dp_rx_defrag.c 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100
  1. /*
  2. * Copyright (c) 2017-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_api.h"
  23. #include "qdf_trace.h"
  24. #include "qdf_nbuf.h"
  25. #include "dp_internal.h"
  26. #include "dp_rx_defrag.h"
  27. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  28. #include "dp_rx_defrag.h"
  29. #include "dp_ipa.h"
  30. #include "dp_rx_buffer_pool.h"
  31. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  32. "AES-CCM",
  33. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  34. IEEE80211_WEP_MICLEN,
  35. 0,
  36. };
  37. const struct dp_rx_defrag_cipher dp_f_tkip = {
  38. "TKIP",
  39. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  40. IEEE80211_WEP_CRCLEN,
  41. IEEE80211_WEP_MICLEN,
  42. };
  43. const struct dp_rx_defrag_cipher dp_f_wep = {
  44. "WEP",
  45. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  46. IEEE80211_WEP_CRCLEN,
  47. 0,
  48. };
  49. /*
  50. * dp_rx_defrag_frames_free(): Free fragment chain
  51. * @frames: Fragment chain
  52. *
  53. * Iterates through the fragment chain and frees them
  54. * Returns: None
  55. */
  56. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  57. {
  58. qdf_nbuf_t next, frag = frames;
  59. while (frag) {
  60. next = qdf_nbuf_next(frag);
  61. qdf_nbuf_free(frag);
  62. frag = next;
  63. }
  64. }
  65. /*
  66. * dp_rx_clear_saved_desc_info(): Clears descriptor info
  67. * @peer: Pointer to the peer data structure
  68. * @tid: Transmit ID (TID)
  69. *
  70. * Saves MPDU descriptor info and MSDU link pointer from REO
  71. * ring descriptor. The cache is created per peer, per TID
  72. *
  73. * Returns: None
  74. */
  75. static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
  76. {
  77. if (peer->rx_tid[tid].dst_ring_desc)
  78. qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
  79. peer->rx_tid[tid].dst_ring_desc = NULL;
  80. peer->rx_tid[tid].head_frag_desc = NULL;
  81. }
  82. static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
  83. unsigned int tid)
  84. {
  85. struct dp_soc *soc;
  86. struct dp_pdev *pdev;
  87. struct dp_srng *dp_rxdma_srng;
  88. struct rx_desc_pool *rx_desc_pool;
  89. union dp_rx_desc_list_elem_t *head = NULL;
  90. union dp_rx_desc_list_elem_t *tail = NULL;
  91. uint8_t pool_id;
  92. pdev = peer->vdev->pdev;
  93. soc = pdev->soc;
  94. if (peer->rx_tid[tid].head_frag_desc) {
  95. pool_id = peer->rx_tid[tid].head_frag_desc->pool_id;
  96. dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id];
  97. rx_desc_pool = &soc->rx_desc_buf[pool_id];
  98. dp_rx_add_to_free_desc_list(&head, &tail,
  99. peer->rx_tid[tid].head_frag_desc);
  100. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  101. 1, &head, &tail);
  102. }
  103. if (peer->rx_tid[tid].dst_ring_desc) {
  104. if (dp_rx_link_desc_return(soc,
  105. peer->rx_tid[tid].dst_ring_desc,
  106. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  107. QDF_STATUS_SUCCESS)
  108. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  109. "%s: Failed to return link desc", __func__);
  110. }
  111. }
  112. /*
  113. * dp_rx_reorder_flush_frag(): Flush the frag list
  114. * @peer: Pointer to the peer data structure
  115. * @tid: Transmit ID (TID)
  116. *
  117. * Flush the per-TID frag list
  118. *
  119. * Returns: None
  120. */
  121. void dp_rx_reorder_flush_frag(struct dp_peer *peer,
  122. unsigned int tid)
  123. {
  124. dp_info_rl("Flushing TID %d", tid);
  125. if (!peer) {
  126. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  127. "%s: NULL peer", __func__);
  128. return;
  129. }
  130. dp_rx_return_head_frag_desc(peer, tid);
  131. dp_rx_defrag_cleanup(peer, tid);
  132. }
  133. /*
  134. * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
  135. * @soc: DP SOC
  136. *
  137. * Flush fragments of all waitlisted TID's
  138. *
  139. * Returns: None
  140. */
  141. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  142. {
  143. struct dp_rx_tid *rx_reorder = NULL;
  144. struct dp_rx_tid *tmp;
  145. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  146. TAILQ_HEAD(, dp_rx_tid) temp_list;
  147. TAILQ_INIT(&temp_list);
  148. dp_debug("Current time %u", now_ms);
  149. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  150. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  151. defrag_waitlist_elem, tmp) {
  152. uint32_t tid;
  153. if (rx_reorder->defrag_timeout_ms > now_ms)
  154. break;
  155. tid = rx_reorder->tid;
  156. if (tid >= DP_MAX_TIDS) {
  157. qdf_assert(0);
  158. continue;
  159. }
  160. TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
  161. defrag_waitlist_elem);
  162. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  163. /* Move to temp list and clean-up later */
  164. TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
  165. defrag_waitlist_elem);
  166. }
  167. if (rx_reorder) {
  168. soc->rx.defrag.next_flush_ms =
  169. rx_reorder->defrag_timeout_ms;
  170. } else {
  171. soc->rx.defrag.next_flush_ms =
  172. now_ms + soc->rx.defrag.timeout_ms;
  173. }
  174. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  175. TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
  176. defrag_waitlist_elem, tmp) {
  177. struct dp_peer *peer, *temp_peer = NULL;
  178. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  179. TAILQ_REMOVE(&temp_list, rx_reorder,
  180. defrag_waitlist_elem);
  181. /* get address of current peer */
  182. peer =
  183. container_of(rx_reorder, struct dp_peer,
  184. rx_tid[rx_reorder->tid]);
  185. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  186. temp_peer = dp_peer_get_ref_by_id(soc, peer->peer_id,
  187. DP_MOD_ID_RX_ERR);
  188. if (temp_peer == peer) {
  189. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  190. dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
  191. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  192. }
  193. if (temp_peer)
  194. dp_peer_unref_delete(temp_peer, DP_MOD_ID_RX_ERR);
  195. }
  196. }
  197. /*
  198. * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
  199. * @peer: Pointer to the peer data structure
  200. * @tid: Transmit ID (TID)
  201. *
  202. * Appends per-tid fragments to global fragment wait list
  203. *
  204. * Returns: None
  205. */
  206. static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
  207. {
  208. struct dp_soc *psoc = peer->vdev->pdev->soc;
  209. struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
  210. dp_debug("Adding TID %u to waitlist for peer %pK at MAC address "QDF_MAC_ADDR_FMT,
  211. tid, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  212. /* TODO: use LIST macros instead of TAIL macros */
  213. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  214. if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
  215. psoc->rx.defrag.next_flush_ms = rx_reorder->defrag_timeout_ms;
  216. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
  217. defrag_waitlist_elem);
  218. DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
  219. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  220. }
  221. /*
  222. * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
  223. * @peer: Pointer to the peer data structure
  224. * @tid: Transmit ID (TID)
  225. *
  226. * Remove fragments from waitlist
  227. *
  228. * Returns: None
  229. */
  230. void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
  231. {
  232. struct dp_pdev *pdev = peer->vdev->pdev;
  233. struct dp_soc *soc = pdev->soc;
  234. struct dp_rx_tid *rx_reorder;
  235. struct dp_rx_tid *tmp;
  236. dp_debug("Removing TID %u to waitlist for peer %pK at MAC address "QDF_MAC_ADDR_FMT,
  237. tid, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  238. if (tid >= DP_MAX_TIDS) {
  239. dp_err("TID out of bounds: %d", tid);
  240. qdf_assert_always(0);
  241. }
  242. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  243. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  244. defrag_waitlist_elem, tmp) {
  245. struct dp_peer *peer_on_waitlist;
  246. /* get address of current peer */
  247. peer_on_waitlist =
  248. container_of(rx_reorder, struct dp_peer,
  249. rx_tid[rx_reorder->tid]);
  250. /* Ensure it is TID for same peer */
  251. if (peer_on_waitlist == peer && rx_reorder->tid == tid) {
  252. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  253. rx_reorder, defrag_waitlist_elem);
  254. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  255. }
  256. }
  257. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  258. }
  259. /*
  260. * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
  261. * @peer: Pointer to the peer data structure
  262. * @tid: Transmit ID (TID)
  263. * @head_addr: Pointer to head list
  264. * @tail_addr: Pointer to tail list
  265. * @frag: Incoming fragment
  266. * @all_frag_present: Flag to indicate whether all fragments are received
  267. *
  268. * Build a per-tid, per-sequence fragment list.
