dp_rx_defrag.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204
  1. /*
  2. * Copyright (c) 2017-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #ifndef RX_DEFRAG_DO_NOT_REINJECT
  21. #ifndef DP_BE_WAR
  22. #include "li/hal_li_rx.h"
  23. #endif
  24. #endif
  25. #include "dp_types.h"
  26. #include "dp_rx.h"
  27. #include "dp_peer.h"
  28. #include "hal_api.h"
  29. #include "qdf_trace.h"
  30. #include "qdf_nbuf.h"
  31. #include "dp_internal.h"
  32. #include "dp_rx_defrag.h"
  33. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  34. #include "dp_rx_defrag.h"
  35. #include "dp_ipa.h"
  36. #include "dp_rx_buffer_pool.h"
  37. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  38. "AES-CCM",
  39. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  40. IEEE80211_WEP_MICLEN,
  41. 0,
  42. };
  43. const struct dp_rx_defrag_cipher dp_f_tkip = {
  44. "TKIP",
  45. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  46. IEEE80211_WEP_CRCLEN,
  47. IEEE80211_WEP_MICLEN,
  48. };
  49. const struct dp_rx_defrag_cipher dp_f_wep = {
  50. "WEP",
  51. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  52. IEEE80211_WEP_CRCLEN,
  53. 0,
  54. };
  55. /*
  56. * The header and mic length are same for both
  57. * GCMP-128 and GCMP-256.
  58. */
  59. const struct dp_rx_defrag_cipher dp_f_gcmp = {
  60. "AES-GCMP",
  61. WLAN_IEEE80211_GCMP_HEADERLEN,
  62. WLAN_IEEE80211_GCMP_MICLEN,
  63. WLAN_IEEE80211_GCMP_MICLEN,
  64. };
  65. /**
  66. * dp_rx_defrag_frames_free() - Free fragment chain
  67. * @frames: Fragment chain
  68. *
  69. * Iterates through the fragment chain and frees them
  70. * Return: None
  71. */
  72. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  73. {
  74. qdf_nbuf_t next, frag = frames;
  75. while (frag) {
  76. next = qdf_nbuf_next(frag);
  77. dp_rx_nbuf_free(frag);
  78. frag = next;
  79. }
  80. }
  81. #ifndef WLAN_SOFTUMAC_SUPPORT /* WLAN_SOFTUMAC_SUPPORT */
  82. /**
  83. * dp_rx_clear_saved_desc_info() - Clears descriptor info
  84. * @txrx_peer: Pointer to the peer data structure
  85. * @tid: Transmit ID (TID)
  86. *
  87. * Saves MPDU descriptor info and MSDU link pointer from REO
  88. * ring descriptor. The cache is created per peer, per TID
  89. *
  90. * Return: None
  91. */
  92. static void dp_rx_clear_saved_desc_info(struct dp_txrx_peer *txrx_peer,
  93. unsigned int tid)
  94. {
  95. if (txrx_peer->rx_tid[tid].dst_ring_desc)
  96. qdf_mem_free(txrx_peer->rx_tid[tid].dst_ring_desc);
  97. txrx_peer->rx_tid[tid].dst_ring_desc = NULL;
  98. txrx_peer->rx_tid[tid].head_frag_desc = NULL;
  99. }
  100. static void dp_rx_return_head_frag_desc(struct dp_txrx_peer *txrx_peer,
  101. unsigned int tid)
  102. {
  103. struct dp_soc *soc;
  104. struct dp_pdev *pdev;
  105. struct dp_srng *dp_rxdma_srng;
  106. struct rx_desc_pool *rx_desc_pool;
  107. union dp_rx_desc_list_elem_t *head = NULL;
  108. union dp_rx_desc_list_elem_t *tail = NULL;
  109. uint8_t pool_id;
  110. pdev = txrx_peer->vdev->pdev;
  111. soc = pdev->soc;
  112. if (txrx_peer->rx_tid[tid].head_frag_desc) {
  113. pool_id = txrx_peer->rx_tid[tid].head_frag_desc->pool_id;
  114. dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id];
  115. rx_desc_pool = &soc->rx_desc_buf[pool_id];
  116. dp_rx_add_to_free_desc_list(&head, &tail,
  117. txrx_peer->rx_tid[tid].head_frag_desc);
  118. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  119. 1, &head, &tail, false);
  120. }
  121. if (txrx_peer->rx_tid[tid].dst_ring_desc) {
  122. if (dp_rx_link_desc_return(soc,
  123. txrx_peer->rx_tid[tid].dst_ring_desc,
  124. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  125. QDF_STATUS_SUCCESS)
  126. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  127. "%s: Failed to return link desc", __func__);
  128. }
  129. }
  130. #else
  131. static void dp_rx_clear_saved_desc_info(struct dp_txrx_peer *txrx_peer,
  132. unsigned int tid)
  133. {
  134. }
  135. static void dp_rx_return_head_frag_desc(struct dp_txrx_peer *txrx_peer,
  136. unsigned int tid)
  137. {
  138. }
  139. #endif /* WLAN_SOFTUMAC_SUPPORT */
  140. void dp_rx_reorder_flush_frag(struct dp_txrx_peer *txrx_peer,
  141. unsigned int tid)
  142. {
  143. dp_info_rl("Flushing TID %d", tid);
  144. if (!txrx_peer) {
  145. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  146. "%s: NULL peer", __func__);
  147. return;
  148. }
  149. dp_rx_return_head_frag_desc(txrx_peer, tid);
  150. dp_rx_defrag_cleanup(txrx_peer, tid);
  151. }
  152. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  153. {
  154. struct dp_rx_tid_defrag *waitlist_elem = NULL;
  155. struct dp_rx_tid_defrag *tmp;
  156. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  157. TAILQ_HEAD(, dp_rx_tid_defrag) temp_list;
  158. dp_txrx_ref_handle txrx_ref_handle = NULL;
  159. TAILQ_INIT(&temp_list);
  160. dp_debug("Current time %u", now_ms);
  161. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  162. TAILQ_FOREACH_SAFE(waitlist_elem, &soc->rx.defrag.waitlist,
  163. defrag_waitlist_elem, tmp) {
  164. uint32_t tid;
  165. if (waitlist_elem->defrag_timeout_ms > now_ms)
  166. break;
  167. tid = waitlist_elem->tid;
  168. if (tid >= DP_MAX_TIDS) {
  169. qdf_assert(0);
  170. continue;
  171. }
  172. TAILQ_REMOVE(&soc->rx.defrag.waitlist, waitlist_elem,
  173. defrag_waitlist_elem);
  174. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  175. /* Move to temp list and clean-up later */
  176. TAILQ_INSERT_TAIL(&temp_list, waitlist_elem,
  177. defrag_waitlist_elem);
  178. }
  179. if (waitlist_elem) {
  180. soc->rx.defrag.next_flush_ms =
  181. waitlist_elem->defrag_timeout_ms;
  182. } else {
  183. soc->rx.defrag.next_flush_ms =
  184. now_ms + soc->rx.defrag.timeout_ms;
  185. }
  186. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  187. TAILQ_FOREACH_SAFE(waitlist_elem, &temp_list,
  188. defrag_waitlist_elem, tmp) {
  189. struct dp_txrx_peer *txrx_peer, *temp_peer = NULL;
  190. qdf_spin_lock_bh(&waitlist_elem->defrag_tid_lock);
  191. TAILQ_REMOVE(&temp_list, waitlist_elem,
  192. defrag_waitlist_elem);
  193. /* get address of current peer */
  194. txrx_peer = waitlist_elem->defrag_peer;
  195. qdf_spin_unlock_bh(&waitlist_elem->defrag_tid_lock);
  196. temp_peer = dp_txrx_peer_get_ref_by_id(soc, txrx_peer->peer_id,
  197. &txrx_ref_handle,
  198. DP_MOD_ID_RX_ERR);
  199. if (temp_peer == txrx_peer) {
  200. qdf_spin_lock_bh(&waitlist_elem->defrag_tid_lock);
  201. dp_rx_reorder_flush_frag(txrx_peer, waitlist_elem->tid);
  202. qdf_spin_unlock_bh(&waitlist_elem->defrag_tid_lock);
  203. }
  204. if (temp_peer)
  205. dp_txrx_peer_unref_delete(txrx_ref_handle,
  206. DP_MOD_ID_RX_ERR);
  207. }
  208. }
  209. void dp_rx_defrag_waitlist_add(struct dp_txrx_peer *txrx_peer,
  210. unsigned int tid)
  211. {
  212. struct dp_soc *psoc = txrx_peer->vdev->pdev->soc;
  213. struct dp_rx_tid_defrag *waitlist_elem = &txrx_peer->rx_tid[tid];
  214. dp_debug("Adding TID %u to waitlist for peer %pK with peer_id = %d ",
  215. tid, txrx_peer, txrx_peer->peer_id);
  216. /* TODO: use LIST macros instead of TAIL macros */
  217. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  218. if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
  219. psoc->rx.defrag.next_flush_ms =
  220. waitlist_elem->defrag_timeout_ms;
  221. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, waitlist_elem,
  222. defrag_waitlist_elem);
  223. DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
  224. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  225. }
  226. void dp_rx_defrag_waitlist_remove(struct dp_txrx_peer *txrx_peer,
  227. unsigned int tid)
  228. {
  229. struct dp_pdev *pdev = txrx_peer->vdev->pdev;
  230. struct dp_soc *soc = pdev->soc;
  231. struct dp_rx_tid_defrag *waitlist_elm;
  232. struct dp_rx_tid_defrag *tmp;
  233. dp_debug("Removing TID %u to waitlist for peer %pK peer_id = %d ",
  234. tid, txrx_peer, txrx_peer->peer_id);
  235. if (tid >= DP_MAX_TIDS) {
  236. dp_err("TID out of bounds: %d", tid);
  237. qdf_assert_always(0);
  238. }
  239. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  240. TAILQ_FOREACH_SAFE(waitlist_elm, &soc->rx.defrag.waitlist,
  241. defrag_waitlist_elem, tmp) {
  242. struct dp_txrx_peer *peer_on_waitlist;
  243. /* get address of current peer */
  244. peer_on_waitlist = waitlist_elm->defrag_peer;
  245. /* Ensure it is TID for same peer */
  246. if (peer_on_waitlist == txrx_peer && waitlist_elm->tid == tid) {
  247. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  248. waitlist_elm, defrag_waitlist_elem);
  249. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  250. }
  251. }
  252. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  253. }
  254. QDF_STATUS
  255. dp_rx_defrag_fraglist_insert(struct dp_txrx_peer *txrx_peer, unsigned int tid,
  256. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr,
  257. qdf_nbuf_t frag, uint8_t *all_frag_present)
  258. {
