lpass-cdc-rx-macro.c 148 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
  3. */
  4. #include <linux/module.h>
  5. #include <linux/init.h>
  6. #include <linux/io.h>
  7. #include <linux/platform_device.h>
  8. #include <linux/clk.h>
  9. #include <linux/pm_runtime.h>
  10. #include <sound/soc.h>
  11. #include <sound/pcm.h>
  12. #include <sound/pcm_params.h>
  13. #include <sound/soc-dapm.h>
  14. #include <sound/tlv.h>
  15. #include <soc/swr-common.h>
  16. #include <soc/swr-wcd.h>
  17. #include <asoc/msm-cdc-pinctrl.h>
  18. #include "lpass-cdc.h"
  19. #include "lpass-cdc-comp.h"
  20. #include "lpass-cdc-registers.h"
  21. #include "lpass-cdc-clk-rsc.h"
  22. #define AUTO_SUSPEND_DELAY 50 /* delay in msec */
  23. #define LPASS_CDC_RX_MACRO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  24. SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_48000 |\
  25. SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000 |\
  26. SNDRV_PCM_RATE_384000)
  27. /* Fractional Rates */
  28. #define LPASS_CDC_RX_MACRO_FRAC_RATES (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_88200 |\
  29. SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_352800)
  30. #define LPASS_CDC_RX_MACRO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  31. SNDRV_PCM_FMTBIT_S24_LE |\
  32. SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
  33. #define LPASS_CDC_RX_MACRO_ECHO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  34. SNDRV_PCM_RATE_48000)
  35. #define LPASS_CDC_RX_MACRO_ECHO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  36. SNDRV_PCM_FMTBIT_S24_LE |\
  37. SNDRV_PCM_FMTBIT_S24_3LE)
  38. #define SAMPLING_RATE_44P1KHZ 44100
  39. #define SAMPLING_RATE_88P2KHZ 88200
  40. #define SAMPLING_RATE_176P4KHZ 176400
  41. #define SAMPLING_RATE_352P8KHZ 352800
  42. #define LPASS_CDC_RX_MACRO_MAX_OFFSET 0x1000
  43. #define LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT 2
  44. #define RX_SWR_STRING_LEN 80
  45. #define LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX 3
  46. #define LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS 3
  47. #define LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX 5
  48. #define LPASS_CDC_RX_MACRO_FIR_COEFF_MAX 100
  49. #define LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX \
  50. (LPASS_CDC_RX_MACRO_FIR_COEFF_MAX + 1)
  51. /* first value represent number of coefficients in each 100 integer group */
  52. #define LPASS_CDC_RX_MACRO_FIR_FILTER_BYTES \
  53. (sizeof(u32) * LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX)
  54. #define STRING(name) #name
  55. #define LPASS_CDC_RX_MACRO_DAPM_ENUM(name, reg, offset, text) \
  56. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  57. static const struct snd_kcontrol_new name##_mux = \
  58. SOC_DAPM_ENUM(STRING(name), name##_enum)
  59. #define LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(name, reg, offset, text, getname, putname) \
  60. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  61. static const struct snd_kcontrol_new name##_mux = \
  62. SOC_DAPM_ENUM_EXT(STRING(name), name##_enum, getname, putname)
  63. #define LPASS_CDC_RX_MACRO_DAPM_MUX(name, shift, kctl) \
  64. SND_SOC_DAPM_MUX(name, SND_SOC_NOPM, shift, 0, &kctl##_mux)
  65. #define LPASS_CDC_RX_MACRO_RX_PATH_OFFSET \
  66. (LPASS_CDC_RX_RX1_RX_PATH_CTL - LPASS_CDC_RX_RX0_RX_PATH_CTL)
  67. #define LPASS_CDC_RX_MACRO_COMP_OFFSET \
  68. (LPASS_CDC_RX_COMPANDER1_CTL0 - LPASS_CDC_RX_COMPANDER0_CTL0)
  69. #define MAX_IMPED_PARAMS 6
  70. #define LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK 0xf0
  71. #define LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK 0x0f
  72. #define LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK 0x0f
  73. #define LPASS_CDC_RX_MACRO_GAIN_MAX_VAL 0x28
  74. #define LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY 0x0
  75. /* Define macros to increase PA Gain by half */
  76. #define LPASS_CDC_RX_MACRO_MOD_GAIN (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY + 6)
  77. #define COMP_MAX_COEFF 25
  78. struct wcd_imped_val {
  79. u32 imped_val;
  80. u8 index;
  81. };
  82. static const struct wcd_imped_val imped_index[] = {
  83. {4, 0},
  84. {5, 1},
  85. {6, 2},
  86. {7, 3},
  87. {8, 4},
  88. {9, 5},
  89. {10, 6},
  90. {11, 7},
  91. {12, 8},
  92. {13, 9},
  93. };
  94. enum {
  95. HPH_ULP,
  96. HPH_LOHIFI,
  97. HPH_MODE_MAX,
  98. };
  99. static struct comp_coeff_val
  100. comp_coeff_table [HPH_MODE_MAX][COMP_MAX_COEFF] = {
  101. {
  102. {0x40, 0x00},
  103. {0x4C, 0x00},
  104. {0x5A, 0x00},
  105. {0x6B, 0x00},
  106. {0x7F, 0x00},
  107. {0x97, 0x00},
  108. {0xB3, 0x00},
  109. {0xD5, 0x00},
  110. {0xFD, 0x00},
  111. {0x2D, 0x01},
  112. {0x66, 0x01},
  113. {0xA7, 0x01},
  114. {0xF8, 0x01},
  115. {0x57, 0x02},
  116. {0xC7, 0x02},
  117. {0x4B, 0x03},
  118. {0xE9, 0x03},
  119. {0xA3, 0x04},
  120. {0x7D, 0x05},
  121. {0x90, 0x06},
  122. {0xD1, 0x07},
  123. {0x49, 0x09},
  124. {0x00, 0x0B},
  125. {0x01, 0x0D},
  126. {0x59, 0x0F},
  127. },
  128. {
  129. {0x40, 0x00},
  130. {0x4C, 0x00},
  131. {0x5A, 0x00},
  132. {0x6B, 0x00},
  133. {0x80, 0x00},
  134. {0x98, 0x00},
  135. {0xB4, 0x00},
  136. {0xD5, 0x00},
  137. {0xFE, 0x00},
  138. {0x2E, 0x01},
  139. {0x66, 0x01},
  140. {0xA9, 0x01},
  141. {0xF8, 0x01},
  142. {0x56, 0x02},
  143. {0xC4, 0x02},
  144. {0x4F, 0x03},
  145. {0xF0, 0x03},
  146. {0xAE, 0x04},
  147. {0x8B, 0x05},
  148. {0x8E, 0x06},
  149. {0xBC, 0x07},
  150. {0x56, 0x09},
  151. {0x0F, 0x0B},
  152. {0x13, 0x0D},
  153. {0x6F, 0x0F},
  154. },
  155. };
  156. enum {
  157. RX_MODE_ULP,
  158. RX_MODE_LOHIFI,
  159. RX_MODE_EAR,
  160. RX_MODE_MAX
  161. };
  162. static struct lpass_cdc_comp_setting comp_setting_table[RX_MODE_MAX] =
  163. {
  164. {12, -60, 12},
  165. {0, -60, 12},
  166. {12, -36, 12},
  167. };
  168. struct lpass_cdc_rx_macro_reg_mask_val {
  169. u16 reg;
  170. u8 mask;
  171. u8 val;
  172. };
  173. static const struct lpass_cdc_rx_macro_reg_mask_val imped_table[][MAX_IMPED_PARAMS] = {
  174. {
  175. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf2},
  176. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf2},
  177. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  178. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf2},
  179. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf2},
  180. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  181. },
  182. {
  183. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf4},
  184. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf4},
  185. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  186. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf4},
  187. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf4},
  188. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  189. },
  190. {
  191. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf7},
  192. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf7},
  193. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  194. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf7},
  195. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf7},
  196. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  197. },
  198. {
  199. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf9},
  200. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf9},
  201. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  202. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf9},
  203. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf9},
  204. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  205. },
  206. {
  207. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfa},
  208. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfa},
  209. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  210. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfa},
  211. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfa},
  212. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  213. },
  214. {
  215. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfb},
  216. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfb},
  217. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  218. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfb},
  219. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfb},
  220. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  221. },
  222. {
  223. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfc},
  224. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfc},
  225. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  226. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfc},
  227. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfc},
  228. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  229. },
  230. {
  231. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  232. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  233. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  234. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  235. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  236. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  237. },
  238. {
  239. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  240. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  241. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  242. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  243. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  244. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  245. },
  246. };
  247. enum {
  248. INTERP_HPHL,
  249. INTERP_HPHR,
  250. INTERP_AUX,
  251. INTERP_MAX
  252. };
  253. enum {
  254. LPASS_CDC_RX_MACRO_RX0,
  255. LPASS_CDC_RX_MACRO_RX1,
  256. LPASS_CDC_RX_MACRO_RX2,
  257. LPASS_CDC_RX_MACRO_RX3,
  258. LPASS_CDC_RX_MACRO_RX4,
  259. LPASS_CDC_RX_MACRO_RX5,
  260. LPASS_CDC_RX_MACRO_PORTS_MAX
  261. };
  262. enum {
  263. LPASS_CDC_RX_MACRO_COMP1, /* HPH_L */
  264. LPASS_CDC_RX_MACRO_COMP2, /* HPH_R */
  265. LPASS_CDC_RX_MACRO_COMP_MAX
  266. };
  267. enum {
  268. LPASS_CDC_RX_MACRO_EC0_MUX = 0,
  269. LPASS_CDC_RX_MACRO_EC1_MUX,
  270. LPASS_CDC_RX_MACRO_EC2_MUX,
  271. LPASS_CDC_RX_MACRO_EC_MUX_MAX,
  272. };
  273. enum {
  274. INTn_1_INP_SEL_ZERO = 0,
  275. INTn_1_INP_SEL_DEC0,
  276. INTn_1_INP_SEL_DEC1,
  277. INTn_1_INP_SEL_IIR0,
  278. INTn_1_INP_SEL_IIR1,
  279. INTn_1_INP_SEL_RX0,
  280. INTn_1_INP_SEL_RX1,
  281. INTn_1_INP_SEL_RX2,
  282. INTn_1_INP_SEL_RX3,
  283. INTn_1_INP_SEL_RX4,
  284. INTn_1_INP_SEL_RX5,
  285. };
  286. enum {
  287. INTn_2_INP_SEL_ZERO = 0,
  288. INTn_2_INP_SEL_RX0,
  289. INTn_2_INP_SEL_RX1,
  290. INTn_2_INP_SEL_RX2,
  291. INTn_2_INP_SEL_RX3,
  292. INTn_2_INP_SEL_RX4,
  293. INTn_2_INP_SEL_RX5,
  294. };
  295. enum {
  296. INTERP_MAIN_PATH,
  297. INTERP_MIX_PATH,
  298. };
  299. /* Codec supports 2 IIR filters */
  300. enum {
  301. IIR0 = 0,
  302. IIR1,
  303. IIR_MAX,
  304. };
  305. /* Each IIR has 5 Filter Stages */
  306. enum {
  307. BAND1 = 0,
  308. BAND2,
  309. BAND3,
  310. BAND4,
  311. BAND5,
  312. BAND_MAX,
  313. };
  314. #define LPASS_CDC_RX_MACRO_IIR_FILTER_SIZE (sizeof(u32) * BAND_MAX)
  315. struct lpass_cdc_rx_macro_iir_filter_ctl {
  316. unsigned int iir_idx;
  317. unsigned int band_idx;
  318. struct soc_bytes_ext bytes_ext;
  319. };
  320. #define LPASS_CDC_RX_MACRO_IIR_FILTER_CTL(xname, iidx, bidx) \
  321. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  322. .info = lpass_cdc_rx_macro_iir_filter_info, \
  323. .get = lpass_cdc_rx_macro_iir_band_audio_mixer_get, \
  324. .put = lpass_cdc_rx_macro_iir_band_audio_mixer_put, \
  325. .private_value = (unsigned long)&(struct lpass_cdc_rx_macro_iir_filter_ctl) { \
  326. .iir_idx = iidx, \
  327. .band_idx = bidx, \
  328. .bytes_ext = {.max = LPASS_CDC_RX_MACRO_IIR_FILTER_SIZE, }, \
  329. } \
  330. }
  331. /* Codec supports 2 FIR filters Path */
  332. enum {
  333. RX0_PATH = 0,
  334. RX1_PATH,
  335. FIR_PATH_MAX,
  336. };
  337. /* Each RX Path has 2 group of coefficients */
  338. enum {
  339. GRP0 = 0,
  340. GRP1,
  341. GRP_MAX,
  342. };
  343. struct lpass_cdc_rx_macro_fir_filter_ctl {
  344. unsigned int path_idx;
  345. unsigned int grp_idx;
  346. struct soc_bytes_ext bytes_ext;
  347. };
  348. #define LPASS_CDC_RX_MACRO_FIR_FILTER_CTL(xname, pidx, gidx) \
  349. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  350. .info = lpass_cdc_rx_macro_fir_filter_info, \
  351. .get = lpass_cdc_rx_macro_fir_audio_mixer_get, \
  352. .put = lpass_cdc_rx_macro_fir_audio_mixer_put, \
  353. .private_value = (unsigned long)&(struct lpass_cdc_rx_macro_fir_filter_ctl) { \
  354. .path_idx = pidx, \
  355. .grp_idx = gidx, \
  356. .bytes_ext = {.max = LPASS_CDC_RX_MACRO_FIR_FILTER_BYTES, }, \
  357. } \
  358. }
  359. struct lpass_cdc_rx_macro_idle_detect_config {
  360. u8 hph_idle_thr;
  361. u8 hph_idle_detect_en;
  362. };
  363. struct interp_sample_rate {
  364. int sample_rate;
  365. int rate_val;
  366. };
  367. static struct interp_sample_rate sr_val_tbl[] = {
  368. {8000, 0x0}, {16000, 0x1}, {32000, 0x3}, {48000, 0x4}, {96000, 0x5},
  369. {192000, 0x6}, {384000, 0x7}, {44100, 0x9}, {88200, 0xA},
  370. {176400, 0xB}, {352800, 0xC},
  371. };
  372. static int lpass_cdc_rx_macro_core_vote(void *handle, bool enable);
  373. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  374. struct snd_pcm_hw_params *params,
  375. struct snd_soc_dai *dai);
  376. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  377. unsigned int *tx_num, unsigned int *tx_slot,
  378. unsigned int *rx_num, unsigned int *rx_slot);
  379. static int lpass_cdc_rx_macro_mute_stream(struct snd_soc_dai *dai, int mute, int stream);
  380. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  381. struct snd_ctl_elem_value *ucontrol);
  382. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  383. struct snd_ctl_elem_value *ucontrol);
  384. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  385. struct snd_ctl_elem_value *ucontrol);
  386. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  387. int event, int interp_idx);
  388. /* Hold instance to soundwire platform device */
  389. struct rx_swr_ctrl_data {
  390. struct platform_device *rx_swr_pdev;
  391. };
  392. struct rx_swr_ctrl_platform_data {
  393. void *handle; /* holds codec private data */
  394. int (*read)(void *handle, int reg);
  395. int (*write)(void *handle, int reg, int val);
  396. int (*bulk_write)(void *handle, u32 *reg, u32 *val, size_t len);
  397. int (*clk)(void *handle, bool enable);
  398. int (*core_vote)(void *handle, bool enable);
  399. int (*handle_irq)(void *handle,
  400. irqreturn_t (*swrm_irq_handler)(int irq,
  401. void *data),
  402. void *swrm_handle,
  403. int action);
  404. };
  405. enum {
  406. RX_MACRO_AIF_INVALID = 0,
  407. RX_MACRO_AIF1_PB,
  408. RX_MACRO_AIF2_PB,
  409. RX_MACRO_AIF3_PB,
  410. RX_MACRO_AIF4_PB,
  411. RX_MACRO_AIF_ECHO,
  412. RX_MACRO_AIF5_PB,
  413. RX_MACRO_AIF6_PB,
  414. LPASS_CDC_RX_MACRO_MAX_DAIS,
  415. };
  416. enum {
  417. RX_MACRO_AIF1_CAP = 0,
  418. RX_MACRO_AIF2_CAP,
  419. RX_MACRO_AIF3_CAP,
  420. LPASS_CDC_RX_MACRO_MAX_AIF_CAP_DAIS
  421. };
  422. /*
  423. * @dev: rx macro device pointer
  424. * @comp_enabled: compander enable mixer value set
  425. * @prim_int_users: Users of interpolator
  426. * @rx_mclk_users: RX MCLK users count
  427. * @vi_feed_value: VI sense mask
  428. * @swr_clk_lock: to lock swr master clock operations
  429. * @swr_ctrl_data: SoundWire data structure
  430. * @swr_plat_data: Soundwire platform data
  431. * @lpass_cdc_rx_macro_add_child_devices_work: work for adding child devices
  432. * @rx_swr_gpio_p: used by pinctrl API
  433. * @component: codec handle
  434. */
  435. struct lpass_cdc_rx_macro_priv {
  436. struct device *dev;
  437. int comp_enabled[LPASS_CDC_RX_MACRO_COMP_MAX];
  438. /* Main path clock users count */
  439. int main_clk_users[INTERP_MAX];
  440. int rx_port_value[LPASS_CDC_RX_MACRO_PORTS_MAX];
  441. u16 prim_int_users[INTERP_MAX];
  442. int rx_mclk_users;
  443. int swr_clk_users;
  444. bool dapm_mclk_enable;
  445. bool reset_swr;
  446. int clsh_users;
  447. int rx_mclk_cnt;
  448. bool is_native_on;
  449. bool is_ear_mode_on;
  450. bool is_fir_filter_on;
  451. bool is_fir_coeff_ready[FIR_PATH_MAX][GRP_MAX];
  452. bool is_fir_capable;
  453. bool dev_up;
  454. bool hph_pwr_mode;
  455. bool hph_hd2_mode;
  456. struct mutex mclk_lock;
  457. struct mutex swr_clk_lock;
  458. struct rx_swr_ctrl_data *swr_ctrl_data;
  459. struct rx_swr_ctrl_platform_data swr_plat_data;
  460. struct work_struct lpass_cdc_rx_macro_add_child_devices_work;
  461. struct device_node *rx_swr_gpio_p;
  462. struct snd_soc_component *component;
  463. unsigned long active_ch_mask[LPASS_CDC_RX_MACRO_MAX_DAIS];
  464. unsigned long active_ch_cnt[LPASS_CDC_RX_MACRO_MAX_DAIS];
  465. u16 bit_width[LPASS_CDC_RX_MACRO_MAX_DAIS];
  466. char __iomem *rx_io_base;
  467. char __iomem *rx_mclk_mode_muxsel;
  468. struct lpass_cdc_rx_macro_idle_detect_config idle_det_cfg;
  469. u8 sidetone_coeff_array[IIR_MAX][BAND_MAX]
  470. [LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX * 4];
  471. u32 fir_coeff_array[FIR_PATH_MAX][GRP_MAX]
  472. [LPASS_CDC_RX_MACRO_FIR_COEFF_MAX];
  473. u32 num_fir_coeff[FIR_PATH_MAX][GRP_MAX];
  474. struct platform_device *pdev_child_devices
  475. [LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX];
  476. int child_count;
  477. int is_softclip_on;
  478. int is_aux_hpf_on;
  479. int softclip_clk_users;
  480. u16 clk_id;
  481. u16 default_clk_id;
  482. struct clk *hifi_fir_clk;
  483. int8_t rx0_gain_val;
  484. int8_t rx1_gain_val;
  485. };
  486. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[];
  487. static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
  488. static const char * const rx_int_mix_mux_text[] = {
  489. "ZERO", "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  490. };
  491. static const char * const rx_prim_mix_text[] = {
  492. "ZERO", "DEC0", "DEC1", "IIR0", "IIR1", "RX0", "RX1", "RX2",
  493. "RX3", "RX4", "RX5"
  494. };
  495. static const char * const rx_sidetone_mix_text[] = {
  496. "ZERO", "SRC0", "SRC1", "SRC_SUM"
  497. };
  498. static const char * const iir_inp_mux_text[] = {
  499. "ZERO", "DEC0", "DEC1", "DEC2", "DEC3",
  500. "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  501. };
  502. static const char * const rx_int_dem_inp_mux_text[] = {
  503. "NORMAL_DSM_OUT", "CLSH_DSM_OUT",
  504. };
  505. static const char * const rx_int0_1_interp_mux_text[] = {
  506. "ZERO", "RX INT0_1 MIX1",
  507. };
  508. static const char * const rx_int1_1_interp_mux_text[] = {
  509. "ZERO", "RX INT1_1 MIX1",
  510. };
  511. static const char * const rx_int2_1_interp_mux_text[] = {
  512. "ZERO", "RX INT2_1 MIX1",
  513. };
  514. static const char * const rx_int0_2_interp_mux_text[] = {
  515. "ZERO", "RX INT0_2 MUX",
  516. };
  517. static const char * const rx_int1_2_interp_mux_text[] = {
  518. "ZERO", "RX INT1_2 MUX",
  519. };
  520. static const char * const rx_int2_2_interp_mux_text[] = {
  521. "ZERO", "RX INT2_2 MUX",
  522. };
  523. static const char *const lpass_cdc_rx_macro_mux_text[] = {
  524. "ZERO", "AIF1_PB", "AIF2_PB", "AIF3_PB", "AIF4_PB"
  525. };
  526. static const char *const lpass_cdc_rx_macro_ear_mode_text[] = {"OFF", "ON"};
  527. static const struct soc_enum lpass_cdc_rx_macro_ear_mode_enum =
  528. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_ear_mode_text);
  529. static const char *const lpass_cdc_rx_macro_hph_hd2_mode_text[] = {"OFF", "ON"};
  530. static const struct soc_enum lpass_cdc_rx_macro_hph_hd2_mode_enum =
  531. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_hd2_mode_text);
  532. static const char *const lpass_cdc_rx_macro_hph_pwr_mode_text[] = {"ULP", "LOHIFI"};
  533. static const struct soc_enum lpass_cdc_rx_macro_hph_pwr_mode_enum =
  534. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_pwr_mode_text);
  535. static const char * const lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text[] = {"OFF", "ON"};
  536. static const struct soc_enum lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum =
  537. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text);
  538. static const char *const lpass_cdc_rx_macro_fir_filter_text[] = {"OFF", "ON"};
  539. static const struct soc_enum lpass_cdc_rx_macro_fir_filter_enum =
  540. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_fir_filter_text);
  541. static const struct snd_kcontrol_new rx_int2_1_vbat_mix_switch[] = {
  542. SOC_DAPM_SINGLE("RX AUX VBAT Enable", SND_SOC_NOPM, 0, 1, 0)
  543. };
  544. static const char * const hph_idle_detect_text[] = {"OFF", "ON"};
  545. static SOC_ENUM_SINGLE_EXT_DECL(hph_idle_detect_enum, hph_idle_detect_text);
  546. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 0,
  547. rx_int_mix_mux_text);
  548. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 0,
  549. rx_int_mix_mux_text);
  550. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 0,
  551. rx_int_mix_mux_text);
  552. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 0,