  269. *
  270. * Returns: Success, if inserted
  271. */
  272. static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
  273. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
  274. uint8_t *all_frag_present)
  275. {
  276. qdf_nbuf_t next;
  277. qdf_nbuf_t prev = NULL;
  278. qdf_nbuf_t cur;
  279. uint16_t head_fragno, cur_fragno, next_fragno;
  280. uint8_t last_morefrag = 1, count = 0;
  281. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  282. uint8_t *rx_desc_info;
  283. qdf_assert(frag);
  284. qdf_assert(head_addr);
  285. qdf_assert(tail_addr);
  286. *all_frag_present = 0;
  287. rx_desc_info = qdf_nbuf_data(frag);
  288. cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  289. dp_debug("cur_fragno %d\n", cur_fragno);
  290. /* If this is the first fragment */
  291. if (!(*head_addr)) {
  292. *head_addr = *tail_addr = frag;
  293. qdf_nbuf_set_next(*tail_addr, NULL);
  294. rx_tid->curr_frag_num = cur_fragno;
  295. goto insert_done;
  296. }
  297. /* In sequence fragment */
  298. if (cur_fragno > rx_tid->curr_frag_num) {
  299. qdf_nbuf_set_next(*tail_addr, frag);
  300. *tail_addr = frag;
  301. qdf_nbuf_set_next(*tail_addr, NULL);
  302. rx_tid->curr_frag_num = cur_fragno;
  303. } else {
  304. /* Out of sequence fragment */
  305. cur = *head_addr;
  306. rx_desc_info = qdf_nbuf_data(cur);
  307. head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  308. if (cur_fragno == head_fragno) {
  309. qdf_nbuf_free(frag);
  310. goto insert_fail;
  311. } else if (head_fragno > cur_fragno) {
  312. qdf_nbuf_set_next(frag, cur);
  313. cur = frag;
  314. *head_addr = frag; /* head pointer to be updated */
  315. } else {
  316. while ((cur_fragno > head_fragno) && cur) {
  317. prev = cur;
  318. cur = qdf_nbuf_next(cur);
  319. if (cur) {
  320. rx_desc_info = qdf_nbuf_data(cur);
  321. head_fragno =
  322. dp_rx_frag_get_mpdu_frag_number(
  323. rx_desc_info);
  324. }
  325. }
  326. if (cur_fragno == head_fragno) {
  327. qdf_nbuf_free(frag);
  328. goto insert_fail;
  329. }
  330. qdf_nbuf_set_next(prev, frag);
  331. qdf_nbuf_set_next(frag, cur);
  332. }
  333. }
  334. next = qdf_nbuf_next(*head_addr);
  335. rx_desc_info = qdf_nbuf_data(*tail_addr);
  336. last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
  337. /* TODO: optimize the loop */
  338. if (!last_morefrag) {
  339. /* Check if all fragments are present */
  340. do {
  341. rx_desc_info = qdf_nbuf_data(next);
  342. next_fragno =
  343. dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  344. count++;
  345. if (next_fragno != count)
  346. break;
  347. next = qdf_nbuf_next(next);
  348. } while (next);
  349. if (!next) {
  350. *all_frag_present = 1;
  351. return QDF_STATUS_SUCCESS;
  352. } else {
  353. /* revisit */
  354. }
  355. }
  356. insert_done:
  357. return QDF_STATUS_SUCCESS;
  358. insert_fail:
  359. return QDF_STATUS_E_FAILURE;
  360. }
  361. /*
  362. * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
  363. * @msdu: Pointer to the fragment
  364. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  365. *
  366. * decap tkip encrypted fragment
  367. *
  368. * Returns: QDF_STATUS
  369. */
  370. static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  371. {
  372. uint8_t *ivp, *orig_hdr;
  373. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  374. /* start of 802.11 header info */
  375. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  376. /* TKIP header is located post 802.11 header */
  377. ivp = orig_hdr + hdrlen;
  378. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  379. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  380. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  381. return QDF_STATUS_E_DEFRAG_ERROR;
  382. }
  383. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  384. return QDF_STATUS_SUCCESS;
  385. }
  386. /*
  387. * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
  388. * @nbuf: Pointer to the fragment buffer
  389. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  390. *
  391. * Remove MIC information from CCMP fragment
  392. *
  393. * Returns: QDF_STATUS
  394. */
  395. static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
  396. {
  397. uint8_t *ivp, *orig_hdr;
  398. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  399. /* start of the 802.11 header */
  400. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  401. /* CCMP header is located after 802.11 header */
  402. ivp = orig_hdr + hdrlen;
  403. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  404. return QDF_STATUS_E_DEFRAG_ERROR;
  405. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  406. return QDF_STATUS_SUCCESS;
  407. }
  408. /*
  409. * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
  410. * @nbuf: Pointer to the fragment
  411. * @hdrlen: length of the header information
  412. *
  413. * decap CCMP encrypted fragment
  414. *
  415. * Returns: QDF_STATUS
  416. */
  417. static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
  418. {
  419. uint8_t *ivp, *origHdr;
  420. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  421. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  422. ivp = origHdr + hdrlen;
  423. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  424. return QDF_STATUS_E_DEFRAG_ERROR;
  425. /* Let's pull the header later */
  426. return QDF_STATUS_SUCCESS;
  427. }
  428. /*
  429. * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
  430. * @msdu: Pointer to the fragment
  431. * @hdrlen: length of the header information
  432. *
  433. * decap WEP encrypted fragment
  434. *
  435. * Returns: QDF_STATUS
  436. */
  437. static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  438. {
  439. uint8_t *origHdr;
  440. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  441. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  442. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  443. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  444. return QDF_STATUS_SUCCESS;
  445. }
  446. /*
  447. * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
  448. * @soc: soc handle
  449. * @nbuf: Pointer to the fragment
  450. *
  451. * Calculate the header size of the received fragment
  452. *
  453. * Returns: header size (uint16_t)
  454. */
  455. static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
  456. {
  457. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  458. uint16_t size = sizeof(struct ieee80211_frame);
  459. uint16_t fc = 0;
  460. uint32_t to_ds, fr_ds;
  461. uint8_t frm_ctrl_valid;
  462. uint16_t frm_ctrl_field;
  463. to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
  464. fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
  465. frm_ctrl_valid =
  466. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  467. rx_tlv_hdr);
  468. frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
  469. if (to_ds && fr_ds)
  470. size += QDF_MAC_ADDR_SIZE;
  471. if (frm_ctrl_valid) {
  472. fc = frm_ctrl_field;
  473. /* use 1-st byte for validation */
  474. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  475. size += sizeof(uint16_t);
  476. /* use 2-nd byte for validation */
  477. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  478. size += sizeof(struct ieee80211_htc);
  479. }
  480. }
  481. return size;
  482. }
  483. /*
  484. * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
  485. * @wh0: Pointer to the wireless header of the fragment
  486. * @hdr: Array to hold the pseudo header
  487. *
  488. * Calculate a pseudo MIC header
  489. *
  490. * Returns: None
  491. */
  492. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  493. uint8_t hdr[])
  494. {
  495. const struct ieee80211_frame_addr4 *wh =
  496. (const struct ieee80211_frame_addr4 *)wh0;
  497. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  498. case IEEE80211_FC1_DIR_NODS:
  499. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  500. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  501. wh->i_addr2);
  502. break;
  503. case IEEE80211_FC1_DIR_TODS:
  504. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  505. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  506. wh->i_addr2);
  507. break;
  508. case IEEE80211_FC1_DIR_FROMDS:
  509. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  510. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  511. wh->i_addr3);
  512. break;
  513. case IEEE80211_FC1_DIR_DSTODS:
  514. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  515. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  516. wh->i_addr4);
  517. break;
  518. }
  519. /*
  520. * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  521. * it could also be set for deauth, disassoc, action, etc. for
  522. * a mgt type frame. It comes into picture for MFP.
