx_nbuf_unmap(soc, desc);
dp_tx_nbuf_dev_queue_free(&h, desc);
dp_tx_desc_free(soc, desc, desc->pool_id);
desc = next;
continue;
}
hal_tx_comp_get_status(&desc->comp, &ts, soc->hal_soc);
dp_tx_comp_process_tx_status(soc, desc, &ts, txrx_peer,
ring_id);
dp_tx_comp_process_desc(soc, desc, &ts, txrx_peer);
dp_tx_desc_release(desc, desc->pool_id);
desc = next;
}
dp_tx_nbuf_dev_kfree_list(&h);
if (txrx_peer)
dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_TX_COMP);
}
#ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
static inline
bool dp_tx_comp_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped,
int max_reap_limit)
{
bool limit_hit = false;
limit_hit =
(num_reaped >= max_reap_limit) ? true : false;
if (limit_hit)
DP_STATS_INC(soc, tx.tx_comp_loop_pkt_limit_hit, 1);
return limit_hit;
}
static inline bool dp_tx_comp_enable_eol_data_check(struct dp_soc *soc)
{
return soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check;
}
static inline int dp_tx_comp_get_loop_pkt_limit(struct dp_soc *soc)
{
struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
return cfg->tx_comp_loop_pkt_limit;
}
#else
static inline
bool dp_tx_comp_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped,
int max_reap_limit)
{
return false;
}
static inline bool dp_tx_comp_enable_eol_data_check(struct dp_soc *soc)
{
return false;
}
static inline int dp_tx_comp_get_loop_pkt_limit(struct dp_soc *soc)
{
return 0;
}
#endif
#ifdef WLAN_FEATURE_NEAR_FULL_IRQ
static inline int
dp_srng_test_and_update_nf_params(struct dp_soc *soc, struct dp_srng *dp_srng,
int *max_reap_limit)
{
return soc->arch_ops.dp_srng_test_and_update_nf_params(soc, dp_srng,
max_reap_limit);
}
#else
static inline int
dp_srng_test_and_update_nf_params(struct dp_soc *soc, struct dp_srng *dp_srng,
int *max_reap_limit)
{
return 0;
}
#endif
#ifdef DP_TX_TRACKING
void dp_tx_desc_check_corruption(struct dp_tx_desc_s *tx_desc)
{
if ((tx_desc->magic != DP_TX_MAGIC_PATTERN_INUSE) &&
(tx_desc->magic != DP_TX_MAGIC_PATTERN_FREE)) {
dp_err_rl("tx_desc %u is corrupted", tx_desc->id);
qdf_trigger_self_recovery(NULL, QDF_TX_DESC_LEAK);
}
}
#endif
uint32_t dp_tx_comp_handler(struct dp_intr *int_ctx, struct dp_soc *soc,
hal_ring_handle_t hal_ring_hdl, uint8_t ring_id,
uint32_t quota)
{
void *tx_comp_hal_desc;
void *last_prefetched_hw_desc = NULL;
struct dp_tx_desc_s *last_prefetched_sw_desc = NULL;
hal_soc_handle_t hal_soc;
uint8_t buffer_src;
struct dp_tx_desc_s *tx_desc = NULL;
struct dp_tx_desc_s *head_desc = NULL;
struct dp_tx_desc_s *tail_desc = NULL;
uint32_t num_processed = 0;
uint32_t count;
uint32_t num_avail_for_reap = 0;
bool force_break = false;
struct dp_srng *tx_comp_ring = &soc->tx_comp_ring[ring_id];
int max_reap_limit, ring_near_full;
uint32_t num_entries;
DP_HIST_INIT();
num_entries = hal_srng_get_num_entries(soc->hal_soc, hal_ring_hdl);
more_data:
hal_soc = soc->hal_soc;
/* Re-initialize local variables to be re-used */
head_desc = NULL;
tail_desc = NULL;
count = 0;
max_reap_limit = dp_tx_comp_get_loop_pkt_limit(soc);
ring_near_full = dp_srng_test_and_update_nf_params(soc, tx_comp_ring,
&max_reap_limit);
if (qdf_unlikely(dp_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
dp_err("HAL RING Access Failed -- %pK", hal_ring_hdl);
return 0;
}
if (!num_avail_for_reap)
num_avail_for_reap = hal_srng_dst_num_valid(hal_soc,
hal_ring_hdl, 0);
if (num_avail_for_reap >= quota)
num_avail_for_reap = quota;