  553. rx_prim_mix_text);
  554. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 4,
  555. rx_prim_mix_text);
  556. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 4,
  557. rx_prim_mix_text);
  558. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 0,
  559. rx_prim_mix_text);
  560. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 4,
  561. rx_prim_mix_text);
  562. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 4,
  563. rx_prim_mix_text);
  564. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 0,
  565. rx_prim_mix_text);
  566. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 4,
  567. rx_prim_mix_text);
  568. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 4,
  569. rx_prim_mix_text);
  570. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 2,
  571. rx_sidetone_mix_text);
  572. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 4,
  573. rx_sidetone_mix_text);
  574. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 6,
  575. rx_sidetone_mix_text);
  576. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG0, 0,
  577. iir_inp_mux_text);
  578. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG1, 0,
  579. iir_inp_mux_text);
  580. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG2, 0,
  581. iir_inp_mux_text);
  582. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG3, 0,
  583. iir_inp_mux_text);
  584. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG0, 0,
  585. iir_inp_mux_text);
  586. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG1, 0,
  587. iir_inp_mux_text);
  588. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG2, 0,
  589. iir_inp_mux_text);
  590. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG3, 0,
  591. iir_inp_mux_text);
  592. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_interp, SND_SOC_NOPM, 0,
  593. rx_int0_1_interp_mux_text);
  594. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_interp, SND_SOC_NOPM, 0,
  595. rx_int1_1_interp_mux_text);
  596. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_interp, SND_SOC_NOPM, 0,
  597. rx_int2_1_interp_mux_text);
  598. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2_interp, SND_SOC_NOPM, 0,
  599. rx_int0_2_interp_mux_text);
  600. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2_interp, SND_SOC_NOPM, 0,
  601. rx_int1_2_interp_mux_text);
  602. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2_interp, SND_SOC_NOPM, 0,
  603. rx_int2_2_interp_mux_text);
  604. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int0_dem_inp, LPASS_CDC_RX_RX0_RX_PATH_CFG1, 0,
  605. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  606. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  607. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int1_dem_inp, LPASS_CDC_RX_RX1_RX_PATH_CFG1, 0,
  608. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  609. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  610. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx0, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  611. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  612. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx1, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  613. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  614. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx2, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  615. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  616. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx3, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  617. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  618. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx4, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  619. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  620. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx5, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  621. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  622. static const char * const rx_echo_mux_text[] = {
  623. "ZERO", "RX_MIX0", "RX_MIX1", "RX_MIX2"
  624. };
  625. static const struct soc_enum rx_mix_tx2_mux_enum =
  626. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5, 0, 4,
  627. rx_echo_mux_text);
  628. static const struct snd_kcontrol_new rx_mix_tx2_mux =
  629. SOC_DAPM_ENUM("RX MIX TX2_MUX Mux", rx_mix_tx2_mux_enum);
  630. static const struct soc_enum rx_mix_tx1_mux_enum =
  631. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 0, 4,
  632. rx_echo_mux_text);
  633. static const struct snd_kcontrol_new rx_mix_tx1_mux =
  634. SOC_DAPM_ENUM("RX MIX TX1_MUX Mux", rx_mix_tx1_mux_enum);
  635. static const struct soc_enum rx_mix_tx0_mux_enum =
  636. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 4, 4,
  637. rx_echo_mux_text);
  638. static const struct snd_kcontrol_new rx_mix_tx0_mux =
  639. SOC_DAPM_ENUM("RX MIX TX0_MUX Mux", rx_mix_tx0_mux_enum);
  640. static struct snd_soc_dai_ops lpass_cdc_rx_macro_dai_ops = {
  641. .hw_params = lpass_cdc_rx_macro_hw_params,
  642. .get_channel_map = lpass_cdc_rx_macro_get_channel_map,
  643. .mute_stream = lpass_cdc_rx_macro_mute_stream,
  644. };
  645. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[] = {
  646. {
  647. .name = "rx_macro_rx1",
  648. .id = RX_MACRO_AIF1_PB,
  649. .playback = {
  650. .stream_name = "RX_MACRO_AIF1 Playback",
  651. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  652. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  653. .rate_max = 384000,
  654. .rate_min = 8000,
  655. .channels_min = 1,
  656. .channels_max = 2,
  657. },
  658. .ops = &lpass_cdc_rx_macro_dai_ops,
  659. },
  660. {
  661. .name = "rx_macro_rx2",
  662. .id = RX_MACRO_AIF2_PB,
  663. .playback = {
  664. .stream_name = "RX_MACRO_AIF2 Playback",
  665. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  666. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  667. .rate_max = 384000,
  668. .rate_min = 8000,
  669. .channels_min = 1,
  670. .channels_max = 2,
  671. },
  672. .ops = &lpass_cdc_rx_macro_dai_ops,
  673. },
  674. {
  675. .name = "rx_macro_rx3",
  676. .id = RX_MACRO_AIF3_PB,
  677. .playback = {
  678. .stream_name = "RX_MACRO_AIF3 Playback",
  679. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  680. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  681. .rate_max = 384000,
  682. .rate_min = 8000,
  683. .channels_min = 1,
  684. .channels_max = 2,
  685. },
  686. .ops = &lpass_cdc_rx_macro_dai_ops,
  687. },
  688. {
  689. .name = "rx_macro_rx4",
  690. .id = RX_MACRO_AIF4_PB,
  691. .playback = {
  692. .stream_name = "RX_MACRO_AIF4 Playback",
  693. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  694. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  695. .rate_max = 384000,
  696. .rate_min = 8000,
  697. .channels_min = 1,
  698. .channels_max = 2,
  699. },
  700. .ops = &lpass_cdc_rx_macro_dai_ops,
  701. },
  702. {
  703. .name = "rx_macro_echo",
  704. .id = RX_MACRO_AIF_ECHO,
  705. .capture = {
  706. .stream_name = "RX_AIF_ECHO Capture",
  707. .rates = LPASS_CDC_RX_MACRO_ECHO_RATES,
  708. .formats = LPASS_CDC_RX_MACRO_ECHO_FORMATS,
  709. .rate_max = 48000,
  710. .rate_min = 8000,
  711. .channels_min = 1,
  712. .channels_max = 3,
  713. },
  714. .ops = &lpass_cdc_rx_macro_dai_ops,
  715. },
  716. {
  717. .name = "rx_macro_rx5",
  718. .id = RX_MACRO_AIF5_PB,
  719. .playback = {
  720. .stream_name = "RX_MACRO_AIF5 Playback",
  721. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  722. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  723. .rate_max = 384000,
  724. .rate_min = 8000,
  725. .channels_min = 1,
  726. .channels_max = 4,
  727. },
  728. .ops = &lpass_cdc_rx_macro_dai_ops,
  729. },
  730. {
  731. .name = "rx_macro_rx6",
  732. .id = RX_MACRO_AIF6_PB,
  733. .playback = {
  734. .stream_name = "RX_MACRO_AIF6 Playback",
  735. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  736. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  737. .rate_max = 384000,
  738. .rate_min = 8000,
  739. .channels_min = 1,
  740. .channels_max = 4,
  741. },
  742. .ops = &lpass_cdc_rx_macro_dai_ops,
  743. },
  744. };
  745. static int get_impedance_index(int imped)
  746. {
  747. int i = 0;
  748. if (imped < imped_index[i].imped_val) {
  749. pr_debug("%s, detected impedance is less than %d Ohm\n",
  750. __func__, imped_index[i].imped_val);
  751. i = 0;
  752. goto ret;
  753. }
  754. if (imped >= imped_index[ARRAY_SIZE(imped_index) - 1].imped_val) {
  755. pr_debug("%s, detected impedance is greater than %d Ohm\n",
  756. __func__,
  757. imped_index[ARRAY_SIZE(imped_index) - 1].imped_val);
  758. i = ARRAY_SIZE(imped_index) - 1;
  759. goto ret;
  760. }
  761. for (i = 0; i < ARRAY_SIZE(imped_index) - 1; i++) {
  762. if (imped >= imped_index[i].imped_val &&
  763. imped < imped_index[i + 1].imped_val)
  764. break;
  765. }
  766. ret:
  767. pr_debug("%s: selected impedance index = %d\n",
  768. __func__, imped_index[i].index);
  769. return imped_index[i].index;
  770. }
  771. /*
  772. * lpass_cdc_rx_macro_wcd_clsh_imped_config -
  773. * This function updates HPHL and HPHR gain settings
  774. * according to the impedance value.
  775. *
  776. * @component: codec pointer handle
  777. * @imped: impedance value of HPHL/R
  778. * @reset: bool variable to reset registers when teardown
  779. */
  780. static void lpass_cdc_rx_macro_wcd_clsh_imped_config(struct snd_soc_component *component,
  781. int imped, bool reset)
  782. {
  783. int i;
  784. int index = 0;
  785. int table_size;
  786. static const struct lpass_cdc_rx_macro_reg_mask_val
  787. (*imped_table_ptr)[MAX_IMPED_PARAMS];
  788. table_size = ARRAY_SIZE(imped_table);
  789. imped_table_ptr = imped_table;
  790. /* reset = 1, which means request is to reset the register values */
  791. if (reset) {
  792. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  793. snd_soc_component_update_bits(component,
  794. imped_table_ptr[index][i].reg,
  795. imped_table_ptr[index][i].mask, 0);
  796. return;
  797. }
  798. index = get_impedance_index(imped);
  799. if (index >= (ARRAY_SIZE(imped_index) - 1)) {
  800. pr_debug("%s, impedance not in range = %d\n", __func__, imped);
  801. return;
  802. }
  803. if (index >= table_size) {
  804. pr_debug("%s, impedance index not in range = %d\n", __func__,
  805. index);
  806. return;
  807. }
  808. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  809. snd_soc_component_update_bits(component,
  810. imped_table_ptr[index][i].reg,
  811. imped_table_ptr[index][i].mask,
  812. imped_table_ptr[index][i].val);
  813. }
  814. static bool lpass_cdc_rx_macro_get_data(struct snd_soc_component *component,
  815. struct device **rx_dev,
  816. struct lpass_cdc_rx_macro_priv **rx_priv,
  817. const char *func_name)
  818. {
  819. *rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  820. if (!(*rx_dev)) {
  821. dev_err(component->dev,
  822. "%s: null device for macro!\n", func_name);
  823. return false;
  824. }
  825. *rx_priv = dev_get_drvdata((*rx_dev));
  826. if (!(*rx_priv)) {
  827. dev_err(component->dev,
  828. "%s: priv is null for macro!\n", func_name);
  829. return false;
  830. }
  831. if (!(*rx_priv)->component) {
  832. dev_err(component->dev,
  833. "%s: rx_priv component is not initialized!\n", func_name);
  834. return false;
  835. }
  836. return true;
  837. }
  838. static int lpass_cdc_rx_macro_set_port_map(struct snd_soc_component *component,
  839. u32 usecase, u32 size, void *data)
  840. {
  841. struct device *rx_dev = NULL;
  842. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  843. struct swrm_port_config port_cfg;
  844. int ret = 0;
  845. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  846. return -EINVAL;
  847. memset(&port_cfg, 0, sizeof(port_cfg));
  848. port_cfg.uc = usecase;
  849. port_cfg.size = size;
  850. port_cfg.params = data;
  851. if (rx_priv->swr_ctrl_data)
  852. ret = swrm_wcd_notify(
  853. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  854. SWR_SET_PORT_MAP, &port_cfg);
  855. return ret;
  856. }
  857. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  858. struct snd_ctl_elem_value *ucontrol)
  859. {
  860. struct snd_soc_dapm_widget *widget =
  861. snd_soc_dapm_kcontrol_widget(kcontrol);
  862. struct snd_soc_component *component =
  863. snd_soc_dapm_to_component(widget->dapm);
  864. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  865. unsigned int val = 0;
  866. unsigned short look_ahead_dly_reg =
  867. LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  868. val = ucontrol->value.enumerated.item[0];
  869. if (val >= e->items)
  870. return -EINVAL;
  871. dev_dbg(component->dev, "%s: wname: %s, val: 0x%x\n", __func__,
  872. widget->name, val);
  873. if (e->reg == LPASS_CDC_RX_RX0_RX_PATH_CFG1)
  874. look_ahead_dly_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  875. else if (e->reg == LPASS_CDC_RX_RX1_RX_PATH_CFG1)
  876. look_ahead_dly_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  877. /* Set Look Ahead Delay */
  878. snd_soc_component_update_bits(component, look_ahead_dly_reg,
  879. 0x08, (val ? 0x08 : 0x00));
  880. /* Set DEM INP Select */
  881. return snd_soc_dapm_put_enum_double(kcontrol, ucontrol);
  882. }
  883. static int lpass_cdc_rx_macro_set_prim_interpolator_rate(struct snd_soc_dai *dai,
  884. u8 rate_reg_val,
  885. u32 sample_rate)
  886. {
  887. u8 int_1_mix1_inp = 0;
  888. u32 j = 0, port = 0;
  889. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  890. u16 int_fs_reg = 0;
  891. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  892. u8 inp0_sel = 0, inp1_sel = 0, inp2_sel = 0;
  893. struct snd_soc_component *component = dai->component;
  894. struct device *rx_dev = NULL;
  895. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  896. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  897. return -EINVAL;
  898. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  899. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  900. int_1_mix1_inp = port;
  901. if ((int_1_mix1_inp < LPASS_CDC_RX_MACRO_RX0) ||
  902. (int_1_mix1_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  903. pr_err("%s: Invalid RX port, Dai ID is %d\n",
  904. __func__, dai->id);
  905. return -EINVAL;
  906. }
  907. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0;
  908. /*
  909. * Loop through all interpolator MUX inputs and find out
  910. * to which interpolator input, the rx port
  911. * is connected
  912. */
  913. for (j = 0; j < INTERP_MAX; j++) {
  914. int_mux_cfg1 = int_mux_cfg0 + 4;
  915. int_mux_cfg0_val = snd_soc_component_read(
  916. component, int_mux_cfg0);
  917. int_mux_cfg1_val = snd_soc_component_read(
  918. component, int_mux_cfg1);
  919. inp0_sel = int_mux_cfg0_val & 0x0F;
  920. inp1_sel = (int_mux_cfg0_val >> 4) & 0x0F;
  921. inp2_sel = (int_mux_cfg1_val >> 4) & 0x0F;
  922. if ((inp0_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  923. (inp1_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  924. (inp2_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0)) {
  925. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  926. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * j;
  927. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_1\n",
  928. __func__, dai->id, j);
  929. pr_debug("%s: set INT%u_1 sample rate to %u\n",
  930. __func__, j, sample_rate);
  931. /* sample_rate is in Hz */
  932. snd_soc_component_update_bits(component,
  933. int_fs_reg,
  934. 0x0F, rate_reg_val);
  935. }
  936. int_mux_cfg0 += 8;
  937. }
  938. }
  939. return 0;
  940. }
  941. static int lpass_cdc_rx_macro_set_mix_interpolator_rate(struct snd_soc_dai *dai,
  942. u8 rate_reg_val,
  943. u32 sample_rate)
  944. {
  945. u8 int_2_inp = 0;
  946. u32 j = 0, port = 0;
  947. u16 int_mux_cfg1 = 0, int_fs_reg = 0;
  948. u8 int_mux_cfg1_val = 0;
  949. struct snd_soc_component *component = dai->component;
  950. struct device *rx_dev = NULL;
  951. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  952. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  953. return -EINVAL;
  954. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  955. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  956. int_2_inp = port;
  957. if ((int_2_inp < LPASS_CDC_RX_MACRO_RX0) ||
  958. (int_2_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  959. pr_err("%s: Invalid RX port, Dai ID is %d\n",
  960. __func__, dai->id);
  961. return -EINVAL;
  962. }
  963. int_mux_cfg1 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1;
  964. for (j = 0; j < INTERP_MAX; j++) {
  965. int_mux_cfg1_val = snd_soc_component_read(
  966. component, int_mux_cfg1) &
  967. 0x0F;
  968. if (int_mux_cfg1_val == int_2_inp +
  969. INTn_2_INP_SEL_RX0) {
  970. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  971. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * j;
  972. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_2\n",
  973. __func__, dai->id, j);
  974. pr_debug("%s: set INT%u_2 sample rate to %u\n",
  975. __func__, j, sample_rate);
  976. snd_soc_component_update_bits(
  977. component, int_fs_reg,
  978. 0x0F, rate_reg_val);
  979. }
  980. int_mux_cfg1 += 8;
  981. }
  982. }
  983. return 0;
  984. }
  985. static bool lpass_cdc_rx_macro_is_fractional_sample_rate(u32 sample_rate)
  986. {
  987. switch (sample_rate) {
  988. case SAMPLING_RATE_44P1KHZ:
  989. case SAMPLING_RATE_88P2KHZ:
  990. case SAMPLING_RATE_176P4KHZ:
  991. case SAMPLING_RATE_352P8KHZ:
  992. return true;
  993. default:
  994. return false;
  995. }
  996. return false;
  997. }
  998. static int lpass_cdc_rx_macro_set_interpolator_rate(struct snd_soc_dai *dai,
  999. u32 sample_rate)
  1000. {
  1001. struct snd_soc_component *component = dai->component;
  1002. int rate_val = 0;
  1003. int i = 0, ret = 0;
  1004. struct device *rx_dev = NULL;
  1005. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1006. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1007. return -EINVAL;
  1008. for (i = 0; i < ARRAY_SIZE(sr_val_tbl); i++) {
  1009. if (sample_rate == sr_val_tbl[i].sample_rate) {
  1010. rate_val = sr_val_tbl[i].rate_val;
  1011. if (lpass_cdc_rx_macro_is_fractional_sample_rate(sample_rate))
  1012. rx_priv->is_native_on = true;
  1013. else
  1014. rx_priv->is_native_on = false;
  1015. break;
  1016. }
  1017. }
  1018. if ((i == ARRAY_SIZE(sr_val_tbl)) || (rate_val < 0)) {
  1019. dev_err(component->dev, "%s: Unsupported sample rate: %d\n",
  1020. __func__, sample_rate);
  1021. return -EINVAL;
  1022. }
  1023. ret = lpass_cdc_rx_macro_set_prim_interpolator_rate(dai, (u8)rate_val, sample_rate);
  1024. if (ret)
  1025. return ret;
  1026. ret = lpass_cdc_rx_macro_set_mix_interpolator_rate(dai, (u8)rate_val, sample_rate);
  1027. if (ret)
  1028. return ret;
  1029. return ret;
  1030. }
  1031. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  1032. struct snd_pcm_hw_params *params,
  1033. struct snd_soc_dai *dai)
  1034. {
  1035. struct snd_soc_component *component = dai->component;
  1036. int ret = 0;
  1037. struct device *rx_dev = NULL;
  1038. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1039. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1040. return -EINVAL;
  1041. dev_dbg(component->dev,
  1042. "%s: dai_name = %s DAI-ID %x rate %d num_ch %d\n", __func__,
  1043. dai->name, dai->id, params_rate(params),
  1044. params_channels(params));
  1045. switch (substream->stream) {
  1046. case SNDRV_PCM_STREAM_PLAYBACK:
  1047. ret = lpass_cdc_rx_macro_set_interpolator_rate(dai, params_rate(params));
  1048. if (ret) {
  1049. pr_err("%s: cannot set sample rate: %u\n",
  1050. __func__, params_rate(params));
  1051. return ret;
  1052. }
  1053. rx_priv->bit_width[dai->id] = params_width(params);
  1054. break;
  1055. case SNDRV_PCM_STREAM_CAPTURE:
  1056. default:
  1057. break;
  1058. }
  1059. return 0;
  1060. }
  1061. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  1062. unsigned int *tx_num, unsigned int *tx_slot,
  1063. unsigned int *rx_num, unsigned int *rx_slot)
  1064. {
  1065. struct snd_soc_component *component = dai->component;
  1066. struct device *rx_dev = NULL;
  1067. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1068. unsigned int temp = 0, ch_mask = 0;
  1069. u16 val = 0, mask = 0, cnt = 0, i = 0;
  1070. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1071. return -EINVAL;
  1072. switch (dai->id) {
  1073. case RX_MACRO_AIF1_PB:
  1074. case RX_MACRO_AIF2_PB:
  1075. case RX_MACRO_AIF3_PB:
  1076. case RX_MACRO_AIF4_PB:
  1077. for_each_set_bit(temp, &rx_priv->active_ch_mask[dai->id],
  1078. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  1079. ch_mask |= (1 << temp);
  1080. if (++i == LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT)
  1081. break;
  1082. }
  1083. /*
  1084. * CDC_DMA_RX_0 port drives RX0/RX1 -- ch_mask 0x1/0x2/0x3
  1085. * CDC_DMA_RX_1 port drives RX2/RX3 -- ch_mask 0x1/0x2/0x3
  1086. * CDC_DMA_RX_2 port drives RX4 -- ch_mask 0x1
  1087. * CDC_DMA_RX_3 port drives RX5 -- ch_mask 0x1
  1088. * AIFn can pair to any CDC_DMA_RX_n port.
