dp_rx_defrag.c 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181
  1. /*
  2. * Copyright (c) 2017-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #ifndef RX_DEFRAG_DO_NOT_REINJECT
  21. #ifndef DP_BE_WAR
  22. #include "li/hal_li_rx.h"
  23. #endif
  24. #endif
  25. #include "dp_types.h"
  26. #include "dp_rx.h"
  27. #include "dp_peer.h"
  28. #include "hal_api.h"
  29. #include "qdf_trace.h"
  30. #include "qdf_nbuf.h"
  31. #include "dp_internal.h"
  32. #include "dp_rx_defrag.h"
  33. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  34. #include "dp_rx_defrag.h"
  35. #include "dp_ipa.h"
  36. #include "dp_rx_buffer_pool.h"
  37. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  38. "AES-CCM",
  39. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  40. IEEE80211_WEP_MICLEN,
  41. 0,
  42. };
  43. const struct dp_rx_defrag_cipher dp_f_tkip = {
  44. "TKIP",
  45. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  46. IEEE80211_WEP_CRCLEN,
  47. IEEE80211_WEP_MICLEN,
  48. };
  49. const struct dp_rx_defrag_cipher dp_f_wep = {
  50. "WEP",
  51. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  52. IEEE80211_WEP_CRCLEN,
  53. 0,
  54. };
  55. /*
  56. * The header and mic length are same for both
  57. * GCMP-128 and GCMP-256.
  58. */
  59. const struct dp_rx_defrag_cipher dp_f_gcmp = {
  60. "AES-GCMP",
  61. WLAN_IEEE80211_GCMP_HEADERLEN,
  62. WLAN_IEEE80211_GCMP_MICLEN,
  63. WLAN_IEEE80211_GCMP_MICLEN,
  64. };
  65. /*
  66. * dp_rx_defrag_frames_free(): Free fragment chain
  67. * @frames: Fragment chain
  68. *
  69. * Iterates through the fragment chain and frees them
  70. * Returns: None
  71. */
  72. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  73. {
  74. qdf_nbuf_t next, frag = frames;
  75. while (frag) {
  76. next = qdf_nbuf_next(frag);
  77. dp_rx_nbuf_free(frag);
  78. frag = next;
  79. }
  80. }
  81. /*
  82. * dp_rx_clear_saved_desc_info(): Clears descriptor info
  83. * @txrx peer: Pointer to the peer data structure
  84. * @tid: Transmit ID (TID)
  85. *
  86. * Saves MPDU descriptor info and MSDU link pointer from REO
  87. * ring descriptor. The cache is created per peer, per TID
  88. *
  89. * Returns: None
  90. */
  91. static void dp_rx_clear_saved_desc_info(struct dp_txrx_peer *txrx_peer,
  92. unsigned int tid)
  93. {
  94. if (txrx_peer->rx_tid[tid].dst_ring_desc)
  95. qdf_mem_free(txrx_peer->rx_tid[tid].dst_ring_desc);
  96. txrx_peer->rx_tid[tid].dst_ring_desc = NULL;
  97. txrx_peer->rx_tid[tid].head_frag_desc = NULL;
  98. }
  99. static void dp_rx_return_head_frag_desc(struct dp_txrx_peer *txrx_peer,
  100. unsigned int tid)
  101. {
  102. struct dp_soc *soc;
  103. struct dp_pdev *pdev;
  104. struct dp_srng *dp_rxdma_srng;
  105. struct rx_desc_pool *rx_desc_pool;
  106. union dp_rx_desc_list_elem_t *head = NULL;
  107. union dp_rx_desc_list_elem_t *tail = NULL;
  108. uint8_t pool_id;
  109. pdev = txrx_peer->vdev->pdev;
  110. soc = pdev->soc;
  111. if (txrx_peer->rx_tid[tid].head_frag_desc) {
  112. pool_id = txrx_peer->rx_tid[tid].head_frag_desc->pool_id;
  113. dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id];
  114. rx_desc_pool = &soc->rx_desc_buf[pool_id];
  115. dp_rx_add_to_free_desc_list(&head, &tail,
  116. txrx_peer->rx_tid[tid].head_frag_desc);
  117. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  118. 1, &head, &tail, false);
  119. }
  120. if (txrx_peer->rx_tid[tid].dst_ring_desc) {
  121. if (dp_rx_link_desc_return(soc,
  122. txrx_peer->rx_tid[tid].dst_ring_desc,
  123. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  124. QDF_STATUS_SUCCESS)
  125. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  126. "%s: Failed to return link desc", __func__);
  127. }
  128. }
  129. /*
  130. * dp_rx_reorder_flush_frag(): Flush the frag list
  131. * @txrx_peer: Pointer to the peer data structure
  132. * @tid: Transmit ID (TID)
  133. *
  134. * Flush the per-TID frag list
  135. *
  136. * Returns: None
  137. */
  138. void dp_rx_reorder_flush_frag(struct dp_txrx_peer *txrx_peer,
  139. unsigned int tid)
  140. {
  141. dp_info_rl("Flushing TID %d", tid);
  142. if (!txrx_peer) {
  143. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  144. "%s: NULL peer", __func__);
  145. return;
  146. }
  147. dp_rx_return_head_frag_desc(txrx_peer, tid);
  148. dp_rx_defrag_cleanup(txrx_peer, tid);
  149. }
  150. /*
  151. * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
  152. * @soc: DP SOC
  153. *
  154. * Flush fragments of all waitlisted TID's
  155. *
  156. * Returns: None
  157. */
  158. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  159. {
  160. struct dp_rx_tid_defrag *waitlist_elem = NULL;
  161. struct dp_rx_tid_defrag *tmp;
  162. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  163. TAILQ_HEAD(, dp_rx_tid_defrag) temp_list;
  164. dp_txrx_ref_handle txrx_ref_handle = NULL;
  165. TAILQ_INIT(&temp_list);
  166. dp_debug("Current time %u", now_ms);
  167. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  168. TAILQ_FOREACH_SAFE(waitlist_elem, &soc->rx.defrag.waitlist,
  169. defrag_waitlist_elem, tmp) {
  170. uint32_t tid;
  171. if (waitlist_elem->defrag_timeout_ms > now_ms)
  172. break;
  173. tid = waitlist_elem->tid;
  174. if (tid >= DP_MAX_TIDS) {
  175. qdf_assert(0);
  176. continue;
  177. }
  178. TAILQ_REMOVE(&soc->rx.defrag.waitlist, waitlist_elem,
  179. defrag_waitlist_elem);
  180. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  181. /* Move to temp list and clean-up later */
  182. TAILQ_INSERT_TAIL(&temp_list, waitlist_elem,
  183. defrag_waitlist_elem);
  184. }
  185. if (waitlist_elem) {
  186. soc->rx.defrag.next_flush_ms =
  187. waitlist_elem->defrag_timeout_ms;
  188. } else {
  189. soc->rx.defrag.next_flush_ms =
  190. now_ms + soc->rx.defrag.timeout_ms;
  191. }
  192. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  193. TAILQ_FOREACH_SAFE(waitlist_elem, &temp_list,
  194. defrag_waitlist_elem, tmp) {
  195. struct dp_txrx_peer *txrx_peer, *temp_peer = NULL;
  196. qdf_spin_lock_bh(&waitlist_elem->defrag_tid_lock);
  197. TAILQ_REMOVE(&temp_list, waitlist_elem,
  198. defrag_waitlist_elem);
  199. /* get address of current peer */
  200. txrx_peer = waitlist_elem->defrag_peer;
  201. qdf_spin_unlock_bh(&waitlist_elem->defrag_tid_lock);
  202. temp_peer = dp_txrx_peer_get_ref_by_id(soc, txrx_peer->peer_id,
  203. &txrx_ref_handle,
  204. DP_MOD_ID_RX_ERR);
  205. if (temp_peer == txrx_peer) {
  206. qdf_spin_lock_bh(&waitlist_elem->defrag_tid_lock);
  207. dp_rx_reorder_flush_frag(txrx_peer, waitlist_elem->tid);
  208. qdf_spin_unlock_bh(&waitlist_elem->defrag_tid_lock);
  209. }
  210. if (temp_peer)
  211. dp_txrx_peer_unref_delete(txrx_ref_handle,
  212. DP_MOD_ID_RX_ERR);
  213. }
  214. }
  215. /*
  216. * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
  217. * @txrx_peer: Pointer to the peer data structure
  218. * @tid: Transmit ID (TID)
  219. *
  220. * Appends per-tid fragments to global fragment wait list
  221. *
  222. * Returns: None
  223. */
  224. static void dp_rx_defrag_waitlist_add(struct dp_txrx_peer *txrx_peer,
  225. unsigned int tid)
  226. {
  227. struct dp_soc *psoc = txrx_peer->vdev->pdev->soc;
  228. struct dp_rx_tid_defrag *waitlist_elem = &txrx_peer->rx_tid[tid];
  229. dp_debug("Adding TID %u to waitlist for peer %pK with peer_id = %d ",
  230. tid, txrx_peer, txrx_peer->peer_id);
  231. /* TODO: use LIST macros instead of TAIL macros */
  232. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  233. if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
  234. psoc->rx.defrag.next_flush_ms =
  235. waitlist_elem->defrag_timeout_ms;
  236. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, waitlist_elem,
  237. defrag_waitlist_elem);
  238. DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
  239. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  240. }
  241. /*
  242. * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
  243. * @txrx peer: Pointer to the peer data structure
  244. * @tid: Transmit ID (TID)
  245. *
  246. * Remove fragments from waitlist
  247. *
  248. * Returns: None
  249. */
  250. void dp_rx_defrag_waitlist_remove(struct dp_txrx_peer *txrx_peer,
  251. unsigned int tid)
  252. {
  253. struct dp_pdev *pdev = txrx_peer->vdev->pdev;
  254. struct dp_soc *soc = pdev->soc;
  255. struct dp_rx_tid_defrag *waitlist_elm;
  256. struct dp_rx_tid_defrag *tmp;
  257. dp_debug("Removing TID %u to waitlist for peer %pK peer_id = %d ",
  258. tid, txrx_peer, txrx_peer->peer_id);
  259. if (tid >= DP_MAX_TIDS) {
  260. dp_err("TID out of bounds: %d", tid);
  261. qdf_assert_always(0);
  262. }
  263. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  264. TAILQ_FOREACH_SAFE(waitlist_elm, &soc->rx.defrag.waitlist,
  265. defrag_waitlist_elem, tmp) {
  266. struct dp_txrx_peer *peer_on_waitlist;
  267. /* get address of current peer */
  268. peer_on_waitlist = waitlist_elm->defrag_peer;
  269. /* Ensure it is TID for same peer */
  270. if (peer_on_waitlist == txrx_peer && waitlist_elm->tid == tid) {
  271. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  272. waitlist_elm, defrag_waitlist_elem);
  273. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  274. }
  275. }
  276. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  277. }
  278. /*
  279. * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
  280. * @txrx_peer: Pointer to the peer data structure
  281. * @tid: Transmit ID (TID)
  282. * @head_addr: Pointer to head list
  283. * @tail_addr: Pointer to tail list
  284. * @frag: Incoming fragment
  285. * @all_frag_present: Flag to indicate whether all fragments are received
  286. *
  287. * Build a per-tid, per-sequence fragment list.