  259. struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
  260. qdf_nbuf_t next;
  261. qdf_nbuf_t prev = NULL;
  262. qdf_nbuf_t cur;
  263. uint16_t head_fragno, cur_fragno, next_fragno;
  264. uint8_t last_morefrag = 1, count = 0;
  265. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  266. uint8_t *rx_desc_info;
  267. qdf_assert(frag);
  268. qdf_assert(head_addr);
  269. qdf_assert(tail_addr);
  270. *all_frag_present = 0;
  271. rx_desc_info = qdf_nbuf_data(frag);
  272. cur_fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc_info);
  273. dp_debug("cur_fragno %d", cur_fragno);
  274. /* If this is the first fragment */
  275. if (!(*head_addr)) {
  276. *head_addr = *tail_addr = frag;
  277. qdf_nbuf_set_next(*tail_addr, NULL);
  278. rx_tid->curr_frag_num = cur_fragno;
  279. goto insert_done;
  280. }
  281. /* In sequence fragment */
  282. if (cur_fragno > rx_tid->curr_frag_num) {
  283. qdf_nbuf_set_next(*tail_addr, frag);
  284. *tail_addr = frag;
  285. qdf_nbuf_set_next(*tail_addr, NULL);
  286. rx_tid->curr_frag_num = cur_fragno;
  287. } else {
  288. /* Out of sequence fragment */
  289. cur = *head_addr;
  290. rx_desc_info = qdf_nbuf_data(cur);
  291. head_fragno = dp_rx_frag_get_mpdu_frag_number(soc,
  292. rx_desc_info);
  293. if (cur_fragno == head_fragno) {
  294. dp_rx_nbuf_free(frag);
  295. goto insert_fail;
  296. } else if (head_fragno > cur_fragno) {
  297. qdf_nbuf_set_next(frag, cur);
  298. cur = frag;
  299. *head_addr = frag; /* head pointer to be updated */
  300. } else {
  301. while ((cur_fragno > head_fragno) && cur) {
  302. prev = cur;
  303. cur = qdf_nbuf_next(cur);
  304. if (cur) {
  305. rx_desc_info = qdf_nbuf_data(cur);
  306. head_fragno =
  307. dp_rx_frag_get_mpdu_frag_number(
  308. soc,
  309. rx_desc_info);
  310. }
  311. }
  312. if (cur_fragno == head_fragno) {
  313. dp_rx_nbuf_free(frag);
  314. goto insert_fail;
  315. }
  316. qdf_nbuf_set_next(prev, frag);
  317. qdf_nbuf_set_next(frag, cur);
  318. }
  319. }
  320. next = qdf_nbuf_next(*head_addr);
  321. rx_desc_info = qdf_nbuf_data(*tail_addr);
  322. last_morefrag = dp_rx_frag_get_more_frag_bit(soc, rx_desc_info);
  323. /* TODO: optimize the loop */
  324. if (!last_morefrag) {
  325. /* Check if all fragments are present */
  326. do {
  327. rx_desc_info = qdf_nbuf_data(next);
  328. next_fragno =
  329. dp_rx_frag_get_mpdu_frag_number(soc,
  330. rx_desc_info);
  331. count++;
  332. if (next_fragno != count)
  333. break;
  334. next = qdf_nbuf_next(next);
  335. } while (next);
  336. if (!next) {
  337. *all_frag_present = 1;
  338. return QDF_STATUS_SUCCESS;
  339. } else {
  340. /* revisit */
  341. }
  342. }
  343. insert_done:
  344. return QDF_STATUS_SUCCESS;
  345. insert_fail:
  346. return QDF_STATUS_E_FAILURE;
  347. }
  348. /**
  349. * dp_rx_defrag_tkip_decap() - decap tkip encrypted fragment
  350. * @soc: DP SOC
  351. * @msdu: Pointer to the fragment
  352. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  353. *
  354. * decap tkip encrypted fragment
  355. *
  356. * Return: QDF_STATUS
  357. */
  358. static QDF_STATUS
  359. dp_rx_defrag_tkip_decap(struct dp_soc *soc,
  360. qdf_nbuf_t msdu, uint16_t hdrlen)
  361. {
  362. uint8_t *ivp, *orig_hdr;
  363. int rx_desc_len = soc->rx_pkt_tlv_size;
  364. /* start of 802.11 header info */
  365. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  366. /* TKIP header is located post 802.11 header */
  367. ivp = orig_hdr + hdrlen;
  368. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  369. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  370. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  371. return QDF_STATUS_E_DEFRAG_ERROR;
  372. }
  373. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  374. return QDF_STATUS_SUCCESS;
  375. }
  376. /**
  377. * dp_rx_defrag_ccmp_demic() - Remove MIC information from CCMP fragment
  378. * @soc: DP SOC
  379. * @nbuf: Pointer to the fragment buffer
  380. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  381. *
  382. * Remove MIC information from CCMP fragment
  383. *
  384. * Return: QDF_STATUS
  385. */
  386. static QDF_STATUS
  387. dp_rx_defrag_ccmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen)
  388. {
  389. uint8_t *ivp, *orig_hdr;
  390. int rx_desc_len = soc->rx_pkt_tlv_size;
  391. /* start of the 802.11 header */
  392. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  393. /* CCMP header is located after 802.11 header */
  394. ivp = orig_hdr + hdrlen;
  395. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  396. return QDF_STATUS_E_DEFRAG_ERROR;
  397. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  398. return QDF_STATUS_SUCCESS;
  399. }
  400. /**
  401. * dp_rx_defrag_ccmp_decap() - decap CCMP encrypted fragment
  402. * @soc: DP SOC
  403. * @nbuf: Pointer to the fragment
  404. * @hdrlen: length of the header information
  405. *
  406. * decap CCMP encrypted fragment
  407. *
  408. * Return: QDF_STATUS
  409. */
  410. static QDF_STATUS
  411. dp_rx_defrag_ccmp_decap(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen)
  412. {
  413. uint8_t *ivp, *origHdr;
  414. int rx_desc_len = soc->rx_pkt_tlv_size;
  415. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  416. ivp = origHdr + hdrlen;
  417. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  418. return QDF_STATUS_E_DEFRAG_ERROR;
  419. return QDF_STATUS_SUCCESS;
  420. }
  421. /**
  422. * dp_rx_defrag_wep_decap() - decap WEP encrypted fragment
  423. * @soc: DP SOC
  424. * @msdu: Pointer to the fragment
  425. * @hdrlen: length of the header information
  426. *
  427. * decap WEP encrypted fragment
  428. *
  429. * Return: QDF_STATUS
  430. */
  431. static QDF_STATUS
  432. dp_rx_defrag_wep_decap(struct dp_soc *soc, qdf_nbuf_t msdu, uint16_t hdrlen)
  433. {
  434. uint8_t *origHdr;
  435. int rx_desc_len = soc->rx_pkt_tlv_size;
  436. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  437. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  438. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  439. return QDF_STATUS_SUCCESS;
  440. }
  441. /**
  442. * dp_rx_defrag_hdrsize() - Calculate the header size of the received fragment
  443. * @soc: soc handle
  444. * @nbuf: Pointer to the fragment
  445. *
  446. * Calculate the header size of the received fragment
  447. *
  448. * Return: header size (uint16_t)
  449. */
  450. static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
  451. {
  452. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  453. uint16_t size = sizeof(struct ieee80211_frame);
  454. uint16_t fc = 0;
  455. uint32_t to_ds, fr_ds;
  456. uint8_t frm_ctrl_valid;
  457. uint16_t frm_ctrl_field;
  458. to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
  459. fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
  460. frm_ctrl_valid =
  461. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  462. rx_tlv_hdr);
  463. frm_ctrl_field = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_tlv_hdr);
  464. if (to_ds && fr_ds)
  465. size += QDF_MAC_ADDR_SIZE;
  466. if (frm_ctrl_valid) {
  467. fc = frm_ctrl_field;
  468. /* use 1-st byte for validation */
  469. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  470. size += sizeof(uint16_t);
  471. /* use 2-nd byte for validation */
  472. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  473. size += sizeof(struct ieee80211_htc);
  474. }
  475. }
  476. return size;
  477. }
  478. /**
  479. * dp_rx_defrag_michdr() - Calculate a pseudo MIC header
  480. * @wh0: Pointer to the wireless header of the fragment
  481. * @hdr: Array to hold the pseudo header
  482. *
  483. * Calculate a pseudo MIC header
  484. *
  485. * Return: None
  486. */
  487. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  488. uint8_t hdr[])
  489. {
  490. const struct ieee80211_frame_addr4 *wh =
  491. (const struct ieee80211_frame_addr4 *)wh0;
  492. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  493. case IEEE80211_FC1_DIR_NODS:
  494. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  495. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  496. wh->i_addr2);
  497. break;
  498. case IEEE80211_FC1_DIR_TODS:
  499. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  500. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  501. wh->i_addr2);
  502. break;
  503. case IEEE80211_FC1_DIR_FROMDS:
  504. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  505. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  506. wh->i_addr3);
  507. break;
  508. case IEEE80211_FC1_DIR_DSTODS:
  509. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  510. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  511. wh->i_addr4);
  512. break;
  513. }
  514. /*
  515. * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  516. * it could also be set for deauth, disassoc, action, etc. for
  517. * a mgt type frame. It comes into picture for MFP.