  1089. * In general, below convention is used::
  1090. * CDC_DMA_RX_0(AIF1)/CDC_DMA_RX_1(AIF2)/
  1091. * CDC_DMA_RX_2(AIF3)/CDC_DMA_RX_3(AIF4)
  1092. * Above is reflected in machine driver BE dailink
  1093. */
  1094. if (ch_mask & 0x0C)
  1095. ch_mask = ch_mask >> 2;
  1096. if ((ch_mask & 0x10) || (ch_mask & 0x20))
  1097. ch_mask = 0x1;
  1098. *rx_slot = ch_mask;
  1099. *rx_num = rx_priv->active_ch_cnt[dai->id];
  1100. dev_dbg(rx_priv->dev,
  1101. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d active_mask: 0x%x\n",
  1102. __func__, dai->id, *rx_slot, *rx_num, rx_priv->active_ch_mask[dai->id]);
  1103. break;
  1104. case RX_MACRO_AIF5_PB:
  1105. *rx_slot = 0x1;
  1106. *rx_num = 0x01;
  1107. dev_dbg(rx_priv->dev,
  1108. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1109. __func__, dai->id, *rx_slot, *rx_num);
  1110. break;
  1111. case RX_MACRO_AIF6_PB:
  1112. *rx_slot = 0x1;
  1113. *rx_num = 0x01;
  1114. dev_dbg(rx_priv->dev,
  1115. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1116. __func__, dai->id, *rx_slot, *rx_num);
  1117. break;
  1118. case RX_MACRO_AIF_ECHO:
  1119. val = snd_soc_component_read(component,
  1120. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  1121. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK) {
  1122. mask |= 0x1;
  1123. cnt++;
  1124. }
  1125. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK) {
  1126. mask |= 0x2;
  1127. cnt++;
  1128. }
  1129. val = snd_soc_component_read(component,
  1130. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  1131. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK) {
  1132. mask |= 0x4;
  1133. cnt++;
  1134. }
  1135. *tx_slot = mask;
  1136. *tx_num = cnt;
  1137. break;
  1138. default:
  1139. dev_err(rx_dev, "%s: Invalid AIF\n", __func__);
  1140. break;
  1141. }
  1142. return 0;
  1143. }
  1144. static int lpass_cdc_rx_macro_mute_stream(struct snd_soc_dai *dai, int mute, int stream)
  1145. {
  1146. struct snd_soc_component *component = dai->component;
  1147. struct device *rx_dev = NULL;
  1148. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1149. uint16_t j = 0, reg = 0, mix_reg = 0, dsm_reg = 0;
  1150. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1151. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1152. if (mute)
  1153. return 0;
  1154. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1155. return -EINVAL;
  1156. switch (dai->id) {
  1157. case RX_MACRO_AIF1_PB:
  1158. case RX_MACRO_AIF2_PB:
  1159. case RX_MACRO_AIF3_PB:
  1160. case RX_MACRO_AIF4_PB:
  1161. for (j = 0; j < INTERP_MAX; j++) {
  1162. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  1163. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1164. mix_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  1165. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1166. dsm_reg = LPASS_CDC_RX_RX0_RX_PATH_DSM_CTL +
  1167. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1168. if (j == INTERP_AUX)
  1169. dsm_reg = LPASS_CDC_RX_RX2_RX_PATH_DSM_CTL;
  1170. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0 + j * 8;
  1171. int_mux_cfg1 = int_mux_cfg0 + 4;
  1172. int_mux_cfg0_val = snd_soc_component_read(component,
  1173. int_mux_cfg0);
  1174. int_mux_cfg1_val = snd_soc_component_read(component,
  1175. int_mux_cfg1);
  1176. if (snd_soc_component_read(component, dsm_reg) & 0x01) {
  1177. if (int_mux_cfg0_val || (int_mux_cfg1_val & 0xF0))
  1178. snd_soc_component_update_bits(component,
  1179. reg, 0x20, 0x20);
  1180. if (int_mux_cfg1_val & 0x0F) {
  1181. snd_soc_component_update_bits(component,
  1182. reg, 0x20, 0x20);
  1183. snd_soc_component_update_bits(component,
  1184. mix_reg, 0x20, 0x20);
  1185. }
  1186. }
  1187. }
  1188. break;
  1189. default:
  1190. break;
  1191. }
  1192. return 0;
  1193. }
  1194. static int lpass_cdc_rx_macro_mclk_enable(
  1195. struct lpass_cdc_rx_macro_priv *rx_priv,
  1196. bool mclk_enable, bool dapm)
  1197. {
  1198. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  1199. int ret = 0;
  1200. if (regmap == NULL) {
  1201. dev_err(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  1202. return -EINVAL;
  1203. }
  1204. dev_dbg(rx_priv->dev, "%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  1205. __func__, mclk_enable, dapm, rx_priv->rx_mclk_users);
  1206. mutex_lock(&rx_priv->mclk_lock);
  1207. if (mclk_enable) {
  1208. if (rx_priv->rx_mclk_users == 0) {
  1209. if (rx_priv->is_native_on)
  1210. rx_priv->clk_id = RX_CORE_CLK;
  1211. lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1212. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1213. rx_priv->default_clk_id,
  1214. rx_priv->clk_id,
  1215. true);
  1216. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1217. if (ret < 0) {
  1218. dev_err(rx_priv->dev,
  1219. "%s: rx request clock enable failed\n",
  1220. __func__);
  1221. goto exit;
  1222. }
  1223. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1224. true);
  1225. regcache_mark_dirty(regmap);
  1226. regcache_sync_region(regmap,
  1227. RX_START_OFFSET,
  1228. RX_MAX_OFFSET);
  1229. regmap_update_bits(regmap,
  1230. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1231. 0x01, 0x01);
  1232. regmap_update_bits(regmap,
  1233. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1234. 0x02, 0x02);
  1235. regmap_update_bits(regmap,
  1236. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1237. 0x02, 0x00);
  1238. regmap_update_bits(regmap,
  1239. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1240. 0x01, 0x01);
  1241. }
  1242. rx_priv->rx_mclk_users++;
  1243. } else {
  1244. if (rx_priv->rx_mclk_users <= 0) {
  1245. dev_err(rx_priv->dev, "%s: clock already disabled\n",
  1246. __func__);
  1247. rx_priv->rx_mclk_users = 0;
  1248. goto exit;
  1249. }
  1250. rx_priv->rx_mclk_users--;
  1251. if (rx_priv->rx_mclk_users == 0) {
  1252. regmap_update_bits(regmap,
  1253. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1254. 0x01, 0x00);
  1255. regmap_update_bits(regmap,
  1256. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1257. 0x02, 0x02);
  1258. regmap_update_bits(regmap,
  1259. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1260. 0x02, 0x00);
  1261. regmap_update_bits(regmap,
  1262. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1263. 0x01, 0x00);
  1264. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1265. false);
  1266. lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1267. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1268. rx_priv->default_clk_id,
  1269. rx_priv->clk_id,
  1270. false);
  1271. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1272. rx_priv->clk_id = rx_priv->default_clk_id;
  1273. }
  1274. }
  1275. exit:
  1276. trace_printk("%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  1277. __func__, mclk_enable, dapm, rx_priv->rx_mclk_users);
  1278. mutex_unlock(&rx_priv->mclk_lock);
  1279. return ret;
  1280. }
  1281. static int lpass_cdc_rx_macro_mclk_event(struct snd_soc_dapm_widget *w,
  1282. struct snd_kcontrol *kcontrol, int event)
  1283. {
  1284. struct snd_soc_component *component =
  1285. snd_soc_dapm_to_component(w->dapm);
  1286. int ret = 0;
  1287. struct device *rx_dev = NULL;
  1288. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1289. int mclk_freq = MCLK_FREQ;
  1290. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1291. return -EINVAL;
  1292. dev_dbg(rx_dev, "%s: event = %d\n", __func__, event);
  1293. switch (event) {
  1294. case SND_SOC_DAPM_PRE_PMU:
  1295. if (rx_priv->is_native_on)
  1296. mclk_freq = MCLK_FREQ_NATIVE;
  1297. if (rx_priv->swr_ctrl_data)
  1298. swrm_wcd_notify(
  1299. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1300. SWR_CLK_FREQ, &mclk_freq);
  1301. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  1302. if (ret)
  1303. rx_priv->dapm_mclk_enable = false;
  1304. else
  1305. rx_priv->dapm_mclk_enable = true;
  1306. break;
  1307. case SND_SOC_DAPM_POST_PMD:
  1308. if (rx_priv->dapm_mclk_enable)
  1309. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  1310. break;
  1311. default:
  1312. dev_err(rx_priv->dev,
  1313. "%s: invalid DAPM event %d\n", __func__, event);
  1314. ret = -EINVAL;
  1315. }
  1316. return ret;
  1317. }
  1318. static int lpass_cdc_rx_macro_event_handler(struct snd_soc_component *component,
  1319. u16 event, u32 data)
  1320. {
  1321. u16 reg = 0, reg_mix = 0, rx_idx = 0, mute = 0x0, val = 0;
  1322. struct device *rx_dev = NULL;
  1323. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1324. int ret = 0;
  1325. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1326. return -EINVAL;
  1327. switch (event) {
  1328. case LPASS_CDC_MACRO_EVT_RX_MUTE:
  1329. rx_idx = data >> 0x10;
  1330. mute = data & 0xffff;
  1331. val = mute ? 0x10 : 0x00;
  1332. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (rx_idx *
  1333. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1334. reg_mix = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL + (rx_idx *
  1335. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1336. snd_soc_component_update_bits(component, reg,
  1337. 0x10, val);
  1338. snd_soc_component_update_bits(component, reg_mix,
  1339. 0x10, val);
  1340. break;
  1341. case LPASS_CDC_MACRO_EVT_RX_COMPANDER_SOFT_RST:
  1342. rx_idx = data >> 0x10;
  1343. if (rx_idx == INTERP_AUX)
  1344. goto done;
  1345. reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1346. (rx_idx * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1347. snd_soc_component_write(component, reg,
  1348. snd_soc_component_read(component, reg));
  1349. break;
  1350. case LPASS_CDC_MACRO_EVT_IMPED_TRUE:
  1351. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, true);
  1352. break;
  1353. case LPASS_CDC_MACRO_EVT_IMPED_FALSE:
  1354. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, false);
  1355. break;
  1356. case LPASS_CDC_MACRO_EVT_SSR_DOWN:
  1357. trace_printk("%s, enter SSR down\n", __func__);
  1358. rx_priv->dev_up = false;
  1359. if (rx_priv->swr_ctrl_data) {
  1360. swrm_wcd_notify(
  1361. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1362. SWR_DEVICE_SSR_DOWN, NULL);
  1363. }
  1364. if ((!pm_runtime_enabled(rx_dev) ||
  1365. !pm_runtime_suspended(rx_dev))) {
  1366. ret = lpass_cdc_runtime_suspend(rx_dev);
  1367. if (!ret) {
  1368. pm_runtime_disable(rx_dev);
  1369. pm_runtime_set_suspended(rx_dev);
  1370. pm_runtime_enable(rx_dev);
  1371. }
  1372. }
  1373. break;
  1374. case LPASS_CDC_MACRO_EVT_PRE_SSR_UP:
  1375. lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1376. /* enable&disable RX_CORE_CLK to reset GFMUX reg */
  1377. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1378. rx_priv->default_clk_id,
  1379. RX_CORE_CLK, true);
  1380. if (ret < 0)
  1381. dev_err_ratelimited(rx_priv->dev,
  1382. "%s, failed to enable clk, ret:%d\n",
  1383. __func__, ret);
  1384. else
  1385. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1386. rx_priv->default_clk_id,
  1387. RX_CORE_CLK, false);
  1388. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1389. break;
  1390. case LPASS_CDC_MACRO_EVT_SSR_UP:
  1391. trace_printk("%s, enter SSR up\n", __func__);
  1392. rx_priv->dev_up = true;
  1393. /* reset swr after ssr/pdr */
  1394. rx_priv->reset_swr = true;
  1395. if (rx_priv->swr_ctrl_data)
  1396. swrm_wcd_notify(
  1397. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1398. SWR_DEVICE_SSR_UP, NULL);
  1399. break;
  1400. case LPASS_CDC_MACRO_EVT_CLK_RESET:
  1401. lpass_cdc_rsc_clk_reset(rx_dev, RX_CORE_CLK);
  1402. break;
  1403. case LPASS_CDC_MACRO_EVT_RX_PA_GAIN_UPDATE:
  1404. rx_priv->rx0_gain_val = snd_soc_component_read(component,
  1405. LPASS_CDC_RX_RX0_RX_VOL_CTL);
  1406. rx_priv->rx1_gain_val = snd_soc_component_read(component,
  1407. LPASS_CDC_RX_RX1_RX_VOL_CTL);
  1408. if (data) {
  1409. /* Reduce gain by half only if its greater than -6DB */
  1410. if ((rx_priv->rx0_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1411. && (rx_priv->rx0_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1412. snd_soc_component_update_bits(component,
  1413. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1414. (rx_priv->rx0_gain_val -
  1415. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1416. if ((rx_priv->rx1_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1417. && (rx_priv->rx1_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1418. snd_soc_component_update_bits(component,
  1419. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1420. (rx_priv->rx1_gain_val -
  1421. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1422. }
  1423. else {
  1424. /* Reset gain value to default */
  1425. if ((rx_priv->rx0_gain_val >=
  1426. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1427. (rx_priv->rx0_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1428. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1429. snd_soc_component_update_bits(component,
  1430. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1431. (rx_priv->rx0_gain_val +
  1432. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1433. if ((rx_priv->rx1_gain_val >=
  1434. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1435. (rx_priv->rx1_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1436. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1437. snd_soc_component_update_bits(component,
  1438. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1439. (rx_priv->rx1_gain_val +
  1440. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1441. }
  1442. break;
  1443. case LPASS_CDC_MACRO_EVT_HPHL_HD2_ENABLE:
  1444. /* Enable hd2 config for hphl*/
  1445. snd_soc_component_update_bits(component,
  1446. LPASS_CDC_RX_RX0_RX_PATH_CFG0, 0x04, data);
  1447. break;
  1448. case LPASS_CDC_MACRO_EVT_HPHR_HD2_ENABLE:
  1449. /* Enable hd2 config for hphr*/
  1450. snd_soc_component_update_bits(component,
  1451. LPASS_CDC_RX_RX1_RX_PATH_CFG0, 0x04, data);
  1452. break;
  1453. }
  1454. done:
  1455. return ret;
  1456. }
  1457. static int lpass_cdc_rx_macro_find_playback_dai_id_for_port(int port_id,
  1458. struct lpass_cdc_rx_macro_priv *rx_priv)
  1459. {
  1460. int i = 0;
  1461. for (i = RX_MACRO_AIF1_PB; i < LPASS_CDC_RX_MACRO_MAX_DAIS; i++) {
  1462. if (test_bit(port_id, &rx_priv->active_ch_mask[i]))
  1463. return i;
  1464. }
  1465. return -EINVAL;
  1466. }
  1467. static int lpass_cdc_rx_macro_set_idle_detect_thr(struct snd_soc_component *component,
  1468. struct lpass_cdc_rx_macro_priv *rx_priv,
  1469. int interp, int path_type)
  1470. {
  1471. int port_id[4] = { 0, 0, 0, 0 };
  1472. int *port_ptr = NULL;
  1473. int num_ports = 0;
  1474. int bit_width = 0, i = 0;
  1475. int mux_reg = 0, mux_reg_val = 0;
  1476. int dai_id = 0, idle_thr = 0;
  1477. if ((interp != INTERP_HPHL) && (interp != INTERP_HPHR))
  1478. return 0;
  1479. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  1480. return 0;
  1481. port_ptr = &port_id[0];
  1482. num_ports = 0;
  1483. /*
  1484. * Read interpolator MUX input registers and find
  1485. * which cdc_dma port is connected and store the port
  1486. * numbers in port_id array.
  1487. */
  1488. if (path_type == INTERP_MIX_PATH) {
  1489. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1 +
  1490. 2 * interp;
  1491. mux_reg_val = snd_soc_component_read(component, mux_reg) &
  1492. 0x0f;
  1493. if ((mux_reg_val >= INTn_2_INP_SEL_RX0) &&
  1494. (mux_reg_val <= INTn_2_INP_SEL_RX5)) {
  1495. *port_ptr++ = mux_reg_val - 1;
  1496. num_ports++;
  1497. }
  1498. }
  1499. if (path_type == INTERP_MAIN_PATH) {
  1500. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0 +
  1501. 2 * (interp - 1);
  1502. mux_reg_val = snd_soc_component_read(component, mux_reg) &
  1503. 0x0f;
  1504. i = LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS;
  1505. while (i) {
  1506. if ((mux_reg_val >= INTn_1_INP_SEL_RX0) &&
  1507. (mux_reg_val <= INTn_1_INP_SEL_RX5)) {
  1508. *port_ptr++ = mux_reg_val -
  1509. INTn_1_INP_SEL_RX0;
  1510. num_ports++;
  1511. }
  1512. mux_reg_val =
  1513. (snd_soc_component_read(component, mux_reg) &
  1514. 0xf0) >> 4;
  1515. mux_reg += 1;
  1516. i--;
  1517. }
  1518. }
  1519. dev_dbg(component->dev, "%s: num_ports: %d, ports[%d %d %d %d]\n",
  1520. __func__, num_ports, port_id[0], port_id[1],
  1521. port_id[2], port_id[3]);
  1522. i = 0;
  1523. while (num_ports) {
  1524. dai_id = lpass_cdc_rx_macro_find_playback_dai_id_for_port(port_id[i++],
  1525. rx_priv);
  1526. if ((dai_id >= 0) && (dai_id < LPASS_CDC_RX_MACRO_MAX_DAIS)) {
  1527. dev_dbg(component->dev, "%s: dai_id: %d bit_width: %d\n",
  1528. __func__, dai_id,
  1529. rx_priv->bit_width[dai_id]);
  1530. if (rx_priv->bit_width[dai_id] > bit_width)
  1531. bit_width = rx_priv->bit_width[dai_id];
  1532. }
  1533. num_ports--;
  1534. }
  1535. switch (bit_width) {
  1536. case 16:
  1537. idle_thr = 0xff; /* F16 */
  1538. break;
  1539. case 24:
  1540. case 32:
  1541. idle_thr = 0x03; /* F22 */
  1542. break;
  1543. default:
  1544. idle_thr = 0x00;
  1545. break;
  1546. }
  1547. dev_dbg(component->dev, "%s: (new) idle_thr: %d, (cur) idle_thr: %d\n",
  1548. __func__, idle_thr, rx_priv->idle_det_cfg.hph_idle_thr);
  1549. if ((rx_priv->idle_det_cfg.hph_idle_thr == 0) ||
  1550. (idle_thr < rx_priv->idle_det_cfg.hph_idle_thr)) {
  1551. snd_soc_component_write(component,
  1552. LPASS_CDC_RX_IDLE_DETECT_CFG3, idle_thr);
  1553. rx_priv->idle_det_cfg.hph_idle_thr = idle_thr;
  1554. }
  1555. return 0;
  1556. }
  1557. static int lpass_cdc_rx_macro_enable_mix_path(struct snd_soc_dapm_widget *w,
  1558. struct snd_kcontrol *kcontrol, int event)
  1559. {
  1560. struct snd_soc_component *component =
  1561. snd_soc_dapm_to_component(w->dapm);
  1562. u16 gain_reg = 0, mix_reg = 0;
  1563. struct device *rx_dev = NULL;
  1564. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1565. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1566. return -EINVAL;
  1567. if (w->shift >= INTERP_MAX) {
  1568. dev_err(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1569. __func__, w->shift, w->name);
  1570. return -EINVAL;
  1571. }
  1572. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL +
  1573. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1574. mix_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  1575. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1576. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1577. switch (event) {
  1578. case SND_SOC_DAPM_PRE_PMU:
  1579. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1580. INTERP_MIX_PATH);
  1581. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1582. break;
  1583. case SND_SOC_DAPM_POST_PMU:
  1584. snd_soc_component_write(component, gain_reg,
  1585. snd_soc_component_read(component, gain_reg));
  1586. break;
  1587. case SND_SOC_DAPM_POST_PMD:
  1588. /* Clk Disable */
  1589. snd_soc_component_update_bits(component, mix_reg, 0x20, 0x00);
  1590. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1591. /* Reset enable and disable */
  1592. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x40);
  1593. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x00);
  1594. break;
  1595. }
  1596. return 0;
  1597. }
  1598. static bool lpass_cdc_rx_macro_adie_lb(struct snd_soc_component *component,
  1599. int interp_idx)
  1600. {
  1601. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1602. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1603. u8 int_n_inp0 = 0, int_n_inp1 = 0, int_n_inp2 = 0;
  1604. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0 + interp_idx * 8;
  1605. int_mux_cfg1 = int_mux_cfg0 + 4;
  1606. int_mux_cfg0_val = snd_soc_component_read(component, int_mux_cfg0);
  1607. int_mux_cfg1_val = snd_soc_component_read(component, int_mux_cfg1);
  1608. int_n_inp0 = int_mux_cfg0_val & 0x0F;
  1609. if (int_n_inp0 == INTn_1_INP_SEL_DEC0 ||
  1610. int_n_inp0 == INTn_1_INP_SEL_DEC1 ||
  1611. int_n_inp0 == INTn_1_INP_SEL_IIR0 ||
  1612. int_n_inp0 == INTn_1_INP_SEL_IIR1)
  1613. return true;
  1614. int_n_inp1 = int_mux_cfg0_val >> 4;
  1615. if (int_n_inp1 == INTn_1_INP_SEL_DEC0 ||
  1616. int_n_inp1 == INTn_1_INP_SEL_DEC1 ||
  1617. int_n_inp1 == INTn_1_INP_SEL_IIR0 ||
  1618. int_n_inp1 == INTn_1_INP_SEL_IIR1)
  1619. return true;
  1620. int_n_inp2 = int_mux_cfg1_val >> 4;
  1621. if (int_n_inp2 == INTn_1_INP_SEL_DEC0 ||
  1622. int_n_inp2 == INTn_1_INP_SEL_DEC1 ||
  1623. int_n_inp2 == INTn_1_INP_SEL_IIR0 ||
  1624. int_n_inp2 == INTn_1_INP_SEL_IIR1)
  1625. return true;
  1626. return false;
  1627. }
  1628. static int lpass_cdc_rx_macro_enable_main_path(struct snd_soc_dapm_widget *w,
  1629. struct snd_kcontrol *kcontrol,
  1630. int event)
  1631. {
  1632. struct snd_soc_component *component =
  1633. snd_soc_dapm_to_component(w->dapm);
  1634. u16 gain_reg = 0;
  1635. u16 reg = 0;
  1636. struct device *rx_dev = NULL;
  1637. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1638. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1639. return -EINVAL;
  1640. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1641. if (w->shift >= INTERP_MAX) {
  1642. dev_err(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1643. __func__, w->shift, w->name);
  1644. return -EINVAL;
  1645. }
  1646. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (w->shift *
  1647. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1648. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_CTL + (w->shift *
  1649. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1650. switch (event) {
  1651. case SND_SOC_DAPM_PRE_PMU:
  1652. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1653. INTERP_MAIN_PATH);
  1654. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1655. if (lpass_cdc_rx_macro_adie_lb(component, w->shift))
  1656. snd_soc_component_update_bits(component,
  1657. reg, 0x20, 0x20);
  1658. break;
  1659. case SND_SOC_DAPM_POST_PMU:
  1660. snd_soc_component_write(component, gain_reg,
  1661. snd_soc_component_read(component, gain_reg));
  1662. break;
  1663. case SND_SOC_DAPM_POST_PMD:
  1664. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1665. break;
  1666. }
  1667. return 0;
  1668. }
  1669. static void lpass_cdc_rx_macro_droop_setting(struct snd_soc_component *component,
  1670. int interp_n, int event)
  1671. {
  1672. u8 pcm_rate = 0, val = 0;
  1673. u16 rx0_path_ctl_reg = 0, rx_path_cfg3_reg = 0;
  1674. rx_path_cfg3_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG3 +
  1675. (interp_n * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1676. rx0_path_ctl_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  1677. (interp_n * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1678. pcm_rate = (snd_soc_component_read(component, rx0_path_ctl_reg)
  1679. & 0x0F);
  1680. if (pcm_rate < 0x06)
  1681. val = 0x03;
  1682. else if (pcm_rate < 0x08)
  1683. val = 0x01;
  1684. else if (pcm_rate < 0x0B)
  1685. val = 0x02;
  1686. else
  1687. val = 0x00;
  1688. if (SND_SOC_DAPM_EVENT_ON(event))
  1689. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1690. 0x03, val);
  1691. if (SND_SOC_DAPM_EVENT_OFF(event))
  1692. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1693. 0x03, 0x03);
  1694. }
  1695. static int lpass_cdc_rx_macro_config_compander(struct snd_soc_component *component,
  1696. struct lpass_cdc_rx_macro_priv *rx_priv,
  1697. int interp_n, int event)
  1698. {
  1699. int comp = 0;
  1700. u16 comp_ctl0_reg = 0, comp_ctl8_reg = 0, rx_path_cfg0_reg = 0;
  1701. u16 comp_coeff_lsb_reg = 0, comp_coeff_msb_reg = 0;
  1702. u16 mode = rx_priv->hph_pwr_mode;
  1703. comp = interp_n;
  1704. if (!rx_priv->comp_enabled[comp])
  1705. return 0;
  1706. if (rx_priv->is_ear_mode_on && interp_n == INTERP_HPHL)
  1707. mode = RX_MODE_EAR;
  1708. if (interp_n == INTERP_HPHL) {
  1709. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_LSB;
  1710. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_MSB;
  1711. } else if (interp_n == INTERP_HPHR) {