  288. *
  289. * Returns: Success, if inserted
  290. */
  291. static QDF_STATUS
  292. dp_rx_defrag_fraglist_insert(struct dp_txrx_peer *txrx_peer, unsigned int tid,
  293. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr,
  294. qdf_nbuf_t frag, uint8_t *all_frag_present)
  295. {
  296. struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
  297. qdf_nbuf_t next;
  298. qdf_nbuf_t prev = NULL;
  299. qdf_nbuf_t cur;
  300. uint16_t head_fragno, cur_fragno, next_fragno;
  301. uint8_t last_morefrag = 1, count = 0;
  302. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  303. uint8_t *rx_desc_info;
  304. qdf_assert(frag);
  305. qdf_assert(head_addr);
  306. qdf_assert(tail_addr);
  307. *all_frag_present = 0;
  308. rx_desc_info = qdf_nbuf_data(frag);
  309. cur_fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc_info);
  310. dp_debug("cur_fragno %d\n", cur_fragno);
  311. /* If this is the first fragment */
  312. if (!(*head_addr)) {
  313. *head_addr = *tail_addr = frag;
  314. qdf_nbuf_set_next(*tail_addr, NULL);
  315. rx_tid->curr_frag_num = cur_fragno;
  316. goto insert_done;
  317. }
  318. /* In sequence fragment */
  319. if (cur_fragno > rx_tid->curr_frag_num) {
  320. qdf_nbuf_set_next(*tail_addr, frag);
  321. *tail_addr = frag;
  322. qdf_nbuf_set_next(*tail_addr, NULL);
  323. rx_tid->curr_frag_num = cur_fragno;
  324. } else {
  325. /* Out of sequence fragment */
  326. cur = *head_addr;
  327. rx_desc_info = qdf_nbuf_data(cur);
  328. head_fragno = dp_rx_frag_get_mpdu_frag_number(soc,
  329. rx_desc_info);
  330. if (cur_fragno == head_fragno) {
  331. dp_rx_nbuf_free(frag);
  332. goto insert_fail;
  333. } else if (head_fragno > cur_fragno) {
  334. qdf_nbuf_set_next(frag, cur);
  335. cur = frag;
  336. *head_addr = frag; /* head pointer to be updated */
  337. } else {
  338. while ((cur_fragno > head_fragno) && cur) {
  339. prev = cur;
  340. cur = qdf_nbuf_next(cur);
  341. if (cur) {
  342. rx_desc_info = qdf_nbuf_data(cur);
  343. head_fragno =
  344. dp_rx_frag_get_mpdu_frag_number(
  345. soc,
  346. rx_desc_info);
  347. }
  348. }
  349. if (cur_fragno == head_fragno) {
  350. dp_rx_nbuf_free(frag);
  351. goto insert_fail;
  352. }
  353. qdf_nbuf_set_next(prev, frag);
  354. qdf_nbuf_set_next(frag, cur);
  355. }
  356. }
  357. next = qdf_nbuf_next(*head_addr);
  358. rx_desc_info = qdf_nbuf_data(*tail_addr);
  359. last_morefrag = dp_rx_frag_get_more_frag_bit(soc, rx_desc_info);
  360. /* TODO: optimize the loop */
  361. if (!last_morefrag) {
  362. /* Check if all fragments are present */
  363. do {
  364. rx_desc_info = qdf_nbuf_data(next);
  365. next_fragno =
  366. dp_rx_frag_get_mpdu_frag_number(soc,
  367. rx_desc_info);
  368. count++;
  369. if (next_fragno != count)
  370. break;
  371. next = qdf_nbuf_next(next);
  372. } while (next);
  373. if (!next) {
  374. *all_frag_present = 1;
  375. return QDF_STATUS_SUCCESS;
  376. } else {
  377. /* revisit */
  378. }
  379. }
  380. insert_done:
  381. return QDF_STATUS_SUCCESS;
  382. insert_fail:
  383. return QDF_STATUS_E_FAILURE;
  384. }
  385. /*
  386. * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
  387. * @msdu: Pointer to the fragment
  388. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  389. *
  390. * decap tkip encrypted fragment
  391. *
  392. * Returns: QDF_STATUS
  393. */
  394. static QDF_STATUS
  395. dp_rx_defrag_tkip_decap(struct dp_soc *soc,
  396. qdf_nbuf_t msdu, uint16_t hdrlen)
  397. {
  398. uint8_t *ivp, *orig_hdr;
  399. int rx_desc_len = soc->rx_pkt_tlv_size;
  400. /* start of 802.11 header info */
  401. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  402. /* TKIP header is located post 802.11 header */
  403. ivp = orig_hdr + hdrlen;
  404. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  405. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  406. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  407. return QDF_STATUS_E_DEFRAG_ERROR;
  408. }
  409. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  410. return QDF_STATUS_SUCCESS;
  411. }
  412. /*
  413. * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
  414. * @nbuf: Pointer to the fragment buffer
  415. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  416. *
  417. * Remove MIC information from CCMP fragment
  418. *
  419. * Returns: QDF_STATUS
  420. */
  421. static QDF_STATUS
  422. dp_rx_defrag_ccmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen)
  423. {
  424. uint8_t *ivp, *orig_hdr;
  425. int rx_desc_len = soc->rx_pkt_tlv_size;
  426. /* start of the 802.11 header */
  427. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  428. /* CCMP header is located after 802.11 header */
  429. ivp = orig_hdr + hdrlen;
  430. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  431. return QDF_STATUS_E_DEFRAG_ERROR;
  432. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  433. return QDF_STATUS_SUCCESS;
  434. }
  435. /*
  436. * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
  437. * @nbuf: Pointer to the fragment
  438. * @hdrlen: length of the header information
  439. *
  440. * decap CCMP encrypted fragment
  441. *
  442. * Returns: QDF_STATUS
  443. */
  444. static QDF_STATUS
  445. dp_rx_defrag_ccmp_decap(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen)
  446. {
  447. uint8_t *ivp, *origHdr;
  448. int rx_desc_len = soc->rx_pkt_tlv_size;
  449. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  450. ivp = origHdr + hdrlen;
  451. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  452. return QDF_STATUS_E_DEFRAG_ERROR;
  453. return QDF_STATUS_SUCCESS;
  454. }
  455. /*
  456. * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
  457. * @msdu: Pointer to the fragment
  458. * @hdrlen: length of the header information
  459. *
  460. * decap WEP encrypted fragment
  461. *
  462. * Returns: QDF_STATUS
  463. */
  464. static QDF_STATUS
  465. dp_rx_defrag_wep_decap(struct dp_soc *soc, qdf_nbuf_t msdu, uint16_t hdrlen)
  466. {
  467. uint8_t *origHdr;
  468. int rx_desc_len = soc->rx_pkt_tlv_size;
  469. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  470. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  471. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  472. return QDF_STATUS_SUCCESS;
  473. }
  474. /*
  475. * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
  476. * @soc: soc handle
  477. * @nbuf: Pointer to the fragment
  478. *
  479. * Calculate the header size of the received fragment
  480. *
  481. * Returns: header size (uint16_t)
  482. */
  483. static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
  484. {
  485. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  486. uint16_t size = sizeof(struct ieee80211_frame);
  487. uint16_t fc = 0;
  488. uint32_t to_ds, fr_ds;
  489. uint8_t frm_ctrl_valid;
  490. uint16_t frm_ctrl_field;
  491. to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
  492. fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
  493. frm_ctrl_valid =
  494. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  495. rx_tlv_hdr);
  496. frm_ctrl_field = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_tlv_hdr);
  497. if (to_ds && fr_ds)
  498. size += QDF_MAC_ADDR_SIZE;
  499. if (frm_ctrl_valid) {
  500. fc = frm_ctrl_field;
  501. /* use 1-st byte for validation */
  502. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  503. size += sizeof(uint16_t);
  504. /* use 2-nd byte for validation */
  505. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  506. size += sizeof(struct ieee80211_htc);
  507. }
  508. }
  509. return size;
  510. }
  511. /*
  512. * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
  513. * @wh0: Pointer to the wireless header of the fragment
  514. * @hdr: Array to hold the pseudo header
  515. *
  516. * Calculate a pseudo MIC header
  517. *
  518. * Returns: None
  519. */
  520. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  521. uint8_t hdr[])
  522. {
  523. const struct ieee80211_frame_addr4 *wh =
  524. (const struct ieee80211_frame_addr4 *)wh0;
  525. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  526. case IEEE80211_FC1_DIR_NODS:
  527. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  528. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  529. wh->i_addr2);
  530. break;
  531. case IEEE80211_FC1_DIR_TODS:
  532. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  533. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  534. wh->i_addr2);
  535. break;
  536. case IEEE80211_FC1_DIR_FROMDS:
  537. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  538. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  539. wh->i_addr3);
  540. break;
  541. case IEEE80211_FC1_DIR_DSTODS:
  542. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  543. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  544. wh->i_addr4);
  545. break;
  546. }
  547. /*
  548. * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  549. * it could also be set for deauth, disassoc, action, etc. for
  550. * a mgt type frame. It comes into picture for MFP.