  523. */
  524. if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
  525. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
  526. IEEE80211_FC1_DIR_DSTODS) {
  527. const struct ieee80211_qosframe_addr4 *qwh =
  528. (const struct ieee80211_qosframe_addr4 *)wh;
  529. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  530. } else {
  531. const struct ieee80211_qosframe *qwh =
  532. (const struct ieee80211_qosframe *)wh;
  533. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  534. }
  535. } else {
  536. hdr[12] = 0;
  537. }
  538. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  539. }
  540. /*
  541. * dp_rx_defrag_mic(): Calculate MIC header
  542. * @key: Pointer to the key
  543. * @wbuf: fragment buffer
  544. * @off: Offset
  545. * @data_len: Data length
  546. * @mic: Array to hold MIC
  547. *
  548. * Calculate a pseudo MIC header
  549. *
  550. * Returns: QDF_STATUS
  551. */
  552. static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
  553. uint16_t off, uint16_t data_len, uint8_t mic[])
  554. {
  555. uint8_t hdr[16] = { 0, };
  556. uint32_t l, r;
  557. const uint8_t *data;
  558. uint32_t space;
  559. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  560. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  561. + rx_desc_len), hdr);
  562. l = dp_rx_get_le32(key);
  563. r = dp_rx_get_le32(key + 4);
  564. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  565. l ^= dp_rx_get_le32(hdr);
  566. dp_rx_michael_block(l, r);
  567. l ^= dp_rx_get_le32(&hdr[4]);
  568. dp_rx_michael_block(l, r);
  569. l ^= dp_rx_get_le32(&hdr[8]);
  570. dp_rx_michael_block(l, r);
  571. l ^= dp_rx_get_le32(&hdr[12]);
  572. dp_rx_michael_block(l, r);
  573. /* first buffer has special handling */
  574. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  575. space = qdf_nbuf_len(wbuf) - off;
  576. for (;; ) {
  577. if (space > data_len)
  578. space = data_len;
  579. /* collect 32-bit blocks from current buffer */
  580. while (space >= sizeof(uint32_t)) {
  581. l ^= dp_rx_get_le32(data);
  582. dp_rx_michael_block(l, r);
  583. data += sizeof(uint32_t);
  584. space -= sizeof(uint32_t);
  585. data_len -= sizeof(uint32_t);
  586. }
  587. if (data_len < sizeof(uint32_t))
  588. break;
  589. wbuf = qdf_nbuf_next(wbuf);
  590. if (!wbuf)
  591. return QDF_STATUS_E_DEFRAG_ERROR;
  592. if (space != 0) {
  593. const uint8_t *data_next;
  594. /*
  595. * Block straddles buffers, split references.
  596. */
  597. data_next =
  598. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  599. if ((qdf_nbuf_len(wbuf)) <
  600. sizeof(uint32_t) - space) {
  601. return QDF_STATUS_E_DEFRAG_ERROR;
  602. }
  603. switch (space) {
  604. case 1:
  605. l ^= dp_rx_get_le32_split(data[0],
  606. data_next[0], data_next[1],
  607. data_next[2]);
  608. data = data_next + 3;
  609. space = (qdf_nbuf_len(wbuf) - off) - 3;
  610. break;
  611. case 2:
  612. l ^= dp_rx_get_le32_split(data[0], data[1],
  613. data_next[0], data_next[1]);
  614. data = data_next + 2;
  615. space = (qdf_nbuf_len(wbuf) - off) - 2;
  616. break;
  617. case 3:
  618. l ^= dp_rx_get_le32_split(data[0], data[1],
  619. data[2], data_next[0]);
  620. data = data_next + 1;
  621. space = (qdf_nbuf_len(wbuf) - off) - 1;
  622. break;
  623. }
  624. dp_rx_michael_block(l, r);
  625. data_len -= sizeof(uint32_t);
  626. } else {
  627. /*
  628. * Setup for next buffer.
  629. */
  630. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  631. space = qdf_nbuf_len(wbuf) - off;
  632. }
  633. }
  634. /* Last block and padding (0x5a, 4..7 x 0) */
  635. switch (data_len) {
  636. case 0:
  637. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  638. break;
  639. case 1:
  640. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  641. break;
  642. case 2:
  643. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  644. break;
  645. case 3:
  646. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  647. break;
  648. }
  649. dp_rx_michael_block(l, r);
  650. dp_rx_michael_block(l, r);
  651. dp_rx_put_le32(mic, l);
  652. dp_rx_put_le32(mic + 4, r);
  653. return QDF_STATUS_SUCCESS;
  654. }
  655. /*
  656. * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
  657. * @key: Pointer to the key
  658. * @msdu: fragment buffer
  659. * @hdrlen: Length of the header information
  660. *
  661. * Remove MIC information from the TKIP frame
  662. *
  663. * Returns: QDF_STATUS
  664. */
  665. static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
  666. qdf_nbuf_t msdu, uint16_t hdrlen)
  667. {
  668. QDF_STATUS status;
  669. uint32_t pktlen = 0, prev_data_len;
  670. uint8_t mic[IEEE80211_WEP_MICLEN];
  671. uint8_t mic0[IEEE80211_WEP_MICLEN];
  672. qdf_nbuf_t prev = NULL, prev0, next;
  673. uint8_t len0 = 0;
  674. next = msdu;
  675. prev0 = msdu;
  676. while (next) {
  677. pktlen += (qdf_nbuf_len(next) - hdrlen);
  678. prev = next;
  679. dp_debug("pktlen %u",
  680. (uint32_t)(qdf_nbuf_len(next) - hdrlen));
  681. next = qdf_nbuf_next(next);
  682. if (next && !qdf_nbuf_next(next))
  683. prev0 = prev;
  684. }
  685. if (!prev) {
  686. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  687. "%s Defrag chaining failed !\n", __func__);
  688. return QDF_STATUS_E_DEFRAG_ERROR;
  689. }
  690. prev_data_len = qdf_nbuf_len(prev) - hdrlen;
  691. if (prev_data_len < dp_f_tkip.ic_miclen) {
  692. if (prev0 == prev) {
  693. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  694. "%s Fragments don't have MIC header !\n", __func__);
  695. return QDF_STATUS_E_DEFRAG_ERROR;
  696. }
  697. len0 = dp_f_tkip.ic_miclen - (uint8_t)prev_data_len;
  698. qdf_nbuf_copy_bits(prev0, qdf_nbuf_len(prev0) - len0, len0,
  699. (caddr_t)mic0);
  700. qdf_nbuf_trim_tail(prev0, len0);
  701. }
  702. qdf_nbuf_copy_bits(prev, (qdf_nbuf_len(prev) -
  703. (dp_f_tkip.ic_miclen - len0)),
  704. (dp_f_tkip.ic_miclen - len0),
  705. (caddr_t)(&mic0[len0]));
  706. qdf_nbuf_trim_tail(prev, (dp_f_tkip.ic_miclen - len0));
  707. pktlen -= dp_f_tkip.ic_miclen;
  708. if (((qdf_nbuf_len(prev) - hdrlen) == 0) && prev != msdu) {
  709. qdf_nbuf_free(prev);
  710. qdf_nbuf_set_next(prev0, NULL);
  711. }
  712. status = dp_rx_defrag_mic(key, msdu, hdrlen,
  713. pktlen, mic);
  714. if (QDF_IS_STATUS_ERROR(status))
  715. return status;
  716. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  717. return QDF_STATUS_E_DEFRAG_ERROR;
  718. return QDF_STATUS_SUCCESS;
  719. }
  720. /*
  721. * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
  722. * @nbuf: buffer pointer
  723. * @hdrsize: size of the header to be pulled
  724. *
  725. * Pull the RXTLV & the 802.11 headers
  726. *
  727. * Returns: None
  728. */
  729. static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
  730. {
  731. struct rx_pkt_tlvs *rx_pkt_tlv =
  732. (struct rx_pkt_tlvs *)qdf_nbuf_data(nbuf);
  733. struct rx_mpdu_info *rx_mpdu_info_details =
  734. &rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  735. dp_debug("pn_31_0 0x%x pn_63_32 0x%x pn_95_64 0x%x pn_127_96 0x%x\n",
  736. rx_mpdu_info_details->pn_31_0, rx_mpdu_info_details->pn_63_32,
  737. rx_mpdu_info_details->pn_95_64,
  738. rx_mpdu_info_details->pn_127_96);
  739. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN + hdrsize);
  740. dp_debug("final pktlen %d .11len %d",
  741. (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  742. }
  743. /*
  744. * dp_rx_defrag_pn_check(): Check the PN of current fragmented with prev PN
  745. * @msdu: msdu to get the current PN
  746. * @cur_pn128: PN extracted from current msdu
  747. * @prev_pn128: Prev PN
  748. *
  749. * Returns: 0 on success, non zero on failure
  750. */
  751. static int dp_rx_defrag_pn_check(qdf_nbuf_t msdu,
  752. uint64_t *cur_pn128, uint64_t *prev_pn128)
  753. {