dp_srng_dst_inv_cached_descs(soc, hal_ring_hdl, num_avail_for_reap);
last_prefetched_hw_desc = dp_srng_dst_prefetch_32_byte_desc(hal_soc,
hal_ring_hdl,
num_avail_for_reap);
/* Find head descriptor from completion ring */
while (qdf_likely(num_avail_for_reap--)) {
tx_comp_hal_desc = dp_srng_dst_get_next(soc, hal_ring_hdl);
if (qdf_unlikely(!tx_comp_hal_desc))
break;
buffer_src = hal_tx_comp_get_buffer_source(hal_soc,
tx_comp_hal_desc);
/* If this buffer was not released by TQM or FW, then it is not
* Tx completion indication, assert */
if (qdf_unlikely(buffer_src !=
HAL_TX_COMP_RELEASE_SOURCE_TQM) &&
(qdf_unlikely(buffer_src !=
HAL_TX_COMP_RELEASE_SOURCE_FW))) {
uint8_t wbm_internal_error;
dp_err_rl(
"Tx comp release_src != TQM | FW but from %d",
buffer_src);
hal_dump_comp_desc(tx_comp_hal_desc);
DP_STATS_INC(soc, tx.invalid_release_source, 1);
/* When WBM sees NULL buffer_addr_info in any of
* ingress rings it sends an error indication,
* with wbm_internal_error=1, to a specific ring.
* The WBM2SW ring used to indicate these errors is
* fixed in HW, and that ring is being used as Tx
* completion ring. These errors are not related to
* Tx completions, and should just be ignored
*/
wbm_internal_error = hal_get_wbm_internal_error(
hal_soc,
tx_comp_hal_desc);
if (wbm_internal_error) {
dp_err_rl("Tx comp wbm_internal_error!!");
DP_STATS_INC(soc, tx.wbm_internal_error[WBM_INT_ERROR_ALL], 1);
if (HAL_TX_COMP_RELEASE_SOURCE_REO ==
buffer_src)
dp_handle_wbm_internal_error(
soc,
tx_comp_hal_desc,
hal_tx_comp_get_buffer_type(
tx_comp_hal_desc));
} else {
dp_err_rl("Tx comp wbm_internal_error false");
DP_STATS_INC(soc, tx.non_wbm_internal_err, 1);
}
continue;
}
soc->arch_ops.tx_comp_get_params_from_hal_desc(soc,
tx_comp_hal_desc,
&tx_desc);
if (qdf_unlikely(!tx_desc)) {
dp_err("unable to retrieve tx_desc!");
hal_dump_comp_desc(tx_comp_hal_desc);
DP_STATS_INC(soc, tx.invalid_tx_comp_desc, 1);
QDF_BUG(0);
continue;
}
tx_desc->buffer_src = buffer_src;
if (tx_desc->flags & DP_TX_DESC_FLAG_PPEDS)
goto add_to_pool2;
/*
* If the release source is FW, process the HTT status
*/
if (qdf_unlikely(buffer_src ==
HAL_TX_COMP_RELEASE_SOURCE_FW)) {
uint8_t htt_tx_status[HAL_TX_COMP_HTT_STATUS_LEN];
hal_tx_comp_get_htt_desc(tx_comp_hal_desc,
htt_tx_status);
/* Collect hw completion contents */
hal_tx_comp_desc_sync(tx_comp_hal_desc,
&tx_desc->comp, 1);
soc->arch_ops.dp_tx_process_htt_completion(
soc,
tx_desc,
htt_tx_status,
ring_id);
} else {
tx_desc->tx_status =
hal_tx_comp_get_tx_status(tx_comp_hal_desc);
tx_desc->buffer_src = buffer_src;
/*
* If the fast completion mode is enabled extended
* metadata from descriptor is not copied
*/
if (qdf_likely(tx_desc->flags &
DP_TX_DESC_FLAG_SIMPLE))
goto add_to_pool;
/*
* If the descriptor is already freed in vdev_detach,
* continue to next descriptor
*/
if (qdf_unlikely
((tx_desc->vdev_id == DP_INVALID_VDEV_ID) &&
!tx_desc->flags)) {
dp_tx_comp_info_rl("Descriptor freed in vdev_detach %d",
tx_desc->id);
DP_STATS_INC(soc, tx.tx_comp_exception, 1);
dp_tx_desc_check_corruption(tx_desc);
continue;
}
if (qdf_unlikely(tx_desc->pdev->is_pdev_down)) {
dp_tx_comp_info_rl("pdev in down state %d",
tx_desc->id);
tx_desc->flags |= DP_TX_DESC_FLAG_TX_COMP_ERR;
dp_tx_comp_free_buf(soc, tx_desc, false);
dp_tx_desc_release(tx_desc, tx_desc->pool_id);
goto next_desc;
}
if (!(tx_desc->flags & DP_TX_DESC_FLAG_ALLOCATED) ||