  551. */
  552. if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
  553. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
  554. IEEE80211_FC1_DIR_DSTODS) {
  555. const struct ieee80211_qosframe_addr4 *qwh =
  556. (const struct ieee80211_qosframe_addr4 *)wh;
  557. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  558. } else {
  559. const struct ieee80211_qosframe *qwh =
  560. (const struct ieee80211_qosframe *)wh;
  561. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  562. }
  563. } else {
  564. hdr[12] = 0;
  565. }
  566. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  567. }
  568. /*
  569. * dp_rx_defrag_mic(): Calculate MIC header
  570. * @key: Pointer to the key
  571. * @wbuf: fragment buffer
  572. * @off: Offset
  573. * @data_len: Data length
  574. * @mic: Array to hold MIC
  575. *
  576. * Calculate a pseudo MIC header
  577. *
  578. * Returns: QDF_STATUS
  579. */
  580. static QDF_STATUS dp_rx_defrag_mic(struct dp_soc *soc, const uint8_t *key,
  581. qdf_nbuf_t wbuf, uint16_t off,
  582. uint16_t data_len, uint8_t mic[])
  583. {
  584. uint8_t hdr[16] = { 0, };
  585. uint32_t l, r;
  586. const uint8_t *data;
  587. uint32_t space;
  588. int rx_desc_len = soc->rx_pkt_tlv_size;
  589. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  590. + rx_desc_len), hdr);
  591. l = dp_rx_get_le32(key);
  592. r = dp_rx_get_le32(key + 4);
  593. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  594. l ^= dp_rx_get_le32(hdr);
  595. dp_rx_michael_block(l, r);
  596. l ^= dp_rx_get_le32(&hdr[4]);
  597. dp_rx_michael_block(l, r);
  598. l ^= dp_rx_get_le32(&hdr[8]);
  599. dp_rx_michael_block(l, r);
  600. l ^= dp_rx_get_le32(&hdr[12]);
  601. dp_rx_michael_block(l, r);
  602. /* first buffer has special handling */
  603. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  604. space = qdf_nbuf_len(wbuf) - off;
  605. for (;; ) {
  606. if (space > data_len)
  607. space = data_len;
  608. /* collect 32-bit blocks from current buffer */
  609. while (space >= sizeof(uint32_t)) {
  610. l ^= dp_rx_get_le32(data);
  611. dp_rx_michael_block(l, r);
  612. data += sizeof(uint32_t);
  613. space -= sizeof(uint32_t);
  614. data_len -= sizeof(uint32_t);
  615. }
  616. if (data_len < sizeof(uint32_t))
  617. break;
  618. wbuf = qdf_nbuf_next(wbuf);
  619. if (!wbuf)
  620. return QDF_STATUS_E_DEFRAG_ERROR;
  621. if (space != 0) {
  622. const uint8_t *data_next;
  623. /*
  624. * Block straddles buffers, split references.
  625. */
  626. data_next =
  627. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  628. if ((qdf_nbuf_len(wbuf)) <
  629. sizeof(uint32_t) - space) {
  630. return QDF_STATUS_E_DEFRAG_ERROR;
  631. }
  632. switch (space) {
  633. case 1:
  634. l ^= dp_rx_get_le32_split(data[0],
  635. data_next[0], data_next[1],
  636. data_next[2]);
  637. data = data_next + 3;
  638. space = (qdf_nbuf_len(wbuf) - off) - 3;
  639. break;
  640. case 2:
  641. l ^= dp_rx_get_le32_split(data[0], data[1],
  642. data_next[0], data_next[1]);
  643. data = data_next + 2;
  644. space = (qdf_nbuf_len(wbuf) - off) - 2;
  645. break;
  646. case 3:
  647. l ^= dp_rx_get_le32_split(data[0], data[1],
  648. data[2], data_next[0]);
  649. data = data_next + 1;
  650. space = (qdf_nbuf_len(wbuf) - off) - 1;
  651. break;
  652. }
  653. dp_rx_michael_block(l, r);
  654. data_len -= sizeof(uint32_t);
  655. } else {
  656. /*
  657. * Setup for next buffer.
  658. */
  659. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  660. space = qdf_nbuf_len(wbuf) - off;
  661. }
  662. }
  663. /* Last block and padding (0x5a, 4..7 x 0) */
  664. switch (data_len) {
  665. case 0:
  666. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  667. break;
  668. case 1:
  669. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  670. break;
  671. case 2:
  672. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  673. break;
  674. case 3:
  675. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  676. break;
  677. }
  678. dp_rx_michael_block(l, r);
  679. dp_rx_michael_block(l, r);
  680. dp_rx_put_le32(mic, l);
  681. dp_rx_put_le32(mic + 4, r);
  682. return QDF_STATUS_SUCCESS;
  683. }
  684. /*
  685. * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
  686. * @key: Pointer to the key
  687. * @msdu: fragment buffer
  688. * @hdrlen: Length of the header information
  689. *
  690. * Remove MIC information from the TKIP frame
  691. *
  692. * Returns: QDF_STATUS
  693. */
  694. static QDF_STATUS dp_rx_defrag_tkip_demic(struct dp_soc *soc,
  695. const uint8_t *key,
  696. qdf_nbuf_t msdu, uint16_t hdrlen)
  697. {
  698. QDF_STATUS status;
  699. uint32_t pktlen = 0, prev_data_len;
  700. uint8_t mic[IEEE80211_WEP_MICLEN];
  701. uint8_t mic0[IEEE80211_WEP_MICLEN];
  702. qdf_nbuf_t prev = NULL, prev0, next;
  703. uint8_t len0 = 0;
  704. next = msdu;
  705. prev0 = msdu;
  706. while (next) {
  707. pktlen += (qdf_nbuf_len(next) - hdrlen);
  708. prev = next;
  709. dp_debug("pktlen %u",
  710. (uint32_t)(qdf_nbuf_len(next) - hdrlen));
  711. next = qdf_nbuf_next(next);
  712. if (next && !qdf_nbuf_next(next))
  713. prev0 = prev;
  714. }
  715. if (!prev) {
  716. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  717. "%s Defrag chaining failed !\n", __func__);
  718. return QDF_STATUS_E_DEFRAG_ERROR;
  719. }
  720. prev_data_len = qdf_nbuf_len(prev) - hdrlen;
  721. if (prev_data_len < dp_f_tkip.ic_miclen) {
  722. if (prev0 == prev) {
  723. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  724. "%s Fragments don't have MIC header !\n", __func__);
  725. return QDF_STATUS_E_DEFRAG_ERROR;
  726. }
  727. len0 = dp_f_tkip.ic_miclen - (uint8_t)prev_data_len;
  728. qdf_nbuf_copy_bits(prev0, qdf_nbuf_len(prev0) - len0, len0,
  729. (caddr_t)mic0);
  730. qdf_nbuf_trim_tail(prev0, len0);
  731. }
  732. qdf_nbuf_copy_bits(prev, (qdf_nbuf_len(prev) -
  733. (dp_f_tkip.ic_miclen - len0)),
  734. (dp_f_tkip.ic_miclen - len0),
  735. (caddr_t)(&mic0[len0]));
  736. qdf_nbuf_trim_tail(prev, (dp_f_tkip.ic_miclen - len0));
  737. pktlen -= dp_f_tkip.ic_miclen;
  738. if (((qdf_nbuf_len(prev) - hdrlen) == 0) && prev != msdu) {
  739. dp_rx_nbuf_free(prev);
  740. qdf_nbuf_set_next(prev0, NULL);
  741. }
  742. status = dp_rx_defrag_mic(soc, key, msdu, hdrlen,
  743. pktlen, mic);
  744. if (QDF_IS_STATUS_ERROR(status))
  745. return status;
  746. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  747. return QDF_STATUS_E_DEFRAG_ERROR;
  748. return QDF_STATUS_SUCCESS;
  749. }
  750. /*
  751. * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
  752. * @nbuf: buffer pointer
  753. * @hdrsize: size of the header to be pulled
  754. *
  755. * Pull the RXTLV & the 802.11 headers
  756. *
  757. * Returns: None
  758. */
  759. static void dp_rx_frag_pull_hdr(struct dp_soc *soc,
  760. qdf_nbuf_t nbuf, uint16_t hdrsize)
  761. {
  762. hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf));
  763. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + hdrsize);
  764. dp_debug("final pktlen %d .11len %d",
  765. (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  766. }
  767. /*
  768. * dp_rx_defrag_pn_check(): Check the PN of current fragmented with prev PN
  769. * @msdu: msdu to get the current PN
  770. * @cur_pn128: PN extracted from current msdu
  771. * @prev_pn128: Prev PN
  772. *
  773. * Returns: 0 on success, non zero on failure
  774. */
  775. static int dp_rx_defrag_pn_check(struct dp_soc *soc, qdf_nbuf_t msdu,
  776. uint64_t *cur_pn128, uint64_t *prev_pn128)
  777. {
  778. int out_of_order = 0;
  779. hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(msdu), cur_pn128);
  780. if (cur_pn128[1] == prev_pn128[1])
  781. out_of_order = (cur_pn128[0] - prev_pn128[0] != 1);
  782. else
  783. out_of_order = (cur_pn128[1] - prev_pn128[1] != 1);
  784. return out_of_order;
  785. }
  786. /*
  787. * dp_rx_construct_fraglist(): Construct a nbuf fraglist
  788. * @txrx peer: Pointer to the txrx peer
  789. * @head: Pointer to list of fragments
  790. * @hdrsize: Size of the header to be pulled
  791. *
  792. * Construct a nbuf fraglist
  793. *
  794. * Returns: None
  795. */
  796. static int
  797. dp_rx_construct_fraglist(struct dp_txrx_peer *txrx_peer, int tid,
  798. qdf_nbuf_t head,
  799. uint16_t hdrsize)
  800. {
  801. struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
  802. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  803. qdf_nbuf_t rx_nbuf = msdu;
  804. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  805. uint32_t len = 0;
  806. uint64_t cur_pn128[2] = {0, 0}, prev_pn128[2];
  807. int out_of_order = 0;
  808. int index;
  809. int needs_pn_check = 0;
  810. enum cdp_sec_type sec_type;