  754. struct rx_pkt_tlvs *rx_pkt_tlv =
  755. (struct rx_pkt_tlvs *)qdf_nbuf_data(msdu);
  756. struct rx_mpdu_info *rx_mpdu_info_details =
  757. &rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  758. int out_of_order = 0;
  759. cur_pn128[0] = rx_mpdu_info_details->pn_31_0;
  760. cur_pn128[0] |=
  761. ((uint64_t)rx_mpdu_info_details->pn_63_32 << 32);
  762. cur_pn128[1] = rx_mpdu_info_details->pn_95_64;
  763. cur_pn128[1] |=
  764. ((uint64_t)rx_mpdu_info_details->pn_127_96 << 32);
  765. if (cur_pn128[1] == prev_pn128[1])
  766. out_of_order = (cur_pn128[0] <= prev_pn128[0]);
  767. else
  768. out_of_order = (cur_pn128[1] < prev_pn128[1]);
  769. return out_of_order;
  770. }
  771. /*
  772. * dp_rx_construct_fraglist(): Construct a nbuf fraglist
  773. * @peer: Pointer to the peer
  774. * @head: Pointer to list of fragments
  775. * @hdrsize: Size of the header to be pulled
  776. *
  777. * Construct a nbuf fraglist
  778. *
  779. * Returns: None
  780. */
  781. static int
  782. dp_rx_construct_fraglist(struct dp_peer *peer, int tid, qdf_nbuf_t head,
  783. uint16_t hdrsize)
  784. {
  785. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  786. qdf_nbuf_t rx_nbuf = msdu;
  787. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  788. uint32_t len = 0;
  789. uint64_t cur_pn128[2] = {0, 0}, prev_pn128[2];
  790. int out_of_order = 0;
  791. int index;
  792. int needs_pn_check = 0;
  793. prev_pn128[0] = rx_tid->pn128[0];
  794. prev_pn128[1] = rx_tid->pn128[1];
  795. index = hal_rx_msdu_is_wlan_mcast(msdu) ? dp_sec_mcast : dp_sec_ucast;
  796. if (qdf_likely(peer->security[index].sec_type != cdp_sec_type_none))
  797. needs_pn_check = 1;
  798. while (msdu) {
  799. if (qdf_likely(needs_pn_check))
  800. out_of_order = dp_rx_defrag_pn_check(msdu,
  801. &cur_pn128[0],
  802. &prev_pn128[0]);
  803. if (qdf_unlikely(out_of_order)) {
  804. dp_info_rl("cur_pn128[0] 0x%llx cur_pn128[1] 0x%llx prev_pn128[0] 0x%llx prev_pn128[1] 0x%llx",
  805. cur_pn128[0], cur_pn128[1],
  806. prev_pn128[0], prev_pn128[1]);
  807. return QDF_STATUS_E_FAILURE;
  808. }
  809. prev_pn128[0] = cur_pn128[0];
  810. prev_pn128[1] = cur_pn128[1];
  811. dp_rx_frag_pull_hdr(msdu, hdrsize);
  812. len += qdf_nbuf_len(msdu);
  813. msdu = qdf_nbuf_next(msdu);
  814. }
  815. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  816. qdf_nbuf_set_next(head, NULL);
  817. qdf_nbuf_set_is_frag(head, 1);
  818. dp_debug("head len %d ext len %d data len %d ",
  819. (uint32_t)qdf_nbuf_len(head),
  820. (uint32_t)qdf_nbuf_len(rx_nbuf),
  821. (uint32_t)(head->data_len));
  822. return QDF_STATUS_SUCCESS;
  823. }
  824. /**
  825. * dp_rx_defrag_err() - rx err handler
  826. * @pdev: handle to pdev object
  827. * @vdev_id: vdev id
  828. * @peer_mac_addr: peer mac address
  829. * @tid: TID
  830. * @tsf32: TSF
  831. * @err_type: error type
  832. * @rx_frame: rx frame
  833. * @pn: PN Number
  834. * @key_id: key id
  835. *
  836. * This function handles rx error and send MIC error notification
  837. *
  838. * Return: None
  839. */
  840. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  841. {
  842. struct ol_if_ops *tops = NULL;
  843. struct dp_pdev *pdev = vdev->pdev;
  844. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  845. uint8_t *orig_hdr;
  846. struct ieee80211_frame *wh;
  847. struct cdp_rx_mic_err_info mic_failure_info;
  848. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  849. wh = (struct ieee80211_frame *)orig_hdr;
  850. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
  851. (struct qdf_mac_addr *)&wh->i_addr1);
  852. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
  853. (struct qdf_mac_addr *)&wh->i_addr2);
  854. mic_failure_info.key_id = 0;
  855. mic_failure_info.multicast =
  856. IEEE80211_IS_MULTICAST(wh->i_addr1);
  857. qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
  858. mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
  859. mic_failure_info.data = (uint8_t *)wh;
  860. mic_failure_info.vdev_id = vdev->vdev_id;
  861. tops = pdev->soc->cdp_soc.ol_ops;
  862. if (tops->rx_mic_error)
  863. tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
  864. &mic_failure_info);
  865. }
  866. /*
  867. * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
  868. * @soc: dp soc handle
  869. * @nbuf: Pointer to the fragment buffer
  870. * @hdrsize: Size of headers
  871. *
  872. * Transcap the fragment from 802.11 to 802.3
  873. *
  874. * Returns: None
  875. */
  876. static void
  877. dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc, struct dp_peer *peer, int tid,
  878. qdf_nbuf_t nbuf, uint16_t hdrsize)
  879. {
  880. struct llc_snap_hdr_t *llchdr;
  881. struct ethernet_hdr_t *eth_hdr;
  882. uint8_t ether_type[2];
  883. uint16_t fc = 0;
  884. union dp_align_mac_addr mac_addr;
  885. uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
  886. struct rx_pkt_tlvs *rx_pkt_tlv =
  887. (struct rx_pkt_tlvs *)qdf_nbuf_data(nbuf);
  888. struct rx_mpdu_info *rx_mpdu_info_details =
  889. &rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  890. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  891. dp_debug("head_nbuf pn_31_0 0x%x pn_63_32 0x%x pn_95_64 0x%x pn_127_96 0x%x\n",
  892. rx_mpdu_info_details->pn_31_0, rx_mpdu_info_details->pn_63_32,
  893. rx_mpdu_info_details->pn_95_64,
  894. rx_mpdu_info_details->pn_127_96);
  895. rx_tid->pn128[0] = rx_mpdu_info_details->pn_31_0;
  896. rx_tid->pn128[0] |= ((uint64_t)rx_mpdu_info_details->pn_63_32 << 32);
  897. rx_tid->pn128[1] = rx_mpdu_info_details->pn_95_64;
  898. rx_tid->pn128[1] |= ((uint64_t)rx_mpdu_info_details->pn_127_96 << 32);
  899. if (!rx_desc_info) {
  900. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  901. "%s: Memory alloc failed ! ", __func__);
  902. QDF_ASSERT(0);
  903. return;
  904. }
  905. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
  906. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  907. RX_PKT_TLVS_LEN + hdrsize);
  908. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  909. qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
  910. sizeof(struct llc_snap_hdr_t) -
  911. sizeof(struct ethernet_hdr_t)));
  912. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  913. if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  914. rx_desc_info))
  915. fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
  916. dp_debug("Frame control type: 0x%x", fc);
  917. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  918. case IEEE80211_FC1_DIR_NODS:
  919. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  920. &mac_addr.raw[0]);
  921. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  922. QDF_MAC_ADDR_SIZE);
  923. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  924. &mac_addr.raw[0]);
  925. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  926. QDF_MAC_ADDR_SIZE);
  927. break;
  928. case IEEE80211_FC1_DIR_TODS:
  929. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  930. &mac_addr.raw[0]);
  931. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  932. QDF_MAC_ADDR_SIZE);
  933. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  934. &mac_addr.raw[0]);
  935. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  936. QDF_MAC_ADDR_SIZE);
  937. break;
  938. case IEEE80211_FC1_DIR_FROMDS:
  939. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  940. &mac_addr.raw[0]);
  941. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  942. QDF_MAC_ADDR_SIZE);
  943. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  944. &mac_addr.raw[0]);
  945. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  946. QDF_MAC_ADDR_SIZE);
  947. break;
  948. case IEEE80211_FC1_DIR_DSTODS:
  949. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  950. &mac_addr.raw[0]);
  951. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  952. QDF_MAC_ADDR_SIZE);