!(tx_desc->flags & DP_TX_DESC_FLAG_QUEUED_TX)) {
dp_tx_comp_alert("Txdesc invalid, flgs = %x,id = %d",
tx_desc->flags, tx_desc->id);
qdf_assert_always(0);
}
/* Collect hw completion contents */
hal_tx_comp_desc_sync(tx_comp_hal_desc,
&tx_desc->comp, 1);
add_to_pool:
DP_HIST_PACKET_COUNT_INC(tx_desc->pdev->pdev_id);
add_to_pool2:
/* First ring descriptor on the cycle */
if (!head_desc) {
head_desc = tx_desc;
tail_desc = tx_desc;
}
tail_desc->next = tx_desc;
tx_desc->next = NULL;
tail_desc = tx_desc;
}
next_desc:
num_processed += !(count & DP_TX_NAPI_BUDGET_DIV_MASK);
/*
* Processed packet count is more than given quota
* stop to processing
*/
count++;
dp_tx_prefetch_hw_sw_nbuf_desc(soc, hal_soc,
num_avail_for_reap,
hal_ring_hdl,
&last_prefetched_hw_desc,
&last_prefetched_sw_desc);
if (dp_tx_comp_loop_pkt_limit_hit(soc, count, max_reap_limit))
break;
}
dp_srng_access_end(int_ctx, soc, hal_ring_hdl);
/* Process the reaped descriptors */
if (head_desc)
dp_tx_comp_process_desc_list(soc, head_desc, ring_id);
DP_STATS_INC(soc, tx.tx_comp[ring_id], count);
/*
* If we are processing in near-full condition, there are 3 scenario
* 1) Ring entries has reached critical state
* 2) Ring entries are still near high threshold
* 3) Ring entries are below the safe level
*
* One more loop will move the state to normal processing and yield
*/
if (ring_near_full)
goto more_data;
if (dp_tx_comp_enable_eol_data_check(soc)) {
if (num_processed >= quota)
force_break = true;
if (!force_break &&
hal_srng_dst_peek_sync_locked(soc->hal_soc,
hal_ring_hdl)) {
DP_STATS_INC(soc, tx.hp_oos2, 1);
if (!hif_exec_should_yield(soc->hif_handle,
int_ctx->dp_intr_id))
goto more_data;
num_avail_for_reap =
hal_srng_dst_num_valid_locked(soc->hal_soc,
hal_ring_hdl,
true);
if (qdf_unlikely(num_entries &&
(num_avail_for_reap >=
num_entries >> 1))) {
DP_STATS_INC(soc, tx.near_full, 1);
goto more_data;
}
}
}
DP_TX_HIST_STATS_PER_PDEV();
return num_processed;
}
#ifdef FEATURE_WLAN_TDLS
qdf_nbuf_t dp_tx_non_std(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
enum ol_tx_spec tx_spec, qdf_nbuf_t msdu_list)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_TDLS);
if (!vdev) {
dp_err("vdev handle for id %d is NULL", vdev_id);
return NULL;
}
if (tx_spec & OL_TX_SPEC_NO_FREE)
vdev->is_tdls_frame = true;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TDLS);
return dp_tx_send(soc_hdl, vdev_id, msdu_list);
}
#endif
QDF_STATUS dp_tx_vdev_attach(struct dp_vdev *vdev)
{
int pdev_id;
/*
* Fill HTT TCL Metadata with Vdev ID and MAC ID
*/
DP_TX_TCL_METADATA_TYPE_SET(vdev->htt_tcl_metadata,
DP_TCL_METADATA_TYPE_VDEV_BASED);
DP_TX_TCL_METADATA_VDEV_ID_SET(vdev->htt_tcl_metadata,
vdev->vdev_id);
pdev_id =
dp_get_target_pdev_id_for_host_pdev_id(vdev->pdev->soc,
vdev->pdev->pdev_id);
DP_TX_TCL_METADATA_PDEV_ID_SET(vdev->htt_tcl_metadata, pdev_id);
/*
* Set HTT Extension Valid bit to 0 by default
*/
DP_TX_TCL_METADATA_VALID_HTT_SET(vdev->htt_tcl_metadata, 0);
dp_tx_vdev_update_search_flags(vdev);
return QDF_STATUS_SUCCESS;
}
#ifndef FEATURE_WDS
static inline bool dp_tx_da_search_override(struct dp_vdev *vdev)
{
return false;
}
#endif
void dp_tx_vdev_update_search_flags(struct dp_vdev *vdev)
{
struct dp_soc *soc = vdev->pdev->soc;
/*
* Enable both AddrY (SA based search) and AddrX (Da based search)
* for TDLS link
*
* Enable AddrY (SA based search) only for non-WDS STA and
* ProxySTA VAP (in HKv1) modes.