  811. prev_pn128[0] = rx_tid->pn128[0];
  812. prev_pn128[1] = rx_tid->pn128[1];
  813. index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu) ? dp_sec_mcast :
  814. dp_sec_ucast;
  815. sec_type = txrx_peer->security[index].sec_type;
  816. if (!(sec_type == cdp_sec_type_none || sec_type == cdp_sec_type_wep128 ||
  817. sec_type == cdp_sec_type_wep104 || sec_type == cdp_sec_type_wep40))
  818. needs_pn_check = 1;
  819. while (msdu) {
  820. if (qdf_likely(needs_pn_check))
  821. out_of_order = dp_rx_defrag_pn_check(soc, msdu,
  822. &cur_pn128[0],
  823. &prev_pn128[0]);
  824. if (qdf_unlikely(out_of_order)) {
  825. dp_info_rl("cur_pn128[0] 0x%llx cur_pn128[1] 0x%llx prev_pn128[0] 0x%llx prev_pn128[1] 0x%llx",
  826. cur_pn128[0], cur_pn128[1],
  827. prev_pn128[0], prev_pn128[1]);
  828. return QDF_STATUS_E_FAILURE;
  829. }
  830. prev_pn128[0] = cur_pn128[0];
  831. prev_pn128[1] = cur_pn128[1];
  832. /*
  833. * Broadcast and multicast frames should never be fragmented.
  834. * Iterating through all msdus and dropping fragments if even
  835. * one of them has mcast/bcast destination address.
  836. */
  837. if (hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu)) {
  838. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  839. "Dropping multicast/broadcast fragments");
  840. return QDF_STATUS_E_FAILURE;
  841. }
  842. dp_rx_frag_pull_hdr(soc, msdu, hdrsize);
  843. len += qdf_nbuf_len(msdu);
  844. msdu = qdf_nbuf_next(msdu);
  845. }
  846. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  847. qdf_nbuf_set_next(head, NULL);
  848. qdf_nbuf_set_is_frag(head, 1);
  849. dp_debug("head len %d ext len %d data len %d ",
  850. (uint32_t)qdf_nbuf_len(head),
  851. (uint32_t)qdf_nbuf_len(rx_nbuf),
  852. (uint32_t)(head->data_len));
  853. return QDF_STATUS_SUCCESS;
  854. }
  855. /**
  856. * dp_rx_defrag_err() - rx err handler
  857. * @pdev: handle to pdev object
  858. * @vdev_id: vdev id
  859. * @peer_mac_addr: peer mac address
  860. * @tid: TID
  861. * @tsf32: TSF
  862. * @err_type: error type
  863. * @rx_frame: rx frame
  864. * @pn: PN Number
  865. * @key_id: key id
  866. *
  867. * This function handles rx error and send MIC error notification
  868. *
  869. * Return: None
  870. */
  871. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  872. {
  873. struct ol_if_ops *tops = NULL;
  874. struct dp_pdev *pdev = vdev->pdev;
  875. int rx_desc_len = pdev->soc->rx_pkt_tlv_size;
  876. uint8_t *orig_hdr;
  877. struct ieee80211_frame *wh;
  878. struct cdp_rx_mic_err_info mic_failure_info;
  879. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  880. wh = (struct ieee80211_frame *)orig_hdr;
  881. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
  882. (struct qdf_mac_addr *)&wh->i_addr1);
  883. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
  884. (struct qdf_mac_addr *)&wh->i_addr2);
  885. mic_failure_info.key_id = 0;
  886. mic_failure_info.multicast =
  887. IEEE80211_IS_MULTICAST(wh->i_addr1);
  888. qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
  889. mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
  890. mic_failure_info.data = (uint8_t *)wh;
  891. mic_failure_info.vdev_id = vdev->vdev_id;
  892. tops = pdev->soc->cdp_soc.ol_ops;
  893. if (tops->rx_mic_error)
  894. tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
  895. &mic_failure_info);
  896. }
  897. /*
  898. * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
  899. * @soc: dp soc handle
  900. * @txrx_peer: txrx_peer handle
  901. * @nbuf: Pointer to the fragment buffer
  902. * @hdrsize: Size of headers
  903. *
  904. * Transcap the fragment from 802.11 to 802.3
  905. *
  906. * Returns: None
  907. */
  908. static void
  909. dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc, struct dp_txrx_peer *txrx_peer,
  910. int tid, qdf_nbuf_t nbuf, uint16_t hdrsize)
  911. {
  912. struct llc_snap_hdr_t *llchdr;
  913. struct ethernet_hdr_t *eth_hdr;
  914. uint8_t ether_type[2];
  915. uint16_t fc = 0;
  916. union dp_align_mac_addr mac_addr;
  917. uint8_t *rx_desc_info = qdf_mem_malloc(soc->rx_pkt_tlv_size);
  918. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  919. hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(nbuf), rx_tid->pn128);
  920. hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf));
  921. if (!rx_desc_info) {
  922. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  923. "%s: Memory alloc failed ! ", __func__);
  924. QDF_ASSERT(0);
  925. return;
  926. }
  927. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), soc->rx_pkt_tlv_size);
  928. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  929. soc->rx_pkt_tlv_size + hdrsize);
  930. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  931. qdf_nbuf_pull_head(nbuf, (soc->rx_pkt_tlv_size + hdrsize +
  932. sizeof(struct llc_snap_hdr_t) -
  933. sizeof(struct ethernet_hdr_t)));
  934. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  935. if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  936. rx_desc_info))
  937. fc = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_desc_info);
  938. dp_debug("Frame control type: 0x%x", fc);
  939. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  940. case IEEE80211_FC1_DIR_NODS:
  941. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  942. &mac_addr.raw[0]);
  943. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  944. QDF_MAC_ADDR_SIZE);
  945. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  946. &mac_addr.raw[0]);
  947. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  948. QDF_MAC_ADDR_SIZE);
  949. break;
  950. case IEEE80211_FC1_DIR_TODS:
  951. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  952. &mac_addr.raw[0]);
  953. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  954. QDF_MAC_ADDR_SIZE);
  955. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  956. &mac_addr.raw[0]);
  957. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  958. QDF_MAC_ADDR_SIZE);
  959. break;
  960. case IEEE80211_FC1_DIR_FROMDS:
  961. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  962. &mac_addr.raw[0]);
  963. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  964. QDF_MAC_ADDR_SIZE);
  965. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  966. &mac_addr.raw[0]);
  967. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  968. QDF_MAC_ADDR_SIZE);
  969. break;
  970. case IEEE80211_FC1_DIR_DSTODS:
  971. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  972. &mac_addr.raw[0]);
  973. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  974. QDF_MAC_ADDR_SIZE);
  975. hal_rx_mpdu_get_addr4(soc->hal_soc, rx_desc_info,
  976. &mac_addr.raw[0]);
  977. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  978. QDF_MAC_ADDR_SIZE);
  979. break;
  980. default:
  981. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  982. "%s: Unknown frame control type: 0x%x", __func__, fc);
  983. }
  984. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  985. sizeof(ether_type));
  986. qdf_nbuf_push_head(nbuf, soc->rx_pkt_tlv_size);
  987. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, soc->rx_pkt_tlv_size);
  988. qdf_mem_free(rx_desc_info);
  989. }
  990. #ifdef RX_DEFRAG_DO_NOT_REINJECT
  991. /*
  992. * dp_rx_defrag_deliver(): Deliver defrag packet to stack
  993. * @peer: Pointer to the peer
  994. * @tid: Transmit Identifier
  995. * @head: Nbuf to be delivered
  996. *
  997. * Returns: None
  998. */
  999. static inline void dp_rx_defrag_deliver(struct dp_txrx_peer *txrx_peer,
  1000. unsigned int tid,
  1001. qdf_nbuf_t head)
  1002. {
  1003. struct dp_vdev *vdev = txrx_peer->vdev;
  1004. struct dp_soc *soc = vdev->pdev->soc;
  1005. qdf_nbuf_t deliver_list_head = NULL;
  1006. qdf_nbuf_t deliver_list_tail = NULL;
  1007. uint8_t *rx_tlv_hdr;
  1008. rx_tlv_hdr = qdf_nbuf_data(head);
  1009. QDF_NBUF_CB_RX_VDEV_ID(head) = vdev->vdev_id;
  1010. qdf_nbuf_set_tid_val(head, tid);
  1011. qdf_nbuf_pull_head(head, soc->rx_pkt_tlv_size);
  1012. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail,
  1013. head);
  1014. dp_rx_deliver_to_stack(soc, vdev, txrx_peer, deliver_list_head,
  1015. deliver_list_tail);
  1016. }
  1017. /*
  1018. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  1019. * @txrx peer: Pointer to the peer
  1020. * @tid: Transmit Identifier
  1021. * @head: Buffer to be reinjected back
  1022. *
  1023. * Reinject the fragment chain back into REO
  1024. *
  1025. * Returns: QDF_STATUS
  1026. */
  1027. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_txrx_peer *txrx_peer,
  1028. unsigned int tid, qdf_nbuf_t head)
  1029. {
  1030. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1031. rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