  953. hal_rx_mpdu_get_addr4(soc->hal_soc, rx_desc_info,
  954. &mac_addr.raw[0]);
  955. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  956. QDF_MAC_ADDR_SIZE);
  957. break;
  958. default:
  959. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  960. "%s: Unknown frame control type: 0x%x", __func__, fc);
  961. }
  962. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  963. sizeof(ether_type));
  964. qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
  965. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
  966. qdf_mem_free(rx_desc_info);
  967. }
  968. #ifdef RX_DEFRAG_DO_NOT_REINJECT
  969. /*
  970. * dp_rx_defrag_deliver(): Deliver defrag packet to stack
  971. * @peer: Pointer to the peer
  972. * @tid: Transmit Identifier
  973. * @head: Nbuf to be delivered
  974. *
  975. * Returns: None
  976. */
  977. static inline void dp_rx_defrag_deliver(struct dp_peer *peer,
  978. unsigned int tid,
  979. qdf_nbuf_t head)
  980. {
  981. struct dp_vdev *vdev = peer->vdev;
  982. struct dp_soc *soc = vdev->pdev->soc;
  983. qdf_nbuf_t deliver_list_head = NULL;
  984. qdf_nbuf_t deliver_list_tail = NULL;
  985. uint8_t *rx_tlv_hdr;
  986. rx_tlv_hdr = qdf_nbuf_data(head);
  987. QDF_NBUF_CB_RX_VDEV_ID(head) = vdev->vdev_id;
  988. qdf_nbuf_set_tid_val(head, tid);
  989. qdf_nbuf_pull_head(head, RX_PKT_TLVS_LEN);
  990. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail,
  991. head);
  992. dp_rx_deliver_to_stack(soc, vdev, peer, deliver_list_head,
  993. deliver_list_tail);
  994. }
  995. /*
  996. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  997. * @peer: Pointer to the peer
  998. * @tid: Transmit Identifier
  999. * @head: Buffer to be reinjected back
  1000. *
  1001. * Reinject the fragment chain back into REO
  1002. *
  1003. * Returns: QDF_STATUS
  1004. */
  1005. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  1006. unsigned int tid, qdf_nbuf_t head)
  1007. {
  1008. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1009. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1010. dp_rx_defrag_deliver(peer, tid, head);
  1011. rx_reorder_array_elem->head = NULL;
  1012. rx_reorder_array_elem->tail = NULL;
  1013. dp_rx_return_head_frag_desc(peer, tid);
  1014. return QDF_STATUS_SUCCESS;
  1015. }
  1016. #else
  1017. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1018. /**
  1019. * dp_rx_reinject_ring_record_entry() - Record reinject ring history
  1020. * @soc: Datapath soc structure
  1021. * @paddr: paddr of the buffer reinjected to SW2REO ring
  1022. * @sw_cookie: SW cookie of the buffer reinjected to SW2REO ring
  1023. * @rbm: Return buffer manager of the buffer reinjected to SW2REO ring
  1024. *
  1025. * Returns: None
  1026. */
  1027. static inline void
  1028. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1029. uint32_t sw_cookie, uint8_t rbm)
  1030. {
  1031. struct dp_buf_info_record *record;
  1032. uint32_t idx;
  1033. if (qdf_unlikely(!soc->rx_reinject_ring_history))
  1034. return;
  1035. idx = dp_history_get_next_index(&soc->rx_reinject_ring_history->index,
  1036. DP_RX_REINJECT_HIST_MAX);
  1037. /* No NULL check needed for record since its an array */
  1038. record = &soc->rx_reinject_ring_history->entry[idx];
  1039. record->timestamp = qdf_get_log_timestamp();
  1040. record->hbi.paddr = paddr;
  1041. record->hbi.sw_cookie = sw_cookie;
  1042. record->hbi.rbm = rbm;
  1043. }
  1044. #else
  1045. static inline void
  1046. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1047. uint32_t sw_cookie, uint8_t rbm)
  1048. {
  1049. }
  1050. #endif
  1051. /*
  1052. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  1053. * @peer: Pointer to the peer
  1054. * @tid: Transmit Identifier
  1055. * @head: Buffer to be reinjected back
  1056. *
  1057. * Reinject the fragment chain back into REO
  1058. *
  1059. * Returns: QDF_STATUS
  1060. */
  1061. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  1062. unsigned int tid, qdf_nbuf_t head)
  1063. {
  1064. struct dp_pdev *pdev = peer->vdev->pdev;
  1065. struct dp_soc *soc = pdev->soc;
  1066. struct hal_buf_info buf_info;
  1067. void *link_desc_va;
  1068. void *msdu0, *msdu_desc_info;
  1069. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  1070. void *dst_mpdu_desc_info, *dst_qdesc_addr;
  1071. qdf_dma_addr_t paddr;
  1072. uint32_t nbuf_len, seq_no, dst_ind;
  1073. uint32_t *mpdu_wrd;
  1074. uint32_t ret, cookie;
  1075. hal_ring_desc_t dst_ring_desc =
  1076. peer->rx_tid[tid].dst_ring_desc;
  1077. hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
  1078. struct dp_rx_desc *rx_desc = peer->rx_tid[tid].head_frag_desc;
  1079. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1080. peer->rx_tid[tid].array;
  1081. qdf_nbuf_t nbuf_head;
  1082. struct rx_desc_pool *rx_desc_pool = NULL;
  1083. void *buf_addr_info = HAL_RX_REO_BUF_ADDR_INFO_GET(dst_ring_desc);
  1084. /* do duplicate link desc address check */
  1085. dp_rx_link_desc_refill_duplicate_check(
  1086. soc,
  1087. &soc->last_op_info.reo_reinject_link_desc,
  1088. buf_addr_info);
  1089. nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
  1090. if (qdf_unlikely(!nbuf_head)) {
  1091. dp_err_rl("IPA RX REO reinject failed");
  1092. return QDF_STATUS_E_FAILURE;
  1093. }
  1094. /* update new allocated skb in case IPA is enabled */
  1095. if (nbuf_head != head) {
  1096. head = nbuf_head;
  1097. rx_desc->nbuf = head;
  1098. rx_reorder_array_elem->head = head;
  1099. }
  1100. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  1101. if (!ent_ring_desc) {
  1102. dp_err_rl("HAL src ring next entry NULL");
  1103. return QDF_STATUS_E_FAILURE;
  1104. }
  1105. hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
  1106. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  1107. qdf_assert_always(link_desc_va);
  1108. msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
  1109. nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
  1110. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  1111. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  1112. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  1113. /* msdu reconfig */
  1114. msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
  1115. dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
  1116. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  1117. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1118. FIRST_MSDU_IN_MPDU_FLAG, 1);
  1119. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1120. LAST_MSDU_IN_MPDU_FLAG, 1);
  1121. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1122. MSDU_CONTINUATION, 0x0);
  1123. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1124. REO_DESTINATION_INDICATION, dst_ind);
  1125. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1126. MSDU_LENGTH, nbuf_len);
  1127. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1128. SA_IS_VALID, 1);
  1129. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1130. DA_IS_VALID, 1);
  1131. /* change RX TLV's */
  1132. hal_rx_msdu_start_msdu_len_set(
  1133. qdf_nbuf_data(head), nbuf_len);
  1134. cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
  1135. rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id];
  1136. /* map the nbuf before reinject it into HW */
  1137. ret = qdf_nbuf_map_nbytes_single(soc->osdev, head,
  1138. QDF_DMA_FROM_DEVICE,
  1139. rx_desc_pool->buf_size);
  1140. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  1141. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1142. "%s: nbuf map failed !", __func__);
  1143. return QDF_STATUS_E_FAILURE;
  1144. }
  1145. /*
  1146. * As part of rx frag handler bufffer was unmapped and rx desc
  1147. * unmapped is set to 1. So again for defrag reinject frame reset
  1148. * it back to 0.