  1712. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_LSB;
  1713. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_MSB;
  1714. } else {
  1715. /* compander coefficients are loaded only for hph path */
  1716. return 0;
  1717. }
  1718. comp_ctl0_reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1719. (comp * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1720. comp_ctl8_reg = LPASS_CDC_RX_COMPANDER0_CTL8 +
  1721. (comp * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1722. rx_path_cfg0_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0 +
  1723. (comp * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1724. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1725. lpass_cdc_load_compander_coeff(component,
  1726. comp_coeff_lsb_reg, comp_coeff_msb_reg,
  1727. comp_coeff_table[rx_priv->hph_pwr_mode],
  1728. COMP_MAX_COEFF);
  1729. lpass_cdc_update_compander_setting(component,
  1730. comp_ctl8_reg,
  1731. &comp_setting_table[mode]);
  1732. /* Enable Compander Clock */
  1733. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1734. 0x01, 0x01);
  1735. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1736. 0x02, 0x02);
  1737. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1738. 0x02, 0x00);
  1739. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1740. 0x02, 0x02);
  1741. }
  1742. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1743. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1744. 0x04, 0x04);
  1745. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1746. 0x02, 0x00);
  1747. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1748. 0x01, 0x00);
  1749. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1750. 0x04, 0x00);
  1751. }
  1752. return 0;
  1753. }
  1754. static void lpass_cdc_rx_macro_enable_softclip_clk(struct snd_soc_component *component,
  1755. struct lpass_cdc_rx_macro_priv *rx_priv,
  1756. bool enable)
  1757. {
  1758. if (enable) {
  1759. if (rx_priv->softclip_clk_users == 0)
  1760. snd_soc_component_update_bits(component,
  1761. LPASS_CDC_RX_SOFTCLIP_CRC,
  1762. 0x01, 0x01);
  1763. rx_priv->softclip_clk_users++;
  1764. } else {
  1765. rx_priv->softclip_clk_users--;
  1766. if (rx_priv->softclip_clk_users == 0)
  1767. snd_soc_component_update_bits(component,
  1768. LPASS_CDC_RX_SOFTCLIP_CRC,
  1769. 0x01, 0x00);
  1770. }
  1771. }
  1772. static int lpass_cdc_rx_macro_config_softclip(struct snd_soc_component *component,
  1773. struct lpass_cdc_rx_macro_priv *rx_priv,
  1774. int event)
  1775. {
  1776. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1777. __func__, event, rx_priv->is_softclip_on);
  1778. if (!rx_priv->is_softclip_on)
  1779. return 0;
  1780. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1781. /* Enable Softclip clock */
  1782. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  1783. /* Enable Softclip control */
  1784. snd_soc_component_update_bits(component,
  1785. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x01);
  1786. }
  1787. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1788. snd_soc_component_update_bits(component,
  1789. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x00);
  1790. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  1791. }
  1792. return 0;
  1793. }
  1794. static int lpass_cdc_rx_macro_config_aux_hpf(struct snd_soc_component *component,
  1795. struct lpass_cdc_rx_macro_priv *rx_priv,
  1796. int event)
  1797. {
  1798. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1799. __func__, event, rx_priv->is_aux_hpf_on);
  1800. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1801. /* Update Aux HPF control */
  1802. if (!rx_priv->is_aux_hpf_on)
  1803. snd_soc_component_update_bits(component,
  1804. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x00);
  1805. }
  1806. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1807. /* Reset to default (HPF=ON) */
  1808. snd_soc_component_update_bits(component,
  1809. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x04);
  1810. }
  1811. return 0;
  1812. }
  1813. static inline void
  1814. lpass_cdc_rx_macro_enable_clsh_block(struct lpass_cdc_rx_macro_priv *rx_priv, bool enable)
  1815. {
  1816. if ((enable && ++rx_priv->clsh_users == 1) ||
  1817. (!enable && --rx_priv->clsh_users == 0))
  1818. snd_soc_component_update_bits(rx_priv->component,
  1819. LPASS_CDC_RX_CLSH_CRC, 0x01,
  1820. (u8) enable);
  1821. if (rx_priv->clsh_users < 0)
  1822. rx_priv->clsh_users = 0;
  1823. dev_dbg(rx_priv->dev, "%s: clsh_users %d, enable %d", __func__,
  1824. rx_priv->clsh_users, enable);
  1825. }
  1826. static int lpass_cdc_rx_macro_config_classh(struct snd_soc_component *component,
  1827. struct lpass_cdc_rx_macro_priv *rx_priv,
  1828. int interp_n, int event)
  1829. {
  1830. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1831. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, false);
  1832. return 0;
  1833. }
  1834. if (!SND_SOC_DAPM_EVENT_ON(event))
  1835. return 0;
  1836. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, true);
  1837. if (interp_n == INTERP_HPHL ||
  1838. interp_n == INTERP_HPHR) {
  1839. /*
  1840. * These K1 values depend on the Headphone Impedance
  1841. * For now it is assumed to be 16 ohm
  1842. */
  1843. snd_soc_component_update_bits(component,
  1844. LPASS_CDC_RX_CLSH_K1_LSB,
  1845. 0xFF, 0xC0);
  1846. snd_soc_component_update_bits(component,
  1847. LPASS_CDC_RX_CLSH_K1_MSB,
  1848. 0x0F, 0x00);
  1849. }
  1850. switch (interp_n) {
  1851. case INTERP_HPHL:
  1852. if (rx_priv->is_ear_mode_on)
  1853. snd_soc_component_update_bits(component,
  1854. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1855. 0x3F, 0x39);
  1856. else
  1857. snd_soc_component_update_bits(component,
  1858. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1859. 0x3F, 0x1C);
  1860. snd_soc_component_update_bits(component,
  1861. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1862. 0x07, 0x00);
  1863. snd_soc_component_update_bits(component,
  1864. LPASS_CDC_RX_RX0_RX_PATH_CFG0,
  1865. 0x40, 0x40);
  1866. break;
  1867. case INTERP_HPHR:
  1868. if (rx_priv->is_ear_mode_on)
  1869. snd_soc_component_update_bits(component,
  1870. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1871. 0x3F, 0x39);
  1872. else
  1873. snd_soc_component_update_bits(component,
  1874. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1875. 0x3F, 0x1C);
  1876. snd_soc_component_update_bits(component,
  1877. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1878. 0x07, 0x00);
  1879. snd_soc_component_update_bits(component,
  1880. LPASS_CDC_RX_RX1_RX_PATH_CFG0,
  1881. 0x40, 0x40);
  1882. break;
  1883. case INTERP_AUX:
  1884. snd_soc_component_update_bits(component,
  1885. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1886. 0x08, 0x08);
  1887. snd_soc_component_update_bits(component,
  1888. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1889. 0x10, 0x10);
  1890. break;
  1891. }
  1892. return 0;
  1893. }
  1894. static void lpass_cdc_rx_macro_hd2_control(struct snd_soc_component *component,
  1895. u16 interp_idx, int event)
  1896. {
  1897. u16 hd2_scale_reg = 0;
  1898. u16 hd2_enable_reg = 0;
  1899. switch (interp_idx) {
  1900. case INTERP_HPHL:
  1901. hd2_scale_reg = LPASS_CDC_RX_RX0_RX_PATH_SEC3;
  1902. hd2_enable_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  1903. break;
  1904. case INTERP_HPHR:
  1905. hd2_scale_reg = LPASS_CDC_RX_RX1_RX_PATH_SEC3;
  1906. hd2_enable_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  1907. break;
  1908. }
  1909. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  1910. snd_soc_component_update_bits(component, hd2_scale_reg,
  1911. 0x3C, 0x14);
  1912. snd_soc_component_update_bits(component, hd2_enable_reg,
  1913. 0x04, 0x04);
  1914. }
  1915. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  1916. snd_soc_component_update_bits(component, hd2_enable_reg,
  1917. 0x04, 0x00);
  1918. snd_soc_component_update_bits(component, hd2_scale_reg,
  1919. 0x3C, 0x00);
  1920. }
  1921. }
  1922. static int lpass_cdc_rx_macro_hph_idle_detect_get(struct snd_kcontrol *kcontrol,
  1923. struct snd_ctl_elem_value *ucontrol)
  1924. {
  1925. struct snd_soc_component *component =
  1926. snd_soc_kcontrol_component(kcontrol);
  1927. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1928. struct device *rx_dev = NULL;
  1929. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1930. return -EINVAL;
  1931. ucontrol->value.integer.value[0] =
  1932. rx_priv->idle_det_cfg.hph_idle_detect_en;
  1933. return 0;
  1934. }
  1935. static int lpass_cdc_rx_macro_hph_idle_detect_put(struct snd_kcontrol *kcontrol,
  1936. struct snd_ctl_elem_value *ucontrol)
  1937. {
  1938. struct snd_soc_component *component =
  1939. snd_soc_kcontrol_component(kcontrol);
  1940. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1941. struct device *rx_dev = NULL;
  1942. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1943. return -EINVAL;
  1944. rx_priv->idle_det_cfg.hph_idle_detect_en =
  1945. ucontrol->value.integer.value[0];
  1946. return 0;
  1947. }
  1948. static int lpass_cdc_rx_macro_get_compander(struct snd_kcontrol *kcontrol,
  1949. struct snd_ctl_elem_value *ucontrol)
  1950. {
  1951. struct snd_soc_component *component =
  1952. snd_soc_kcontrol_component(kcontrol);
  1953. int comp = ((struct soc_multi_mixer_control *)
  1954. kcontrol->private_value)->shift;
  1955. struct device *rx_dev = NULL;
  1956. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1957. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1958. return -EINVAL;
  1959. ucontrol->value.integer.value[0] = rx_priv->comp_enabled[comp];
  1960. return 0;
  1961. }
  1962. static int lpass_cdc_rx_macro_set_compander(struct snd_kcontrol *kcontrol,
  1963. struct snd_ctl_elem_value *ucontrol)
  1964. {
  1965. struct snd_soc_component *component =
  1966. snd_soc_kcontrol_component(kcontrol);
  1967. int comp = ((struct soc_multi_mixer_control *)
  1968. kcontrol->private_value)->shift;
  1969. int value = ucontrol->value.integer.value[0];
  1970. struct device *rx_dev = NULL;
  1971. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1972. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1973. return -EINVAL;
  1974. dev_dbg(component->dev, "%s: Compander %d enable current %d, new %d\n",
  1975. __func__, comp + 1, rx_priv->comp_enabled[comp], value);
  1976. rx_priv->comp_enabled[comp] = value;
  1977. return 0;
  1978. }
  1979. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  1980. struct snd_ctl_elem_value *ucontrol)
  1981. {
  1982. struct snd_soc_dapm_widget *widget =
  1983. snd_soc_dapm_kcontrol_widget(kcontrol);
  1984. struct snd_soc_component *component =
  1985. snd_soc_dapm_to_component(widget->dapm);
  1986. struct device *rx_dev = NULL;
  1987. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1988. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1989. return -EINVAL;
  1990. ucontrol->value.integer.value[0] =
  1991. rx_priv->rx_port_value[widget->shift];
  1992. return 0;
  1993. }
  1994. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  1995. struct snd_ctl_elem_value *ucontrol)
  1996. {
  1997. struct snd_soc_dapm_widget *widget =
  1998. snd_soc_dapm_kcontrol_widget(kcontrol);
  1999. struct snd_soc_component *component =
  2000. snd_soc_dapm_to_component(widget->dapm);
  2001. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  2002. struct snd_soc_dapm_update *update = NULL;
  2003. u32 rx_port_value = ucontrol->value.integer.value[0];
  2004. u32 aif_rst = 0;
  2005. struct device *rx_dev = NULL;
  2006. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2007. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2008. return -EINVAL;
  2009. aif_rst = rx_priv->rx_port_value[widget->shift];
  2010. if (!rx_port_value) {
  2011. if (aif_rst == 0) {
  2012. dev_err(rx_dev, "%s:AIF reset already\n", __func__);
  2013. return 0;
  2014. }
  2015. if (aif_rst > RX_MACRO_AIF4_PB) {
  2016. dev_err(rx_dev, "%s: Invalid AIF reset\n", __func__);
  2017. return 0;
  2018. }
  2019. }
  2020. rx_priv->rx_port_value[widget->shift] = rx_port_value;
  2021. dev_dbg(rx_dev, "%s: mux input: %d, mux output: %d, aif_rst: %d\n",
  2022. __func__, rx_port_value, widget->shift, aif_rst);
  2023. switch (rx_port_value) {
  2024. case 0:
  2025. if (rx_priv->active_ch_cnt[aif_rst]) {
  2026. clear_bit(widget->shift,
  2027. &rx_priv->active_ch_mask[aif_rst]);
  2028. rx_priv->active_ch_cnt[aif_rst]--;
  2029. }
  2030. break;
  2031. case 1:
  2032. case 2:
  2033. case 3:
  2034. case 4:
  2035. set_bit(widget->shift,
  2036. &rx_priv->active_ch_mask[rx_port_value]);
  2037. rx_priv->active_ch_cnt[rx_port_value]++;
  2038. break;
  2039. default:
  2040. dev_err(component->dev,
  2041. "%s:Invalid AIF_ID for LPASS_CDC_RX_MACRO MUX %d\n",
  2042. __func__, rx_port_value);
  2043. goto err;
  2044. }
  2045. snd_soc_dapm_mux_update_power(widget->dapm, kcontrol,
  2046. rx_port_value, e, update);
  2047. return 0;
  2048. err:
  2049. return -EINVAL;
  2050. }
  2051. static int lpass_cdc_rx_macro_get_ear_mode(struct snd_kcontrol *kcontrol,
  2052. struct snd_ctl_elem_value *ucontrol)
  2053. {
  2054. struct snd_soc_component *component =
  2055. snd_soc_kcontrol_component(kcontrol);
  2056. struct device *rx_dev = NULL;
  2057. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2058. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2059. return -EINVAL;
  2060. ucontrol->value.integer.value[0] = rx_priv->is_ear_mode_on;
  2061. return 0;
  2062. }
  2063. static int lpass_cdc_rx_macro_put_ear_mode(struct snd_kcontrol *kcontrol,
  2064. struct snd_ctl_elem_value *ucontrol)
  2065. {
  2066. struct snd_soc_component *component =
  2067. snd_soc_kcontrol_component(kcontrol);
  2068. struct device *rx_dev = NULL;
  2069. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2070. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2071. return -EINVAL;
  2072. rx_priv->is_ear_mode_on =
  2073. (!ucontrol->value.integer.value[0] ? false : true);
  2074. return 0;
  2075. }
  2076. static int lpass_cdc_rx_macro_get_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2077. struct snd_ctl_elem_value *ucontrol)
  2078. {
  2079. struct snd_soc_component *component =
  2080. snd_soc_kcontrol_component(kcontrol);
  2081. struct device *rx_dev = NULL;
  2082. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2083. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2084. return -EINVAL;
  2085. ucontrol->value.integer.value[0] = rx_priv->hph_hd2_mode;
  2086. return 0;
  2087. }
  2088. static int lpass_cdc_rx_macro_put_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2089. struct snd_ctl_elem_value *ucontrol)
  2090. {
  2091. struct snd_soc_component *component =
  2092. snd_soc_kcontrol_component(kcontrol);
  2093. struct device *rx_dev = NULL;
  2094. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2095. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2096. return -EINVAL;
  2097. rx_priv->hph_hd2_mode = ucontrol->value.integer.value[0];
  2098. return 0;
  2099. }
  2100. static int lpass_cdc_rx_macro_get_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2101. struct snd_ctl_elem_value *ucontrol)
  2102. {
  2103. struct snd_soc_component *component =
  2104. snd_soc_kcontrol_component(kcontrol);
  2105. struct device *rx_dev = NULL;
  2106. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2107. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2108. return -EINVAL;
  2109. ucontrol->value.integer.value[0] = rx_priv->hph_pwr_mode;
  2110. return 0;
  2111. }
  2112. static int lpass_cdc_rx_macro_put_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2113. struct snd_ctl_elem_value *ucontrol)
  2114. {
  2115. struct snd_soc_component *component =
  2116. snd_soc_kcontrol_component(kcontrol);
  2117. struct device *rx_dev = NULL;
  2118. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2119. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2120. return -EINVAL;
  2121. rx_priv->hph_pwr_mode = ucontrol->value.integer.value[0];
  2122. return 0;
  2123. }
  2124. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get(struct snd_kcontrol *kcontrol,
  2125. struct snd_ctl_elem_value *ucontrol)
  2126. {
  2127. struct snd_soc_component *component =
  2128. snd_soc_kcontrol_component(kcontrol);
  2129. ucontrol->value.integer.value[0] =
  2130. ((snd_soc_component_read(
  2131. component, LPASS_CDC_RX_BCL_VBAT_CFG) & 0x04) ?
  2132. 1 : 0);
  2133. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2134. ucontrol->value.integer.value[0]);
  2135. return 0;
  2136. }
  2137. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put(struct snd_kcontrol *kcontrol,
  2138. struct snd_ctl_elem_value *ucontrol)
  2139. {
  2140. struct snd_soc_component *component =
  2141. snd_soc_kcontrol_component(kcontrol);
  2142. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2143. ucontrol->value.integer.value[0]);
  2144. /* Set Vbat register configuration for GSM mode bit based on value */
  2145. if (ucontrol->value.integer.value[0])
  2146. snd_soc_component_update_bits(component,
  2147. LPASS_CDC_RX_BCL_VBAT_CFG,
  2148. 0x04, 0x04);
  2149. else
  2150. snd_soc_component_update_bits(component,
  2151. LPASS_CDC_RX_BCL_VBAT_CFG,
  2152. 0x04, 0x00);
  2153. return 0;
  2154. }
  2155. static int lpass_cdc_rx_macro_soft_clip_enable_get(struct snd_kcontrol *kcontrol,
  2156. struct snd_ctl_elem_value *ucontrol)
  2157. {
  2158. struct snd_soc_component *component =
  2159. snd_soc_kcontrol_component(kcontrol);
  2160. struct device *rx_dev = NULL;
  2161. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2162. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2163. return -EINVAL;
  2164. ucontrol->value.integer.value[0] = rx_priv->is_softclip_on;
  2165. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2166. __func__, ucontrol->value.integer.value[0]);
  2167. return 0;
  2168. }
  2169. static int lpass_cdc_rx_macro_soft_clip_enable_put(struct snd_kcontrol *kcontrol,
  2170. struct snd_ctl_elem_value *ucontrol)
  2171. {
  2172. struct snd_soc_component *component =
  2173. snd_soc_kcontrol_component(kcontrol);
  2174. struct device *rx_dev = NULL;
  2175. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2176. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2177. return -EINVAL;
  2178. rx_priv->is_softclip_on = ucontrol->value.integer.value[0];
  2179. dev_dbg(component->dev, "%s: soft clip enable = %d\n", __func__,
  2180. rx_priv->is_softclip_on);
  2181. return 0;
  2182. }
  2183. static int lpass_cdc_rx_macro_aux_hpf_mode_get(struct snd_kcontrol *kcontrol,
  2184. struct snd_ctl_elem_value *ucontrol)
  2185. {
  2186. struct snd_soc_component *component =
  2187. snd_soc_kcontrol_component(kcontrol);
  2188. struct device *rx_dev = NULL;
  2189. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2190. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2191. return -EINVAL;
  2192. ucontrol->value.integer.value[0] = rx_priv->is_aux_hpf_on;
  2193. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2194. __func__, ucontrol->value.integer.value[0]);
  2195. return 0;
  2196. }
  2197. static int lpass_cdc_rx_macro_aux_hpf_mode_put(struct snd_kcontrol *kcontrol,
  2198. struct snd_ctl_elem_value *ucontrol)
  2199. {
  2200. struct snd_soc_component *component =
  2201. snd_soc_kcontrol_component(kcontrol);
  2202. struct device *rx_dev = NULL;
  2203. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2204. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2205. return -EINVAL;
  2206. rx_priv->is_aux_hpf_on = ucontrol->value.integer.value[0];
  2207. dev_dbg(component->dev, "%s: aux hpf enable = %d\n", __func__,
  2208. rx_priv->is_aux_hpf_on);
  2209. return 0;
  2210. }
  2211. static int lpass_cdc_rx_macro_enable_vbat(struct snd_soc_dapm_widget *w,
  2212. struct snd_kcontrol *kcontrol,
  2213. int event)
  2214. {
  2215. struct snd_soc_component *component =
  2216. snd_soc_dapm_to_component(w->dapm);
  2217. struct device *rx_dev = NULL;
  2218. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2219. dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
  2220. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2221. return -EINVAL;
  2222. switch (event) {
  2223. case SND_SOC_DAPM_PRE_PMU:
  2224. /* Enable clock for VBAT block */
  2225. snd_soc_component_update_bits(component,
  2226. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x10);
  2227. /* Enable VBAT block */
  2228. snd_soc_component_update_bits(component,
  2229. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x01);
  2230. /* Update interpolator with 384K path */
  2231. snd_soc_component_update_bits(component,
  2232. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x80, 0x80);
  2233. /* Update DSM FS rate */
  2234. snd_soc_component_update_bits(component,
  2235. LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x02, 0x02);
  2236. /* Use attenuation mode */
  2237. snd_soc_component_update_bits(component,
  2238. LPASS_CDC_RX_BCL_VBAT_CFG, 0x02, 0x00);
  2239. /* BCL block needs softclip clock to be enabled */
  2240. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  2241. /* Enable VBAT at channel level */
  2242. snd_soc_component_update_bits(component,
  2243. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x02, 0x02);
  2244. /* Set the ATTK1 gain */
  2245. snd_soc_component_update_bits(component,
  2246. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2247. 0xFF, 0xFF);
  2248. snd_soc_component_update_bits(component,
  2249. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2250. 0xFF, 0x03);
  2251. snd_soc_component_update_bits(component,
  2252. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2253. 0xFF, 0x00);
  2254. /* Set the ATTK2 gain */
  2255. snd_soc_component_update_bits(component,
  2256. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2257. 0xFF, 0xFF);
  2258. snd_soc_component_update_bits(component,
  2259. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2260. 0xFF, 0x03);
  2261. snd_soc_component_update_bits(component,
  2262. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2263. 0xFF, 0x00);
  2264. /* Set the ATTK3 gain */
  2265. snd_soc_component_update_bits(component,
  2266. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2267. 0xFF, 0xFF);
  2268. snd_soc_component_update_bits(component,
  2269. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2270. 0xFF, 0x03);
  2271. snd_soc_component_update_bits(component,
  2272. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2273. 0xFF, 0x00);
  2274. /* Enable CB decode block clock */
  2275. snd_soc_component_update_bits(component,
  2276. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x01);
  2277. /* Enable BCL path */
  2278. snd_soc_component_update_bits(component,
  2279. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL2, 0x01, 0x01);
  2280. /* Request for BCL data */
  2281. snd_soc_component_update_bits(component,
  2282. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x01);
  2283. break;
  2284. case SND_SOC_DAPM_POST_PMD:
  2285. snd_soc_component_update_bits(component,
  2286. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x00);
  2287. snd_soc_component_update_bits(component,
  2288. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL2, 0x01, 0x00);
  2289. snd_soc_component_update_bits(component,
  2290. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x00);
  2291. snd_soc_component_update_bits(component,
  2292. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2293. 0x80, 0x00);
  2294. snd_soc_component_update_bits(component,
  2295. LPASS_CDC_RX_RX2_RX_PATH_SEC7,
  2296. 0x02, 0x00);
  2297. snd_soc_component_update_bits(component,
  2298. LPASS_CDC_RX_BCL_VBAT_CFG,
  2299. 0x02, 0x02);
  2300. snd_soc_component_update_bits(component,
  2301. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2302. 0x02, 0x00);
  2303. snd_soc_component_update_bits(component,