  1032. dp_rx_defrag_deliver(txrx_peer, tid, head);
  1033. rx_reorder_array_elem->head = NULL;
  1034. rx_reorder_array_elem->tail = NULL;
  1035. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1036. return QDF_STATUS_SUCCESS;
  1037. }
  1038. #else
  1039. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1040. /**
  1041. * dp_rx_reinject_ring_record_entry() - Record reinject ring history
  1042. * @soc: Datapath soc structure
  1043. * @paddr: paddr of the buffer reinjected to SW2REO ring
  1044. * @sw_cookie: SW cookie of the buffer reinjected to SW2REO ring
  1045. * @rbm: Return buffer manager of the buffer reinjected to SW2REO ring
  1046. *
  1047. * Returns: None
  1048. */
  1049. static inline void
  1050. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1051. uint32_t sw_cookie, uint8_t rbm)
  1052. {
  1053. struct dp_buf_info_record *record;
  1054. uint32_t idx;
  1055. if (qdf_unlikely(!soc->rx_reinject_ring_history))
  1056. return;
  1057. idx = dp_history_get_next_index(&soc->rx_reinject_ring_history->index,
  1058. DP_RX_REINJECT_HIST_MAX);
  1059. /* No NULL check needed for record since its an array */
  1060. record = &soc->rx_reinject_ring_history->entry[idx];
  1061. record->timestamp = qdf_get_log_timestamp();
  1062. record->hbi.paddr = paddr;
  1063. record->hbi.sw_cookie = sw_cookie;
  1064. record->hbi.rbm = rbm;
  1065. }
  1066. #else
  1067. static inline void
  1068. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1069. uint32_t sw_cookie, uint8_t rbm)
  1070. {
  1071. }
  1072. #endif
  1073. /*
  1074. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  1075. * @txrx_peer: Pointer to the txrx_peer
  1076. * @tid: Transmit Identifier
  1077. * @head: Buffer to be reinjected back
  1078. *
  1079. * Reinject the fragment chain back into REO
  1080. *
  1081. * Returns: QDF_STATUS
  1082. */
  1083. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_txrx_peer *txrx_peer,
  1084. unsigned int tid, qdf_nbuf_t head)
  1085. {
  1086. struct dp_pdev *pdev = txrx_peer->vdev->pdev;
  1087. struct dp_soc *soc = pdev->soc;
  1088. struct hal_buf_info buf_info;
  1089. struct hal_buf_info temp_buf_info;
  1090. void *link_desc_va;
  1091. void *msdu0, *msdu_desc_info;
  1092. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  1093. void *dst_mpdu_desc_info;
  1094. uint64_t dst_qdesc_addr;
  1095. qdf_dma_addr_t paddr;
  1096. uint32_t nbuf_len, seq_no, dst_ind;
  1097. uint32_t *mpdu_wrd;
  1098. uint32_t ret, cookie;
  1099. hal_ring_desc_t dst_ring_desc =
  1100. txrx_peer->rx_tid[tid].dst_ring_desc;
  1101. hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
  1102. struct dp_rx_desc *rx_desc = txrx_peer->rx_tid[tid].head_frag_desc;
  1103. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1104. txrx_peer->rx_tid[tid].array;
  1105. qdf_nbuf_t nbuf_head;
  1106. struct rx_desc_pool *rx_desc_pool = NULL;
  1107. void *buf_addr_info = HAL_RX_REO_BUF_ADDR_INFO_GET(dst_ring_desc);
  1108. uint8_t rx_defrag_rbm_id = dp_rx_get_defrag_bm_id(soc);
  1109. /* do duplicate link desc address check */
  1110. dp_rx_link_desc_refill_duplicate_check(
  1111. soc,
  1112. &soc->last_op_info.reo_reinject_link_desc,
  1113. buf_addr_info);
  1114. nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
  1115. if (qdf_unlikely(!nbuf_head)) {
  1116. dp_err_rl("IPA RX REO reinject failed");
  1117. return QDF_STATUS_E_FAILURE;
  1118. }
  1119. /* update new allocated skb in case IPA is enabled */
  1120. if (nbuf_head != head) {
  1121. head = nbuf_head;
  1122. rx_desc->nbuf = head;
  1123. rx_reorder_array_elem->head = head;
  1124. }
  1125. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  1126. if (!ent_ring_desc) {
  1127. dp_err_rl("HAL src ring next entry NULL");
  1128. return QDF_STATUS_E_FAILURE;
  1129. }
  1130. hal_rx_reo_buf_paddr_get(soc->hal_soc, dst_ring_desc, &buf_info);
  1131. /* buffer_addr_info is the first element of ring_desc */
  1132. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)dst_ring_desc,
  1133. &buf_info);
  1134. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  1135. qdf_assert_always(link_desc_va);
  1136. msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
  1137. nbuf_len = qdf_nbuf_len(head) - soc->rx_pkt_tlv_size;
  1138. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  1139. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  1140. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  1141. /* msdu reconfig */
  1142. msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
  1143. dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
  1144. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  1145. hal_msdu_desc_info_set(soc->hal_soc, msdu_desc_info, dst_ind, nbuf_len);
  1146. /* change RX TLV's */
  1147. hal_rx_tlv_msdu_len_set(soc->hal_soc, qdf_nbuf_data(head), nbuf_len);
  1148. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)msdu0,
  1149. &temp_buf_info);
  1150. cookie = temp_buf_info.sw_cookie;
  1151. rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id];
  1152. /* map the nbuf before reinject it into HW */
  1153. ret = qdf_nbuf_map_nbytes_single(soc->osdev, head,
  1154. QDF_DMA_FROM_DEVICE,
  1155. rx_desc_pool->buf_size);
  1156. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  1157. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1158. "%s: nbuf map failed !", __func__);
  1159. return QDF_STATUS_E_FAILURE;
  1160. }
  1161. dp_ipa_handle_rx_buf_smmu_mapping(soc, head,
  1162. rx_desc_pool->buf_size,
  1163. true);
  1164. /*
  1165. * As part of rx frag handler bufffer was unmapped and rx desc
  1166. * unmapped is set to 1. So again for defrag reinject frame reset
  1167. * it back to 0.
  1168. */
  1169. rx_desc->unmapped = 0;
  1170. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  1171. ret = dp_check_paddr(soc, &head, &paddr, rx_desc_pool);
  1172. if (ret == QDF_STATUS_E_FAILURE) {
  1173. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1174. "%s: x86 check failed !", __func__);
  1175. return QDF_STATUS_E_FAILURE;
  1176. }
  1177. hal_rxdma_buff_addr_info_set(soc->hal_soc, msdu0, paddr, cookie,
  1178. rx_defrag_rbm_id);
  1179. /* Lets fill entrance ring now !!! */
  1180. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  1181. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1182. "HAL RING Access For REO entrance SRNG Failed: %pK",
  1183. hal_srng);
  1184. return QDF_STATUS_E_FAILURE;
  1185. }
  1186. dp_rx_reinject_ring_record_entry(soc, paddr, cookie,
  1187. rx_defrag_rbm_id);
  1188. paddr = (uint64_t)buf_info.paddr;
  1189. /* buf addr */
  1190. hal_rxdma_buff_addr_info_set(soc->hal_soc, ent_ring_desc, paddr,
  1191. buf_info.sw_cookie,
  1192. soc->idle_link_bm_id);
  1193. /* mpdu desc info */
  1194. ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
  1195. ent_ring_desc);
  1196. dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
  1197. dst_ring_desc);
  1198. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  1199. sizeof(struct rx_mpdu_desc_info));
  1200. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  1201. mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
  1202. seq_no = hal_rx_get_rx_sequence(soc->hal_soc, qdf_nbuf_data(head));
  1203. hal_mpdu_desc_info_set(soc->hal_soc, ent_mpdu_desc_info, seq_no);
  1204. /* qdesc addr */
  1205. ent_qdesc_addr = hal_get_reo_ent_desc_qdesc_addr(soc->hal_soc,
  1206. (uint8_t *)ent_ring_desc);
  1207. dst_qdesc_addr = hal_rx_get_qdesc_addr(soc->hal_soc,
  1208. (uint8_t *)dst_ring_desc,
  1209. qdf_nbuf_data(head));
  1210. qdf_mem_copy(ent_qdesc_addr, &dst_qdesc_addr, 5);
  1211. hal_set_reo_ent_desc_reo_dest_ind(soc->hal_soc,
  1212. (uint8_t *)ent_ring_desc, dst_ind);
  1213. hal_srng_access_end(soc->hal_soc, hal_srng);
  1214. DP_STATS_INC(soc, rx.reo_reinject, 1);
  1215. dp_debug("reinjection done !");
  1216. return QDF_STATUS_SUCCESS;
  1217. }
  1218. #endif
  1219. /*
  1220. * dp_rx_defrag_gcmp_demic(): Remove MIC information from GCMP fragment
  1221. * @soc: Datapath soc structure
  1222. * @nbuf: Pointer to the fragment buffer
  1223. * @hdrlen: 802.11 header length
  1224. *
  1225. * Remove MIC information from GCMP fragment
  1226. *
  1227. * Returns: QDF_STATUS
  1228. */
  1229. static QDF_STATUS dp_rx_defrag_gcmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1230. uint16_t hdrlen)
  1231. {
  1232. uint8_t *ivp, *orig_hdr;
  1233. int rx_desc_len = soc->rx_pkt_tlv_size;
  1234. /* start of the 802.11 header */
  1235. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  1236. /*
  1237. * GCMP header is located after 802.11 header and EXTIV
  1238. * field should always be set to 1 for GCMP protocol.