  518. */
  519. if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
  520. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
  521. IEEE80211_FC1_DIR_DSTODS) {
  522. const struct ieee80211_qosframe_addr4 *qwh =
  523. (const struct ieee80211_qosframe_addr4 *)wh;
  524. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  525. } else {
  526. const struct ieee80211_qosframe *qwh =
  527. (const struct ieee80211_qosframe *)wh;
  528. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  529. }
  530. } else {
  531. hdr[12] = 0;
  532. }
  533. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  534. }
  535. /**
  536. * dp_rx_defrag_mic() - Calculate MIC header
  537. * @soc: DP SOC
  538. * @key: Pointer to the key
  539. * @wbuf: fragment buffer
  540. * @off: Offset
  541. * @data_len: Data length
  542. * @mic: Array to hold MIC
  543. *
  544. * Calculate a pseudo MIC header
  545. *
  546. * Return: QDF_STATUS
  547. */
  548. static QDF_STATUS dp_rx_defrag_mic(struct dp_soc *soc, const uint8_t *key,
  549. qdf_nbuf_t wbuf, uint16_t off,
  550. uint16_t data_len, uint8_t mic[])
  551. {
  552. uint8_t hdr[16] = { 0, };
  553. uint32_t l, r;
  554. const uint8_t *data;
  555. uint32_t space;
  556. int rx_desc_len = soc->rx_pkt_tlv_size;
  557. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  558. + rx_desc_len), hdr);
  559. l = dp_rx_get_le32(key);
  560. r = dp_rx_get_le32(key + 4);
  561. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  562. l ^= dp_rx_get_le32(hdr);
  563. dp_rx_michael_block(l, r);
  564. l ^= dp_rx_get_le32(&hdr[4]);
  565. dp_rx_michael_block(l, r);
  566. l ^= dp_rx_get_le32(&hdr[8]);
  567. dp_rx_michael_block(l, r);
  568. l ^= dp_rx_get_le32(&hdr[12]);
  569. dp_rx_michael_block(l, r);
  570. /* first buffer has special handling */
  571. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  572. space = qdf_nbuf_len(wbuf) - off;
  573. for (;; ) {
  574. if (space > data_len)
  575. space = data_len;
  576. /* collect 32-bit blocks from current buffer */
  577. while (space >= sizeof(uint32_t)) {
  578. l ^= dp_rx_get_le32(data);
  579. dp_rx_michael_block(l, r);
  580. data += sizeof(uint32_t);
  581. space -= sizeof(uint32_t);
  582. data_len -= sizeof(uint32_t);
  583. }
  584. if (data_len < sizeof(uint32_t))
  585. break;
  586. wbuf = qdf_nbuf_next(wbuf);
  587. if (!wbuf)
  588. return QDF_STATUS_E_DEFRAG_ERROR;
  589. if (space != 0) {
  590. const uint8_t *data_next;
  591. /*
  592. * Block straddles buffers, split references.
  593. */
  594. data_next =
  595. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  596. if ((qdf_nbuf_len(wbuf)) <
  597. sizeof(uint32_t) - space) {
  598. return QDF_STATUS_E_DEFRAG_ERROR;
  599. }
  600. switch (space) {
  601. case 1:
  602. l ^= dp_rx_get_le32_split(data[0],
  603. data_next[0], data_next[1],
  604. data_next[2]);
  605. data = data_next + 3;
  606. space = (qdf_nbuf_len(wbuf) - off) - 3;
  607. break;
  608. case 2:
  609. l ^= dp_rx_get_le32_split(data[0], data[1],
  610. data_next[0], data_next[1]);
  611. data = data_next + 2;
  612. space = (qdf_nbuf_len(wbuf) - off) - 2;
  613. break;
  614. case 3:
  615. l ^= dp_rx_get_le32_split(data[0], data[1],
  616. data[2], data_next[0]);
  617. data = data_next + 1;
  618. space = (qdf_nbuf_len(wbuf) - off) - 1;
  619. break;
  620. }
  621. dp_rx_michael_block(l, r);
  622. data_len -= sizeof(uint32_t);
  623. } else {
  624. /*
  625. * Setup for next buffer.
  626. */
  627. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  628. space = qdf_nbuf_len(wbuf) - off;
  629. }
  630. }
  631. /* Last block and padding (0x5a, 4..7 x 0) */
  632. switch (data_len) {
  633. case 0:
  634. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  635. break;
  636. case 1:
  637. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  638. break;
  639. case 2:
  640. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  641. break;
  642. case 3:
  643. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  644. break;
  645. }
  646. dp_rx_michael_block(l, r);
  647. dp_rx_michael_block(l, r);
  648. dp_rx_put_le32(mic, l);
  649. dp_rx_put_le32(mic + 4, r);
  650. return QDF_STATUS_SUCCESS;
  651. }
  652. /**
  653. * dp_rx_defrag_tkip_demic() - Remove MIC header from the TKIP frame
  654. * @soc: DP SOC
  655. * @key: Pointer to the key
  656. * @msdu: fragment buffer
  657. * @hdrlen: Length of the header information
  658. *
  659. * Remove MIC information from the TKIP frame
  660. *
  661. * Return: QDF_STATUS
  662. */
  663. static QDF_STATUS dp_rx_defrag_tkip_demic(struct dp_soc *soc,
  664. const uint8_t *key,
  665. qdf_nbuf_t msdu, uint16_t hdrlen)
  666. {
  667. QDF_STATUS status;
  668. uint32_t pktlen = 0, prev_data_len;
  669. uint8_t mic[IEEE80211_WEP_MICLEN];
  670. uint8_t mic0[IEEE80211_WEP_MICLEN];
  671. qdf_nbuf_t prev = NULL, prev0, next;
  672. uint8_t len0 = 0;
  673. next = msdu;
  674. prev0 = msdu;
  675. while (next) {
  676. pktlen += (qdf_nbuf_len(next) - hdrlen);
  677. prev = next;
  678. dp_debug("pktlen %u",
  679. (uint32_t)(qdf_nbuf_len(next) - hdrlen));
  680. next = qdf_nbuf_next(next);
  681. if (next && !qdf_nbuf_next(next))
  682. prev0 = prev;
  683. }
  684. if (!prev) {
  685. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  686. "%s Defrag chaining failed !\n", __func__);
  687. return QDF_STATUS_E_DEFRAG_ERROR;
  688. }
  689. prev_data_len = qdf_nbuf_len(prev) - hdrlen;
  690. if (prev_data_len < dp_f_tkip.ic_miclen) {
  691. if (prev0 == prev) {
  692. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  693. "%s Fragments don't have MIC header !\n", __func__);
  694. return QDF_STATUS_E_DEFRAG_ERROR;
  695. }
  696. len0 = dp_f_tkip.ic_miclen - (uint8_t)prev_data_len;
  697. qdf_nbuf_copy_bits(prev0, qdf_nbuf_len(prev0) - len0, len0,
  698. (caddr_t)mic0);
  699. qdf_nbuf_trim_tail(prev0, len0);
  700. }
  701. qdf_nbuf_copy_bits(prev, (qdf_nbuf_len(prev) -
  702. (dp_f_tkip.ic_miclen - len0)),
  703. (dp_f_tkip.ic_miclen - len0),
  704. (caddr_t)(&mic0[len0]));
  705. qdf_nbuf_trim_tail(prev, (dp_f_tkip.ic_miclen - len0));
  706. pktlen -= dp_f_tkip.ic_miclen;
  707. if (((qdf_nbuf_len(prev) - hdrlen) == 0) && prev != msdu) {
  708. dp_rx_nbuf_free(prev);
  709. qdf_nbuf_set_next(prev0, NULL);
  710. }
  711. status = dp_rx_defrag_mic(soc, key, msdu, hdrlen,
  712. pktlen, mic);
  713. if (QDF_IS_STATUS_ERROR(status))
  714. return status;
  715. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  716. return QDF_STATUS_E_DEFRAG_ERROR;
  717. return QDF_STATUS_SUCCESS;
  718. }
  719. /**
  720. * dp_rx_frag_pull_hdr() - Pulls the RXTLV & the 802.11 headers
  721. * @soc: DP SOC
  722. * @nbuf: buffer pointer
  723. * @hdrsize: size of the header to be pulled
  724. *
  725. * Pull the RXTLV & the 802.11 headers
  726. *
  727. * Return: None
  728. */
  729. static void dp_rx_frag_pull_hdr(struct dp_soc *soc,
  730. qdf_nbuf_t nbuf, uint16_t hdrsize)
  731. {
  732. hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf));
  733. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + hdrsize);
  734. dp_debug("final pktlen %d .11len %d",
  735. (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  736. }
  737. /**
  738. * dp_rx_defrag_pn_check() - Check the PN of current fragmented with prev PN
  739. * @soc: DP SOC
  740. * @msdu: msdu to get the current PN
  741. * @cur_pn128: PN extracted from current msdu
  742. * @prev_pn128: Prev PN
  743. *
  744. * Return: 0 on success, non zero on failure
  745. */
  746. static int dp_rx_defrag_pn_check(struct dp_soc *soc, qdf_nbuf_t msdu,
  747. uint64_t *cur_pn128, uint64_t *prev_pn128)
  748. {
  749. int out_of_order = 0;
  750. hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(msdu), cur_pn128);
  751. if (cur_pn128[1] == prev_pn128[1])
  752. out_of_order = (cur_pn128[0] - prev_pn128[0] != 1);
  753. else
  754. out_of_order = (cur_pn128[1] - prev_pn128[1] != 1);
  755. return out_of_order;
  756. }
  757. /**
  758. * dp_rx_construct_fraglist() - Construct a nbuf fraglist
  759. * @txrx_peer: Pointer to the txrx peer
  760. * @tid: Transmit ID (TID)
  761. * @head: Pointer to list of fragments
  762. * @hdrsize: Size of the header to be pulled
  763. *
  764. * Construct a nbuf fraglist
  765. *
  766. * Return: None
  767. */
  768. static int
  769. dp_rx_construct_fraglist(struct dp_txrx_peer *txrx_peer, int tid,
  770. qdf_nbuf_t head,
  771. uint16_t hdrsize)
  772. {
  773. struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
  774. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  775. qdf_nbuf_t rx_nbuf = msdu;
  776. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  777. uint32_t len = 0;
  778. uint64_t cur_pn128[2] = {0, 0}, prev_pn128[2];
  779. int out_of_order = 0;
  780. int index;
  781. int needs_pn_check = 0;
  782. enum cdp_sec_type sec_type;
  783. prev_pn128[0] = rx_tid->pn128[0];
  784. prev_pn128[1] = rx_tid->pn128[1];
  785. index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu) ? dp_sec_mcast :
  786. dp_sec_ucast;
  787. sec_type = txrx_peer->security[index].sec_type;
  788. if (!(sec_type == cdp_sec_type_none || sec_type == cdp_sec_type_wep128 ||
  789. sec_type == cdp_sec_type_wep104 || sec_type == cdp_sec_type_wep40))
  790. needs_pn_check = 1;
  791. while (msdu) {
  792. if (qdf_likely(needs_pn_check))
  793. out_of_order = dp_rx_defrag_pn_check(soc, msdu,
  794. &cur_pn128[0],
  795. &prev_pn128[0]);
  796. if (qdf_unlikely(out_of_order)) {
  797. dp_info_rl("cur_pn128[0] 0x%llx cur_pn128[1] 0x%llx prev_pn128[0] 0x%llx prev_pn128[1] 0x%llx",
  798. cur_pn128[0], cur_pn128[1],
  799. prev_pn128[0], prev_pn128[1]);
  800. return QDF_STATUS_E_FAILURE;
  801. }
  802. prev_pn128[0] = cur_pn128[0];
  803. prev_pn128[1] = cur_pn128[1];
  804. /*
  805. * Broadcast and multicast frames should never be fragmented.