  2304. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2305. 0xFF, 0x00);
  2306. snd_soc_component_update_bits(component,
  2307. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2308. 0xFF, 0x00);
  2309. snd_soc_component_update_bits(component,
  2310. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2311. 0xFF, 0x00);
  2312. snd_soc_component_update_bits(component,
  2313. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2314. 0xFF, 0x00);
  2315. snd_soc_component_update_bits(component,
  2316. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2317. 0xFF, 0x00);
  2318. snd_soc_component_update_bits(component,
  2319. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2320. 0xFF, 0x00);
  2321. snd_soc_component_update_bits(component,
  2322. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2323. 0xFF, 0x00);
  2324. snd_soc_component_update_bits(component,
  2325. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2326. 0xFF, 0x00);
  2327. snd_soc_component_update_bits(component,
  2328. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2329. 0xFF, 0x00);
  2330. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  2331. snd_soc_component_update_bits(component,
  2332. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x00);
  2333. snd_soc_component_update_bits(component,
  2334. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x00);
  2335. break;
  2336. default:
  2337. dev_err(rx_dev, "%s: Invalid event %d\n", __func__, event);
  2338. break;
  2339. }
  2340. return 0;
  2341. }
  2342. static void lpass_cdc_rx_macro_idle_detect_control(struct snd_soc_component *component,
  2343. struct lpass_cdc_rx_macro_priv *rx_priv,
  2344. int interp, int event)
  2345. {
  2346. int reg = 0, mask = 0, val = 0;
  2347. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  2348. return;
  2349. if (interp == INTERP_HPHL) {
  2350. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2351. mask = 0x01;
  2352. val = 0x01;
  2353. }
  2354. if (interp == INTERP_HPHR) {
  2355. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2356. mask = 0x02;
  2357. val = 0x02;
  2358. }
  2359. if (reg && SND_SOC_DAPM_EVENT_ON(event))
  2360. snd_soc_component_update_bits(component, reg, mask, val);
  2361. if (reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2362. snd_soc_component_update_bits(component, reg, mask, 0x00);
  2363. rx_priv->idle_det_cfg.hph_idle_thr = 0;
  2364. snd_soc_component_write(component,
  2365. LPASS_CDC_RX_IDLE_DETECT_CFG3, 0x0);
  2366. }
  2367. }
  2368. static void lpass_cdc_rx_macro_hphdelay_lutbypass(struct snd_soc_component *component,
  2369. struct lpass_cdc_rx_macro_priv *rx_priv,
  2370. u16 interp_idx, int event)
  2371. {
  2372. u16 hph_lut_bypass_reg = 0;
  2373. u16 hph_comp_ctrl7 = 0;
  2374. switch (interp_idx) {
  2375. case INTERP_HPHL:
  2376. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHL_COMP_LUT;
  2377. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER0_CTL7;
  2378. break;
  2379. case INTERP_HPHR:
  2380. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHR_COMP_LUT;
  2381. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER1_CTL7;
  2382. break;
  2383. default:
  2384. break;
  2385. }
  2386. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  2387. if (interp_idx == INTERP_HPHL) {
  2388. if (rx_priv->is_ear_mode_on)
  2389. snd_soc_component_update_bits(component,
  2390. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2391. 0x02, 0x02);
  2392. else
  2393. snd_soc_component_update_bits(component,
  2394. hph_lut_bypass_reg,
  2395. 0x80, 0x80);
  2396. } else {
  2397. snd_soc_component_update_bits(component,
  2398. hph_lut_bypass_reg,
  2399. 0x80, 0x80);
  2400. }
  2401. if (rx_priv->hph_pwr_mode)
  2402. snd_soc_component_update_bits(component,
  2403. hph_comp_ctrl7,
  2404. 0x20, 0x00);
  2405. }
  2406. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2407. snd_soc_component_update_bits(component,
  2408. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2409. 0x02, 0x00);
  2410. snd_soc_component_update_bits(component, hph_lut_bypass_reg,
  2411. 0x80, 0x00);
  2412. snd_soc_component_update_bits(component, hph_comp_ctrl7,
  2413. 0x20, 0x20);
  2414. }
  2415. }
  2416. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  2417. int event, int interp_idx)
  2418. {
  2419. u16 main_reg = 0, dsm_reg = 0, rx_cfg2_reg = 0;
  2420. struct device *rx_dev = NULL;
  2421. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2422. if (!component) {
  2423. pr_err("%s: component is NULL\n", __func__);
  2424. return -EINVAL;
  2425. }
  2426. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2427. return -EINVAL;
  2428. main_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2429. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2430. dsm_reg = LPASS_CDC_RX_RX0_RX_PATH_DSM_CTL +
  2431. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2432. if (interp_idx == INTERP_AUX)
  2433. dsm_reg = LPASS_CDC_RX_RX2_RX_PATH_DSM_CTL;
  2434. rx_cfg2_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG2 +
  2435. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2436. if (SND_SOC_DAPM_EVENT_ON(event)) {
  2437. if (rx_priv->main_clk_users[interp_idx] == 0) {
  2438. /* Main path PGA mute enable */
  2439. snd_soc_component_update_bits(component, main_reg,
  2440. 0x10, 0x10);
  2441. snd_soc_component_update_bits(component, dsm_reg,
  2442. 0x01, 0x01);
  2443. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2444. 0x03, 0x03);
  2445. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2446. interp_idx, event);
  2447. if (rx_priv->hph_hd2_mode)
  2448. lpass_cdc_rx_macro_hd2_control(
  2449. component, interp_idx, event);
  2450. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2451. interp_idx, event);
  2452. lpass_cdc_rx_macro_droop_setting(component,
  2453. interp_idx, event);
  2454. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2455. interp_idx, event);
  2456. if (interp_idx == INTERP_AUX) {
  2457. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2458. event);
  2459. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2460. event);
  2461. }
  2462. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2463. interp_idx, event);
  2464. }
  2465. rx_priv->main_clk_users[interp_idx]++;
  2466. }
  2467. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  2468. rx_priv->main_clk_users[interp_idx]--;
  2469. if (rx_priv->main_clk_users[interp_idx] <= 0) {
  2470. rx_priv->main_clk_users[interp_idx] = 0;
  2471. /* Main path PGA mute enable */
  2472. snd_soc_component_update_bits(component, main_reg,
  2473. 0x10, 0x10);
  2474. /* Clk Disable */
  2475. snd_soc_component_update_bits(component, dsm_reg,
  2476. 0x01, 0x00);
  2477. snd_soc_component_update_bits(component, main_reg,
  2478. 0x20, 0x00);
  2479. /* Reset enable and disable */
  2480. snd_soc_component_update_bits(component, main_reg,
  2481. 0x40, 0x40);
  2482. snd_soc_component_update_bits(component, main_reg,
  2483. 0x40, 0x00);
  2484. /* Reset rate to 48K*/
  2485. snd_soc_component_update_bits(component, main_reg,
  2486. 0x0F, 0x04);
  2487. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2488. 0x03, 0x00);
  2489. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2490. interp_idx, event);
  2491. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2492. interp_idx, event);
  2493. if (interp_idx == INTERP_AUX) {
  2494. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2495. event);
  2496. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2497. event);
  2498. }
  2499. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2500. interp_idx, event);
  2501. if (rx_priv->hph_hd2_mode)
  2502. lpass_cdc_rx_macro_hd2_control(component, interp_idx,
  2503. event);
  2504. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2505. interp_idx, event);
  2506. }
  2507. }
  2508. dev_dbg(component->dev, "%s event %d main_clk_users %d\n",
  2509. __func__, event, rx_priv->main_clk_users[interp_idx]);
  2510. return rx_priv->main_clk_users[interp_idx];
  2511. }
  2512. static int lpass_cdc_rx_macro_enable_rx_path_clk(struct snd_soc_dapm_widget *w,
  2513. struct snd_kcontrol *kcontrol, int event)
  2514. {
  2515. struct snd_soc_component *component =
  2516. snd_soc_dapm_to_component(w->dapm);
  2517. u16 sidetone_reg = 0, fs_reg = 0;
  2518. dev_dbg(component->dev, "%s %d %d\n", __func__, event, w->shift);
  2519. sidetone_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG1 +
  2520. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2521. fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2522. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2523. switch (event) {
  2524. case SND_SOC_DAPM_PRE_PMU:
  2525. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2526. snd_soc_component_update_bits(component, sidetone_reg,
  2527. 0x10, 0x10);
  2528. snd_soc_component_update_bits(component, fs_reg,
  2529. 0x20, 0x20);
  2530. break;
  2531. case SND_SOC_DAPM_POST_PMD:
  2532. snd_soc_component_update_bits(component, sidetone_reg,
  2533. 0x10, 0x00);
  2534. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2535. break;
  2536. default:
  2537. break;
  2538. };
  2539. return 0;
  2540. }
  2541. static void lpass_cdc_rx_macro_restore_iir_coeff(struct lpass_cdc_rx_macro_priv *rx_priv, int iir_idx,
  2542. int band_idx)
  2543. {
  2544. u16 reg_add = 0, coeff_idx = 0, idx = 0;
  2545. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  2546. if (regmap == NULL) {
  2547. dev_err(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  2548. return;
  2549. }
  2550. regmap_write(regmap,
  2551. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2552. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2553. reg_add = LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx;
  2554. /* 5 coefficients per band and 4 writes per coefficient */
  2555. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2556. coeff_idx++) {
  2557. /* Four 8 bit values(one 32 bit) per coefficient */
  2558. regmap_write(regmap, reg_add,
  2559. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2560. regmap_write(regmap, reg_add,
  2561. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2562. regmap_write(regmap, reg_add,
  2563. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2564. regmap_write(regmap, reg_add,
  2565. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2566. }
  2567. }
  2568. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2569. struct snd_ctl_elem_value *ucontrol)
  2570. {
  2571. struct snd_soc_component *component =
  2572. snd_soc_kcontrol_component(kcontrol);
  2573. int iir_idx = ((struct soc_multi_mixer_control *)
  2574. kcontrol->private_value)->reg;
  2575. int band_idx = ((struct soc_multi_mixer_control *)
  2576. kcontrol->private_value)->shift;
  2577. /* IIR filter band registers are at integer multiples of 0x80 */
  2578. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2579. ucontrol->value.integer.value[0] = (
  2580. snd_soc_component_read(component, iir_reg) &
  2581. (1 << band_idx)) != 0;
  2582. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2583. iir_idx, band_idx,
  2584. (uint32_t)ucontrol->value.integer.value[0]);
  2585. return 0;
  2586. }
  2587. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2588. struct snd_ctl_elem_value *ucontrol)
  2589. {
  2590. struct snd_soc_component *component =
  2591. snd_soc_kcontrol_component(kcontrol);
  2592. int iir_idx = ((struct soc_multi_mixer_control *)
  2593. kcontrol->private_value)->reg;
  2594. int band_idx = ((struct soc_multi_mixer_control *)
  2595. kcontrol->private_value)->shift;
  2596. bool iir_band_en_status = 0;
  2597. int value = ucontrol->value.integer.value[0];
  2598. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2599. struct device *rx_dev = NULL;
  2600. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2601. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2602. return -EINVAL;
  2603. lpass_cdc_rx_macro_restore_iir_coeff(rx_priv, iir_idx, band_idx);
  2604. /* Mask first 5 bits, 6-8 are reserved */
  2605. snd_soc_component_update_bits(component, iir_reg, (1 << band_idx),
  2606. (value << band_idx));
  2607. iir_band_en_status = ((snd_soc_component_read(component, iir_reg) &
  2608. (1 << band_idx)) != 0);
  2609. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2610. iir_idx, band_idx, iir_band_en_status);
  2611. return 0;
  2612. }
  2613. static uint32_t get_iir_band_coeff(struct snd_soc_component *component,
  2614. int iir_idx, int band_idx,
  2615. int coeff_idx)
  2616. {
  2617. uint32_t value = 0;
  2618. /* Address does not automatically update if reading */
  2619. snd_soc_component_write(component,
  2620. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2621. ((band_idx * BAND_MAX + coeff_idx)
  2622. * sizeof(uint32_t)) & 0x7F);
  2623. value |= snd_soc_component_read(component,
  2624. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx));
  2625. snd_soc_component_write(component,
  2626. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2627. ((band_idx * BAND_MAX + coeff_idx)
  2628. * sizeof(uint32_t) + 1) & 0x7F);
  2629. value |= (snd_soc_component_read(component,
  2630. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2631. 0x80 * iir_idx)) << 8);
  2632. snd_soc_component_write(component,
  2633. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2634. ((band_idx * BAND_MAX + coeff_idx)
  2635. * sizeof(uint32_t) + 2) & 0x7F);
  2636. value |= (snd_soc_component_read(component,
  2637. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2638. 0x80 * iir_idx)) << 16);
  2639. snd_soc_component_write(component,
  2640. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2641. ((band_idx * BAND_MAX + coeff_idx)
  2642. * sizeof(uint32_t) + 3) & 0x7F);
  2643. /* Mask bits top 2 bits since they are reserved */
  2644. value |= ((snd_soc_component_read(component,
  2645. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2646. 16 * iir_idx)) & 0x3F) << 24);
  2647. return value;
  2648. }
  2649. static int lpass_cdc_rx_macro_iir_filter_info(struct snd_kcontrol *kcontrol,
  2650. struct snd_ctl_elem_info *ucontrol)
  2651. {
  2652. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2653. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2654. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2655. ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
  2656. ucontrol->count = params->max;
  2657. return 0;
  2658. }
  2659. static int lpass_cdc_rx_macro_iir_band_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2660. struct snd_ctl_elem_value *ucontrol)
  2661. {
  2662. struct snd_soc_component *component =
  2663. snd_soc_kcontrol_component(kcontrol);
  2664. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2665. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2666. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2667. int iir_idx = ctl->iir_idx;
  2668. int band_idx = ctl->band_idx;
  2669. u32 coeff[BAND_MAX];
  2670. int coeff_idx = 0;
  2671. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2672. coeff_idx++) {
  2673. coeff[coeff_idx] =
  2674. get_iir_band_coeff(component, iir_idx, band_idx, coeff_idx);
  2675. }
  2676. memcpy(ucontrol->value.bytes.data, &coeff[0], params->max);
  2677. dev_dbg(component->dev, "%s: IIR #%d band #%d b0 = 0x%x\n"
  2678. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2679. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2680. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2681. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2682. __func__, iir_idx, band_idx, coeff[0],
  2683. __func__, iir_idx, band_idx, coeff[1],
  2684. __func__, iir_idx, band_idx, coeff[2],
  2685. __func__, iir_idx, band_idx, coeff[3],
  2686. __func__, iir_idx, band_idx, coeff[4]);
  2687. return 0;
  2688. }
  2689. static void set_iir_band_coeff(struct snd_soc_component *component,
  2690. int iir_idx, int band_idx,
  2691. uint32_t value)
  2692. {
  2693. snd_soc_component_write(component,
  2694. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2695. (value & 0xFF));
  2696. snd_soc_component_write(component,
  2697. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2698. (value >> 8) & 0xFF);
  2699. snd_soc_component_write(component,
  2700. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2701. (value >> 16) & 0xFF);
  2702. /* Mask top 2 bits, 7-8 are reserved */
  2703. snd_soc_component_write(component,
  2704. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2705. (value >> 24) & 0x3F);
  2706. }
  2707. static int lpass_cdc_rx_macro_iir_band_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2708. struct snd_ctl_elem_value *ucontrol)
  2709. {
  2710. struct snd_soc_component *component =
  2711. snd_soc_kcontrol_component(kcontrol);
  2712. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2713. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2714. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2715. int iir_idx = ctl->iir_idx;
  2716. int band_idx = ctl->band_idx;
  2717. u32 coeff[BAND_MAX];
  2718. int coeff_idx, idx = 0;
  2719. struct device *rx_dev = NULL;
  2720. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2721. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2722. return -EINVAL;
  2723. memcpy(&coeff[0], ucontrol->value.bytes.data, params->max);
  2724. /*
  2725. * Mask top bit it is reserved
  2726. * Updates addr automatically for each B2 write
  2727. */
  2728. snd_soc_component_write(component,
  2729. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 16 * iir_idx),
  2730. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2731. /* Store the coefficients in sidetone coeff array */
  2732. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2733. coeff_idx++) {
  2734. uint32_t value = coeff[coeff_idx];
  2735. set_iir_band_coeff(component, iir_idx, band_idx, value);
  2736. /* Four 8 bit values(one 32 bit) per coefficient */
  2737. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2738. (value & 0xFF);
  2739. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2740. (value >> 8) & 0xFF;
  2741. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2742. (value >> 16) & 0xFF;
  2743. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2744. (value >> 24) & 0xFF;
  2745. }
  2746. pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n"
  2747. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2748. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2749. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2750. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2751. __func__, iir_idx, band_idx,
  2752. get_iir_band_coeff(component, iir_idx, band_idx, 0),
  2753. __func__, iir_idx, band_idx,
  2754. get_iir_band_coeff(component, iir_idx, band_idx, 1),
  2755. __func__, iir_idx, band_idx,
  2756. get_iir_band_coeff(component, iir_idx, band_idx, 2),
  2757. __func__, iir_idx, band_idx,
  2758. get_iir_band_coeff(component, iir_idx, band_idx, 3),
  2759. __func__, iir_idx, band_idx,
  2760. get_iir_band_coeff(component, iir_idx, band_idx, 4));
  2761. return 0;
  2762. }
  2763. static int lpass_cdc_rx_macro_set_iir_gain(struct snd_soc_dapm_widget *w,
  2764. struct snd_kcontrol *kcontrol, int event)
  2765. {
  2766. struct snd_soc_component *component =
  2767. snd_soc_dapm_to_component(w->dapm);
  2768. dev_dbg(component->dev, "%s: event = %d\n", __func__, event);
  2769. switch (event) {
  2770. case SND_SOC_DAPM_POST_PMU: /* fall through */
  2771. case SND_SOC_DAPM_PRE_PMD:
  2772. if (strnstr(w->name, "IIR0", sizeof("IIR0"))) {
  2773. snd_soc_component_write(component,
  2774. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL,
  2775. snd_soc_component_read(component,
  2776. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL));
  2777. snd_soc_component_write(component,
  2778. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL,
  2779. snd_soc_component_read(component,
  2780. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL));
  2781. snd_soc_component_write(component,
  2782. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL,
  2783. snd_soc_component_read(component,
  2784. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL));
  2785. snd_soc_component_write(component,
  2786. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL,
  2787. snd_soc_component_read(component,
  2788. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL));
  2789. } else {
  2790. snd_soc_component_write(component,
  2791. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL,
  2792. snd_soc_component_read(component,
  2793. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL));
  2794. snd_soc_component_write(component,
  2795. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL,
  2796. snd_soc_component_read(component,
  2797. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL));
  2798. snd_soc_component_write(component,
  2799. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL,
  2800. snd_soc_component_read(component,
  2801. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL));
  2802. snd_soc_component_write(component,
  2803. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL,
  2804. snd_soc_component_read(component,
  2805. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL));
  2806. }
  2807. break;
  2808. }
  2809. return 0;
  2810. }
  2811. static int lpass_cdc_rx_macro_fir_filter_enable_get(struct snd_kcontrol *kcontrol,
  2812. struct snd_ctl_elem_value *ucontrol)
  2813. {
  2814. struct snd_soc_component *component =
  2815. snd_soc_kcontrol_component(kcontrol);
  2816. struct device *rx_dev = NULL;
  2817. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2818. if (!component) {
  2819. pr_err("%s: component is NULL\n", __func__);
  2820. return -EINVAL;
  2821. }
  2822. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2823. return -EINVAL;
  2824. ucontrol->value.bytes.data[0] = (unsigned char)rx_priv->is_fir_filter_on;
  2825. return 0;
  2826. }
  2827. static int lpass_cdc_rx_macro_fir_filter_enable_put(struct snd_kcontrol *kcontrol,
  2828. struct snd_ctl_elem_value *ucontrol)
  2829. {
  2830. struct snd_soc_component *component =
  2831. snd_soc_kcontrol_component(kcontrol);
  2832. struct device *rx_dev = NULL;
  2833. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2834. int ret = 0;
  2835. if (!component) {
  2836. pr_err("%s: component is NULL\n", __func__);
  2837. return -EINVAL;
  2838. }
  2839. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2840. return -EINVAL;
  2841. if (!rx_priv->hifi_fir_clk) {
  2842. dev_dbg(rx_priv->dev, "%s: Undefined HIFI FIR Clock.\n",
  2843. __func__);
  2844. return 0;
  2845. }
  2846. if (!rx_priv->is_fir_capable) {
  2847. dev_dbg(rx_priv->dev, "%s: HIFI FIR is not supported.\n",
  2848. __func__);
  2849. return 0;
  2850. }
  2851. rx_priv->is_fir_filter_on =
  2852. (!ucontrol->value.bytes.data[0] ? false : true);
  2853. dev_dbg(rx_priv->dev, "%s:is_fir_filter_on=%d\n",
  2854. __func__, rx_priv->is_fir_filter_on);
  2855. if (rx_priv->is_fir_filter_on) {
  2856. ret = clk_prepare_enable(rx_priv->hifi_fir_clk);
  2857. if (ret < 0) {
  2858. dev_err_ratelimited(rx_priv->dev, "%s:hifi_fir_clk enable failed\n",
  2859. __func__);
  2860. return ret;
  2861. }
  2862. /* Enable HIFI_FEAT_EN bit */
  2863. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x01);
  2864. /* Enable FIR_CLK_EN */
  2865. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_PATH_CTL, 0x80, 0x80);
  2866. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_PATH_CTL, 0x80, 0x80);
  2867. /* Start the FIR filter */
  2868. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_FIR_CTL, 0x0D, 0x05);
  2869. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_FIR_CTL, 0x0D, 0x05);
  2870. } else {
  2871. /* Stop the FIR filter */
  2872. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_FIR_CTL, 0x0D, 0x00);
  2873. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_FIR_CTL, 0x0D, 0x00);