  1239. */
  1240. ivp = orig_hdr + hdrlen;
  1241. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  1242. return QDF_STATUS_E_DEFRAG_ERROR;
  1243. qdf_nbuf_trim_tail(nbuf, dp_f_gcmp.ic_trailer);
  1244. return QDF_STATUS_SUCCESS;
  1245. }
  1246. /*
  1247. * dp_rx_defrag(): Defragment the fragment chain
  1248. * @txrx peer: Pointer to the peer
  1249. * @tid: Transmit Identifier
  1250. * @frag_list_head: Pointer to head list
  1251. * @frag_list_tail: Pointer to tail list
  1252. *
  1253. * Defragment the fragment chain
  1254. *
  1255. * Returns: QDF_STATUS
  1256. */
  1257. static QDF_STATUS dp_rx_defrag(struct dp_txrx_peer *txrx_peer, unsigned int tid,
  1258. qdf_nbuf_t frag_list_head,
  1259. qdf_nbuf_t frag_list_tail)
  1260. {
  1261. qdf_nbuf_t tmp_next, prev;
  1262. qdf_nbuf_t cur = frag_list_head, msdu;
  1263. uint32_t index, tkip_demic = 0;
  1264. uint16_t hdr_space;
  1265. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  1266. struct dp_vdev *vdev = txrx_peer->vdev;
  1267. struct dp_soc *soc = vdev->pdev->soc;
  1268. uint8_t status = 0;
  1269. if (!cur)
  1270. return QDF_STATUS_E_DEFRAG_ERROR;
  1271. hdr_space = dp_rx_defrag_hdrsize(soc, cur);
  1272. index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, cur) ?
  1273. dp_sec_mcast : dp_sec_ucast;
  1274. /* Remove FCS from all fragments */
  1275. while (cur) {
  1276. tmp_next = qdf_nbuf_next(cur);
  1277. qdf_nbuf_set_next(cur, NULL);
  1278. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  1279. prev = cur;
  1280. qdf_nbuf_set_next(cur, tmp_next);
  1281. cur = tmp_next;
  1282. }
  1283. cur = frag_list_head;
  1284. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1285. "%s: index %d Security type: %d", __func__,
  1286. index, txrx_peer->security[index].sec_type);
  1287. switch (txrx_peer->security[index].sec_type) {
  1288. case cdp_sec_type_tkip:
  1289. tkip_demic = 1;
  1290. fallthrough;
  1291. case cdp_sec_type_tkip_nomic:
  1292. while (cur) {
  1293. tmp_next = qdf_nbuf_next(cur);
  1294. if (dp_rx_defrag_tkip_decap(soc, cur, hdr_space)) {
  1295. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1296. QDF_TRACE_LEVEL_ERROR,
  1297. "dp_rx_defrag: TKIP decap failed");
  1298. return QDF_STATUS_E_DEFRAG_ERROR;
  1299. }
  1300. cur = tmp_next;
  1301. }
  1302. /* If success, increment header to be stripped later */
  1303. hdr_space += dp_f_tkip.ic_header;
  1304. break;
  1305. case cdp_sec_type_aes_ccmp:
  1306. while (cur) {
  1307. tmp_next = qdf_nbuf_next(cur);
  1308. if (dp_rx_defrag_ccmp_demic(soc, cur, hdr_space)) {
  1309. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1310. QDF_TRACE_LEVEL_ERROR,
  1311. "dp_rx_defrag: CCMP demic failed");
  1312. return QDF_STATUS_E_DEFRAG_ERROR;
  1313. }
  1314. if (dp_rx_defrag_ccmp_decap(soc, cur, hdr_space)) {
  1315. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1316. QDF_TRACE_LEVEL_ERROR,
  1317. "dp_rx_defrag: CCMP decap failed");
  1318. return QDF_STATUS_E_DEFRAG_ERROR;
  1319. }
  1320. cur = tmp_next;
  1321. }
  1322. /* If success, increment header to be stripped later */
  1323. hdr_space += dp_f_ccmp.ic_header;
  1324. break;
  1325. case cdp_sec_type_wep40:
  1326. case cdp_sec_type_wep104:
  1327. case cdp_sec_type_wep128:
  1328. while (cur) {
  1329. tmp_next = qdf_nbuf_next(cur);
  1330. if (dp_rx_defrag_wep_decap(soc, cur, hdr_space)) {
  1331. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1332. QDF_TRACE_LEVEL_ERROR,
  1333. "dp_rx_defrag: WEP decap failed");
  1334. return QDF_STATUS_E_DEFRAG_ERROR;
  1335. }
  1336. cur = tmp_next;
  1337. }
  1338. /* If success, increment header to be stripped later */
  1339. hdr_space += dp_f_wep.ic_header;
  1340. break;
  1341. case cdp_sec_type_aes_gcmp:
  1342. case cdp_sec_type_aes_gcmp_256:
  1343. while (cur) {
  1344. tmp_next = qdf_nbuf_next(cur);
  1345. if (dp_rx_defrag_gcmp_demic(soc, cur, hdr_space)) {
  1346. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1347. QDF_TRACE_LEVEL_ERROR,
  1348. "dp_rx_defrag: GCMP demic failed");
  1349. return QDF_STATUS_E_DEFRAG_ERROR;
  1350. }
  1351. cur = tmp_next;
  1352. }
  1353. hdr_space += dp_f_gcmp.ic_header;
  1354. break;
  1355. default:
  1356. break;
  1357. }
  1358. if (tkip_demic) {
  1359. msdu = frag_list_head;
  1360. qdf_mem_copy(key,
  1361. &txrx_peer->security[index].michael_key[0],
  1362. IEEE80211_WEP_MICLEN);
  1363. status = dp_rx_defrag_tkip_demic(soc, key, msdu,
  1364. soc->rx_pkt_tlv_size +
  1365. hdr_space);
  1366. if (status) {
  1367. dp_rx_defrag_err(vdev, frag_list_head);
  1368. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1369. QDF_TRACE_LEVEL_ERROR,
  1370. "%s: TKIP demic failed status %d",
  1371. __func__, status);
  1372. return QDF_STATUS_E_DEFRAG_ERROR;
  1373. }
  1374. }
  1375. /* Convert the header to 802.3 header */
  1376. dp_rx_defrag_nwifi_to_8023(soc, txrx_peer, tid, frag_list_head,
  1377. hdr_space);
  1378. if (qdf_nbuf_next(frag_list_head)) {
  1379. if (dp_rx_construct_fraglist(txrx_peer, tid, frag_list_head,
  1380. hdr_space))
  1381. return QDF_STATUS_E_DEFRAG_ERROR;
  1382. }
  1383. return QDF_STATUS_SUCCESS;
  1384. }
  1385. /*
  1386. * dp_rx_defrag_cleanup(): Clean up activities
  1387. * @txrx_peer: Pointer to the peer
  1388. * @tid: Transmit Identifier
  1389. *
  1390. * Returns: None
  1391. */
  1392. void dp_rx_defrag_cleanup(struct dp_txrx_peer *txrx_peer, unsigned int tid)
  1393. {
  1394. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1395. txrx_peer->rx_tid[tid].array;
  1396. if (rx_reorder_array_elem) {
  1397. /* Free up nbufs */
  1398. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1399. rx_reorder_array_elem->head = NULL;
  1400. rx_reorder_array_elem->tail = NULL;
  1401. } else {
  1402. dp_info("Cleanup self peer %pK and TID %u",
  1403. txrx_peer, tid);
  1404. }
  1405. /* Free up saved ring descriptors */
  1406. dp_rx_clear_saved_desc_info(txrx_peer, tid);
  1407. txrx_peer->rx_tid[tid].defrag_timeout_ms = 0;
  1408. txrx_peer->rx_tid[tid].curr_frag_num = 0;
  1409. txrx_peer->rx_tid[tid].curr_seq_num = 0;
  1410. }
  1411. /*
  1412. * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
  1413. * @ring_desc: Pointer to the dst ring descriptor
  1414. * @txrx_peer: Pointer to the peer
  1415. * @tid: Transmit Identifier
  1416. *
  1417. * Returns: None
  1418. */
  1419. static QDF_STATUS
  1420. dp_rx_defrag_save_info_from_ring_desc(hal_ring_desc_t ring_desc,
  1421. struct dp_rx_desc *rx_desc,
  1422. struct dp_txrx_peer *txrx_peer,
  1423. unsigned int tid)
  1424. {
  1425. void *dst_ring_desc = qdf_mem_malloc(
  1426. sizeof(struct reo_destination_ring));
  1427. if (!dst_ring_desc) {
  1428. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1429. "%s: Memory alloc failed !", __func__);
  1430. QDF_ASSERT(0);
  1431. return QDF_STATUS_E_NOMEM;
  1432. }
  1433. qdf_mem_copy(dst_ring_desc, ring_desc,
  1434. sizeof(struct reo_destination_ring));
  1435. txrx_peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1436. txrx_peer->rx_tid[tid].head_frag_desc = rx_desc;