*
* In all other VAP modes, only DA based search should be
* enabled
*/
if (vdev->opmode == wlan_op_mode_sta &&
vdev->tdls_link_connected)
vdev->hal_desc_addr_search_flags =
(HAL_TX_DESC_ADDRX_EN | HAL_TX_DESC_ADDRY_EN);
else if ((vdev->opmode == wlan_op_mode_sta) &&
!dp_tx_da_search_override(vdev))
vdev->hal_desc_addr_search_flags = HAL_TX_DESC_ADDRY_EN;
else
vdev->hal_desc_addr_search_flags = HAL_TX_DESC_ADDRX_EN;
if (vdev->opmode == wlan_op_mode_sta && !vdev->tdls_link_connected)
vdev->search_type = soc->sta_mode_search_policy;
else
vdev->search_type = HAL_TX_ADDR_SEARCH_DEFAULT;
}
static inline bool
dp_is_tx_desc_flush_match(struct dp_pdev *pdev,
struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc)
{
if (!(tx_desc && (tx_desc->flags & DP_TX_DESC_FLAG_ALLOCATED)))
return false;
/*
* if vdev is given, then only check whether desc
* vdev match. if vdev is NULL, then check whether
* desc pdev match.
*/
return vdev ? (tx_desc->vdev_id == vdev->vdev_id) :
(tx_desc->pdev == pdev);
}
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
void dp_tx_desc_flush(struct dp_pdev *pdev, struct dp_vdev *vdev,
bool force_free)
{
uint8_t i;
uint32_t j;
uint32_t num_desc, page_id, offset;
uint16_t num_desc_per_page;
struct dp_soc *soc = pdev->soc;
struct dp_tx_desc_s *tx_desc = NULL;
struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
if (!vdev && !force_free) {
dp_err("Reset TX desc vdev, Vdev param is required!");
return;
}
for (i = 0; i < MAX_TXDESC_POOLS; i++) {
tx_desc_pool = &soc->tx_desc[i];
if (!(tx_desc_pool->pool_size) ||
IS_TX_DESC_POOL_STATUS_INACTIVE(tx_desc_pool) ||
!(tx_desc_pool->desc_pages.cacheable_pages))
continue;
/*
* Add flow pool lock protection in case pool is freed
* due to all tx_desc is recycled when handle TX completion.
* this is not necessary when do force flush as:
* a. double lock will happen if dp_tx_desc_release is
* also trying to acquire it.
* b. dp interrupt has been disabled before do force TX desc
* flush in dp_pdev_deinit().
*/
if (!force_free)
qdf_spin_lock_bh(&tx_desc_pool->flow_pool_lock);
num_desc = tx_desc_pool->pool_size;
num_desc_per_page =
tx_desc_pool->desc_pages.num_element_per_page;
for (j = 0; j < num_desc; j++) {
page_id = j / num_desc_per_page;
offset = j % num_desc_per_page;
if (qdf_unlikely(!(tx_desc_pool->
desc_pages.cacheable_pages)))
break;
tx_desc = dp_tx_desc_find(soc, i, page_id, offset);
if (dp_is_tx_desc_flush_match(pdev, vdev, tx_desc)) {
/*
* Free TX desc if force free is
* required, otherwise only reset vdev
* in this TX desc.