  2874. /* Disable FIR_CLK_EN */
  2875. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_PATH_CTL, 0x80, 0x00);
  2876. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_PATH_CTL, 0x80, 0x00);
  2877. /* Disable HIFI_FEAT_EN bit */
  2878. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x00);
  2879. clk_disable_unprepare(rx_priv->hifi_fir_clk);
  2880. }
  2881. return 0;
  2882. }
  2883. static int lpass_cdc_rx_macro_fir_filter_info(struct snd_kcontrol *kcontrol,
  2884. struct snd_ctl_elem_info *ucontrol)
  2885. {
  2886. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  2887. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  2888. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2889. ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
  2890. ucontrol->count = params->max;
  2891. return 0;
  2892. }
  2893. static int lpass_cdc_rx_macro_fir_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2894. struct snd_ctl_elem_value *ucontrol)
  2895. {
  2896. struct snd_soc_component *component =
  2897. snd_soc_kcontrol_component(kcontrol);
  2898. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  2899. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  2900. unsigned int path_idx = ctl->path_idx;
  2901. unsigned int grp_idx = ctl->grp_idx;
  2902. u32 num_coeff_grp = 0;
  2903. u32 readArray[LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX];
  2904. unsigned int coeff_idx = 0, array_idx = 0;
  2905. unsigned int copy_size;
  2906. struct device *rx_dev = NULL;
  2907. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2908. if (!component) {
  2909. pr_err("%s: component is NULL\n", __func__);
  2910. return -EINVAL;
  2911. }
  2912. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2913. return -EINVAL;
  2914. num_coeff_grp = rx_priv->num_fir_coeff[path_idx][grp_idx];
  2915. readArray[array_idx++] = num_coeff_grp;
  2916. for (coeff_idx = 0; coeff_idx < num_coeff_grp; coeff_idx++) {
  2917. readArray[array_idx++] =
  2918. rx_priv->fir_coeff_array[path_idx][grp_idx][coeff_idx];
  2919. }
  2920. copy_size = array_idx;
  2921. memcpy(ucontrol->value.bytes.data, &readArray[0], sizeof(readArray[0]) * copy_size);
  2922. return 0;
  2923. }
  2924. static int set_fir_filter_coeff(struct snd_soc_component *component,
  2925. struct lpass_cdc_rx_macro_priv *rx_priv,
  2926. unsigned int path_idx)
  2927. {
  2928. int grp_idx = 0, coeff_idx = 0;
  2929. unsigned int ret = 0;
  2930. unsigned int sum_num_coeff, max_coeff_num, num_coeff_grp;
  2931. unsigned int path_ctl_addr, wdata0_addr, coeff_addr;
  2932. unsigned int fir_ctl_addr, num_coeff_addr;
  2933. switch (path_idx) {
  2934. case RX0_PATH:
  2935. path_ctl_addr = LPASS_CDC_RX_RX0_RX_PATH_CTL;
  2936. wdata0_addr = LPASS_CDC_RX_RX0_RX_FIR_COEFF_WDATA0;
  2937. coeff_addr = LPASS_CDC_RX_RX0_RX_FIR_COEFF_ADDR;
  2938. fir_ctl_addr = LPASS_CDC_RX_RX0_RX_FIR_CTL;
  2939. num_coeff_addr = LPASS_CDC_RX_RX0_RX_FIR_CFG;
  2940. break;
  2941. case RX1_PATH:
  2942. path_ctl_addr = LPASS_CDC_RX_RX1_RX_PATH_CTL;
  2943. wdata0_addr = LPASS_CDC_RX_RX1_RX_FIR_COEFF_WDATA0;
  2944. coeff_addr = LPASS_CDC_RX_RX1_RX_FIR_COEFF_ADDR;
  2945. fir_ctl_addr = LPASS_CDC_RX_RX1_RX_FIR_CTL;
  2946. num_coeff_addr = LPASS_CDC_RX_RX1_RX_FIR_CFG;
  2947. break;
  2948. default:
  2949. dev_err(rx_priv->dev,
  2950. "%s: inavlid FIR ID: %d\n", __func__, path_idx);
  2951. ret = -EINVAL;
  2952. goto exit;
  2953. }
  2954. max_coeff_num = LPASS_CDC_RX_MACRO_FIR_COEFF_MAX;
  2955. sum_num_coeff = 0;
  2956. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++) {
  2957. sum_num_coeff += rx_priv->num_fir_coeff[path_idx][grp_idx];
  2958. }
  2959. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, false);
  2960. if (ret < 0) {
  2961. dev_err_ratelimited(rx_priv->dev, "%s:rx_macro_mclk enable failed\n",
  2962. __func__);
  2963. goto exit;
  2964. }
  2965. ret = clk_prepare_enable(rx_priv->hifi_fir_clk);
  2966. if (ret < 0) {
  2967. dev_err_ratelimited(rx_priv->dev, "%s:hifi_fir_clk enable failed\n",
  2968. __func__);
  2969. goto disable_mclk_block;
  2970. }
  2971. /* Enable HIFI_FEAT_EN bit */
  2972. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x01);
  2973. /* Enable FIR_CLK_EN, datapath reset */
  2974. snd_soc_component_update_bits(component, path_ctl_addr, 0xC0, 0xC0);
  2975. /* Enable FIR_CLK_EN, Release Reset */
  2976. snd_soc_component_update_bits(component, path_ctl_addr, 0xC0, 0x80);
  2977. /* wait for data ram initialization after enabling clock */
  2978. usleep_range(10, 11);
  2979. snd_soc_component_write(component, num_coeff_addr, sum_num_coeff);
  2980. dev_dbg(rx_priv->dev, "TEST: %s: sum_num_coeff:0x%x\n",
  2981. __func__, sum_num_coeff);
  2982. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++) {
  2983. unsigned int coeff_idx_start = 0, array_idx = 0;
  2984. num_coeff_grp = rx_priv->num_fir_coeff[path_idx][grp_idx];
  2985. if (num_coeff_grp > max_coeff_num) {
  2986. dev_err(rx_priv->dev,
  2987. "%s: inavlid number of RX_FIR coefficients:%d"
  2988. " in path:%d, group:%d\n",
  2989. __func__, num_coeff_grp, path_idx, grp_idx);
  2990. ret = -EINVAL;
  2991. goto disable_FIR;
  2992. }
  2993. coeff_idx_start = grp_idx * max_coeff_num;
  2994. for (coeff_idx = coeff_idx_start;
  2995. coeff_idx < coeff_idx_start + num_coeff_grp / 2 * 2;
  2996. coeff_idx += 2) {
  2997. unsigned int addr_offset = coeff_idx / 2;
  2998. /* First coefficient in pair */
  2999. u32 value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3000. dev_dbg(rx_priv->dev, "TEST: %s: val of coeff_idx:%d, COEFF:0x%x\n",
  3001. __func__, coeff_idx, value);
  3002. snd_soc_component_write(component, wdata0_addr,
  3003. value & 0xFF);
  3004. snd_soc_component_write(component, wdata0_addr + 0x4,
  3005. (value >> 8) & 0xFF);
  3006. snd_soc_component_write(component, wdata0_addr + 0x8,
  3007. (value >> 16) & 0xFF);
  3008. snd_soc_component_write(component, wdata0_addr + 0xC,
  3009. (value >> 24) & 0xFF);
  3010. /* Second coefficient in pair */
  3011. value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3012. dev_dbg(rx_priv->dev, "TEST: %s: val of coeff_idx:%d, COEFF:0x%x\n",
  3013. __func__, coeff_idx, value);
  3014. snd_soc_component_write(component, wdata0_addr + 0x10,
  3015. value & 0xFF);
  3016. snd_soc_component_write(component, wdata0_addr + 0x14,
  3017. (value >> 8) & 0xFF);
  3018. snd_soc_component_write(component, wdata0_addr + 0x18,
  3019. (value >> 16) & 0xFF);
  3020. snd_soc_component_write(component, wdata0_addr + 0x1C,
  3021. (value >> 24) & 0xFF);
  3022. snd_soc_component_write(component, coeff_addr, addr_offset);
  3023. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x02);
  3024. usleep_range(13, 15);
  3025. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x00);
  3026. }
  3027. /* odd number of coefficients in this group, handle last one */
  3028. if (num_coeff_grp % 2 != 0) {
  3029. int addr_offset = coeff_idx / 2;
  3030. /* First coefficient in pair */
  3031. u32 value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3032. dev_dbg(rx_priv->dev, "TEST: %s: val of coeff_idx:%d, COEFF:0x%x\n",
  3033. __func__, coeff_idx, value);
  3034. snd_soc_component_write(component, wdata0_addr,
  3035. value & 0xFF);
  3036. snd_soc_component_write(component, wdata0_addr + 0x4,
  3037. (value >> 8) & 0xFF);
  3038. snd_soc_component_write(component, wdata0_addr + 0x8,
  3039. (value >> 16) & 0xFF);
  3040. snd_soc_component_write(component, wdata0_addr + 0xC,
  3041. (value >> 24) & 0xFF);
  3042. /* Second coefficient in pair */
  3043. dev_dbg(rx_priv->dev, "TEST: %s: val of coeff_idx:%d, COEFF:0x%x\n",
  3044. __func__, coeff_idx, 0x0);
  3045. snd_soc_component_write(component, wdata0_addr + 0x10, 0x0);
  3046. snd_soc_component_write(component, wdata0_addr + 0x14, 0x0);
  3047. snd_soc_component_write(component, wdata0_addr + 0x18, 0x0);
  3048. snd_soc_component_write(component, wdata0_addr + 0x1C, 0x0);
  3049. snd_soc_component_write(component, coeff_addr, addr_offset);
  3050. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x02);
  3051. usleep_range(13, 15);
  3052. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x00);
  3053. }
  3054. }
  3055. disable_FIR:
  3056. /* disable FIR_CLK_EN */
  3057. snd_soc_component_update_bits(component, path_ctl_addr, 0x80, 0x00);
  3058. /* Disable HIFI_FEAT_EN bit */
  3059. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x00);
  3060. clk_disable_unprepare(rx_priv->hifi_fir_clk);
  3061. disable_mclk_block:
  3062. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, false);
  3063. exit:
  3064. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++) {
  3065. rx_priv->is_fir_coeff_ready[path_idx][grp_idx] = false;
  3066. }
  3067. return ret;
  3068. }
  3069. static int lpass_cdc_rx_macro_fir_audio_mixer_put(struct snd_kcontrol *kcontrol,
  3070. struct snd_ctl_elem_value *ucontrol)
  3071. {
  3072. struct snd_soc_component *component =
  3073. snd_soc_kcontrol_component(kcontrol);
  3074. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  3075. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  3076. unsigned int path_idx = ctl->path_idx;
  3077. unsigned int grp_idx = ctl->grp_idx;
  3078. u32 ele_size = 0, num_coeff_grp = 0;
  3079. u32 coeff[LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX];
  3080. int ret = 0;
  3081. bool coeff_ready = true;
  3082. unsigned int grp_iidx = 0, coeff_idx = 0, array_idx = 0;
  3083. struct device *rx_dev = NULL;
  3084. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3085. if (!component) {
  3086. pr_err("%s: component is NULL\n", __func__);
  3087. return -EINVAL;
  3088. }
  3089. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3090. return -EINVAL;
  3091. if (!rx_priv->hifi_fir_clk) {
  3092. dev_dbg(rx_priv->dev, "%s: Undefined HIFI FIR Clock.\n",
  3093. __func__);
  3094. return 0;
  3095. }
  3096. if (!rx_priv->is_fir_capable) {
  3097. dev_dbg(rx_priv->dev, "%s: HIFI FIR is not supported.\n",
  3098. __func__);
  3099. return 0;
  3100. }
  3101. ele_size = sizeof(coeff[0]);
  3102. memcpy(&coeff[0], ucontrol->value.bytes.data, ele_size);
  3103. num_coeff_grp = coeff[0];
  3104. dev_dbg(rx_priv->dev, "%s: bytes.data: path:%d, grp:%d, num_coeff_grp:%d\n",
  3105. __func__, path_idx, grp_idx, num_coeff_grp);
  3106. if (num_coeff_grp > LPASS_CDC_RX_MACRO_FIR_COEFF_MAX) {
  3107. dev_err(rx_priv->dev,
  3108. "%s: inavlid number of RX_FIR coefficients:%d in path:%d, group:%d\n",
  3109. __func__, num_coeff_grp, path_idx, grp_idx);
  3110. rx_priv->num_fir_coeff[path_idx][grp_idx] = 0;
  3111. return -EINVAL;
  3112. } else {
  3113. rx_priv->num_fir_coeff[path_idx][grp_idx] = num_coeff_grp;
  3114. }
  3115. memcpy(&coeff[1], &(ucontrol->value.bytes.data[ele_size]), ele_size * num_coeff_grp);
  3116. /* Store the coefficients in FIR coeff array */
  3117. array_idx = 1;
  3118. for (coeff_idx = 0; coeff_idx < num_coeff_grp; coeff_idx++)
  3119. rx_priv->fir_coeff_array[path_idx][grp_idx][coeff_idx] = coeff[array_idx++];
  3120. /*
  3121. * Set all of followed groups flag to ready if one group is not full(last group)
  3122. * to ensure all followed groups ready flag set even all-zero group presents
  3123. * Only last group is expected to have unfilled coefficients
  3124. */
  3125. if (num_coeff_grp < LPASS_CDC_RX_MACRO_FIR_COEFF_MAX) {
  3126. for (grp_iidx = grp_idx; grp_iidx < GRP_MAX; grp_iidx++) {
  3127. rx_priv->is_fir_coeff_ready[path_idx][grp_iidx] = true;
  3128. if (grp_iidx != grp_idx)
  3129. rx_priv->num_fir_coeff[path_idx][grp_iidx] = 0;
  3130. }
  3131. } else {
  3132. rx_priv->is_fir_coeff_ready[path_idx][grp_idx] = true;
  3133. }
  3134. for (grp_iidx = 0; grp_iidx < GRP_MAX; grp_iidx++) {
  3135. coeff_ready &= rx_priv->is_fir_coeff_ready[path_idx][grp_iidx];
  3136. }
  3137. if (coeff_ready) {
  3138. ret = set_fir_filter_coeff(component, rx_priv, path_idx);
  3139. if (ret < 0) {
  3140. rx_priv->num_fir_coeff[path_idx][grp_idx] = 0;
  3141. return ret;
  3142. }
  3143. }
  3144. return 0;
  3145. }
  3146. static const struct snd_kcontrol_new lpass_cdc_rx_macro_snd_controls[] = {
  3147. SOC_SINGLE_S8_TLV("RX_RX0 Digital Volume",
  3148. LPASS_CDC_RX_RX0_RX_VOL_CTL,
  3149. -84, 40, digital_gain),
  3150. SOC_SINGLE_S8_TLV("RX_RX1 Digital Volume",
  3151. LPASS_CDC_RX_RX1_RX_VOL_CTL,
  3152. -84, 40, digital_gain),
  3153. SOC_SINGLE_S8_TLV("RX_RX2 Digital Volume",
  3154. LPASS_CDC_RX_RX2_RX_VOL_CTL,
  3155. -84, 40, digital_gain),
  3156. SOC_SINGLE_S8_TLV("RX_RX0 Mix Digital Volume",
  3157. LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL,
  3158. -84, 40, digital_gain),
  3159. SOC_SINGLE_S8_TLV("RX_RX1 Mix Digital Volume",
  3160. LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL,
  3161. -84, 40, digital_gain),
  3162. SOC_SINGLE_S8_TLV("RX_RX2 Mix Digital Volume",
  3163. LPASS_CDC_RX_RX2_RX_VOL_MIX_CTL,
  3164. -84, 40, digital_gain),
  3165. SOC_SINGLE_EXT("RX_COMP1 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP1, 1, 0,
  3166. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  3167. SOC_SINGLE_EXT("RX_COMP2 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP2, 1, 0,
  3168. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  3169. SOC_ENUM_EXT("HPH Idle Detect", hph_idle_detect_enum,
  3170. lpass_cdc_rx_macro_hph_idle_detect_get, lpass_cdc_rx_macro_hph_idle_detect_put),
  3171. SOC_ENUM_EXT("RX_EAR Mode", lpass_cdc_rx_macro_ear_mode_enum,
  3172. lpass_cdc_rx_macro_get_ear_mode, lpass_cdc_rx_macro_put_ear_mode),
  3173. SOC_ENUM_EXT("RX_FIR Filter", lpass_cdc_rx_macro_fir_filter_enum,
  3174. lpass_cdc_rx_macro_fir_filter_enable_get, lpass_cdc_rx_macro_fir_filter_enable_put),
  3175. SOC_ENUM_EXT("RX_HPH HD2 Mode", lpass_cdc_rx_macro_hph_hd2_mode_enum,
  3176. lpass_cdc_rx_macro_get_hph_hd2_mode, lpass_cdc_rx_macro_put_hph_hd2_mode),
  3177. SOC_ENUM_EXT("RX_HPH_PWR_MODE", lpass_cdc_rx_macro_hph_pwr_mode_enum,
  3178. lpass_cdc_rx_macro_get_hph_pwr_mode, lpass_cdc_rx_macro_put_hph_pwr_mode),
  3179. SOC_ENUM_EXT("RX_GSM mode Enable", lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum,
  3180. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get,
  3181. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put),
  3182. SOC_SINGLE_EXT("RX_Softclip Enable", SND_SOC_NOPM, 0, 1, 0,
  3183. lpass_cdc_rx_macro_soft_clip_enable_get,
  3184. lpass_cdc_rx_macro_soft_clip_enable_put),
  3185. SOC_SINGLE_EXT("AUX_HPF Enable", SND_SOC_NOPM, 0, 1, 0,
  3186. lpass_cdc_rx_macro_aux_hpf_mode_get,
  3187. lpass_cdc_rx_macro_aux_hpf_mode_put),
  3188. SOC_SINGLE_S8_TLV("IIR0 INP0 Volume",
  3189. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL, -84, 40,
  3190. digital_gain),
  3191. SOC_SINGLE_S8_TLV("IIR0 INP1 Volume",
  3192. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL, -84, 40,
  3193. digital_gain),
  3194. SOC_SINGLE_S8_TLV("IIR0 INP2 Volume",
  3195. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL, -84, 40,
  3196. digital_gain),
  3197. SOC_SINGLE_S8_TLV("IIR0 INP3 Volume",
  3198. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL, -84, 40,
  3199. digital_gain),
  3200. SOC_SINGLE_S8_TLV("IIR1 INP0 Volume",
  3201. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL, -84, 40,
  3202. digital_gain),
  3203. SOC_SINGLE_S8_TLV("IIR1 INP1 Volume",
  3204. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL, -84, 40,
  3205. digital_gain),
  3206. SOC_SINGLE_S8_TLV("IIR1 INP2 Volume",
  3207. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL, -84, 40,
  3208. digital_gain),
  3209. SOC_SINGLE_S8_TLV("IIR1 INP3 Volume",
  3210. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL, -84, 40,
  3211. digital_gain),
  3212. SOC_SINGLE_EXT("IIR0 Enable Band1", IIR0, BAND1, 1, 0,
  3213. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3214. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3215. SOC_SINGLE_EXT("IIR0 Enable Band2", IIR0, BAND2, 1, 0,
  3216. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3217. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3218. SOC_SINGLE_EXT("IIR0 Enable Band3", IIR0, BAND3, 1, 0,
  3219. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3220. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3221. SOC_SINGLE_EXT("IIR0 Enable Band4", IIR0, BAND4, 1, 0,
  3222. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3223. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3224. SOC_SINGLE_EXT("IIR0 Enable Band5", IIR0, BAND5, 1, 0,
  3225. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3226. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3227. SOC_SINGLE_EXT("IIR1 Enable Band1", IIR1, BAND1, 1, 0,
  3228. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3229. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3230. SOC_SINGLE_EXT("IIR1 Enable Band2", IIR1, BAND2, 1, 0,
  3231. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3232. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3233. SOC_SINGLE_EXT("IIR1 Enable Band3", IIR1, BAND3, 1, 0,
  3234. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3235. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3236. SOC_SINGLE_EXT("IIR1 Enable Band4", IIR1, BAND4, 1, 0,
  3237. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3238. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3239. SOC_SINGLE_EXT("IIR1 Enable Band5", IIR1, BAND5, 1, 0,
  3240. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3241. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3242. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band1", IIR0, BAND1),
  3243. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band2", IIR0, BAND2),
  3244. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band3", IIR0, BAND3),
  3245. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band4", IIR0, BAND4),
  3246. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band5", IIR0, BAND5),
  3247. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band1", IIR1, BAND1),
  3248. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band2", IIR1, BAND2),
  3249. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band3", IIR1, BAND3),
  3250. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band4", IIR1, BAND4),
  3251. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band5", IIR1, BAND5),
  3252. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX0 FIR Coeff Group0", RX0_PATH, GRP0),
  3253. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX0 FIR Coeff Group1", RX0_PATH, GRP1),
  3254. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX1 FIR Coeff Group0", RX1_PATH, GRP0),
  3255. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX1 FIR Coeff Group1", RX1_PATH, GRP1),
  3256. };
  3257. static int lpass_cdc_rx_macro_enable_echo(struct snd_soc_dapm_widget *w,
  3258. struct snd_kcontrol *kcontrol,
  3259. int event)
  3260. {
  3261. struct snd_soc_component *component =
  3262. snd_soc_dapm_to_component(w->dapm);
  3263. struct device *rx_dev = NULL;
  3264. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3265. u16 val = 0, ec_hq_reg = 0;
  3266. int ec_tx = 0;
  3267. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3268. return -EINVAL;
  3269. dev_dbg(rx_dev, "%s %d %s\n", __func__, event, w->name);
  3270. val = snd_soc_component_read(component,
  3271. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  3272. if (!(strcmp(w->name, "RX MIX TX0 MUX")))
  3273. ec_tx = ((val & 0xf0) >> 0x4) - 1;
  3274. else if (!(strcmp(w->name, "RX MIX TX1 MUX")))
  3275. ec_tx = (val & 0x0f) - 1;
  3276. val = snd_soc_component_read(component,
  3277. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  3278. if (!(strcmp(w->name, "RX MIX TX2 MUX")))
  3279. ec_tx = (val & 0x0f) - 1;
  3280. if (ec_tx < 0 || (ec_tx >= LPASS_CDC_RX_MACRO_EC_MUX_MAX)) {
  3281. dev_err(rx_dev, "%s: EC mix control not set correctly\n",
  3282. __func__);
  3283. return -EINVAL;
  3284. }
  3285. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_PATH_CTL +
  3286. 0x40 * ec_tx;
  3287. snd_soc_component_update_bits(component, ec_hq_reg, 0x01, 0x01);
  3288. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_CFG0 +
  3289. 0x40 * ec_tx;
  3290. /* default set to 48k */
  3291. snd_soc_component_update_bits(component, ec_hq_reg, 0x1E, 0x08);
  3292. return 0;
  3293. }
  3294. static const struct snd_soc_dapm_widget lpass_cdc_rx_macro_dapm_widgets[] = {
  3295. SND_SOC_DAPM_AIF_IN("RX AIF1 PB", "RX_MACRO_AIF1 Playback", 0,
  3296. SND_SOC_NOPM, 0, 0),
  3297. SND_SOC_DAPM_AIF_IN("RX AIF2 PB", "RX_MACRO_AIF2 Playback", 0,
  3298. SND_SOC_NOPM, 0, 0),
  3299. SND_SOC_DAPM_AIF_IN("RX AIF3 PB", "RX_MACRO_AIF3 Playback", 0,
  3300. SND_SOC_NOPM, 0, 0),
  3301. SND_SOC_DAPM_AIF_IN("RX AIF4 PB", "RX_MACRO_AIF4 Playback", 0,
  3302. SND_SOC_NOPM, 0, 0),
  3303. SND_SOC_DAPM_AIF_OUT("RX AIF_ECHO", "RX_AIF_ECHO Capture", 0,
  3304. SND_SOC_NOPM, 0, 0),
  3305. SND_SOC_DAPM_AIF_IN("RX AIF5 PB", "RX_MACRO_AIF5 Playback", 0,
  3306. SND_SOC_NOPM, 0, 0),
  3307. SND_SOC_DAPM_AIF_IN("RX AIF6 PB", "RX_MACRO_AIF6 Playback", 0,
  3308. SND_SOC_NOPM, 0, 0),
  3309. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX0 MUX", LPASS_CDC_RX_MACRO_RX0, lpass_cdc_rx_macro_rx0),
  3310. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX1 MUX", LPASS_CDC_RX_MACRO_RX1, lpass_cdc_rx_macro_rx1),
  3311. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX2 MUX", LPASS_CDC_RX_MACRO_RX2, lpass_cdc_rx_macro_rx2),
  3312. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX3 MUX", LPASS_CDC_RX_MACRO_RX3, lpass_cdc_rx_macro_rx3),
  3313. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX4 MUX", LPASS_CDC_RX_MACRO_RX4, lpass_cdc_rx_macro_rx4),
  3314. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX5 MUX", LPASS_CDC_RX_MACRO_RX5, lpass_cdc_rx_macro_rx5),
  3315. SND_SOC_DAPM_MIXER("RX_RX0", SND_SOC_NOPM, 0, 0, NULL, 0),
  3316. SND_SOC_DAPM_MIXER("RX_RX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3317. SND_SOC_DAPM_MIXER("RX_RX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3318. SND_SOC_DAPM_MIXER("RX_RX3", SND_SOC_NOPM, 0, 0, NULL, 0),
  3319. SND_SOC_DAPM_MIXER("RX_RX4", SND_SOC_NOPM, 0, 0, NULL, 0),
  3320. SND_SOC_DAPM_MIXER("RX_RX5", SND_SOC_NOPM, 0, 0, NULL, 0),
  3321. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP0 MUX", 0, iir0_inp0),
  3322. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP1 MUX", 0, iir0_inp1),
  3323. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP2 MUX", 0, iir0_inp2),
  3324. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP3 MUX", 0, iir0_inp3),
  3325. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP0 MUX", 0, iir1_inp0),
  3326. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP1 MUX", 0, iir1_inp1),
  3327. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP2 MUX", 0, iir1_inp2),
  3328. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP3 MUX", 0, iir1_inp3),
  3329. SND_SOC_DAPM_MUX_E("RX MIX TX0 MUX", SND_SOC_NOPM,
  3330. LPASS_CDC_RX_MACRO_EC0_MUX, 0,
  3331. &rx_mix_tx0_mux, lpass_cdc_rx_macro_enable_echo,
  3332. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3333. SND_SOC_DAPM_MUX_E("RX MIX TX1 MUX", SND_SOC_NOPM,
  3334. LPASS_CDC_RX_MACRO_EC1_MUX, 0,
  3335. &rx_mix_tx1_mux, lpass_cdc_rx_macro_enable_echo,
  3336. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3337. SND_SOC_DAPM_MUX_E("RX MIX TX2 MUX", SND_SOC_NOPM,
  3338. LPASS_CDC_RX_MACRO_EC2_MUX, 0,
  3339. &rx_mix_tx2_mux, lpass_cdc_rx_macro_enable_echo,
  3340. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3341. SND_SOC_DAPM_MIXER_E("IIR0", LPASS_CDC_RX_SIDETONE_IIR0_IIR_PATH_CTL,
  3342. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  3343. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  3344. SND_SOC_DAPM_MIXER_E("IIR1", LPASS_CDC_RX_SIDETONE_IIR1_IIR_PATH_CTL,
  3345. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  3346. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  3347. SND_SOC_DAPM_MIXER("SRC0", LPASS_CDC_RX_SIDETONE_SRC0_ST_SRC_PATH_CTL,
  3348. 4, 0, NULL, 0),