  806. * Iterating through all msdus and dropping fragments if even
  807. * one of them has mcast/bcast destination address.
  808. */
  809. if (hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu)) {
  810. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  811. "Dropping multicast/broadcast fragments");
  812. return QDF_STATUS_E_FAILURE;
  813. }
  814. dp_rx_frag_pull_hdr(soc, msdu, hdrsize);
  815. len += qdf_nbuf_len(msdu);
  816. msdu = qdf_nbuf_next(msdu);
  817. }
  818. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  819. qdf_nbuf_set_next(head, NULL);
  820. qdf_nbuf_set_is_frag(head, 1);
  821. dp_debug("head len %d ext len %d data len %d ",
  822. (uint32_t)qdf_nbuf_len(head),
  823. (uint32_t)qdf_nbuf_len(rx_nbuf),
  824. (uint32_t)(head->data_len));
  825. return QDF_STATUS_SUCCESS;
  826. }
  827. /**
  828. * dp_rx_defrag_err() - rx defragmentation error handler
  829. * @vdev: handle to vdev object
  830. * @nbuf: packet buffer
  831. *
  832. * This function handles rx error and send MIC error notification
  833. *
  834. * Return: None
  835. */
  836. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  837. {
  838. struct ol_if_ops *tops = NULL;
  839. struct dp_pdev *pdev = vdev->pdev;
  840. int rx_desc_len = pdev->soc->rx_pkt_tlv_size;
  841. uint8_t *orig_hdr;
  842. struct ieee80211_frame *wh;
  843. struct cdp_rx_mic_err_info mic_failure_info;
  844. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  845. wh = (struct ieee80211_frame *)orig_hdr;
  846. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
  847. (struct qdf_mac_addr *)&wh->i_addr1);
  848. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
  849. (struct qdf_mac_addr *)&wh->i_addr2);
  850. mic_failure_info.key_id = 0;
  851. mic_failure_info.multicast =
  852. IEEE80211_IS_MULTICAST(wh->i_addr1);
  853. qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
  854. mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
  855. mic_failure_info.data = (uint8_t *)wh;
  856. mic_failure_info.vdev_id = vdev->vdev_id;
  857. tops = pdev->soc->cdp_soc.ol_ops;
  858. if (tops->rx_mic_error)
  859. tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
  860. &mic_failure_info);
  861. }
  862. /**
  863. * dp_rx_defrag_nwifi_to_8023() - Transcap 802.11 to 802.3
  864. * @soc: dp soc handle
  865. * @txrx_peer: txrx_peer handle
  866. * @tid: Transmit ID (TID)
  867. * @nbuf: Pointer to the fragment buffer
  868. * @hdrsize: Size of headers
  869. *
  870. * Transcap the fragment from 802.11 to 802.3
  871. *
  872. * Return: None
  873. */
  874. static void
  875. dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc, struct dp_txrx_peer *txrx_peer,
  876. int tid, qdf_nbuf_t nbuf, uint16_t hdrsize)
  877. {
  878. struct llc_snap_hdr_t *llchdr;
  879. struct ethernet_hdr_t *eth_hdr;
  880. uint8_t ether_type[2];
  881. uint16_t fc = 0;
  882. union dp_align_mac_addr mac_addr;
  883. uint8_t *rx_desc_info = qdf_mem_malloc(soc->rx_pkt_tlv_size);
  884. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  885. struct ieee80211_frame_addr4 wh = {0};
  886. hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(nbuf), rx_tid->pn128);
  887. hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf));
  888. if (!rx_desc_info) {
  889. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  890. "%s: Memory alloc failed ! ", __func__);
  891. QDF_ASSERT(0);
  892. return;
  893. }
  894. qdf_mem_zero(&wh, sizeof(struct ieee80211_frame_addr4));
  895. if (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc, qdf_nbuf_data(nbuf)))
  896. qdf_mem_copy(&wh, qdf_nbuf_data(nbuf) + soc->rx_pkt_tlv_size,
  897. hdrsize);
  898. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), soc->rx_pkt_tlv_size);
  899. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  900. soc->rx_pkt_tlv_size + hdrsize);
  901. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  902. qdf_nbuf_pull_head(nbuf, (soc->rx_pkt_tlv_size + hdrsize +
  903. sizeof(struct llc_snap_hdr_t) -
  904. sizeof(struct ethernet_hdr_t)));
  905. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  906. if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  907. rx_desc_info))
  908. fc = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_desc_info);
  909. dp_debug("Frame control type: 0x%x", fc);
  910. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  911. case IEEE80211_FC1_DIR_NODS:
  912. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  913. &mac_addr.raw[0]);
  914. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  915. QDF_MAC_ADDR_SIZE);
  916. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  917. &mac_addr.raw[0]);
  918. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  919. QDF_MAC_ADDR_SIZE);
  920. break;
  921. case IEEE80211_FC1_DIR_TODS:
  922. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  923. &mac_addr.raw[0]);
  924. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  925. QDF_MAC_ADDR_SIZE);
  926. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  927. &mac_addr.raw[0]);
  928. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  929. QDF_MAC_ADDR_SIZE);
  930. break;
  931. case IEEE80211_FC1_DIR_FROMDS:
  932. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  933. &mac_addr.raw[0]);
  934. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  935. QDF_MAC_ADDR_SIZE);
  936. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  937. &mac_addr.raw[0]);
  938. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  939. QDF_MAC_ADDR_SIZE);
  940. break;
  941. case IEEE80211_FC1_DIR_DSTODS:
  942. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  943. &mac_addr.raw[0]);
  944. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  945. QDF_MAC_ADDR_SIZE);
  946. qdf_mem_copy(eth_hdr->src_addr, &wh.i_addr4[0],
  947. QDF_MAC_ADDR_SIZE);
  948. break;
  949. default:
  950. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  951. "%s: Unknown frame control type: 0x%x", __func__, fc);
  952. }
  953. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  954. sizeof(ether_type));
  955. qdf_nbuf_push_head(nbuf, soc->rx_pkt_tlv_size);
  956. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, soc->rx_pkt_tlv_size);
  957. qdf_mem_free(rx_desc_info);
  958. }
  959. #ifdef RX_DEFRAG_DO_NOT_REINJECT
  960. /**
  961. * dp_rx_defrag_deliver() - Deliver defrag packet to stack
  962. * @txrx_peer: Pointer to the peer
  963. * @tid: Transmit Identifier
  964. * @head: Nbuf to be delivered
  965. *
  966. * Return: None
  967. */
  968. static inline void dp_rx_defrag_deliver(struct dp_txrx_peer *txrx_peer,
  969. unsigned int tid,
  970. qdf_nbuf_t head)
  971. {
  972. struct dp_vdev *vdev = txrx_peer->vdev;
  973. struct dp_soc *soc = vdev->pdev->soc;
  974. qdf_nbuf_t deliver_list_head = NULL;
  975. qdf_nbuf_t deliver_list_tail = NULL;
  976. uint8_t *rx_tlv_hdr;
  977. rx_tlv_hdr = qdf_nbuf_data(head);
  978. QDF_NBUF_CB_RX_VDEV_ID(head) = vdev->vdev_id;
  979. qdf_nbuf_set_tid_val(head, tid);
  980. qdf_nbuf_pull_head(head, soc->rx_pkt_tlv_size);
  981. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail,
  982. head);
  983. dp_rx_deliver_to_stack(soc, vdev, txrx_peer, deliver_list_head,
  984. deliver_list_tail);
  985. }
  986. /**
  987. * dp_rx_defrag_reo_reinject() - Reinject the fragment chain back into REO
  988. * @txrx_peer: Pointer to the peer
  989. * @tid: Transmit Identifier
  990. * @head: Buffer to be reinjected back
  991. *
  992. * Reinject the fragment chain back into REO
  993. *
  994. * Return: QDF_STATUS
  995. */
  996. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_txrx_peer *txrx_peer,
  997. unsigned int tid, qdf_nbuf_t head)
  998. {
  999. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1000. rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
  1001. dp_rx_defrag_deliver(txrx_peer, tid, head);
  1002. rx_reorder_array_elem->head = NULL;
  1003. rx_reorder_array_elem->tail = NULL;
  1004. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1005. return QDF_STATUS_SUCCESS;
  1006. }
  1007. #else
  1008. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1009. /**
  1010. * dp_rx_reinject_ring_record_entry() - Record reinject ring history
  1011. * @soc: Datapath soc structure
  1012. * @paddr: paddr of the buffer reinjected to SW2REO ring