*/
if (force_free) {
tx_desc->flags |= DP_TX_DESC_FLAG_FLUSH;
dp_tx_comp_free_buf(soc, tx_desc,
false);
dp_tx_desc_release(tx_desc, i);
} else {
tx_desc->vdev_id = DP_INVALID_VDEV_ID;
}
}
}
if (!force_free)
qdf_spin_unlock_bh(&tx_desc_pool->flow_pool_lock);
}
}
#else /* QCA_LL_TX_FLOW_CONTROL_V2! */
/**
* dp_tx_desc_reset_vdev() - reset vdev to NULL in TX Desc
*
* @soc: Handle to DP soc structure
* @tx_desc: pointer of one TX desc
* @desc_pool_id: TX Desc pool id
*/
static inline void
dp_tx_desc_reset_vdev(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
uint8_t desc_pool_id)
{
TX_DESC_LOCK_LOCK(&soc->tx_desc[desc_pool_id].lock);
tx_desc->vdev_id = DP_INVALID_VDEV_ID;
TX_DESC_LOCK_UNLOCK(&soc->tx_desc[desc_pool_id].lock);
}
void dp_tx_desc_flush(struct dp_pdev *pdev, struct dp_vdev *vdev,
bool force_free)
{
uint8_t i, num_pool;
uint32_t j;
uint32_t num_desc, page_id, offset;
uint16_t num_desc_per_page;
struct dp_soc *soc = pdev->soc;
struct dp_tx_desc_s *tx_desc = NULL;
struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
if (!vdev && !force_free) {
dp_err("Reset TX desc vdev, Vdev param is required!");
return;
}
num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
for (i = 0; i < num_pool; i++) {
tx_desc_pool = &soc->tx_desc[i];
if (!tx_desc_pool->desc_pages.cacheable_pages)
continue;
num_desc_per_page =
tx_desc_pool->desc_pages.num_element_per_page;
for (j = 0; j < num_desc; j++) {
page_id = j / num_desc_per_page;
offset = j % num_desc_per_page;
tx_desc = dp_tx_desc_find(soc, i, page_id, offset);
if (dp_is_tx_desc_flush_match(pdev, vdev, tx_desc)) {
if (force_free) {
tx_desc->flags |= DP_TX_DESC_FLAG_FLUSH;
dp_tx_comp_free_buf(soc, tx_desc,
false);
dp_tx_desc_release(tx_desc, i);
} else {
dp_tx_desc_reset_vdev(soc, tx_desc,
i);
}
}
}
}
}
#endif /* !QCA_LL_TX_FLOW_CONTROL_V2 */
QDF_STATUS dp_tx_vdev_detach(struct dp_vdev *vdev)
{
struct dp_pdev *pdev = vdev->pdev;
/* Reset TX desc associated to this Vdev as NULL */
dp_tx_desc_flush(pdev, vdev, false);
return QDF_STATUS_SUCCESS;
}
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
/* Pools will be allocated dynamically */
static QDF_STATUS dp_tx_alloc_static_pools(struct dp_soc *soc, int num_pool,
int num_desc)
{
uint8_t i;
for (i = 0; i < num_pool; i++) {
qdf_spinlock_create(&soc->tx_desc[i].flow_pool_lock);
soc->tx_desc[i].status = FLOW_POOL_INACTIVE;
}
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS dp_tx_init_static_pools(struct dp_soc *soc, int num_pool,
uint32_t num_desc)
{
return QDF_STATUS_SUCCESS;
}
static void dp_tx_deinit_static_pools(struct dp_soc *soc, int num_pool)
{
}
static void dp_tx_delete_static_pools(struct dp_soc *soc, int num_pool)
{
uint8_t i;
for (i = 0; i < num_pool; i++)
qdf_spinlock_destroy(&soc->tx_desc[i].flow_pool_lock);
}
#else /* QCA_LL_TX_FLOW_CONTROL_V2! */
static QDF_STATUS dp_tx_alloc_static_pools(struct dp_soc *soc, int num_pool,
uint32_t num_desc)
{
uint8_t i, count;
/* Allocate software Tx descriptor pools */
for (i = 0; i < num_pool; i++) {
if (dp_tx_desc_pool_alloc(soc, i, num_desc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Tx Desc Pool alloc %d failed %pK"),
i, soc);
goto fail;
}
}