  1149. */
  1150. rx_desc->unmapped = 0;
  1151. dp_ipa_handle_rx_buf_smmu_mapping(soc, head,
  1152. rx_desc_pool->buf_size,
  1153. true);
  1154. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  1155. ret = dp_check_paddr(soc, &head, &paddr, rx_desc_pool);
  1156. if (ret == QDF_STATUS_E_FAILURE) {
  1157. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1158. "%s: x86 check failed !", __func__);
  1159. return QDF_STATUS_E_FAILURE;
  1160. }
  1161. hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_DEFRAG_RBM);
  1162. /* Lets fill entrance ring now !!! */
  1163. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  1164. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1165. "HAL RING Access For REO entrance SRNG Failed: %pK",
  1166. hal_srng);
  1167. return QDF_STATUS_E_FAILURE;
  1168. }
  1169. dp_rx_reinject_ring_record_entry(soc, paddr, cookie, DP_DEFRAG_RBM);
  1170. paddr = (uint64_t)buf_info.paddr;
  1171. /* buf addr */
  1172. hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
  1173. buf_info.sw_cookie,
  1174. HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
  1175. /* mpdu desc info */
  1176. ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
  1177. ent_ring_desc);
  1178. dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
  1179. dst_ring_desc);
  1180. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  1181. sizeof(struct rx_mpdu_desc_info));
  1182. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  1183. mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
  1184. seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
  1185. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1186. MSDU_COUNT, 0x1);
  1187. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1188. MPDU_SEQUENCE_NUMBER, seq_no);
  1189. /* unset frag bit */
  1190. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1191. FRAGMENT_FLAG, 0x0);
  1192. /* set sa/da valid bits */
  1193. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1194. SA_IS_VALID, 0x1);
  1195. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1196. DA_IS_VALID, 0x1);
  1197. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1198. RAW_MPDU, 0x0);
  1199. /* qdesc addr */
  1200. ent_qdesc_addr = (uint8_t *)ent_ring_desc +
  1201. REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  1202. dst_qdesc_addr = (uint8_t *)dst_ring_desc +
  1203. REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  1204. qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
  1205. HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
  1206. REO_DESTINATION_INDICATION, dst_ind);
  1207. hal_srng_access_end(soc->hal_soc, hal_srng);
  1208. DP_STATS_INC(soc, rx.reo_reinject, 1);
  1209. dp_debug("reinjection done !");
  1210. return QDF_STATUS_SUCCESS;
  1211. }
  1212. #endif
  1213. /*
  1214. * dp_rx_defrag(): Defragment the fragment chain
  1215. * @peer: Pointer to the peer
  1216. * @tid: Transmit Identifier
  1217. * @frag_list_head: Pointer to head list
  1218. * @frag_list_tail: Pointer to tail list
  1219. *
  1220. * Defragment the fragment chain
  1221. *
  1222. * Returns: QDF_STATUS
  1223. */
  1224. static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
  1225. qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
  1226. {
  1227. qdf_nbuf_t tmp_next, prev;
  1228. qdf_nbuf_t cur = frag_list_head, msdu;
  1229. uint32_t index, tkip_demic = 0;
  1230. uint16_t hdr_space;
  1231. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  1232. struct dp_vdev *vdev = peer->vdev;
  1233. struct dp_soc *soc = vdev->pdev->soc;
  1234. uint8_t status = 0;
  1235. hdr_space = dp_rx_defrag_hdrsize(soc, cur);
  1236. index = hal_rx_msdu_is_wlan_mcast(cur) ?
  1237. dp_sec_mcast : dp_sec_ucast;
  1238. /* Remove FCS from all fragments */
  1239. while (cur) {
  1240. tmp_next = qdf_nbuf_next(cur);
  1241. qdf_nbuf_set_next(cur, NULL);
  1242. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  1243. prev = cur;
  1244. qdf_nbuf_set_next(cur, tmp_next);
  1245. cur = tmp_next;
  1246. }
  1247. cur = frag_list_head;
  1248. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1249. "%s: index %d Security type: %d", __func__,
  1250. index, peer->security[index].sec_type);
  1251. switch (peer->security[index].sec_type) {
  1252. case cdp_sec_type_tkip:
  1253. tkip_demic = 1;
  1254. case cdp_sec_type_tkip_nomic:
  1255. while (cur) {
  1256. tmp_next = qdf_nbuf_next(cur);
  1257. if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
  1258. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1259. QDF_TRACE_LEVEL_ERROR,
  1260. "dp_rx_defrag: TKIP decap failed");
  1261. return QDF_STATUS_E_DEFRAG_ERROR;
  1262. }
  1263. cur = tmp_next;
  1264. }
  1265. /* If success, increment header to be stripped later */
  1266. hdr_space += dp_f_tkip.ic_header;
  1267. break;
  1268. case cdp_sec_type_aes_ccmp:
  1269. while (cur) {
  1270. tmp_next = qdf_nbuf_next(cur);
  1271. if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
  1272. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1273. QDF_TRACE_LEVEL_ERROR,
  1274. "dp_rx_defrag: CCMP demic failed");
  1275. return QDF_STATUS_E_DEFRAG_ERROR;
  1276. }
  1277. if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
  1278. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1279. QDF_TRACE_LEVEL_ERROR,
  1280. "dp_rx_defrag: CCMP decap failed");
  1281. return QDF_STATUS_E_DEFRAG_ERROR;
  1282. }
  1283. cur = tmp_next;
  1284. }
  1285. /* If success, increment header to be stripped later */
  1286. hdr_space += dp_f_ccmp.ic_header;
  1287. break;
  1288. case cdp_sec_type_wep40:
  1289. case cdp_sec_type_wep104:
  1290. case cdp_sec_type_wep128:
  1291. while (cur) {
  1292. tmp_next = qdf_nbuf_next(cur);
  1293. if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
  1294. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1295. QDF_TRACE_LEVEL_ERROR,
  1296. "dp_rx_defrag: WEP decap failed");
  1297. return QDF_STATUS_E_DEFRAG_ERROR;
  1298. }
  1299. cur = tmp_next;
  1300. }
  1301. /* If success, increment header to be stripped later */
  1302. hdr_space += dp_f_wep.ic_header;
  1303. break;
  1304. default:
  1305. break;
  1306. }
  1307. if (tkip_demic) {
  1308. msdu = frag_list_head;
  1309. qdf_mem_copy(key,
  1310. &peer->security[index].michael_key[0],
  1311. IEEE80211_WEP_MICLEN);
  1312. status = dp_rx_defrag_tkip_demic(key, msdu,
  1313. RX_PKT_TLVS_LEN +
  1314. hdr_space);
  1315. if (status) {
  1316. dp_rx_defrag_err(vdev, frag_list_head);
  1317. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1318. QDF_TRACE_LEVEL_ERROR,
  1319. "%s: TKIP demic failed status %d",
  1320. __func__, status);
  1321. return QDF_STATUS_E_DEFRAG_ERROR;
  1322. }
  1323. }
  1324. /* Convert the header to 802.3 header */
  1325. dp_rx_defrag_nwifi_to_8023(soc, peer, tid, frag_list_head, hdr_space);
  1326. if (qdf_nbuf_next(frag_list_head)) {
  1327. if (dp_rx_construct_fraglist(peer, tid, frag_list_head, hdr_space))
  1328. return QDF_STATUS_E_DEFRAG_ERROR;
  1329. }
  1330. return QDF_STATUS_SUCCESS;
  1331. }
  1332. /*
  1333. * dp_rx_defrag_cleanup(): Clean up activities
  1334. * @peer: Pointer to the peer
  1335. * @tid: Transmit Identifier
  1336. *
  1337. * Returns: None
  1338. */
  1339. void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
  1340. {
  1341. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1342. peer->rx_tid[tid].array;
  1343. if (rx_reorder_array_elem) {
  1344. /* Free up nbufs */
  1345. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1346. rx_reorder_array_elem->head = NULL;
  1347. rx_reorder_array_elem->tail = NULL;
  1348. } else {