  3349. SND_SOC_DAPM_MIXER("SRC1", LPASS_CDC_RX_SIDETONE_SRC1_ST_SRC_PATH_CTL,
  3350. 4, 0, NULL, 0),
  3351. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0 DEM MUX", 0, rx_int0_dem_inp),
  3352. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1 DEM MUX", 0, rx_int1_dem_inp),
  3353. SND_SOC_DAPM_MUX_E("RX INT0_2 MUX", SND_SOC_NOPM, INTERP_HPHL, 0,
  3354. &rx_int0_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3355. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3356. SND_SOC_DAPM_POST_PMD),
  3357. SND_SOC_DAPM_MUX_E("RX INT1_2 MUX", SND_SOC_NOPM, INTERP_HPHR, 0,
  3358. &rx_int1_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3359. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3360. SND_SOC_DAPM_POST_PMD),
  3361. SND_SOC_DAPM_MUX_E("RX INT2_2 MUX", SND_SOC_NOPM, INTERP_AUX, 0,
  3362. &rx_int2_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3363. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3364. SND_SOC_DAPM_POST_PMD),
  3365. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP0", 0, rx_int0_1_mix_inp0),
  3366. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP1", 0, rx_int0_1_mix_inp1),
  3367. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP2", 0, rx_int0_1_mix_inp2),
  3368. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP0", 0, rx_int1_1_mix_inp0),
  3369. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP1", 0, rx_int1_1_mix_inp1),
  3370. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP2", 0, rx_int1_1_mix_inp2),
  3371. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP0", 0, rx_int2_1_mix_inp0),
  3372. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP1", 0, rx_int2_1_mix_inp1),
  3373. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP2", 0, rx_int2_1_mix_inp2),
  3374. SND_SOC_DAPM_MUX_E("RX INT0_1 INTERP", SND_SOC_NOPM, INTERP_HPHL, 0,
  3375. &rx_int0_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3376. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3377. SND_SOC_DAPM_POST_PMD),
  3378. SND_SOC_DAPM_MUX_E("RX INT1_1 INTERP", SND_SOC_NOPM, INTERP_HPHR, 0,
  3379. &rx_int1_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3380. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3381. SND_SOC_DAPM_POST_PMD),
  3382. SND_SOC_DAPM_MUX_E("RX INT2_1 INTERP", SND_SOC_NOPM, INTERP_AUX, 0,
  3383. &rx_int2_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3384. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3385. SND_SOC_DAPM_POST_PMD),
  3386. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_2 INTERP", 0, rx_int0_2_interp),
  3387. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_2 INTERP", 0, rx_int1_2_interp),
  3388. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_2 INTERP", 0, rx_int2_2_interp),
  3389. SND_SOC_DAPM_MIXER("RX INT0_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3390. SND_SOC_DAPM_MIXER("RX INT0 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3391. SND_SOC_DAPM_MIXER("RX INT1_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3392. SND_SOC_DAPM_MIXER("RX INT1 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3393. SND_SOC_DAPM_MIXER("RX INT2_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3394. SND_SOC_DAPM_MIXER("RX INT2 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3395. SND_SOC_DAPM_MUX_E("RX INT0 MIX2 INP", SND_SOC_NOPM, INTERP_HPHL,
  3396. 0, &rx_int0_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3397. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3398. SND_SOC_DAPM_MUX_E("RX INT1 MIX2 INP", SND_SOC_NOPM, INTERP_HPHR,
  3399. 0, &rx_int1_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3400. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3401. SND_SOC_DAPM_MUX_E("RX INT2 MIX2 INP", SND_SOC_NOPM, INTERP_AUX,
  3402. 0, &rx_int2_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3403. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3404. SND_SOC_DAPM_MIXER_E("RX INT2_1 VBAT", SND_SOC_NOPM,
  3405. 0, 0, rx_int2_1_vbat_mix_switch,
  3406. ARRAY_SIZE(rx_int2_1_vbat_mix_switch),
  3407. lpass_cdc_rx_macro_enable_vbat,
  3408. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3409. SND_SOC_DAPM_MIXER("RX INT0 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3410. SND_SOC_DAPM_MIXER("RX INT1 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3411. SND_SOC_DAPM_MIXER("RX INT2 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3412. SND_SOC_DAPM_OUTPUT("HPHL_OUT"),
  3413. SND_SOC_DAPM_OUTPUT("HPHR_OUT"),
  3414. SND_SOC_DAPM_OUTPUT("AUX_OUT"),
  3415. SND_SOC_DAPM_OUTPUT("PCM_OUT"),
  3416. SND_SOC_DAPM_INPUT("RX_TX DEC0_INP"),
  3417. SND_SOC_DAPM_INPUT("RX_TX DEC1_INP"),
  3418. SND_SOC_DAPM_INPUT("RX_TX DEC2_INP"),
  3419. SND_SOC_DAPM_INPUT("RX_TX DEC3_INP"),
  3420. SND_SOC_DAPM_SUPPLY_S("RX_MCLK", 0, SND_SOC_NOPM, 0, 0,
  3421. lpass_cdc_rx_macro_mclk_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3422. };
  3423. static const struct snd_soc_dapm_route rx_audio_map[] = {
  3424. {"RX AIF1 PB", NULL, "RX_MCLK"},
  3425. {"RX AIF2 PB", NULL, "RX_MCLK"},
  3426. {"RX AIF3 PB", NULL, "RX_MCLK"},
  3427. {"RX AIF4 PB", NULL, "RX_MCLK"},
  3428. {"RX AIF6 PB", NULL, "RX_MCLK"},
  3429. {"PCM_OUT", NULL, "RX AIF6 PB"},
  3430. {"RX_MACRO RX0 MUX", "AIF1_PB", "RX AIF1 PB"},
  3431. {"RX_MACRO RX1 MUX", "AIF1_PB", "RX AIF1 PB"},
  3432. {"RX_MACRO RX2 MUX", "AIF1_PB", "RX AIF1 PB"},
  3433. {"RX_MACRO RX3 MUX", "AIF1_PB", "RX AIF1 PB"},
  3434. {"RX_MACRO RX4 MUX", "AIF1_PB", "RX AIF1 PB"},
  3435. {"RX_MACRO RX5 MUX", "AIF1_PB", "RX AIF1 PB"},
  3436. {"RX_MACRO RX0 MUX", "AIF2_PB", "RX AIF2 PB"},
  3437. {"RX_MACRO RX1 MUX", "AIF2_PB", "RX AIF2 PB"},
  3438. {"RX_MACRO RX2 MUX", "AIF2_PB", "RX AIF2 PB"},
  3439. {"RX_MACRO RX3 MUX", "AIF2_PB", "RX AIF2 PB"},
  3440. {"RX_MACRO RX4 MUX", "AIF2_PB", "RX AIF2 PB"},
  3441. {"RX_MACRO RX5 MUX", "AIF2_PB", "RX AIF2 PB"},
  3442. {"RX_MACRO RX0 MUX", "AIF3_PB", "RX AIF3 PB"},
  3443. {"RX_MACRO RX1 MUX", "AIF3_PB", "RX AIF3 PB"},
  3444. {"RX_MACRO RX2 MUX", "AIF3_PB", "RX AIF3 PB"},
  3445. {"RX_MACRO RX3 MUX", "AIF3_PB", "RX AIF3 PB"},
  3446. {"RX_MACRO RX4 MUX", "AIF3_PB", "RX AIF3 PB"},
  3447. {"RX_MACRO RX5 MUX", "AIF3_PB", "RX AIF3 PB"},
  3448. {"RX_MACRO RX0 MUX", "AIF4_PB", "RX AIF4 PB"},
  3449. {"RX_MACRO RX1 MUX", "AIF4_PB", "RX AIF4 PB"},
  3450. {"RX_MACRO RX2 MUX", "AIF4_PB", "RX AIF4 PB"},
  3451. {"RX_MACRO RX3 MUX", "AIF4_PB", "RX AIF4 PB"},
  3452. {"RX_MACRO RX4 MUX", "AIF4_PB", "RX AIF4 PB"},
  3453. {"RX_MACRO RX5 MUX", "AIF4_PB", "RX AIF4 PB"},
  3454. {"RX_RX0", NULL, "RX_MACRO RX0 MUX"},
  3455. {"RX_RX1", NULL, "RX_MACRO RX1 MUX"},
  3456. {"RX_RX2", NULL, "RX_MACRO RX2 MUX"},
  3457. {"RX_RX3", NULL, "RX_MACRO RX3 MUX"},
  3458. {"RX_RX4", NULL, "RX_MACRO RX4 MUX"},
  3459. {"RX_RX5", NULL, "RX_MACRO RX5 MUX"},
  3460. {"RX INT0_1 MIX1 INP0", "RX0", "RX_RX0"},
  3461. {"RX INT0_1 MIX1 INP0", "RX1", "RX_RX1"},
  3462. {"RX INT0_1 MIX1 INP0", "RX2", "RX_RX2"},
  3463. {"RX INT0_1 MIX1 INP0", "RX3", "RX_RX3"},
  3464. {"RX INT0_1 MIX1 INP0", "RX4", "RX_RX4"},
  3465. {"RX INT0_1 MIX1 INP0", "RX5", "RX_RX5"},
  3466. {"RX INT0_1 MIX1 INP0", "IIR0", "IIR0"},
  3467. {"RX INT0_1 MIX1 INP0", "IIR1", "IIR1"},
  3468. {"RX INT0_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3469. {"RX INT0_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3470. {"RX INT0_1 MIX1 INP1", "RX0", "RX_RX0"},
  3471. {"RX INT0_1 MIX1 INP1", "RX1", "RX_RX1"},
  3472. {"RX INT0_1 MIX1 INP1", "RX2", "RX_RX2"},
  3473. {"RX INT0_1 MIX1 INP1", "RX3", "RX_RX3"},
  3474. {"RX INT0_1 MIX1 INP1", "RX4", "RX_RX4"},
  3475. {"RX INT0_1 MIX1 INP1", "RX5", "RX_RX5"},
  3476. {"RX INT0_1 MIX1 INP1", "IIR0", "IIR0"},
  3477. {"RX INT0_1 MIX1 INP1", "IIR1", "IIR1"},
  3478. {"RX INT0_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3479. {"RX INT0_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3480. {"RX INT0_1 MIX1 INP2", "RX0", "RX_RX0"},
  3481. {"RX INT0_1 MIX1 INP2", "RX1", "RX_RX1"},
  3482. {"RX INT0_1 MIX1 INP2", "RX2", "RX_RX2"},
  3483. {"RX INT0_1 MIX1 INP2", "RX3", "RX_RX3"},
  3484. {"RX INT0_1 MIX1 INP2", "RX4", "RX_RX4"},
  3485. {"RX INT0_1 MIX1 INP2", "RX5", "RX_RX5"},
  3486. {"RX INT0_1 MIX1 INP2", "IIR0", "IIR0"},
  3487. {"RX INT0_1 MIX1 INP2", "IIR1", "IIR1"},
  3488. {"RX INT0_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3489. {"RX INT0_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3490. {"RX INT1_1 MIX1 INP0", "RX0", "RX_RX0"},
  3491. {"RX INT1_1 MIX1 INP0", "RX1", "RX_RX1"},
  3492. {"RX INT1_1 MIX1 INP0", "RX2", "RX_RX2"},
  3493. {"RX INT1_1 MIX1 INP0", "RX3", "RX_RX3"},
  3494. {"RX INT1_1 MIX1 INP0", "RX4", "RX_RX4"},
  3495. {"RX INT1_1 MIX1 INP0", "RX5", "RX_RX5"},
  3496. {"RX INT1_1 MIX1 INP0", "IIR0", "IIR0"},
  3497. {"RX INT1_1 MIX1 INP0", "IIR1", "IIR1"},
  3498. {"RX INT1_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3499. {"RX INT1_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3500. {"RX INT1_1 MIX1 INP1", "RX0", "RX_RX0"},
  3501. {"RX INT1_1 MIX1 INP1", "RX1", "RX_RX1"},
  3502. {"RX INT1_1 MIX1 INP1", "RX2", "RX_RX2"},
  3503. {"RX INT1_1 MIX1 INP1", "RX3", "RX_RX3"},
  3504. {"RX INT1_1 MIX1 INP1", "RX4", "RX_RX4"},
  3505. {"RX INT1_1 MIX1 INP1", "RX5", "RX_RX5"},
  3506. {"RX INT1_1 MIX1 INP1", "IIR0", "IIR0"},
  3507. {"RX INT1_1 MIX1 INP1", "IIR1", "IIR1"},
  3508. {"RX INT1_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3509. {"RX INT1_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3510. {"RX INT1_1 MIX1 INP2", "RX0", "RX_RX0"},
  3511. {"RX INT1_1 MIX1 INP2", "RX1", "RX_RX1"},
  3512. {"RX INT1_1 MIX1 INP2", "RX2", "RX_RX2"},
  3513. {"RX INT1_1 MIX1 INP2", "RX3", "RX_RX3"},
  3514. {"RX INT1_1 MIX1 INP2", "RX4", "RX_RX4"},
  3515. {"RX INT1_1 MIX1 INP2", "RX5", "RX_RX5"},
  3516. {"RX INT1_1 MIX1 INP2", "IIR0", "IIR0"},
  3517. {"RX INT1_1 MIX1 INP2", "IIR1", "IIR1"},
  3518. {"RX INT1_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3519. {"RX INT1_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3520. {"RX INT2_1 MIX1 INP0", "RX0", "RX_RX0"},
  3521. {"RX INT2_1 MIX1 INP0", "RX1", "RX_RX1"},
  3522. {"RX INT2_1 MIX1 INP0", "RX2", "RX_RX2"},
  3523. {"RX INT2_1 MIX1 INP0", "RX3", "RX_RX3"},
  3524. {"RX INT2_1 MIX1 INP0", "RX4", "RX_RX4"},
  3525. {"RX INT2_1 MIX1 INP0", "RX5", "RX_RX5"},
  3526. {"RX INT2_1 MIX1 INP0", "IIR0", "IIR0"},
  3527. {"RX INT2_1 MIX1 INP0", "IIR1", "IIR1"},
  3528. {"RX INT2_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3529. {"RX INT2_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3530. {"RX INT2_1 MIX1 INP1", "RX0", "RX_RX0"},
  3531. {"RX INT2_1 MIX1 INP1", "RX1", "RX_RX1"},
  3532. {"RX INT2_1 MIX1 INP1", "RX2", "RX_RX2"},
  3533. {"RX INT2_1 MIX1 INP1", "RX3", "RX_RX3"},
  3534. {"RX INT2_1 MIX1 INP1", "RX4", "RX_RX4"},
  3535. {"RX INT2_1 MIX1 INP1", "RX5", "RX_RX5"},
  3536. {"RX INT2_1 MIX1 INP1", "IIR0", "IIR0"},
  3537. {"RX INT2_1 MIX1 INP1", "IIR1", "IIR1"},
  3538. {"RX INT2_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3539. {"RX INT2_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3540. {"RX INT2_1 MIX1 INP2", "RX0", "RX_RX0"},
  3541. {"RX INT2_1 MIX1 INP2", "RX1", "RX_RX1"},
  3542. {"RX INT2_1 MIX1 INP2", "RX2", "RX_RX2"},
  3543. {"RX INT2_1 MIX1 INP2", "RX3", "RX_RX3"},
  3544. {"RX INT2_1 MIX1 INP2", "RX4", "RX_RX4"},
  3545. {"RX INT2_1 MIX1 INP2", "RX5", "RX_RX5"},
  3546. {"RX INT2_1 MIX1 INP2", "IIR0", "IIR0"},
  3547. {"RX INT2_1 MIX1 INP2", "IIR1", "IIR1"},
  3548. {"RX INT2_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3549. {"RX INT2_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3550. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP0"},
  3551. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP1"},
  3552. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP2"},
  3553. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP0"},
  3554. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP1"},
  3555. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP2"},
  3556. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP0"},
  3557. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP1"},
  3558. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP2"},
  3559. {"RX MIX TX0 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3560. {"RX MIX TX0 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3561. {"RX MIX TX0 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3562. {"RX MIX TX1 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3563. {"RX MIX TX1 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3564. {"RX MIX TX1 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3565. {"RX MIX TX2 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3566. {"RX MIX TX2 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3567. {"RX MIX TX2 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3568. {"RX AIF_ECHO", NULL, "RX MIX TX0 MUX"},
  3569. {"RX AIF_ECHO", NULL, "RX MIX TX1 MUX"},
  3570. {"RX AIF_ECHO", NULL, "RX MIX TX2 MUX"},
  3571. {"RX AIF_ECHO", NULL, "RX_MCLK"},
  3572. /* Mixing path INT0 */
  3573. {"RX INT0_2 MUX", "RX0", "RX_RX0"},
  3574. {"RX INT0_2 MUX", "RX1", "RX_RX1"},
  3575. {"RX INT0_2 MUX", "RX2", "RX_RX2"},
  3576. {"RX INT0_2 MUX", "RX3", "RX_RX3"},
  3577. {"RX INT0_2 MUX", "RX4", "RX_RX4"},
  3578. {"RX INT0_2 MUX", "RX5", "RX_RX5"},
  3579. {"RX INT0_2 INTERP", NULL, "RX INT0_2 MUX"},
  3580. {"RX INT0 SEC MIX", NULL, "RX INT0_2 INTERP"},
  3581. /* Mixing path INT1 */
  3582. {"RX INT1_2 MUX", "RX0", "RX_RX0"},
  3583. {"RX INT1_2 MUX", "RX1", "RX_RX1"},
  3584. {"RX INT1_2 MUX", "RX2", "RX_RX2"},
  3585. {"RX INT1_2 MUX", "RX3", "RX_RX3"},
  3586. {"RX INT1_2 MUX", "RX4", "RX_RX4"},
  3587. {"RX INT1_2 MUX", "RX5", "RX_RX5"},
  3588. {"RX INT1_2 INTERP", NULL, "RX INT1_2 MUX"},
  3589. {"RX INT1 SEC MIX", NULL, "RX INT1_2 INTERP"},
  3590. /* Mixing path INT2 */
  3591. {"RX INT2_2 MUX", "RX0", "RX_RX0"},
  3592. {"RX INT2_2 MUX", "RX1", "RX_RX1"},
  3593. {"RX INT2_2 MUX", "RX2", "RX_RX2"},
  3594. {"RX INT2_2 MUX", "RX3", "RX_RX3"},
  3595. {"RX INT2_2 MUX", "RX4", "RX_RX4"},
  3596. {"RX INT2_2 MUX", "RX5", "RX_RX5"},
  3597. {"RX INT2_2 INTERP", NULL, "RX INT2_2 MUX"},
  3598. {"RX INT2 SEC MIX", NULL, "RX INT2_2 INTERP"},
  3599. {"RX INT0_1 INTERP", NULL, "RX INT0_1 MIX1"},
  3600. {"RX INT0 SEC MIX", NULL, "RX INT0_1 INTERP"},
  3601. {"RX INT0 MIX2", NULL, "RX INT0 SEC MIX"},
  3602. {"RX INT0 MIX2", NULL, "RX INT0 MIX2 INP"},
  3603. {"RX INT0 DEM MUX", "CLSH_DSM_OUT", "RX INT0 MIX2"},
  3604. {"HPHL_OUT", NULL, "RX INT0 DEM MUX"},
  3605. {"HPHL_OUT", NULL, "RX_MCLK"},
  3606. {"RX INT1_1 INTERP", NULL, "RX INT1_1 MIX1"},
  3607. {"RX INT1 SEC MIX", NULL, "RX INT1_1 INTERP"},
  3608. {"RX INT1 MIX2", NULL, "RX INT1 SEC MIX"},
  3609. {"RX INT1 MIX2", NULL, "RX INT1 MIX2 INP"},
  3610. {"RX INT1 DEM MUX", "CLSH_DSM_OUT", "RX INT1 MIX2"},
  3611. {"HPHR_OUT", NULL, "RX INT1 DEM MUX"},
  3612. {"HPHR_OUT", NULL, "RX_MCLK"},
  3613. {"RX INT2_1 INTERP", NULL, "RX INT2_1 MIX1"},
  3614. {"RX INT2_1 VBAT", "RX AUX VBAT Enable", "RX INT2_1 INTERP"},
  3615. {"RX INT2 SEC MIX", NULL, "RX INT2_1 VBAT"},
  3616. {"RX INT2 SEC MIX", NULL, "RX INT2_1 INTERP"},
  3617. {"RX INT2 MIX2", NULL, "RX INT2 SEC MIX"},
  3618. {"RX INT2 MIX2", NULL, "RX INT2 MIX2 INP"},
  3619. {"AUX_OUT", NULL, "RX INT2 MIX2"},
  3620. {"AUX_OUT", NULL, "RX_MCLK"},
  3621. {"IIR0", NULL, "RX_MCLK"},
  3622. {"IIR0", NULL, "IIR0 INP0 MUX"},
  3623. {"IIR0 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3624. {"IIR0 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3625. {"IIR0 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3626. {"IIR0 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3627. {"IIR0 INP0 MUX", "RX0", "RX_RX0"},
  3628. {"IIR0 INP0 MUX", "RX1", "RX_RX1"},
  3629. {"IIR0 INP0 MUX", "RX2", "RX_RX2"},
  3630. {"IIR0 INP0 MUX", "RX3", "RX_RX3"},
  3631. {"IIR0 INP0 MUX", "RX4", "RX_RX4"},
  3632. {"IIR0 INP0 MUX", "RX5", "RX_RX5"},
  3633. {"IIR0", NULL, "IIR0 INP1 MUX"},
  3634. {"IIR0 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3635. {"IIR0 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3636. {"IIR0 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3637. {"IIR0 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3638. {"IIR0 INP1 MUX", "RX0", "RX_RX0"},
  3639. {"IIR0 INP1 MUX", "RX1", "RX_RX1"},
  3640. {"IIR0 INP1 MUX", "RX2", "RX_RX2"},
  3641. {"IIR0 INP1 MUX", "RX3", "RX_RX3"},
  3642. {"IIR0 INP1 MUX", "RX4", "RX_RX4"},
  3643. {"IIR0 INP1 MUX", "RX5", "RX_RX5"},
  3644. {"IIR0", NULL, "IIR0 INP2 MUX"},
  3645. {"IIR0 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3646. {"IIR0 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3647. {"IIR0 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3648. {"IIR0 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3649. {"IIR0 INP2 MUX", "RX0", "RX_RX0"},
  3650. {"IIR0 INP2 MUX", "RX1", "RX_RX1"},
  3651. {"IIR0 INP2 MUX", "RX2", "RX_RX2"},
  3652. {"IIR0 INP2 MUX", "RX3", "RX_RX3"},
  3653. {"IIR0 INP2 MUX", "RX4", "RX_RX4"},
  3654. {"IIR0 INP2 MUX", "RX5", "RX_RX5"},
  3655. {"IIR0", NULL, "IIR0 INP3 MUX"},
  3656. {"IIR0 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3657. {"IIR0 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3658. {"IIR0 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3659. {"IIR0 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3660. {"IIR0 INP3 MUX", "RX0", "RX_RX0"},
  3661. {"IIR0 INP3 MUX", "RX1", "RX_RX1"},
  3662. {"IIR0 INP3 MUX", "RX2", "RX_RX2"},
  3663. {"IIR0 INP3 MUX", "RX3", "RX_RX3"},
  3664. {"IIR0 INP3 MUX", "RX4", "RX_RX4"},
  3665. {"IIR0 INP3 MUX", "RX5", "RX_RX5"},
  3666. {"IIR1", NULL, "RX_MCLK"},
  3667. {"IIR1", NULL, "IIR1 INP0 MUX"},
  3668. {"IIR1 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3669. {"IIR1 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3670. {"IIR1 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3671. {"IIR1 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3672. {"IIR1 INP0 MUX", "RX0", "RX_RX0"},
  3673. {"IIR1 INP0 MUX", "RX1", "RX_RX1"},
  3674. {"IIR1 INP0 MUX", "RX2", "RX_RX2"},
  3675. {"IIR1 INP0 MUX", "RX3", "RX_RX3"},
  3676. {"IIR1 INP0 MUX", "RX4", "RX_RX4"},
  3677. {"IIR1 INP0 MUX", "RX5", "RX_RX5"},
  3678. {"IIR1", NULL, "IIR1 INP1 MUX"},
  3679. {"IIR1 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3680. {"IIR1 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3681. {"IIR1 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3682. {"IIR1 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3683. {"IIR1 INP1 MUX", "RX0", "RX_RX0"},
  3684. {"IIR1 INP1 MUX", "RX1", "RX_RX1"},
  3685. {"IIR1 INP1 MUX", "RX2", "RX_RX2"},
  3686. {"IIR1 INP1 MUX", "RX3", "RX_RX3"},
  3687. {"IIR1 INP1 MUX", "RX4", "RX_RX4"},
  3688. {"IIR1 INP1 MUX", "RX5", "RX_RX5"},
  3689. {"IIR1", NULL, "IIR1 INP2 MUX"},
  3690. {"IIR1 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3691. {"IIR1 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3692. {"IIR1 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3693. {"IIR1 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3694. {"IIR1 INP2 MUX", "RX0", "RX_RX0"},
  3695. {"IIR1 INP2 MUX", "RX1", "RX_RX1"},
  3696. {"IIR1 INP2 MUX", "RX2", "RX_RX2"},
  3697. {"IIR1 INP2 MUX", "RX3", "RX_RX3"},
  3698. {"IIR1 INP2 MUX", "RX4", "RX_RX4"},
  3699. {"IIR1 INP2 MUX", "RX5", "RX_RX5"},
  3700. {"IIR1", NULL, "IIR1 INP3 MUX"},
  3701. {"IIR1 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3702. {"IIR1 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3703. {"IIR1 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3704. {"IIR1 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3705. {"IIR1 INP3 MUX", "RX0", "RX_RX0"},
  3706. {"IIR1 INP3 MUX", "RX1", "RX_RX1"},
  3707. {"IIR1 INP3 MUX", "RX2", "RX_RX2"},
  3708. {"IIR1 INP3 MUX", "RX3", "RX_RX3"},
  3709. {"IIR1 INP3 MUX", "RX4", "RX_RX4"},
  3710. {"IIR1 INP3 MUX", "RX5", "RX_RX5"},
  3711. {"SRC0", NULL, "IIR0"},
  3712. {"SRC1", NULL, "IIR1"},
  3713. {"RX INT0 MIX2 INP", "SRC0", "SRC0"},
  3714. {"RX INT0 MIX2 INP", "SRC1", "SRC1"},
  3715. {"RX INT1 MIX2 INP", "SRC0", "SRC0"},
  3716. {"RX INT1 MIX2 INP", "SRC1", "SRC1"},
  3717. {"RX INT2 MIX2 INP", "SRC0", "SRC0"},
  3718. {"RX INT2 MIX2 INP", "SRC1", "SRC1"},
  3719. };
  3720. static int lpass_cdc_rx_macro_core_vote(void *handle, bool enable)
  3721. {
  3722. int rc = 0;
  3723. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3724. if (rx_priv == NULL) {
  3725. pr_err("%s: rx priv data is NULL\n", __func__);
  3726. return -EINVAL;
  3727. }
  3728. if (enable) {
  3729. pm_runtime_get_sync(rx_priv->dev);
  3730. if (lpass_cdc_check_core_votes(rx_priv->dev))
  3731. rc = 0;
  3732. else
  3733. rc = -ENOTSYNC;
  3734. } else {
  3735. pm_runtime_put_autosuspend(rx_priv->dev);
  3736. pm_runtime_mark_last_busy(rx_priv->dev);
  3737. }
  3738. return rc;
  3739. }
  3740. static int rx_swrm_clock(void *handle, bool enable)
  3741. {
  3742. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3743. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  3744. int ret = 0;
  3745. if (regmap == NULL) {
  3746. dev_err(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  3747. return -EINVAL;
  3748. }
  3749. mutex_lock(&rx_priv->swr_clk_lock);
  3750. trace_printk("%s: swrm clock %s\n",
  3751. __func__, (enable ? "enable" : "disable"));
  3752. dev_dbg(rx_priv->dev, "%s: swrm clock %s\n",
  3753. __func__, (enable ? "enable" : "disable"));
  3754. if (enable) {
  3755. pm_runtime_get_sync(rx_priv->dev);
  3756. if (rx_priv->swr_clk_users == 0) {
  3757. ret = msm_cdc_pinctrl_select_active_state(
  3758. rx_priv->rx_swr_gpio_p);
  3759. if (ret < 0) {
  3760. dev_err(rx_priv->dev,
  3761. "%s: rx swr pinctrl enable failed\n",
  3762. __func__);
  3763. pm_runtime_mark_last_busy(rx_priv->dev);
  3764. pm_runtime_put_autosuspend(rx_priv->dev);
  3765. goto exit;
  3766. }
  3767. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  3768. if (ret < 0) {
  3769. msm_cdc_pinctrl_select_sleep_state(
  3770. rx_priv->rx_swr_gpio_p);
  3771. dev_err(rx_priv->dev,
  3772. "%s: rx request clock enable failed\n",
  3773. __func__);
  3774. pm_runtime_mark_last_busy(rx_priv->dev);
  3775. pm_runtime_put_autosuspend(rx_priv->dev);
  3776. goto exit;
  3777. }
  3778. if (rx_priv->reset_swr)
  3779. regmap_update_bits(regmap,
  3780. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3781. 0x02, 0x02);
  3782. regmap_update_bits(regmap,
  3783. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3784. 0x01, 0x01);
  3785. if (rx_priv->reset_swr)
  3786. regmap_update_bits(regmap,
  3787. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3788. 0x02, 0x00);
  3789. rx_priv->reset_swr = false;
  3790. }
  3791. pm_runtime_mark_last_busy(rx_priv->dev);
  3792. pm_runtime_put_autosuspend(rx_priv->dev);
  3793. rx_priv->swr_clk_users++;
  3794. } else {
  3795. if (rx_priv->swr_clk_users <= 0) {
  3796. dev_err(rx_priv->dev,
  3797. "%s: rx swrm clock users already reset\n",
  3798. __func__);
  3799. rx_priv->swr_clk_users = 0;
  3800. goto exit;
  3801. }
  3802. rx_priv->swr_clk_users--;
  3803. if (rx_priv->swr_clk_users == 0) {
  3804. regmap_update_bits(regmap,
  3805. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3806. 0x01, 0x00);
  3807. lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  3808. ret = msm_cdc_pinctrl_select_sleep_state(
  3809. rx_priv->rx_swr_gpio_p);
  3810. if (ret < 0) {
  3811. dev_err(rx_priv->dev,
  3812. "%s: rx swr pinctrl disable failed\n",
  3813. __func__);
  3814. goto exit;
  3815. }
  3816. }
  3817. }
  3818. trace_printk("%s: swrm clock users %d\n",
  3819. __func__, rx_priv->swr_clk_users);
  3820. dev_dbg(rx_priv->dev, "%s: swrm clock users %d\n",
  3821. __func__, rx_priv->swr_clk_users);
  3822. exit:
  3823. mutex_unlock(&rx_priv->swr_clk_lock);
  3824. return ret;
  3825. }
  3826. /**
  3827. * lpass_cdc_rx_set_fir_capability - Set RX HIFI FIR Filter capability
  3828. *
  3829. * @component: Codec component ptr.