  1013. * @sw_cookie: SW cookie of the buffer reinjected to SW2REO ring
  1014. * @rbm: Return buffer manager of the buffer reinjected to SW2REO ring
  1015. *
  1016. * Return: None
  1017. */
  1018. static inline void
  1019. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1020. uint32_t sw_cookie, uint8_t rbm)
  1021. {
  1022. struct dp_buf_info_record *record;
  1023. uint32_t idx;
  1024. if (qdf_unlikely(!soc->rx_reinject_ring_history))
  1025. return;
  1026. idx = dp_history_get_next_index(&soc->rx_reinject_ring_history->index,
  1027. DP_RX_REINJECT_HIST_MAX);
  1028. /* No NULL check needed for record since its an array */
  1029. record = &soc->rx_reinject_ring_history->entry[idx];
  1030. record->timestamp = qdf_get_log_timestamp();
  1031. record->hbi.paddr = paddr;
  1032. record->hbi.sw_cookie = sw_cookie;
  1033. record->hbi.rbm = rbm;
  1034. }
  1035. #else
  1036. static inline void
  1037. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1038. uint32_t sw_cookie, uint8_t rbm)
  1039. {
  1040. }
  1041. #endif
  1042. /**
  1043. * dp_rx_defrag_reo_reinject() - Reinject the fragment chain back into REO
  1044. * @txrx_peer: Pointer to the txrx_peer
  1045. * @tid: Transmit Identifier
  1046. * @head: Buffer to be reinjected back
  1047. *
  1048. * Reinject the fragment chain back into REO
  1049. *
  1050. * Return: QDF_STATUS
  1051. */
  1052. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_txrx_peer *txrx_peer,
  1053. unsigned int tid, qdf_nbuf_t head)
  1054. {
  1055. struct dp_pdev *pdev = txrx_peer->vdev->pdev;
  1056. struct dp_soc *soc = pdev->soc;
  1057. struct hal_buf_info buf_info;
  1058. struct hal_buf_info temp_buf_info;
  1059. void *link_desc_va;
  1060. void *msdu0, *msdu_desc_info;
  1061. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  1062. void *dst_mpdu_desc_info;
  1063. uint64_t dst_qdesc_addr;
  1064. qdf_dma_addr_t paddr;
  1065. uint32_t nbuf_len, seq_no, dst_ind;
  1066. uint32_t ret, cookie;
  1067. hal_ring_desc_t dst_ring_desc =
  1068. txrx_peer->rx_tid[tid].dst_ring_desc;
  1069. hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
  1070. struct dp_rx_desc *rx_desc = txrx_peer->rx_tid[tid].head_frag_desc;
  1071. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1072. txrx_peer->rx_tid[tid].array;
  1073. qdf_nbuf_t nbuf_head;
  1074. struct rx_desc_pool *rx_desc_pool = NULL;
  1075. void *buf_addr_info = HAL_RX_REO_BUF_ADDR_INFO_GET(dst_ring_desc);
  1076. uint8_t rx_defrag_rbm_id = dp_rx_get_defrag_bm_id(soc);
  1077. /* do duplicate link desc address check */
  1078. dp_rx_link_desc_refill_duplicate_check(
  1079. soc,
  1080. &soc->last_op_info.reo_reinject_link_desc,
  1081. buf_addr_info);
  1082. nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
  1083. if (qdf_unlikely(!nbuf_head)) {
  1084. dp_err_rl("IPA RX REO reinject failed");
  1085. return QDF_STATUS_E_FAILURE;
  1086. }
  1087. /* update new allocated skb in case IPA is enabled */
  1088. if (nbuf_head != head) {
  1089. head = nbuf_head;
  1090. rx_desc->nbuf = head;
  1091. rx_reorder_array_elem->head = head;
  1092. }
  1093. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  1094. if (!ent_ring_desc) {
  1095. dp_err_rl("HAL src ring next entry NULL");
  1096. return QDF_STATUS_E_FAILURE;
  1097. }
  1098. hal_rx_reo_buf_paddr_get(soc->hal_soc, dst_ring_desc, &buf_info);
  1099. /* buffer_addr_info is the first element of ring_desc */
  1100. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)dst_ring_desc,
  1101. &buf_info);
  1102. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  1103. qdf_assert_always(link_desc_va);
  1104. msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
  1105. nbuf_len = qdf_nbuf_len(head) - soc->rx_pkt_tlv_size;
  1106. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  1107. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  1108. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  1109. /* msdu reconfig */
  1110. msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
  1111. dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
  1112. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  1113. hal_msdu_desc_info_set(soc->hal_soc, msdu_desc_info, dst_ind, nbuf_len);
  1114. /* change RX TLV's */
  1115. hal_rx_tlv_msdu_len_set(soc->hal_soc, qdf_nbuf_data(head), nbuf_len);
  1116. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)msdu0,
  1117. &temp_buf_info);
  1118. cookie = temp_buf_info.sw_cookie;
  1119. rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id];
  1120. /* map the nbuf before reinject it into HW */
  1121. ret = qdf_nbuf_map_nbytes_single(soc->osdev, head,
  1122. QDF_DMA_FROM_DEVICE,
  1123. rx_desc_pool->buf_size);
  1124. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  1125. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1126. "%s: nbuf map failed !", __func__);
  1127. return QDF_STATUS_E_FAILURE;
  1128. }
  1129. dp_ipa_handle_rx_buf_smmu_mapping(soc, head,
  1130. rx_desc_pool->buf_size, true,
  1131. __func__, __LINE__);
  1132. dp_audio_smmu_map(soc->osdev,
  1133. qdf_mem_paddr_from_dmaaddr(soc->osdev,
  1134. QDF_NBUF_CB_PADDR(head)),
  1135. QDF_NBUF_CB_PADDR(head), rx_desc_pool->buf_size);
  1136. /*
  1137. * As part of rx frag handler buffer was unmapped and rx desc
  1138. * unmapped is set to 1. So again for defrag reinject frame reset
  1139. * it back to 0.
  1140. */
  1141. rx_desc->unmapped = 0;
  1142. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  1143. ret = dp_check_paddr(soc, &head, &paddr, rx_desc_pool);
  1144. if (ret == QDF_STATUS_E_FAILURE) {
  1145. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1146. "%s: x86 check failed !", __func__);
  1147. return QDF_STATUS_E_FAILURE;
  1148. }
  1149. hal_rxdma_buff_addr_info_set(soc->hal_soc, msdu0, paddr, cookie,
  1150. rx_defrag_rbm_id);
  1151. /* Lets fill entrance ring now !!! */
  1152. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  1153. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1154. "HAL RING Access For REO entrance SRNG Failed: %pK",
  1155. hal_srng);
  1156. return QDF_STATUS_E_FAILURE;
  1157. }
  1158. dp_rx_reinject_ring_record_entry(soc, paddr, cookie,
  1159. rx_defrag_rbm_id);
  1160. paddr = (uint64_t)buf_info.paddr;
  1161. /* buf addr */
  1162. hal_rxdma_buff_addr_info_set(soc->hal_soc, ent_ring_desc, paddr,
  1163. buf_info.sw_cookie,
  1164. soc->idle_link_bm_id);
  1165. /* mpdu desc info */
  1166. ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
  1167. ent_ring_desc);
  1168. dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
  1169. dst_ring_desc);
  1170. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  1171. sizeof(struct rx_mpdu_desc_info));
  1172. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  1173. seq_no = hal_rx_get_rx_sequence(soc->hal_soc, rx_desc->rx_buf_start);
  1174. hal_mpdu_desc_info_set(soc->hal_soc, ent_ring_desc, ent_mpdu_desc_info,
  1175. seq_no);
  1176. /* qdesc addr */
  1177. ent_qdesc_addr = hal_get_reo_ent_desc_qdesc_addr(soc->hal_soc,
  1178. (uint8_t *)ent_ring_desc);
  1179. dst_qdesc_addr = soc->arch_ops.get_reo_qdesc_addr(
  1180. soc->hal_soc,
  1181. (uint8_t *)dst_ring_desc,
  1182. qdf_nbuf_data(head),
  1183. txrx_peer, tid);
  1184. qdf_mem_copy(ent_qdesc_addr, &dst_qdesc_addr, 5);
  1185. hal_set_reo_ent_desc_reo_dest_ind(soc->hal_soc,
  1186. (uint8_t *)ent_ring_desc, dst_ind);
  1187. hal_srng_access_end(soc->hal_soc, hal_srng);
  1188. DP_STATS_INC(soc, rx.reo_reinject, 1);
  1189. dp_debug("reinjection done !");
  1190. return QDF_STATUS_SUCCESS;
  1191. }
  1192. #endif
  1193. /**
  1194. * dp_rx_defrag_gcmp_demic() - Remove MIC information from GCMP fragment
  1195. * @soc: Datapath soc structure
  1196. * @nbuf: Pointer to the fragment buffer
  1197. * @hdrlen: 802.11 header length
  1198. *
  1199. * Remove MIC information from GCMP fragment
  1200. *
  1201. * Return: QDF_STATUS
  1202. */
  1203. static QDF_STATUS dp_rx_defrag_gcmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1204. uint16_t hdrlen)
  1205. {
  1206. uint8_t *ivp, *orig_hdr;
  1207. int rx_desc_len = soc->rx_pkt_tlv_size;
  1208. /* start of the 802.11 header */
  1209. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  1210. /*
  1211. * GCMP header is located after 802.11 header and EXTIV
  1212. * field should always be set to 1 for GCMP protocol.