  1349. dp_info("Cleanup self peer %pK and TID %u at MAC address "QDF_MAC_ADDR_FMT,
  1350. peer, tid, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  1351. }
  1352. /* Free up saved ring descriptors */
  1353. dp_rx_clear_saved_desc_info(peer, tid);
  1354. peer->rx_tid[tid].defrag_timeout_ms = 0;
  1355. peer->rx_tid[tid].curr_frag_num = 0;
  1356. peer->rx_tid[tid].curr_seq_num = 0;
  1357. }
  1358. /*
  1359. * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
  1360. * @ring_desc: Pointer to the dst ring descriptor
  1361. * @peer: Pointer to the peer
  1362. * @tid: Transmit Identifier
  1363. *
  1364. * Returns: None
  1365. */
  1366. static QDF_STATUS
  1367. dp_rx_defrag_save_info_from_ring_desc(hal_ring_desc_t ring_desc,
  1368. struct dp_rx_desc *rx_desc,
  1369. struct dp_peer *peer,
  1370. unsigned int tid)
  1371. {
  1372. void *dst_ring_desc = qdf_mem_malloc(
  1373. sizeof(struct reo_destination_ring));
  1374. if (!dst_ring_desc) {
  1375. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1376. "%s: Memory alloc failed !", __func__);
  1377. QDF_ASSERT(0);
  1378. return QDF_STATUS_E_NOMEM;
  1379. }
  1380. qdf_mem_copy(dst_ring_desc, ring_desc,
  1381. sizeof(struct reo_destination_ring));
  1382. peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1383. peer->rx_tid[tid].head_frag_desc = rx_desc;
  1384. return QDF_STATUS_SUCCESS;
  1385. }
  1386. /*
  1387. * dp_rx_defrag_store_fragment(): Store incoming fragments
  1388. * @soc: Pointer to the SOC data structure
  1389. * @ring_desc: Pointer to the ring descriptor
  1390. * @mpdu_desc_info: MPDU descriptor info
  1391. * @tid: Traffic Identifier
  1392. * @rx_desc: Pointer to rx descriptor
  1393. * @rx_bfs: Number of bfs consumed
  1394. *
  1395. * Returns: QDF_STATUS
  1396. */
  1397. static QDF_STATUS
  1398. dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1399. hal_ring_desc_t ring_desc,
  1400. union dp_rx_desc_list_elem_t **head,
  1401. union dp_rx_desc_list_elem_t **tail,
  1402. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1403. unsigned int tid, struct dp_rx_desc *rx_desc,
  1404. uint32_t *rx_bfs)
  1405. {
  1406. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1407. struct dp_pdev *pdev;
  1408. struct dp_peer *peer = NULL;
  1409. uint16_t peer_id;
  1410. uint8_t fragno, more_frag, all_frag_present = 0;
  1411. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1412. QDF_STATUS status;
  1413. struct dp_rx_tid *rx_tid;
  1414. uint8_t mpdu_sequence_control_valid;
  1415. uint8_t mpdu_frame_control_valid;
  1416. qdf_nbuf_t frag = rx_desc->nbuf;
  1417. uint32_t msdu_len;
  1418. if (qdf_nbuf_len(frag) > 0) {
  1419. dp_info("Dropping unexpected packet with skb_len: %d,"
  1420. "data len: %d, cookie: %d",
  1421. (uint32_t)qdf_nbuf_len(frag), frag->data_len,
  1422. rx_desc->cookie);
  1423. DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
  1424. goto discard_frag;
  1425. }
  1426. if (dp_rx_buffer_pool_refill(soc, frag, rx_desc->pool_id)) {
  1427. /* fragment queued back to the pool, free the link desc */
  1428. goto err_free_desc;
  1429. }
  1430. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_desc->rx_buf_start);
  1431. qdf_nbuf_set_pktlen(frag, (msdu_len + RX_PKT_TLVS_LEN));
  1432. qdf_nbuf_append_ext_list(frag, NULL, 0);
  1433. /* Check if the packet is from a valid peer */
  1434. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1435. mpdu_desc_info->peer_meta_data);
  1436. peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_RX_ERR);
  1437. if (!peer) {
  1438. /* We should not receive anything from unknown peer
  1439. * however, that might happen while we are in the monitor mode.
  1440. * We don't need to handle that here
  1441. */
  1442. dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
  1443. peer_id);
  1444. DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
  1445. goto discard_frag;
  1446. }
  1447. if (tid >= DP_MAX_TIDS) {
  1448. dp_info("TID out of bounds: %d", tid);
  1449. qdf_assert_always(0);
  1450. goto discard_frag;
  1451. }
  1452. pdev = peer->vdev->pdev;
  1453. rx_tid = &peer->rx_tid[tid];
  1454. mpdu_sequence_control_valid =
  1455. hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
  1456. rx_desc->rx_buf_start);
  1457. /* Invalid MPDU sequence control field, MPDU is of no use */
  1458. if (!mpdu_sequence_control_valid) {
  1459. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1460. "Invalid MPDU seq control field, dropping MPDU");
  1461. qdf_assert(0);
  1462. goto discard_frag;
  1463. }
  1464. mpdu_frame_control_valid =
  1465. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  1466. rx_desc->rx_buf_start);
  1467. /* Invalid frame control field */
  1468. if (!mpdu_frame_control_valid) {
  1469. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1470. "Invalid frame control field, dropping MPDU");
  1471. qdf_assert(0);
  1472. goto discard_frag;
  1473. }
  1474. /* Current mpdu sequence */
  1475. more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
  1476. /* HW does not populate the fragment number as of now
  1477. * need to get from the 802.11 header
  1478. */
  1479. fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
  1480. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1481. if (!rx_reorder_array_elem) {
  1482. dp_err_rl("Rcvd Fragmented pkt before tid setup for peer %pK",
  1483. peer);
  1484. goto discard_frag;
  1485. }
  1486. /*
  1487. * !more_frag: no more fragments to be delivered
  1488. * !frag_no: packet is not fragmented
  1489. * !rx_reorder_array_elem->head: no saved fragments so far
  1490. */
  1491. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1492. /* We should not get into this situation here.
  1493. * It means an unfragmented packet with fragment flag
  1494. * is delivered over the REO exception ring.
  1495. * Typically it follows normal rx path.
  1496. */
  1497. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1498. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1499. qdf_assert(0);
  1500. goto discard_frag;
  1501. }
  1502. /* Check if the fragment is for the same sequence or a different one */
  1503. dp_debug("rx_tid %d", tid);
  1504. if (rx_reorder_array_elem->head) {
  1505. dp_debug("rxseq %d\n", rxseq);
  1506. if (rxseq != rx_tid->curr_seq_num) {
  1507. dp_debug("mismatch cur_seq %d rxseq %d\n",
  1508. rx_tid->curr_seq_num, rxseq);
  1509. /* Drop stored fragments if out of sequence
  1510. * fragment is received
  1511. */
  1512. dp_rx_reorder_flush_frag(peer, tid);
  1513. DP_STATS_INC(soc, rx.rx_frag_oor, 1);
  1514. dp_debug("cur rxseq %d\n", rxseq);
  1515. /*
  1516. * The sequence number for this fragment becomes the
  1517. * new sequence number to be processed
  1518. */
  1519. rx_tid->curr_seq_num = rxseq;
  1520. }
  1521. } else {
  1522. dp_debug("cur rxseq %d\n", rxseq);
  1523. /* Start of a new sequence */
  1524. dp_rx_defrag_cleanup(peer, tid);
  1525. rx_tid->curr_seq_num = rxseq;
  1526. /* store PN number also */
  1527. }
  1528. /*
  1529. * If the earlier sequence was dropped, this will be the fresh start.
  1530. * Else, continue with next fragment in a given sequence
  1531. */
  1532. status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
  1533. &rx_reorder_array_elem->tail, frag,
  1534. &all_frag_present);
  1535. /*
  1536. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1537. * packet sequence has more than 6 MSDUs for some reason, we will
  1538. * have to use the next MSDU link descriptor and chain them together
  1539. * before reinjection.
  1540. * ring_desc is validated in dp_rx_err_process.