return QDF_STATUS_SUCCESS;
fail:
for (count = 0; count < i; count++)
dp_tx_desc_pool_free(soc, count);
return QDF_STATUS_E_NOMEM;
}
static QDF_STATUS dp_tx_init_static_pools(struct dp_soc *soc, int num_pool,
uint32_t num_desc)
{
uint8_t i;
for (i = 0; i < num_pool; i++) {
if (dp_tx_desc_pool_init(soc, i, num_desc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Tx Desc Pool init %d failed %pK"),
i, soc);
return QDF_STATUS_E_NOMEM;
}
}
return QDF_STATUS_SUCCESS;
}
static void dp_tx_deinit_static_pools(struct dp_soc *soc, int num_pool)
{
uint8_t i;
for (i = 0; i < num_pool; i++)
dp_tx_desc_pool_deinit(soc, i);
}
static void dp_tx_delete_static_pools(struct dp_soc *soc, int num_pool)
{
uint8_t i;
for (i = 0; i < num_pool; i++)
dp_tx_desc_pool_free(soc, i);
}
#endif /* !QCA_LL_TX_FLOW_CONTROL_V2 */
/**
* dp_tx_tso_cmn_desc_pool_deinit() - de-initialize TSO descriptors
* @soc: core txrx main context
* @num_pool: number of pools
*
*/
static void dp_tx_tso_cmn_desc_pool_deinit(struct dp_soc *soc, uint8_t num_pool)
{
dp_tx_tso_desc_pool_deinit(soc, num_pool);
dp_tx_tso_num_seg_pool_deinit(soc, num_pool);
}
/**
* dp_tx_tso_cmn_desc_pool_free() - free TSO descriptors
* @soc: core txrx main context
* @num_pool: number of pools
*
*/
static void dp_tx_tso_cmn_desc_pool_free(struct dp_soc *soc, uint8_t num_pool)
{
dp_tx_tso_desc_pool_free(soc, num_pool);
dp_tx_tso_num_seg_pool_free(soc, num_pool);
}
void dp_soc_tx_desc_sw_pools_free(struct dp_soc *soc)
{
uint8_t num_pool;
num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
dp_tx_tso_cmn_desc_pool_free(soc, num_pool);
dp_tx_ext_desc_pool_free(soc, num_pool);
dp_tx_delete_static_pools(soc, num_pool);
}
void dp_soc_tx_desc_sw_pools_deinit(struct dp_soc *soc)
{
uint8_t num_pool;
num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
dp_tx_flow_control_deinit(soc);
dp_tx_tso_cmn_desc_pool_deinit(soc, num_pool);
dp_tx_ext_desc_pool_deinit(soc, num_pool);
dp_tx_deinit_static_pools(soc, num_pool);
}
/**
* dp_tx_tso_cmn_desc_pool_alloc() - TSO cmn desc pool allocator
* @soc: DP soc handle
* @num_pool: Number of pools
* @num_desc: Number of descriptors
*
* Reserve TSO descriptor buffers
*
* Return: QDF_STATUS_E_FAILURE on failure or
* QDF_STATUS_SUCCESS on success
*/
static QDF_STATUS dp_tx_tso_cmn_desc_pool_alloc(struct dp_soc *soc,
uint8_t num_pool,
uint32_t num_desc)
{
if (dp_tx_tso_desc_pool_alloc(soc, num_pool, num_desc)) {
dp_err("TSO Desc Pool alloc %d failed %pK", num_pool, soc);
return QDF_STATUS_E_FAILURE;
}
if (dp_tx_tso_num_seg_pool_alloc(soc, num_pool, num_desc)) {
dp_err("TSO Num of seg Pool alloc %d failed %pK",
num_pool, soc);
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_tx_tso_cmn_desc_pool_init() - TSO cmn desc pool init
* @soc: DP soc handle
* @num_pool: Number of pools
* @num_desc: Number of descriptors
*
* Initialize TSO descriptor pools
*
* Return: QDF_STATUS_E_FAILURE on failure or
* QDF_STATUS_SUCCESS on success
*/
static QDF_STATUS dp_tx_tso_cmn_desc_pool_init(struct dp_soc *soc,
uint8_t num_pool,
uint32_t num_desc)
{
if (dp_tx_tso_desc_pool_init(soc, num_pool, num_desc)) {
dp_err("TSO Desc Pool alloc %d failed %pK", num_pool, soc);
return QDF_STATUS_E_FAILURE;