  1213. */
  1214. ivp = orig_hdr + hdrlen;
  1215. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  1216. return QDF_STATUS_E_DEFRAG_ERROR;
  1217. qdf_nbuf_trim_tail(nbuf, dp_f_gcmp.ic_trailer);
  1218. return QDF_STATUS_SUCCESS;
  1219. }
  1220. QDF_STATUS dp_rx_defrag(struct dp_txrx_peer *txrx_peer, unsigned int tid,
  1221. qdf_nbuf_t frag_list_head,
  1222. qdf_nbuf_t frag_list_tail)
  1223. {
  1224. qdf_nbuf_t tmp_next;
  1225. qdf_nbuf_t cur = frag_list_head, msdu;
  1226. uint32_t index, tkip_demic = 0;
  1227. uint16_t hdr_space;
  1228. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  1229. struct dp_vdev *vdev = txrx_peer->vdev;
  1230. struct dp_soc *soc = vdev->pdev->soc;
  1231. uint8_t status = 0;
  1232. if (!cur)
  1233. return QDF_STATUS_E_DEFRAG_ERROR;
  1234. hdr_space = dp_rx_defrag_hdrsize(soc, cur);
  1235. index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, cur) ?
  1236. dp_sec_mcast : dp_sec_ucast;
  1237. /* Remove FCS from all fragments */
  1238. while (cur) {
  1239. tmp_next = qdf_nbuf_next(cur);
  1240. qdf_nbuf_set_next(cur, NULL);
  1241. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  1242. qdf_nbuf_set_next(cur, tmp_next);
  1243. cur = tmp_next;
  1244. }
  1245. cur = frag_list_head;
  1246. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1247. "%s: index %d Security type: %d", __func__,
  1248. index, txrx_peer->security[index].sec_type);
  1249. switch (txrx_peer->security[index].sec_type) {
  1250. case cdp_sec_type_tkip:
  1251. tkip_demic = 1;
  1252. fallthrough;
  1253. case cdp_sec_type_tkip_nomic:
  1254. while (cur) {
  1255. tmp_next = qdf_nbuf_next(cur);
  1256. if (dp_rx_defrag_tkip_decap(soc, cur, hdr_space)) {
  1257. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1258. QDF_TRACE_LEVEL_ERROR,
  1259. "dp_rx_defrag: TKIP decap failed");
  1260. return QDF_STATUS_E_DEFRAG_ERROR;
  1261. }
  1262. cur = tmp_next;
  1263. }
  1264. /* If success, increment header to be stripped later */
  1265. hdr_space += dp_f_tkip.ic_header;
  1266. break;
  1267. case cdp_sec_type_aes_ccmp:
  1268. while (cur) {
  1269. tmp_next = qdf_nbuf_next(cur);
  1270. if (dp_rx_defrag_ccmp_demic(soc, cur, hdr_space)) {
  1271. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1272. QDF_TRACE_LEVEL_ERROR,
  1273. "dp_rx_defrag: CCMP demic failed");
  1274. return QDF_STATUS_E_DEFRAG_ERROR;
  1275. }
  1276. if (dp_rx_defrag_ccmp_decap(soc, cur, hdr_space)) {
  1277. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1278. QDF_TRACE_LEVEL_ERROR,
  1279. "dp_rx_defrag: CCMP decap failed");
  1280. return QDF_STATUS_E_DEFRAG_ERROR;
  1281. }
  1282. cur = tmp_next;
  1283. }
  1284. /* If success, increment header to be stripped later */
  1285. hdr_space += dp_f_ccmp.ic_header;
  1286. break;
  1287. case cdp_sec_type_wep40:
  1288. case cdp_sec_type_wep104:
  1289. case cdp_sec_type_wep128:
  1290. while (cur) {
  1291. tmp_next = qdf_nbuf_next(cur);
  1292. if (dp_rx_defrag_wep_decap(soc, cur, hdr_space)) {
  1293. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1294. QDF_TRACE_LEVEL_ERROR,
  1295. "dp_rx_defrag: WEP decap failed");
  1296. return QDF_STATUS_E_DEFRAG_ERROR;
  1297. }
  1298. cur = tmp_next;
  1299. }
  1300. /* If success, increment header to be stripped later */
  1301. hdr_space += dp_f_wep.ic_header;
  1302. break;
  1303. case cdp_sec_type_aes_gcmp:
  1304. case cdp_sec_type_aes_gcmp_256:
  1305. while (cur) {
  1306. tmp_next = qdf_nbuf_next(cur);
  1307. if (dp_rx_defrag_gcmp_demic(soc, cur, hdr_space)) {
  1308. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1309. QDF_TRACE_LEVEL_ERROR,
  1310. "dp_rx_defrag: GCMP demic failed");
  1311. return QDF_STATUS_E_DEFRAG_ERROR;
  1312. }
  1313. cur = tmp_next;
  1314. }
  1315. hdr_space += dp_f_gcmp.ic_header;
  1316. break;
  1317. default:
  1318. break;
  1319. }
  1320. if (tkip_demic) {
  1321. msdu = frag_list_head;
  1322. qdf_mem_copy(key,
  1323. &txrx_peer->security[index].michael_key[0],
  1324. IEEE80211_WEP_MICLEN);
  1325. status = dp_rx_defrag_tkip_demic(soc, key, msdu,
  1326. soc->rx_pkt_tlv_size +
  1327. hdr_space);
  1328. if (status) {
  1329. dp_rx_defrag_err(vdev, frag_list_head);
  1330. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1331. QDF_TRACE_LEVEL_ERROR,
  1332. "%s: TKIP demic failed status %d",
  1333. __func__, status);
  1334. return QDF_STATUS_E_DEFRAG_ERROR;
  1335. }
  1336. }
  1337. /* Convert the header to 802.3 header */
  1338. dp_rx_defrag_nwifi_to_8023(soc, txrx_peer, tid, frag_list_head,
  1339. hdr_space);
  1340. if (qdf_nbuf_next(frag_list_head)) {
  1341. if (dp_rx_construct_fraglist(txrx_peer, tid, frag_list_head,
  1342. hdr_space))
  1343. return QDF_STATUS_E_DEFRAG_ERROR;
  1344. }
  1345. return QDF_STATUS_SUCCESS;
  1346. }
  1347. void dp_rx_defrag_cleanup(struct dp_txrx_peer *txrx_peer, unsigned int tid)
  1348. {
  1349. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1350. txrx_peer->rx_tid[tid].array;
  1351. if (rx_reorder_array_elem) {
  1352. /* Free up nbufs */
  1353. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1354. rx_reorder_array_elem->head = NULL;
  1355. rx_reorder_array_elem->tail = NULL;
  1356. } else {
  1357. dp_info("Cleanup self peer %pK and TID %u",
  1358. txrx_peer, tid);
  1359. }
  1360. /* Free up saved ring descriptors */
  1361. dp_rx_clear_saved_desc_info(txrx_peer, tid);
  1362. txrx_peer->rx_tid[tid].defrag_timeout_ms = 0;
  1363. txrx_peer->rx_tid[tid].curr_frag_num = 0;
  1364. txrx_peer->rx_tid[tid].curr_seq_num = 0;
  1365. }
  1366. #ifdef DP_RX_DEFRAG_ADDR1_CHECK_WAR
  1367. #ifdef WLAN_FEATURE_11BE_MLO
  1368. /**
  1369. * dp_rx_defrag_vdev_mac_addr_cmp() - function to check whether mac address
  1370. * matches VDEV mac
  1371. * @vdev: dp_vdev object of the VDEV on which this data packet is received
  1372. * @mac_addr: Address to compare
  1373. *
  1374. * Return: 1 if the mac matching,
  1375. * 0 if this frame is not correctly destined to this VDEV/MLD
  1376. */
  1377. static int dp_rx_defrag_vdev_mac_addr_cmp(struct dp_vdev *vdev,
  1378. uint8_t *mac_addr)
  1379. {
  1380. return ((qdf_mem_cmp(mac_addr, &vdev->mac_addr.raw[0],
  1381. QDF_MAC_ADDR_SIZE) == 0) ||
  1382. (qdf_mem_cmp(mac_addr, &vdev->mld_mac_addr.raw[0],
  1383. QDF_MAC_ADDR_SIZE) == 0));
  1384. }
  1385. #else
  1386. static int dp_rx_defrag_vdev_mac_addr_cmp(struct dp_vdev *vdev,
  1387. uint8_t *mac_addr)
  1388. {
  1389. return (qdf_mem_cmp(mac_addr, &vdev->mac_addr.raw[0],
  1390. QDF_MAC_ADDR_SIZE) == 0);
  1391. }
  1392. #endif
  1393. static bool dp_rx_defrag_addr1_check(struct dp_soc *soc,
  1394. struct dp_vdev *vdev,
  1395. uint8_t *rx_tlv_hdr)
  1396. {
  1397. union dp_align_mac_addr mac_addr;
  1398. /* If address1 is not valid discard the fragment */
  1399. if (hal_rx_mpdu_get_addr1(soc->hal_soc, rx_tlv_hdr,
  1400. &mac_addr.raw[0]) != QDF_STATUS_SUCCESS) {
  1401. DP_STATS_INC(soc, rx.err.defrag_ad1_invalid, 1);
  1402. return false;
  1403. }
  1404. /* WAR suggested by HW team to avoid crashing incase of packet
  1405. * corruption issue
  1406. *
  1407. * recipe is to compare VDEV mac or MLD mac address with ADDR1
  1408. * in case of mismatch consider it as corrupted packet and do
  1409. * not process further
  1410. */
  1411. if (!dp_rx_defrag_vdev_mac_addr_cmp(vdev,
  1412. &mac_addr.raw[0])) {
  1413. DP_STATS_INC(soc, rx.err.defrag_ad1_invalid, 1);
  1414. return false;
  1415. }
  1416. return true;
  1417. }
  1418. #else
  1419. static inline bool dp_rx_defrag_addr1_check(struct dp_soc *soc,
  1420. struct dp_vdev *vdev,
  1421. uint8_t *rx_tlv_hdr)
  1422. {
  1423. return true;
  1424. }
  1425. #endif
  1426. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1427. struct dp_txrx_peer *txrx_peer,
  1428. uint16_t tid,
  1429. uint16_t rxseq, qdf_nbuf_t nbuf)
  1430. {
  1431. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  1432. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1433. uint8_t all_frag_present;
  1434. uint32_t msdu_len;
  1435. QDF_STATUS status;
  1436. rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
  1437. /*
  1438. * HW may fill in unexpected peer_id in RX PKT TLV,
  1439. * if this peer_id related peer is valid by coincidence,
  1440. * but actually this peer won't do dp_peer_rx_init(like SAP vdev
  1441. * self peer), then invalid access to rx_reorder_array_elem happened.