  1541. */
  1542. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1543. (rx_reorder_array_elem->head == frag)) {
  1544. status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
  1545. rx_desc, peer, tid);
  1546. if (status != QDF_STATUS_SUCCESS) {
  1547. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1548. "%s: Unable to store ring desc !", __func__);
  1549. goto discard_frag;
  1550. }
  1551. } else {
  1552. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1553. (*rx_bfs)++;
  1554. /* Return the non-head link desc */
  1555. if (dp_rx_link_desc_return(soc, ring_desc,
  1556. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1557. QDF_STATUS_SUCCESS)
  1558. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1559. "%s: Failed to return link desc", __func__);
  1560. }
  1561. if (pdev->soc->rx.flags.defrag_timeout_check)
  1562. dp_rx_defrag_waitlist_remove(peer, tid);
  1563. /* Yet to receive more fragments for this sequence number */
  1564. if (!all_frag_present) {
  1565. uint32_t now_ms =
  1566. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1567. peer->rx_tid[tid].defrag_timeout_ms =
  1568. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1569. dp_rx_defrag_waitlist_add(peer, tid);
  1570. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1571. return QDF_STATUS_SUCCESS;
  1572. }
  1573. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1574. "All fragments received for sequence: %d", rxseq);
  1575. /* Process the fragments */
  1576. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1577. rx_reorder_array_elem->tail);
  1578. if (QDF_IS_STATUS_ERROR(status)) {
  1579. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1580. "Fragment processing failed");
  1581. dp_rx_add_to_free_desc_list(head, tail,
  1582. peer->rx_tid[tid].head_frag_desc);
  1583. (*rx_bfs)++;
  1584. if (dp_rx_link_desc_return(soc,
  1585. peer->rx_tid[tid].dst_ring_desc,
  1586. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1587. QDF_STATUS_SUCCESS)
  1588. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1589. "%s: Failed to return link desc",
  1590. __func__);
  1591. dp_rx_defrag_cleanup(peer, tid);
  1592. goto end;
  1593. }
  1594. /* Re-inject the fragments back to REO for further processing */
  1595. status = dp_rx_defrag_reo_reinject(peer, tid,
  1596. rx_reorder_array_elem->head);
  1597. if (QDF_IS_STATUS_SUCCESS(status)) {
  1598. rx_reorder_array_elem->head = NULL;
  1599. rx_reorder_array_elem->tail = NULL;
  1600. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1601. "Fragmented sequence successfully reinjected");
  1602. } else {
  1603. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1604. "Fragmented sequence reinjection failed");
  1605. dp_rx_return_head_frag_desc(peer, tid);
  1606. }
  1607. dp_rx_defrag_cleanup(peer, tid);
  1608. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1609. return QDF_STATUS_SUCCESS;
  1610. discard_frag:
  1611. qdf_nbuf_free(frag);
  1612. err_free_desc:
  1613. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1614. if (dp_rx_link_desc_return(soc, ring_desc,
  1615. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1616. QDF_STATUS_SUCCESS)
  1617. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1618. "%s: Failed to return link desc", __func__);
  1619. (*rx_bfs)++;
  1620. end:
  1621. if (peer)
  1622. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1623. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1624. return QDF_STATUS_E_DEFRAG_ERROR;
  1625. }
  1626. /**
  1627. * dp_rx_frag_handle() - Handles fragmented Rx frames
  1628. *
  1629. * @soc: core txrx main context
  1630. * @ring_desc: opaque pointer to the REO error ring descriptor
  1631. * @mpdu_desc_info: MPDU descriptor information from ring descriptor
  1632. * @head: head of the local descriptor free-list
  1633. * @tail: tail of the local descriptor free-list
  1634. * @quota: No. of units (packets) that can be serviced in one shot.
  1635. *
  1636. * This function implements RX 802.11 fragmentation handling
  1637. * The handling is mostly same as legacy fragmentation handling.
  1638. * If required, this function can re-inject the frames back to
  1639. * REO ring (with proper setting to by-pass fragmentation check
  1640. * but use duplicate detection / re-ordering and routing these frames
  1641. * to a different core.
  1642. *
  1643. * Return: uint32_t: No. of elements processed
  1644. */
  1645. uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
  1646. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1647. struct dp_rx_desc *rx_desc,
  1648. uint8_t *mac_id,
  1649. uint32_t quota)
  1650. {
  1651. uint32_t rx_bufs_used = 0;
  1652. qdf_nbuf_t msdu = NULL;
  1653. uint32_t tid;
  1654. uint32_t rx_bfs = 0;
  1655. struct dp_pdev *pdev;
  1656. QDF_STATUS status = QDF_STATUS_SUCCESS;
  1657. struct rx_desc_pool *rx_desc_pool;
  1658. qdf_assert(soc);
  1659. qdf_assert(mpdu_desc_info);
  1660. qdf_assert(rx_desc);
  1661. dp_debug("Number of MSDUs to process, num_msdus: %d",
  1662. mpdu_desc_info->msdu_count);
  1663. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1664. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1665. "Not sufficient MSDUs to process");
  1666. return rx_bufs_used;
  1667. }
  1668. /* all buffers in MSDU link belong to same pdev */
  1669. pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id);
  1670. if (!pdev) {
  1671. dp_nofl_debug("pdev is null for pool_id = %d",
  1672. rx_desc->pool_id);
  1673. return rx_bufs_used;
  1674. }
  1675. *mac_id = rx_desc->pool_id;
  1676. msdu = rx_desc->nbuf;
  1677. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  1678. if (rx_desc->unmapped)
  1679. return rx_bufs_used;
  1680. dp_ipa_handle_rx_buf_smmu_mapping(soc, rx_desc->nbuf,
  1681. rx_desc_pool->buf_size,
  1682. false);
  1683. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  1684. QDF_DMA_FROM_DEVICE,
  1685. rx_desc_pool->buf_size);
  1686. rx_desc->unmapped = 1;
  1687. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1688. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
  1689. /* Process fragment-by-fragment */
  1690. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1691. &pdev->free_list_head,
  1692. &pdev->free_list_tail,
  1693. mpdu_desc_info,
  1694. tid, rx_desc, &rx_bfs);
  1695. if (rx_bfs)
  1696. rx_bufs_used += rx_bfs;
  1697. if (!QDF_IS_STATUS_SUCCESS(status))
  1698. dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1699. mpdu_desc_info->mpdu_seq,
  1700. mpdu_desc_info->msdu_count,
  1701. mpdu_desc_info->mpdu_flags);
  1702. return rx_bufs_used;
  1703. }
  1704. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1705. struct dp_peer *peer, uint16_t tid,
  1706. uint16_t rxseq, qdf_nbuf_t nbuf)
  1707. {
  1708. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1709. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1710. uint8_t all_frag_present;
  1711. uint32_t msdu_len;
  1712. QDF_STATUS status;
  1713. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1714. /*
  1715. * HW may fill in unexpected peer_id in RX PKT TLV,
  1716. * if this peer_id related peer is valid by coincidence,
  1717. * but actually this peer won't do dp_peer_rx_init(like SAP vdev
  1718. * self peer), then invalid access to rx_reorder_array_elem happened.
  1719. */
  1720. if (!rx_reorder_array_elem) {
  1721. dp_verbose_debug(
  1722. "peer id:%d mac: "QDF_MAC_ADDR_FMT" drop rx frame!",
  1723. peer->peer_id,
  1724. QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  1725. DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
  1726. qdf_nbuf_free(nbuf);
  1727. goto fail;
  1728. }
  1729. if (rx_reorder_array_elem->head &&
  1730. rxseq != rx_tid->curr_seq_num) {
  1731. /* Drop stored fragments if out of sequence
  1732. * fragment is received
  1733. */
  1734. dp_rx_reorder_flush_frag(peer, tid);
  1735. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1736. "%s: No list found for TID %d Seq# %d",
  1737. __func__, tid, rxseq);
  1738. qdf_nbuf_free(nbuf);
  1739. goto fail;
  1740. }
  1741. msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
  1742. qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
  1743. status = dp_rx_defrag_fraglist_insert(peer, tid,
  1744. &rx_reorder_array_elem->head,
  1745. &rx_reorder_array_elem->tail, nbuf,
  1746. &all_frag_present);
  1747. if (QDF_IS_STATUS_ERROR(status)) {
  1748. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1749. "%s Fragment insert failed", __func__);
  1750. goto fail;
  1751. }
  1752. if (soc->rx.flags.defrag_timeout_check)
  1753. dp_rx_defrag_waitlist_remove(peer, tid);
  1754. if (!all_frag_present) {
  1755. uint32_t now_ms =
  1756. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1757. peer->rx_tid[tid].defrag_timeout_ms =
  1758. now_ms + soc->rx.defrag.timeout_ms;
  1759. dp_rx_defrag_waitlist_add(peer, tid);
  1760. return QDF_STATUS_SUCCESS;
  1761. }
  1762. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1763. rx_reorder_array_elem->tail);
  1764. if (QDF_IS_STATUS_ERROR(status)) {
  1765. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1766. "%s Fragment processing failed", __func__);
  1767. dp_rx_return_head_frag_desc(peer, tid);
  1768. dp_rx_defrag_cleanup(peer, tid);
  1769. goto fail;
  1770. }
  1771. /* Re-inject the fragments back to REO for further processing */
  1772. status = dp_rx_defrag_reo_reinject(peer, tid,
  1773. rx_reorder_array_elem->head);
  1774. if (QDF_IS_STATUS_SUCCESS(status)) {
  1775. rx_reorder_array_elem->head = NULL;
  1776. rx_reorder_array_elem->tail = NULL;
  1777. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1778. "%s: Frag seq successfully reinjected",
  1779. __func__);
  1780. } else {
  1781. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1782. "%s: Frag seq reinjection failed", __func__);
  1783. dp_rx_return_head_frag_desc(peer, tid);
  1784. }
  1785. dp_rx_defrag_cleanup(peer, tid);
  1786. return QDF_STATUS_SUCCESS;
  1787. fail:
  1788. return QDF_STATUS_E_DEFRAG_ERROR;
  1789. }