}
if (dp_tx_tso_num_seg_pool_init(soc, num_pool, num_desc)) {
dp_err("TSO Num of seg Pool alloc %d failed %pK",
num_pool, soc);
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
QDF_STATUS dp_soc_tx_desc_sw_pools_alloc(struct dp_soc *soc)
{
uint8_t num_pool;
uint32_t num_desc;
uint32_t num_ext_desc;
num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
num_ext_desc = wlan_cfg_get_num_tx_ext_desc(soc->wlan_cfg_ctx);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s Tx Desc Alloc num_pool = %d, descs = %d",
__func__, num_pool, num_desc);
if ((num_pool > MAX_TXDESC_POOLS) ||
(num_desc > WLAN_CFG_NUM_TX_DESC_MAX))
goto fail1;
if (dp_tx_alloc_static_pools(soc, num_pool, num_desc))
goto fail1;
if (dp_tx_ext_desc_pool_alloc(soc, num_pool, num_ext_desc))
goto fail2;
if (wlan_cfg_is_tso_desc_attach_defer(soc->wlan_cfg_ctx))
return QDF_STATUS_SUCCESS;
if (dp_tx_tso_cmn_desc_pool_alloc(soc, num_pool, num_ext_desc))
goto fail3;
return QDF_STATUS_SUCCESS;
fail3:
dp_tx_ext_desc_pool_free(soc, num_pool);
fail2:
dp_tx_delete_static_pools(soc, num_pool);
fail1:
return QDF_STATUS_E_RESOURCES;
}
QDF_STATUS dp_soc_tx_desc_sw_pools_init(struct dp_soc *soc)
{
uint8_t num_pool;
uint32_t num_desc;
uint32_t num_ext_desc;
num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
num_ext_desc = wlan_cfg_get_num_tx_ext_desc(soc->wlan_cfg_ctx);
if (dp_tx_init_static_pools(soc, num_pool, num_desc))
goto fail1;
if (dp_tx_ext_desc_pool_init(soc, num_pool, num_ext_desc))
goto fail2;
if (wlan_cfg_is_tso_desc_attach_defer(soc->wlan_cfg_ctx))
return QDF_STATUS_SUCCESS;
if (dp_tx_tso_cmn_desc_pool_init(soc, num_pool, num_ext_desc))
goto fail3;
dp_tx_flow_control_init(soc);
soc->process_tx_status = CONFIG_PROCESS_TX_STATUS;
return QDF_STATUS_SUCCESS;
fail3:
dp_tx_ext_desc_pool_deinit(soc, num_pool);
fail2:
dp_tx_deinit_static_pools(soc, num_pool);
fail1:
return QDF_STATUS_E_RESOURCES;
}
QDF_STATUS dp_tso_soc_attach(struct cdp_soc_t *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
uint8_t num_pool;
uint32_t num_ext_desc;
num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
num_ext_desc = wlan_cfg_get_num_tx_ext_desc(soc->wlan_cfg_ctx);
if (dp_tx_tso_cmn_desc_pool_alloc(soc, num_pool, num_ext_desc))
return QDF_STATUS_E_FAILURE;
if (dp_tx_tso_cmn_desc_pool_init(soc, num_pool, num_ext_desc))
return QDF_STATUS_E_FAILURE;
return QDF_STATUS_SUCCESS;
}
QDF_STATUS dp_tso_soc_detach(struct cdp_soc_t *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
uint8_t num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
dp_tx_tso_cmn_desc_pool_deinit(soc, num_pool);
dp_tx_tso_cmn_desc_pool_free(soc, num_pool);
return QDF_STATUS_SUCCESS;
}
#ifdef CONFIG_DP_PKT_ADD_TIMESTAMP
void dp_pkt_add_timestamp(struct dp_vdev *vdev,
enum qdf_pkt_timestamp_index index, uint64_t time,
qdf_nbuf_t nbuf)
{
if (qdf_unlikely(qdf_is_dp_pkt_timestamp_enabled())) {
uint64_t tsf_time;
if (vdev->get_tsf_time) {
vdev->get_tsf_time(vdev->osif_vdev, time, &tsf_time);
qdf_add_dp_pkt_timestamp(nbuf, index, tsf_time);
}
}
}
void dp_pkt_get_timestamp(uint64_t *time)
{
if (qdf_unlikely(qdf_is_dp_pkt_timestamp_enabled()))
*time = qdf_get_log_timestamp();
}
#endif