  1442. */
  1443. if (!rx_reorder_array_elem) {
  1444. dp_verbose_debug(
  1445. "peer id:%d drop rx frame!",
  1446. txrx_peer->peer_id);
  1447. DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
  1448. dp_rx_nbuf_free(nbuf);
  1449. goto fail;
  1450. }
  1451. if (rx_reorder_array_elem->head &&
  1452. rxseq != rx_tid->curr_seq_num) {
  1453. /* Drop stored fragments if out of sequence
  1454. * fragment is received
  1455. */
  1456. dp_rx_reorder_flush_frag(txrx_peer, tid);
  1457. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1458. "%s: No list found for TID %d Seq# %d",
  1459. __func__, tid, rxseq);
  1460. dp_rx_nbuf_free(nbuf);
  1461. goto fail;
  1462. }
  1463. msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
  1464. qdf_nbuf_data(nbuf));
  1465. qdf_nbuf_set_pktlen(nbuf, (msdu_len + soc->rx_pkt_tlv_size));
  1466. status = dp_rx_defrag_fraglist_insert(txrx_peer, tid,
  1467. &rx_reorder_array_elem->head,
  1468. &rx_reorder_array_elem->tail, nbuf,
  1469. &all_frag_present);
  1470. if (QDF_IS_STATUS_ERROR(status)) {
  1471. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1472. "%s Fragment insert failed", __func__);
  1473. goto fail;
  1474. }
  1475. if (soc->rx.flags.defrag_timeout_check)
  1476. dp_rx_defrag_waitlist_remove(txrx_peer, tid);
  1477. if (!all_frag_present) {
  1478. uint32_t now_ms =
  1479. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1480. txrx_peer->rx_tid[tid].defrag_timeout_ms =
  1481. now_ms + soc->rx.defrag.timeout_ms;
  1482. dp_rx_defrag_waitlist_add(txrx_peer, tid);
  1483. return QDF_STATUS_SUCCESS;
  1484. }
  1485. status = dp_rx_defrag(txrx_peer, tid, rx_reorder_array_elem->head,
  1486. rx_reorder_array_elem->tail);
  1487. if (QDF_IS_STATUS_ERROR(status)) {
  1488. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1489. "%s Fragment processing failed", __func__);
  1490. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1491. dp_rx_defrag_cleanup(txrx_peer, tid);
  1492. goto fail;
  1493. }
  1494. /* Re-inject the fragments back to REO for further processing */
  1495. status = dp_rx_defrag_reo_reinject(txrx_peer, tid,
  1496. rx_reorder_array_elem->head);
  1497. if (QDF_IS_STATUS_SUCCESS(status)) {
  1498. rx_reorder_array_elem->head = NULL;
  1499. rx_reorder_array_elem->tail = NULL;
  1500. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1501. "%s: Frag seq successfully reinjected",
  1502. __func__);
  1503. } else {
  1504. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1505. "%s: Frag seq reinjection failed", __func__);
  1506. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1507. }
  1508. dp_rx_defrag_cleanup(txrx_peer, tid);
  1509. return QDF_STATUS_SUCCESS;
  1510. fail:
  1511. return QDF_STATUS_E_DEFRAG_ERROR;
  1512. }
  1513. #ifndef WLAN_SOFTUMAC_SUPPORT /* WLAN_SOFTUMAC_SUPPORT */
  1514. /**
  1515. * dp_rx_defrag_save_info_from_ring_desc() - Save info from REO ring descriptor
  1516. * @soc: Pointer to the SOC data structure
  1517. * @ring_desc: Pointer to the dst ring descriptor
  1518. * @rx_desc: Pointer to rx descriptor
  1519. * @txrx_peer: Pointer to the peer
  1520. * @tid: Transmit Identifier
  1521. *
  1522. * Return: None
  1523. */
  1524. static QDF_STATUS
  1525. dp_rx_defrag_save_info_from_ring_desc(struct dp_soc *soc,
  1526. hal_ring_desc_t ring_desc,
  1527. struct dp_rx_desc *rx_desc,
  1528. struct dp_txrx_peer *txrx_peer,
  1529. unsigned int tid)
  1530. {
  1531. void *dst_ring_desc;
  1532. dst_ring_desc = qdf_mem_malloc(hal_srng_get_entrysize(soc->hal_soc,
  1533. REO_DST));
  1534. if (!dst_ring_desc) {
  1535. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1536. "%s: Memory alloc failed !", __func__);
  1537. QDF_ASSERT(0);
  1538. return QDF_STATUS_E_NOMEM;
  1539. }
  1540. qdf_mem_copy(dst_ring_desc, ring_desc,
  1541. hal_srng_get_entrysize(soc->hal_soc, REO_DST));
  1542. txrx_peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1543. txrx_peer->rx_tid[tid].head_frag_desc = rx_desc;
  1544. return QDF_STATUS_SUCCESS;
  1545. }
  1546. /**
  1547. * dp_rx_defrag_store_fragment() - Store incoming fragments
  1548. * @soc: Pointer to the SOC data structure
  1549. * @ring_desc: Pointer to the ring descriptor
  1550. * @head:
  1551. * @tail:
  1552. * @mpdu_desc_info: MPDU descriptor info
  1553. * @tid: Traffic Identifier
  1554. * @rx_desc: Pointer to rx descriptor
  1555. * @rx_bfs: Number of bfs consumed
  1556. *
  1557. * Return: QDF_STATUS
  1558. */
  1559. static QDF_STATUS
  1560. dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1561. hal_ring_desc_t ring_desc,
  1562. union dp_rx_desc_list_elem_t **head,
  1563. union dp_rx_desc_list_elem_t **tail,
  1564. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1565. unsigned int tid, struct dp_rx_desc *rx_desc,
  1566. uint32_t *rx_bfs)
  1567. {
  1568. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1569. struct dp_pdev *pdev;
  1570. struct dp_txrx_peer *txrx_peer = NULL;
  1571. dp_txrx_ref_handle txrx_ref_handle = NULL;
  1572. uint16_t peer_id;
  1573. uint8_t fragno, more_frag, all_frag_present = 0;
  1574. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1575. QDF_STATUS status;
  1576. struct dp_rx_tid_defrag *rx_tid;
  1577. uint8_t mpdu_sequence_control_valid;
  1578. uint8_t mpdu_frame_control_valid;
  1579. qdf_nbuf_t frag = rx_desc->nbuf;
  1580. uint32_t msdu_len;
  1581. if (qdf_nbuf_len(frag) > 0) {
  1582. dp_info("Dropping unexpected packet with skb_len: %d "
  1583. "data len: %d cookie: %d",
  1584. (uint32_t)qdf_nbuf_len(frag), frag->data_len,
  1585. rx_desc->cookie);
  1586. DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
  1587. goto discard_frag;
  1588. }
  1589. if (dp_rx_buffer_pool_refill(soc, frag, rx_desc->pool_id)) {
  1590. /* fragment queued back to the pool, free the link desc */
  1591. goto err_free_desc;
  1592. }
  1593. msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
  1594. rx_desc->rx_buf_start);
  1595. qdf_nbuf_set_pktlen(frag, (msdu_len + soc->rx_pkt_tlv_size));
  1596. qdf_nbuf_append_ext_list(frag, NULL, 0);
  1597. /* Check if the packet is from a valid peer */
  1598. peer_id = dp_rx_peer_metadata_peer_id_get(soc,
  1599. mpdu_desc_info->peer_meta_data);
  1600. txrx_peer = dp_txrx_peer_get_ref_by_id(soc, peer_id, &txrx_ref_handle,
  1601. DP_MOD_ID_RX_ERR);
  1602. if (!txrx_peer) {
  1603. /* We should not receive anything from unknown peer
  1604. * however, that might happen while we are in the monitor mode.