  1437. return QDF_STATUS_SUCCESS;
  1438. }
  1439. /*
  1440. * dp_rx_defrag_store_fragment(): Store incoming fragments
  1441. * @soc: Pointer to the SOC data structure
  1442. * @ring_desc: Pointer to the ring descriptor
  1443. * @mpdu_desc_info: MPDU descriptor info
  1444. * @tid: Traffic Identifier
  1445. * @rx_desc: Pointer to rx descriptor
  1446. * @rx_bfs: Number of bfs consumed
  1447. *
  1448. * Returns: QDF_STATUS
  1449. */
  1450. static QDF_STATUS
  1451. dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1452. hal_ring_desc_t ring_desc,
  1453. union dp_rx_desc_list_elem_t **head,
  1454. union dp_rx_desc_list_elem_t **tail,
  1455. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1456. unsigned int tid, struct dp_rx_desc *rx_desc,
  1457. uint32_t *rx_bfs)
  1458. {
  1459. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1460. struct dp_pdev *pdev;
  1461. struct dp_txrx_peer *txrx_peer = NULL;
  1462. dp_txrx_ref_handle txrx_ref_handle = NULL;
  1463. uint16_t peer_id;
  1464. uint8_t fragno, more_frag, all_frag_present = 0;
  1465. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1466. QDF_STATUS status;
  1467. struct dp_rx_tid_defrag *rx_tid;
  1468. uint8_t mpdu_sequence_control_valid;
  1469. uint8_t mpdu_frame_control_valid;
  1470. qdf_nbuf_t frag = rx_desc->nbuf;
  1471. uint32_t msdu_len;
  1472. if (qdf_nbuf_len(frag) > 0) {
  1473. dp_info("Dropping unexpected packet with skb_len: %d,"
  1474. "data len: %d, cookie: %d",
  1475. (uint32_t)qdf_nbuf_len(frag), frag->data_len,
  1476. rx_desc->cookie);
  1477. DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
  1478. goto discard_frag;
  1479. }
  1480. if (dp_rx_buffer_pool_refill(soc, frag, rx_desc->pool_id)) {
  1481. /* fragment queued back to the pool, free the link desc */
  1482. goto err_free_desc;
  1483. }
  1484. msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
  1485. rx_desc->rx_buf_start);
  1486. qdf_nbuf_set_pktlen(frag, (msdu_len + soc->rx_pkt_tlv_size));
  1487. qdf_nbuf_append_ext_list(frag, NULL, 0);
  1488. /* Check if the packet is from a valid peer */
  1489. peer_id = dp_rx_peer_metadata_peer_id_get(soc,
  1490. mpdu_desc_info->peer_meta_data);
  1491. txrx_peer = dp_txrx_peer_get_ref_by_id(soc, peer_id, &txrx_ref_handle,
  1492. DP_MOD_ID_RX_ERR);
  1493. if (!txrx_peer) {
  1494. /* We should not receive anything from unknown peer
  1495. * however, that might happen while we are in the monitor mode.
  1496. * We don't need to handle that here
  1497. */
  1498. dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
  1499. peer_id);
  1500. DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
  1501. goto discard_frag;
  1502. }
  1503. if (tid >= DP_MAX_TIDS) {
  1504. dp_info("TID out of bounds: %d", tid);
  1505. qdf_assert_always(0);
  1506. goto discard_frag;
  1507. }
  1508. mpdu_sequence_control_valid =
  1509. hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
  1510. rx_desc->rx_buf_start);
  1511. /* Invalid MPDU sequence control field, MPDU is of no use */
  1512. if (!mpdu_sequence_control_valid) {
  1513. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1514. "Invalid MPDU seq control field, dropping MPDU");
  1515. qdf_assert(0);
  1516. goto discard_frag;
  1517. }
  1518. mpdu_frame_control_valid =
  1519. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  1520. rx_desc->rx_buf_start);
  1521. /* Invalid frame control field */
  1522. if (!mpdu_frame_control_valid) {
  1523. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1524. "Invalid frame control field, dropping MPDU");
  1525. qdf_assert(0);
  1526. goto discard_frag;
  1527. }
  1528. /* Current mpdu sequence */
  1529. more_frag = dp_rx_frag_get_more_frag_bit(soc, rx_desc->rx_buf_start);
  1530. /* HW does not populate the fragment number as of now
  1531. * need to get from the 802.11 header
  1532. */
  1533. fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc->rx_buf_start);
  1534. pdev = txrx_peer->vdev->pdev;
  1535. rx_tid = &txrx_peer->rx_tid[tid];
  1536. dp_rx_err_send_pktlog(soc, pdev, mpdu_desc_info, frag,
  1537. QDF_TX_RX_STATUS_OK, false);
  1538. qdf_spin_lock_bh(&rx_tid->defrag_tid_lock);
  1539. rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
  1540. if (!rx_reorder_array_elem) {
  1541. dp_err_rl("Rcvd Fragmented pkt before tid setup for peer %pK",
  1542. txrx_peer);
  1543. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1544. goto discard_frag;
  1545. }
  1546. /*
  1547. * !more_frag: no more fragments to be delivered
  1548. * !frag_no: packet is not fragmented
  1549. * !rx_reorder_array_elem->head: no saved fragments so far
  1550. */
  1551. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1552. /* We should not get into this situation here.
  1553. * It means an unfragmented packet with fragment flag
  1554. * is delivered over the REO exception ring.
  1555. * Typically it follows normal rx path.
  1556. */
  1557. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1558. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1559. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1560. qdf_assert(0);
  1561. goto discard_frag;
  1562. }
  1563. /* Check if the fragment is for the same sequence or a different one */
  1564. dp_debug("rx_tid %d", tid);
  1565. if (rx_reorder_array_elem->head) {
  1566. dp_debug("rxseq %d\n", rxseq);
  1567. if (rxseq != rx_tid->curr_seq_num) {
  1568. dp_debug("mismatch cur_seq %d rxseq %d\n",
  1569. rx_tid->curr_seq_num, rxseq);
  1570. /* Drop stored fragments if out of sequence
  1571. * fragment is received
  1572. */
  1573. dp_rx_reorder_flush_frag(txrx_peer, tid);
  1574. DP_STATS_INC(soc, rx.rx_frag_oor, 1);
  1575. dp_debug("cur rxseq %d\n", rxseq);
  1576. /*
  1577. * The sequence number for this fragment becomes the
  1578. * new sequence number to be processed
  1579. */
  1580. rx_tid->curr_seq_num = rxseq;
  1581. }
  1582. } else {
  1583. /* Check if we are processing first fragment if it is
  1584. * not first fragment discard fragment.
  1585. */
  1586. if (fragno) {
  1587. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1588. goto discard_frag;
  1589. }
  1590. dp_debug("cur rxseq %d\n", rxseq);
  1591. /* Start of a new sequence */
  1592. dp_rx_defrag_cleanup(txrx_peer, tid);
  1593. rx_tid->curr_seq_num = rxseq;
  1594. /* store PN number also */
  1595. }
  1596. /*
  1597. * If the earlier sequence was dropped, this will be the fresh start.
  1598. * Else, continue with next fragment in a given sequence
  1599. */
  1600. status = dp_rx_defrag_fraglist_insert(txrx_peer, tid,
  1601. &rx_reorder_array_elem->head,
  1602. &rx_reorder_array_elem->tail,
  1603. frag, &all_frag_present);
  1604. /*
  1605. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1606. * packet sequence has more than 6 MSDUs for some reason, we will
  1607. * have to use the next MSDU link descriptor and chain them together
  1608. * before reinjection.
  1609. * ring_desc is validated in dp_rx_err_process.