  3830. * @capable: if the target have RX HIFI FIR available.
  3831. *
  3832. * Set RX HIFI FIR capability, stored the capability into RX macro private data.
  3833. */
  3834. int lpass_cdc_rx_set_fir_capability(struct snd_soc_component *component, bool capable)
  3835. {
  3836. struct device *rx_dev = NULL;
  3837. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3838. if (!component) {
  3839. pr_err("%s: component is NULL\n", __func__);
  3840. return -EINVAL;
  3841. }
  3842. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3843. return -EINVAL;
  3844. rx_priv->is_fir_capable = capable;
  3845. return 0;
  3846. }
  3847. EXPORT_SYMBOL(lpass_cdc_rx_set_fir_capability);
  3848. static const struct lpass_cdc_rx_macro_reg_mask_val
  3849. lpass_cdc_rx_macro_reg_init[] = {
  3850. {LPASS_CDC_RX_RX0_RX_PATH_SEC7, 0x07, 0x02},
  3851. {LPASS_CDC_RX_RX1_RX_PATH_SEC7, 0x07, 0x02},
  3852. {LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x07, 0x02},
  3853. {LPASS_CDC_RX_RX0_RX_PATH_CFG3, 0x03, 0x02},
  3854. {LPASS_CDC_RX_RX1_RX_PATH_CFG3, 0x03, 0x02},
  3855. {LPASS_CDC_RX_RX2_RX_PATH_CFG3, 0x03, 0x02},
  3856. };
  3857. static int lpass_cdc_rx_macro_init(struct snd_soc_component *component)
  3858. {
  3859. struct snd_soc_dapm_context *dapm =
  3860. snd_soc_component_get_dapm(component);
  3861. int ret = 0;
  3862. struct device *rx_dev = NULL;
  3863. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3864. int i;
  3865. rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  3866. if (!rx_dev) {
  3867. dev_err(component->dev,
  3868. "%s: null device for macro!\n", __func__);
  3869. return -EINVAL;
  3870. }
  3871. rx_priv = dev_get_drvdata(rx_dev);
  3872. if (!rx_priv) {
  3873. dev_err(component->dev,
  3874. "%s: priv is null for macro!\n", __func__);
  3875. return -EINVAL;
  3876. }
  3877. ret = snd_soc_dapm_new_controls(dapm, lpass_cdc_rx_macro_dapm_widgets,
  3878. ARRAY_SIZE(lpass_cdc_rx_macro_dapm_widgets));
  3879. if (ret < 0) {
  3880. dev_err(rx_dev, "%s: failed to add controls\n", __func__);
  3881. return ret;
  3882. }
  3883. ret = snd_soc_dapm_add_routes(dapm, rx_audio_map,
  3884. ARRAY_SIZE(rx_audio_map));
  3885. if (ret < 0) {
  3886. dev_err(rx_dev, "%s: failed to add routes\n", __func__);
  3887. return ret;
  3888. }
  3889. ret = snd_soc_dapm_new_widgets(dapm->card);
  3890. if (ret < 0) {
  3891. dev_err(rx_dev, "%s: failed to add widgets\n", __func__);
  3892. return ret;
  3893. }
  3894. ret = snd_soc_add_component_controls(component, lpass_cdc_rx_macro_snd_controls,
  3895. ARRAY_SIZE(lpass_cdc_rx_macro_snd_controls));
  3896. if (ret < 0) {
  3897. dev_err(rx_dev, "%s: failed to add snd_ctls\n", __func__);
  3898. return ret;
  3899. }
  3900. rx_priv->dev_up = true;
  3901. rx_priv->rx0_gain_val = 0;
  3902. rx_priv->rx1_gain_val = 0;
  3903. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF1 Playback");
  3904. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF2 Playback");
  3905. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF3 Playback");
  3906. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF4 Playback");
  3907. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF5 Playback");
  3908. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF6 Playback");
  3909. snd_soc_dapm_ignore_suspend(dapm, "HPHL_OUT");
  3910. snd_soc_dapm_ignore_suspend(dapm, "HPHR_OUT");
  3911. snd_soc_dapm_ignore_suspend(dapm, "AUX_OUT");
  3912. snd_soc_dapm_ignore_suspend(dapm, "PCM_OUT");
  3913. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC0_INP");
  3914. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC1_INP");
  3915. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC2_INP");
  3916. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC3_INP");
  3917. snd_soc_dapm_sync(dapm);
  3918. for (i = 0; i < ARRAY_SIZE(lpass_cdc_rx_macro_reg_init); i++)
  3919. snd_soc_component_update_bits(component,
  3920. lpass_cdc_rx_macro_reg_init[i].reg,
  3921. lpass_cdc_rx_macro_reg_init[i].mask,
  3922. lpass_cdc_rx_macro_reg_init[i].val);
  3923. rx_priv->component = component;
  3924. return 0;
  3925. }
  3926. static int lpass_cdc_rx_macro_deinit(struct snd_soc_component *component)
  3927. {
  3928. struct device *rx_dev = NULL;
  3929. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3930. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3931. return -EINVAL;
  3932. rx_priv->component = NULL;
  3933. return 0;
  3934. }
  3935. static void lpass_cdc_rx_macro_add_child_devices(struct work_struct *work)
  3936. {
  3937. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3938. struct platform_device *pdev = NULL;
  3939. struct device_node *node = NULL;
  3940. struct rx_swr_ctrl_data *swr_ctrl_data = NULL, *temp = NULL;
  3941. int ret = 0;
  3942. u16 count = 0, ctrl_num = 0;
  3943. struct rx_swr_ctrl_platform_data *platdata = NULL;
  3944. char plat_dev_name[RX_SWR_STRING_LEN] = "";
  3945. bool rx_swr_master_node = false;
  3946. rx_priv = container_of(work, struct lpass_cdc_rx_macro_priv,
  3947. lpass_cdc_rx_macro_add_child_devices_work);
  3948. if (!rx_priv) {
  3949. pr_err("%s: Memory for rx_priv does not exist\n",
  3950. __func__);
  3951. return;
  3952. }
  3953. if (!rx_priv->dev) {
  3954. pr_err("%s: RX device does not exist\n", __func__);
  3955. return;
  3956. }
  3957. if(!rx_priv->dev->of_node) {
  3958. dev_err(rx_priv->dev,
  3959. "%s: DT node for RX dev does not exist\n", __func__);
  3960. return;
  3961. }
  3962. platdata = &rx_priv->swr_plat_data;
  3963. rx_priv->child_count = 0;
  3964. for_each_available_child_of_node(rx_priv->dev->of_node, node) {
  3965. rx_swr_master_node = false;
  3966. if (strnstr(node->name, "rx_swr_master",
  3967. strlen("rx_swr_master")) != NULL)
  3968. rx_swr_master_node = true;
  3969. if(rx_swr_master_node)
  3970. strlcpy(plat_dev_name, "rx_swr_ctrl",
  3971. (RX_SWR_STRING_LEN - 1));
  3972. else
  3973. strlcpy(plat_dev_name, node->name,
  3974. (RX_SWR_STRING_LEN - 1));
  3975. pdev = platform_device_alloc(plat_dev_name, -1);
  3976. if (!pdev) {
  3977. dev_err(rx_priv->dev, "%s: pdev memory alloc failed\n",
  3978. __func__);
  3979. ret = -ENOMEM;
  3980. goto err;
  3981. }
  3982. pdev->dev.parent = rx_priv->dev;
  3983. pdev->dev.of_node = node;
  3984. if (rx_swr_master_node) {
  3985. ret = platform_device_add_data(pdev, platdata,
  3986. sizeof(*platdata));
  3987. if (ret) {
  3988. dev_err(&pdev->dev,
  3989. "%s: cannot add plat data ctrl:%d\n",
  3990. __func__, ctrl_num);
  3991. goto fail_pdev_add;
  3992. }
  3993. }
  3994. ret = platform_device_add(pdev);
  3995. if (ret) {
  3996. dev_err(&pdev->dev,
  3997. "%s: Cannot add platform device\n",
  3998. __func__);
  3999. goto fail_pdev_add;
  4000. }
  4001. if (rx_swr_master_node) {
  4002. temp = krealloc(swr_ctrl_data,
  4003. (ctrl_num + 1) * sizeof(
  4004. struct rx_swr_ctrl_data),
  4005. GFP_KERNEL);
  4006. if (!temp) {
  4007. ret = -ENOMEM;
  4008. goto fail_pdev_add;
  4009. }
  4010. swr_ctrl_data = temp;
  4011. swr_ctrl_data[ctrl_num].rx_swr_pdev = pdev;
  4012. ctrl_num++;
  4013. dev_dbg(&pdev->dev,
  4014. "%s: Added soundwire ctrl device(s)\n",
  4015. __func__);
  4016. rx_priv->swr_ctrl_data = swr_ctrl_data;
  4017. }
  4018. if (rx_priv->child_count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX)
  4019. rx_priv->pdev_child_devices[
  4020. rx_priv->child_count++] = pdev;
  4021. else
  4022. goto err;
  4023. }
  4024. return;
  4025. fail_pdev_add:
  4026. for (count = 0; count < rx_priv->child_count; count++)
  4027. platform_device_put(rx_priv->pdev_child_devices[count]);
  4028. err:
  4029. return;
  4030. }
  4031. static void lpass_cdc_rx_macro_init_ops(struct macro_ops *ops, char __iomem *rx_io_base)
  4032. {
  4033. memset(ops, 0, sizeof(struct macro_ops));
  4034. ops->init = lpass_cdc_rx_macro_init;
  4035. ops->exit = lpass_cdc_rx_macro_deinit;
  4036. ops->io_base = rx_io_base;
  4037. ops->dai_ptr = lpass_cdc_rx_macro_dai;
  4038. ops->num_dais = ARRAY_SIZE(lpass_cdc_rx_macro_dai);
  4039. ops->event_handler = lpass_cdc_rx_macro_event_handler;
  4040. ops->set_port_map = lpass_cdc_rx_macro_set_port_map;
  4041. }
  4042. static int lpass_cdc_rx_macro_probe(struct platform_device *pdev)
  4043. {
  4044. struct macro_ops ops = {0};
  4045. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4046. u32 rx_base_addr = 0, muxsel = 0;
  4047. char __iomem *rx_io_base = NULL, *muxsel_io = NULL;
  4048. int ret = 0;
  4049. u32 default_clk_id = 0;
  4050. struct clk *hifi_fir_clk = NULL;
  4051. u32 is_used_rx_swr_gpio = 1;
  4052. const char *is_used_rx_swr_gpio_dt = "qcom,is-used-swr-gpio";
  4053. if (!lpass_cdc_is_va_macro_registered(&pdev->dev)) {
  4054. dev_err(&pdev->dev,
  4055. "%s: va-macro not registered yet, defer\n", __func__);
  4056. return -EPROBE_DEFER;
  4057. }
  4058. rx_priv = devm_kzalloc(&pdev->dev, sizeof(struct lpass_cdc_rx_macro_priv),
  4059. GFP_KERNEL);
  4060. if (!rx_priv)
  4061. return -ENOMEM;
  4062. rx_priv->dev = &pdev->dev;
  4063. ret = of_property_read_u32(pdev->dev.of_node, "reg",
  4064. &rx_base_addr);
  4065. if (ret) {
  4066. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4067. __func__, "reg");
  4068. return ret;
  4069. }
  4070. ret = of_property_read_u32(pdev->dev.of_node, "qcom,rx_mclk_mode_muxsel",
  4071. &muxsel);
  4072. if (ret) {
  4073. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4074. __func__, "reg");
  4075. return ret;
  4076. }
  4077. ret = of_property_read_u32(pdev->dev.of_node, "qcom,default-clk-id",
  4078. &default_clk_id);
  4079. if (ret) {
  4080. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4081. __func__, "qcom,default-clk-id");
  4082. default_clk_id = RX_CORE_CLK;
  4083. }
  4084. if (of_find_property(pdev->dev.of_node, is_used_rx_swr_gpio_dt,
  4085. NULL)) {
  4086. ret = of_property_read_u32(pdev->dev.of_node,
  4087. is_used_rx_swr_gpio_dt,
  4088. &is_used_rx_swr_gpio);
  4089. if (ret) {
  4090. dev_err(&pdev->dev, "%s: error reading %s in dt\n",
  4091. __func__, is_used_rx_swr_gpio_dt);
  4092. is_used_rx_swr_gpio = 1;
  4093. }
  4094. }
  4095. rx_priv->rx_swr_gpio_p = of_parse_phandle(pdev->dev.of_node,
  4096. "qcom,rx-swr-gpios", 0);
  4097. if (!rx_priv->rx_swr_gpio_p && is_used_rx_swr_gpio) {
  4098. dev_err(&pdev->dev, "%s: swr_gpios handle not provided!\n",
  4099. __func__);
  4100. return -EINVAL;
  4101. }
  4102. if (msm_cdc_pinctrl_get_state(rx_priv->rx_swr_gpio_p) < 0 &&
  4103. is_used_rx_swr_gpio) {
  4104. dev_err(&pdev->dev, "%s: failed to get swr pin state\n",
  4105. __func__);
  4106. return -EPROBE_DEFER;
  4107. }
  4108. msm_cdc_pinctrl_set_wakeup_capable(
  4109. rx_priv->rx_swr_gpio_p, false);
  4110. rx_io_base = devm_ioremap(&pdev->dev, rx_base_addr,
  4111. LPASS_CDC_RX_MACRO_MAX_OFFSET);
  4112. if (!rx_io_base) {
  4113. dev_err(&pdev->dev, "%s: ioremap failed\n", __func__);
  4114. return -ENOMEM;
  4115. }
  4116. rx_priv->rx_io_base = rx_io_base;
  4117. muxsel_io = devm_ioremap(&pdev->dev, muxsel, 0x4);
  4118. if (!muxsel_io) {
  4119. dev_err(&pdev->dev, "%s: ioremap failed for muxsel\n",
  4120. __func__);
  4121. return -ENOMEM;
  4122. }
  4123. rx_priv->rx_mclk_mode_muxsel = muxsel_io;
  4124. rx_priv->reset_swr = true;
  4125. INIT_WORK(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work,
  4126. lpass_cdc_rx_macro_add_child_devices);
  4127. rx_priv->swr_plat_data.handle = (void *) rx_priv;
  4128. rx_priv->swr_plat_data.read = NULL;
  4129. rx_priv->swr_plat_data.write = NULL;
  4130. rx_priv->swr_plat_data.bulk_write = NULL;
  4131. rx_priv->swr_plat_data.clk = rx_swrm_clock;
  4132. rx_priv->swr_plat_data.core_vote = lpass_cdc_rx_macro_core_vote;
  4133. rx_priv->swr_plat_data.handle_irq = NULL;
  4134. rx_priv->clk_id = default_clk_id;
  4135. rx_priv->default_clk_id = default_clk_id;
  4136. ops.clk_id_req = rx_priv->clk_id;
  4137. ops.default_clk_id = default_clk_id;
  4138. hifi_fir_clk = devm_clk_get(&pdev->dev, "rx_mclk2_2x_clk");
  4139. if (IS_ERR(hifi_fir_clk)) {
  4140. ret = PTR_ERR(hifi_fir_clk);
  4141. dev_dbg(&pdev->dev, "%s: clk get %s failed %d\n",
  4142. __func__, "rx_mclk2_2x_clk", ret);
  4143. hifi_fir_clk = NULL;
  4144. }
  4145. rx_priv->hifi_fir_clk = hifi_fir_clk;
  4146. rx_priv->is_aux_hpf_on = 1;
  4147. dev_set_drvdata(&pdev->dev, rx_priv);
  4148. mutex_init(&rx_priv->mclk_lock);
  4149. mutex_init(&rx_priv->swr_clk_lock);
  4150. lpass_cdc_rx_macro_init_ops(&ops, rx_io_base);
  4151. ret = lpass_cdc_register_macro(&pdev->dev, RX_MACRO, &ops);
  4152. if (ret) {
  4153. dev_err(&pdev->dev,
  4154. "%s: register macro failed\n", __func__);
  4155. goto err_reg_macro;
  4156. }
  4157. pm_runtime_set_autosuspend_delay(&pdev->dev, AUTO_SUSPEND_DELAY);
  4158. pm_runtime_use_autosuspend(&pdev->dev);
  4159. pm_runtime_set_suspended(&pdev->dev);
  4160. pm_suspend_ignore_children(&pdev->dev, true);
  4161. pm_runtime_enable(&pdev->dev);
  4162. schedule_work(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work);
  4163. return 0;
  4164. err_reg_macro:
  4165. mutex_destroy(&rx_priv->mclk_lock);
  4166. mutex_destroy(&rx_priv->swr_clk_lock);
  4167. return ret;
  4168. }
  4169. static int lpass_cdc_rx_macro_remove(struct platform_device *pdev)
  4170. {
  4171. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4172. u16 count = 0;
  4173. rx_priv = dev_get_drvdata(&pdev->dev);
  4174. if (!rx_priv)
  4175. return -EINVAL;
  4176. for (count = 0; count < rx_priv->child_count &&
  4177. count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX; count++)
  4178. platform_device_unregister(rx_priv->pdev_child_devices[count]);
  4179. pm_runtime_disable(&pdev->dev);
  4180. pm_runtime_set_suspended(&pdev->dev);
  4181. lpass_cdc_unregister_macro(&pdev->dev, RX_MACRO);
  4182. mutex_destroy(&rx_priv->mclk_lock);
  4183. mutex_destroy(&rx_priv->swr_clk_lock);
  4184. kfree(rx_priv->swr_ctrl_data);
  4185. return 0;
  4186. }
  4187. static const struct of_device_id lpass_cdc_rx_macro_dt_match[] = {
  4188. {.compatible = "qcom,lpass-cdc-rx-macro"},
  4189. {}
  4190. };
  4191. static const struct dev_pm_ops lpass_cdc_dev_pm_ops = {
  4192. SET_SYSTEM_SLEEP_PM_OPS(
  4193. pm_runtime_force_suspend,
  4194. pm_runtime_force_resume
  4195. )
  4196. SET_RUNTIME_PM_OPS(
  4197. lpass_cdc_runtime_suspend,
  4198. lpass_cdc_runtime_resume,
  4199. NULL
  4200. )
  4201. };
  4202. static struct platform_driver lpass_cdc_rx_macro_driver = {
  4203. .driver = {
  4204. .name = "lpass_cdc_rx_macro",
  4205. .owner = THIS_MODULE,
  4206. .pm = &lpass_cdc_dev_pm_ops,
  4207. .of_match_table = lpass_cdc_rx_macro_dt_match,
  4208. .suppress_bind_attrs = true,
  4209. },
  4210. .probe = lpass_cdc_rx_macro_probe,
  4211. .remove = lpass_cdc_rx_macro_remove,
  4212. };
  4213. module_platform_driver(lpass_cdc_rx_macro_driver);
  4214. MODULE_DESCRIPTION("RX macro driver");
  4215. MODULE_LICENSE("GPL v2");