  1605. * We don't need to handle that here
  1606. */
  1607. dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
  1608. peer_id);
  1609. DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
  1610. goto discard_frag;
  1611. }
  1612. if (tid >= DP_MAX_TIDS) {
  1613. dp_info("TID out of bounds: %d", tid);
  1614. qdf_assert_always(0);
  1615. goto discard_frag;
  1616. }
  1617. if (!dp_rx_defrag_addr1_check(soc, txrx_peer->vdev,
  1618. rx_desc->rx_buf_start)) {
  1619. dp_info("Invalid address 1");
  1620. goto discard_frag;
  1621. }
  1622. mpdu_sequence_control_valid =
  1623. hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
  1624. rx_desc->rx_buf_start);
  1625. /* Invalid MPDU sequence control field, MPDU is of no use */
  1626. if (!mpdu_sequence_control_valid) {
  1627. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1628. "Invalid MPDU seq control field, dropping MPDU");
  1629. qdf_assert(0);
  1630. goto discard_frag;
  1631. }
  1632. mpdu_frame_control_valid =
  1633. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  1634. rx_desc->rx_buf_start);
  1635. /* Invalid frame control field */
  1636. if (!mpdu_frame_control_valid) {
  1637. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1638. "Invalid frame control field, dropping MPDU");
  1639. qdf_assert(0);
  1640. goto discard_frag;
  1641. }
  1642. /* Current mpdu sequence */
  1643. more_frag = dp_rx_frag_get_more_frag_bit(soc, rx_desc->rx_buf_start);
  1644. /* HW does not populate the fragment number as of now
  1645. * need to get from the 802.11 header
  1646. */
  1647. fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc->rx_buf_start);
  1648. pdev = txrx_peer->vdev->pdev;
  1649. rx_tid = &txrx_peer->rx_tid[tid];
  1650. dp_rx_err_send_pktlog(soc, pdev, mpdu_desc_info, frag,
  1651. QDF_TX_RX_STATUS_OK, false);
  1652. qdf_spin_lock_bh(&rx_tid->defrag_tid_lock);
  1653. rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
  1654. if (!rx_reorder_array_elem) {
  1655. dp_err_rl("Rcvd Fragmented pkt before tid setup for peer %pK",
  1656. txrx_peer);
  1657. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1658. goto discard_frag;
  1659. }
  1660. /*
  1661. * !more_frag: no more fragments to be delivered
  1662. * !frag_no: packet is not fragmented
  1663. * !rx_reorder_array_elem->head: no saved fragments so far
  1664. */
  1665. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1666. /* We should not get into this situation here.
  1667. * It means an unfragmented packet with fragment flag
  1668. * is delivered over the REO exception ring.
  1669. * Typically it follows normal rx path.
  1670. */
  1671. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1672. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1673. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1674. qdf_assert(0);
  1675. goto discard_frag;
  1676. }
  1677. /* Check if the fragment is for the same sequence or a different one */
  1678. dp_debug("rx_tid %d", tid);
  1679. if (rx_reorder_array_elem->head) {
  1680. dp_debug("rxseq %d", rxseq);
  1681. if (rxseq != rx_tid->curr_seq_num) {
  1682. dp_debug("mismatch cur_seq %d rxseq %d",
  1683. rx_tid->curr_seq_num, rxseq);
  1684. /* Drop stored fragments if out of sequence
  1685. * fragment is received
  1686. */
  1687. dp_rx_reorder_flush_frag(txrx_peer, tid);
  1688. DP_STATS_INC(soc, rx.rx_frag_oor, 1);
  1689. dp_debug("cur rxseq %d", rxseq);
  1690. /*
  1691. * The sequence number for this fragment becomes the
  1692. * new sequence number to be processed
  1693. */
  1694. rx_tid->curr_seq_num = rxseq;
  1695. }
  1696. } else {
  1697. /* Check if we are processing first fragment if it is
  1698. * not first fragment discard fragment.
  1699. */
  1700. if (fragno) {
  1701. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1702. goto discard_frag;
  1703. }
  1704. dp_debug("cur rxseq %d", rxseq);
  1705. /* Start of a new sequence */
  1706. dp_rx_defrag_cleanup(txrx_peer, tid);
  1707. rx_tid->curr_seq_num = rxseq;
  1708. /* store PN number also */
  1709. }
  1710. /*
  1711. * If the earlier sequence was dropped, this will be the fresh start.
  1712. * Else, continue with next fragment in a given sequence
  1713. */
  1714. status = dp_rx_defrag_fraglist_insert(txrx_peer, tid,
  1715. &rx_reorder_array_elem->head,
  1716. &rx_reorder_array_elem->tail,
  1717. frag, &all_frag_present);
  1718. /*
  1719. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1720. * packet sequence has more than 6 MSDUs for some reason, we will
  1721. * have to use the next MSDU link descriptor and chain them together
  1722. * before reinjection.
  1723. * ring_desc is validated in dp_rx_err_process.
  1724. */
  1725. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1726. (rx_reorder_array_elem->head == frag)) {
  1727. status = dp_rx_defrag_save_info_from_ring_desc(soc, ring_desc,
  1728. rx_desc,
  1729. txrx_peer, tid);
  1730. if (status != QDF_STATUS_SUCCESS) {
  1731. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1732. "%s: Unable to store ring desc !", __func__);
  1733. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1734. goto discard_frag;
  1735. }
  1736. } else {
  1737. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1738. (*rx_bfs)++;
  1739. /* Return the non-head link desc */
  1740. if (dp_rx_link_desc_return(soc, ring_desc,
  1741. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1742. QDF_STATUS_SUCCESS)
  1743. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1744. "%s: Failed to return link desc", __func__);
  1745. }
  1746. if (pdev->soc->rx.flags.defrag_timeout_check)
  1747. dp_rx_defrag_waitlist_remove(txrx_peer, tid);
  1748. /* Yet to receive more fragments for this sequence number */
  1749. if (!all_frag_present) {
  1750. uint32_t now_ms =
  1751. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1752. txrx_peer->rx_tid[tid].defrag_timeout_ms =
  1753. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1754. dp_rx_defrag_waitlist_add(txrx_peer, tid);
  1755. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
  1756. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1757. return QDF_STATUS_SUCCESS;
  1758. }
  1759. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1760. "All fragments received for sequence: %d", rxseq);
  1761. /* Process the fragments */
  1762. status = dp_rx_defrag(txrx_peer, tid, rx_reorder_array_elem->head,
  1763. rx_reorder_array_elem->tail);
  1764. if (QDF_IS_STATUS_ERROR(status)) {
  1765. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1766. "Fragment processing failed");
  1767. dp_rx_add_to_free_desc_list(head, tail,
  1768. txrx_peer->rx_tid[tid].head_frag_desc);
  1769. (*rx_bfs)++;
  1770. if (dp_rx_link_desc_return(soc,
  1771. txrx_peer->rx_tid[tid].dst_ring_desc,
  1772. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1773. QDF_STATUS_SUCCESS)
  1774. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1775. "%s: Failed to return link desc",
  1776. __func__);
  1777. dp_rx_defrag_cleanup(txrx_peer, tid);
  1778. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1779. goto end;
  1780. }
  1781. /* Re-inject the fragments back to REO for further processing */
  1782. status = dp_rx_defrag_reo_reinject(txrx_peer, tid,
  1783. rx_reorder_array_elem->head);
  1784. if (QDF_IS_STATUS_SUCCESS(status)) {
  1785. rx_reorder_array_elem->head = NULL;
  1786. rx_reorder_array_elem->tail = NULL;
  1787. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1788. "Fragmented sequence successfully reinjected");
  1789. } else {
  1790. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1791. "Fragmented sequence reinjection failed");
  1792. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1793. }
  1794. dp_rx_defrag_cleanup(txrx_peer, tid);
  1795. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1796. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
  1797. return QDF_STATUS_SUCCESS;
  1798. discard_frag:
  1799. dp_rx_nbuf_free(frag);
  1800. err_free_desc:
  1801. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1802. if (dp_rx_link_desc_return(soc, ring_desc,
  1803. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1804. QDF_STATUS_SUCCESS)
  1805. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1806. "%s: Failed to return link desc", __func__);
  1807. (*rx_bfs)++;
  1808. end:
  1809. if (txrx_peer)
  1810. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
  1811. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1812. return QDF_STATUS_E_DEFRAG_ERROR;
  1813. }
  1814. uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
  1815. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1816. struct dp_rx_desc *rx_desc,
  1817. uint8_t *mac_id,
  1818. uint32_t quota)
  1819. {
  1820. uint32_t rx_bufs_used = 0;
  1821. qdf_nbuf_t msdu = NULL;
  1822. uint32_t tid;
  1823. uint32_t rx_bfs = 0;
  1824. struct dp_pdev *pdev;
  1825. QDF_STATUS status = QDF_STATUS_SUCCESS;
  1826. struct rx_desc_pool *rx_desc_pool;
  1827. qdf_assert(soc);
  1828. qdf_assert(mpdu_desc_info);
  1829. qdf_assert(rx_desc);
  1830. dp_debug("Number of MSDUs to process, num_msdus: %d",
  1831. mpdu_desc_info->msdu_count);
  1832. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1833. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1834. "Not sufficient MSDUs to process");
  1835. return rx_bufs_used;
  1836. }
  1837. /* all buffers in MSDU link belong to same pdev */
  1838. pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id);
  1839. if (!pdev) {
  1840. dp_nofl_debug("pdev is null for pool_id = %d",
  1841. rx_desc->pool_id);
  1842. return rx_bufs_used;
  1843. }
  1844. *mac_id = rx_desc->pool_id;
  1845. msdu = rx_desc->nbuf;
  1846. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  1847. if (rx_desc->unmapped)
  1848. return rx_bufs_used;
  1849. dp_ipa_rx_buf_smmu_mapping_lock(soc);
  1850. dp_rx_nbuf_unmap_pool(soc, rx_desc_pool, rx_desc->nbuf);
  1851. rx_desc->unmapped = 1;
  1852. dp_ipa_rx_buf_smmu_mapping_unlock(soc);
  1853. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1854. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
  1855. /* Process fragment-by-fragment */
  1856. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1857. &pdev->free_list_head,
  1858. &pdev->free_list_tail,
  1859. mpdu_desc_info,
  1860. tid, rx_desc, &rx_bfs);
  1861. if (rx_bfs)
  1862. rx_bufs_used += rx_bfs;
  1863. if (!QDF_IS_STATUS_SUCCESS(status))
  1864. dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1865. mpdu_desc_info->mpdu_seq,
  1866. mpdu_desc_info->msdu_count,
  1867. mpdu_desc_info->mpdu_flags);
  1868. return rx_bufs_used;
  1869. }
  1870. #endif /* WLAN_SOFTUMAC_SUPPORT */