  1610. */
  1611. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1612. (rx_reorder_array_elem->head == frag)) {
  1613. status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
  1614. rx_desc, txrx_peer, tid);
  1615. if (status != QDF_STATUS_SUCCESS) {
  1616. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1617. "%s: Unable to store ring desc !", __func__);
  1618. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1619. goto discard_frag;
  1620. }
  1621. } else {
  1622. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1623. (*rx_bfs)++;
  1624. /* Return the non-head link desc */
  1625. if (dp_rx_link_desc_return(soc, ring_desc,
  1626. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1627. QDF_STATUS_SUCCESS)
  1628. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1629. "%s: Failed to return link desc", __func__);
  1630. }
  1631. if (pdev->soc->rx.flags.defrag_timeout_check)
  1632. dp_rx_defrag_waitlist_remove(txrx_peer, tid);
  1633. /* Yet to receive more fragments for this sequence number */
  1634. if (!all_frag_present) {
  1635. uint32_t now_ms =
  1636. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1637. txrx_peer->rx_tid[tid].defrag_timeout_ms =
  1638. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1639. dp_rx_defrag_waitlist_add(txrx_peer, tid);
  1640. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
  1641. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1642. return QDF_STATUS_SUCCESS;
  1643. }
  1644. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1645. "All fragments received for sequence: %d", rxseq);
  1646. /* Process the fragments */
  1647. status = dp_rx_defrag(txrx_peer, tid, rx_reorder_array_elem->head,
  1648. rx_reorder_array_elem->tail);
  1649. if (QDF_IS_STATUS_ERROR(status)) {
  1650. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1651. "Fragment processing failed");
  1652. dp_rx_add_to_free_desc_list(head, tail,
  1653. txrx_peer->rx_tid[tid].head_frag_desc);
  1654. (*rx_bfs)++;
  1655. if (dp_rx_link_desc_return(soc,
  1656. txrx_peer->rx_tid[tid].dst_ring_desc,
  1657. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1658. QDF_STATUS_SUCCESS)
  1659. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1660. "%s: Failed to return link desc",
  1661. __func__);
  1662. dp_rx_defrag_cleanup(txrx_peer, tid);
  1663. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1664. goto end;
  1665. }
  1666. /* Re-inject the fragments back to REO for further processing */
  1667. status = dp_rx_defrag_reo_reinject(txrx_peer, tid,
  1668. rx_reorder_array_elem->head);
  1669. if (QDF_IS_STATUS_SUCCESS(status)) {
  1670. rx_reorder_array_elem->head = NULL;
  1671. rx_reorder_array_elem->tail = NULL;
  1672. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1673. "Fragmented sequence successfully reinjected");
  1674. } else {
  1675. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1676. "Fragmented sequence reinjection failed");
  1677. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1678. }
  1679. dp_rx_defrag_cleanup(txrx_peer, tid);
  1680. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1681. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
  1682. return QDF_STATUS_SUCCESS;
  1683. discard_frag:
  1684. dp_rx_nbuf_free(frag);
  1685. err_free_desc:
  1686. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1687. if (dp_rx_link_desc_return(soc, ring_desc,
  1688. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1689. QDF_STATUS_SUCCESS)
  1690. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1691. "%s: Failed to return link desc", __func__);
  1692. (*rx_bfs)++;
  1693. end:
  1694. if (txrx_peer)
  1695. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
  1696. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1697. return QDF_STATUS_E_DEFRAG_ERROR;
  1698. }
  1699. /**
  1700. * dp_rx_frag_handle() - Handles fragmented Rx frames
  1701. *
  1702. * @soc: core txrx main context
  1703. * @ring_desc: opaque pointer to the REO error ring descriptor
  1704. * @mpdu_desc_info: MPDU descriptor information from ring descriptor
  1705. * @head: head of the local descriptor free-list
  1706. * @tail: tail of the local descriptor free-list
  1707. * @quota: No. of units (packets) that can be serviced in one shot.
  1708. *
  1709. * This function implements RX 802.11 fragmentation handling
  1710. * The handling is mostly same as legacy fragmentation handling.
  1711. * If required, this function can re-inject the frames back to
  1712. * REO ring (with proper setting to by-pass fragmentation check
  1713. * but use duplicate detection / re-ordering and routing these frames
  1714. * to a different core.
  1715. *
  1716. * Return: uint32_t: No. of elements processed
  1717. */
  1718. uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
  1719. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1720. struct dp_rx_desc *rx_desc,
  1721. uint8_t *mac_id,
  1722. uint32_t quota)
  1723. {
  1724. uint32_t rx_bufs_used = 0;
  1725. qdf_nbuf_t msdu = NULL;
  1726. uint32_t tid;
  1727. uint32_t rx_bfs = 0;
  1728. struct dp_pdev *pdev;
  1729. QDF_STATUS status = QDF_STATUS_SUCCESS;
  1730. struct rx_desc_pool *rx_desc_pool;
  1731. qdf_assert(soc);
  1732. qdf_assert(mpdu_desc_info);
  1733. qdf_assert(rx_desc);
  1734. dp_debug("Number of MSDUs to process, num_msdus: %d",
  1735. mpdu_desc_info->msdu_count);
  1736. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1737. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1738. "Not sufficient MSDUs to process");
  1739. return rx_bufs_used;
  1740. }
  1741. /* all buffers in MSDU link belong to same pdev */
  1742. pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id);
  1743. if (!pdev) {
  1744. dp_nofl_debug("pdev is null for pool_id = %d",
  1745. rx_desc->pool_id);
  1746. return rx_bufs_used;
  1747. }
  1748. *mac_id = rx_desc->pool_id;
  1749. msdu = rx_desc->nbuf;
  1750. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  1751. if (rx_desc->unmapped)
  1752. return rx_bufs_used;
  1753. dp_ipa_rx_buf_smmu_mapping_lock(soc);
  1754. dp_rx_nbuf_unmap_pool(soc, rx_desc_pool, rx_desc->nbuf);
  1755. rx_desc->unmapped = 1;
  1756. dp_ipa_rx_buf_smmu_mapping_unlock(soc);
  1757. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1758. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
  1759. /* Process fragment-by-fragment */
  1760. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1761. &pdev->free_list_head,
  1762. &pdev->free_list_tail,
  1763. mpdu_desc_info,
  1764. tid, rx_desc, &rx_bfs);
  1765. if (rx_bfs)
  1766. rx_bufs_used += rx_bfs;
  1767. if (!QDF_IS_STATUS_SUCCESS(status))
  1768. dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1769. mpdu_desc_info->mpdu_seq,
  1770. mpdu_desc_info->msdu_count,
  1771. mpdu_desc_info->mpdu_flags);
  1772. return rx_bufs_used;
  1773. }
  1774. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1775. struct dp_txrx_peer *txrx_peer,
  1776. uint16_t tid,
  1777. uint16_t rxseq, qdf_nbuf_t nbuf)
  1778. {
  1779. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  1780. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1781. uint8_t all_frag_present;
  1782. uint32_t msdu_len;
  1783. QDF_STATUS status;
  1784. rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
  1785. /*
  1786. * HW may fill in unexpected peer_id in RX PKT TLV,
  1787. * if this peer_id related peer is valid by coincidence,
  1788. * but actually this peer won't do dp_peer_rx_init(like SAP vdev
  1789. * self peer), then invalid access to rx_reorder_array_elem happened.
  1790. */
  1791. if (!rx_reorder_array_elem) {
  1792. dp_verbose_debug(
  1793. "peer id:%d drop rx frame!",
  1794. txrx_peer->peer_id);
  1795. DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
  1796. dp_rx_nbuf_free(nbuf);
  1797. goto fail;
  1798. }
  1799. if (rx_reorder_array_elem->head &&
  1800. rxseq != rx_tid->curr_seq_num) {
  1801. /* Drop stored fragments if out of sequence
  1802. * fragment is received
  1803. */
  1804. dp_rx_reorder_flush_frag(txrx_peer, tid);
  1805. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1806. "%s: No list found for TID %d Seq# %d",
  1807. __func__, tid, rxseq);
  1808. dp_rx_nbuf_free(nbuf);
  1809. goto fail;
  1810. }
  1811. msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
  1812. qdf_nbuf_data(nbuf));
  1813. qdf_nbuf_set_pktlen(nbuf, (msdu_len + soc->rx_pkt_tlv_size));
  1814. status = dp_rx_defrag_fraglist_insert(txrx_peer, tid,
  1815. &rx_reorder_array_elem->head,
  1816. &rx_reorder_array_elem->tail, nbuf,
  1817. &all_frag_present);
  1818. if (QDF_IS_STATUS_ERROR(status)) {
  1819. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1820. "%s Fragment insert failed", __func__);
  1821. goto fail;
  1822. }
  1823. if (soc->rx.flags.defrag_timeout_check)
  1824. dp_rx_defrag_waitlist_remove(txrx_peer, tid);
  1825. if (!all_frag_present) {
  1826. uint32_t now_ms =
  1827. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1828. txrx_peer->rx_tid[tid].defrag_timeout_ms =
  1829. now_ms + soc->rx.defrag.timeout_ms;
  1830. dp_rx_defrag_waitlist_add(txrx_peer, tid);
  1831. return QDF_STATUS_SUCCESS;
  1832. }
  1833. status = dp_rx_defrag(txrx_peer, tid, rx_reorder_array_elem->head,
  1834. rx_reorder_array_elem->tail);
  1835. if (QDF_IS_STATUS_ERROR(status)) {
  1836. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1837. "%s Fragment processing failed", __func__);
  1838. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1839. dp_rx_defrag_cleanup(txrx_peer, tid);
  1840. goto fail;
  1841. }
  1842. /* Re-inject the fragments back to REO for further processing */
  1843. status = dp_rx_defrag_reo_reinject(txrx_peer, tid,
  1844. rx_reorder_array_elem->head);
  1845. if (QDF_IS_STATUS_SUCCESS(status)) {
  1846. rx_reorder_array_elem->head = NULL;
  1847. rx_reorder_array_elem->tail = NULL;
  1848. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1849. "%s: Frag seq successfully reinjected",
  1850. __func__);
  1851. } else {
  1852. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1853. "%s: Frag seq reinjection failed", __func__);
  1854. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1855. }
  1856. dp_rx_defrag_cleanup(txrx_peer, tid);
  1857. return QDF_STATUS_SUCCESS;
  1858. fail:
  1859. return QDF_STATUS_E_DEFRAG_ERROR;
  1860. }