dp_rx.c 96 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #include "dp_ipa.h"
  31. #ifdef FEATURE_WDS
  32. #include "dp_txrx_wds.h"
  33. #endif
  34. #include "dp_hist.h"
  35. #include "dp_rx_buffer_pool.h"
  36. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  37. #ifdef ATH_RX_PRI_SAVE
  38. #define DP_RX_TID_SAVE(_nbuf, _tid) \
  39. (qdf_nbuf_set_priority(_nbuf, _tid))
  40. #else
  41. #define DP_RX_TID_SAVE(_nbuf, _tid)
  42. #endif
  43. #ifdef DP_RX_DISABLE_NDI_MDNS_FORWARDING
  44. static inline
  45. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  46. {
  47. if (ta_peer->vdev->opmode == wlan_op_mode_ndi &&
  48. qdf_nbuf_is_ipv6_mdns_pkt(nbuf)) {
  49. DP_STATS_INC(ta_peer, rx.intra_bss.mdns_no_fwd, 1);
  50. return false;
  51. }
  52. return true;
  53. }
  54. #else
  55. static inline
  56. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  57. {
  58. return true;
  59. }
  60. #endif
  61. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  62. {
  63. return vdev->ap_bridge_enabled;
  64. }
  65. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  66. #ifdef DUP_RX_DESC_WAR
  67. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  68. hal_ring_handle_t hal_ring,
  69. hal_ring_desc_t ring_desc,
  70. struct dp_rx_desc *rx_desc)
  71. {
  72. void *hal_soc = soc->hal_soc;
  73. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  74. dp_rx_desc_dump(rx_desc);
  75. }
  76. #else
  77. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  78. hal_ring_handle_t hal_ring_hdl,
  79. hal_ring_desc_t ring_desc,
  80. struct dp_rx_desc *rx_desc)
  81. {
  82. hal_soc_handle_t hal_soc = soc->hal_soc;
  83. dp_rx_desc_dump(rx_desc);
  84. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  85. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  86. qdf_assert_always(0);
  87. }
  88. #endif
  89. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  90. #ifdef RX_DESC_SANITY_WAR
  91. static inline
  92. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  93. hal_ring_handle_t hal_ring_hdl,
  94. hal_ring_desc_t ring_desc,
  95. struct dp_rx_desc *rx_desc)
  96. {
  97. uint8_t return_buffer_manager;
  98. if (qdf_unlikely(!rx_desc)) {
  99. /*
  100. * This is an unlikely case where the cookie obtained
  101. * from the ring_desc is invalid and hence we are not
  102. * able to find the corresponding rx_desc
  103. */
  104. goto fail;
  105. }
  106. return_buffer_manager = hal_rx_ret_buf_manager_get(ring_desc);
  107. if (qdf_unlikely(!(return_buffer_manager == HAL_RX_BUF_RBM_SW1_BM ||
  108. return_buffer_manager == HAL_RX_BUF_RBM_SW3_BM))) {
  109. goto fail;
  110. }
  111. return QDF_STATUS_SUCCESS;
  112. fail:
  113. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  114. dp_err("Ring Desc:");
  115. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  116. ring_desc);
  117. return QDF_STATUS_E_NULL_VALUE;
  118. }
  119. #else
  120. static inline
  121. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  122. hal_ring_handle_t hal_ring_hdl,
  123. hal_ring_desc_t ring_desc,
  124. struct dp_rx_desc *rx_desc)
  125. {
  126. return QDF_STATUS_SUCCESS;
  127. }
  128. #endif
  129. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  130. /**
  131. * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
  132. *
  133. * @dp_soc: struct dp_soc *
  134. * @nbuf_frag_info_t: nbuf frag info
  135. * @dp_pdev: struct dp_pdev *
  136. * @rx_desc_pool: Rx desc pool
  137. *
  138. * Return: QDF_STATUS
  139. */
  140. #ifdef DP_RX_MON_MEM_FRAG
  141. static inline QDF_STATUS
  142. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  143. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  144. struct dp_pdev *dp_pdev,
  145. struct rx_desc_pool *rx_desc_pool)
  146. {
  147. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  148. (nbuf_frag_info_t->virt_addr).vaddr =
  149. qdf_frag_alloc(rx_desc_pool->buf_size);
  150. if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
  151. dp_err("Frag alloc failed");
  152. DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
  153. return QDF_STATUS_E_NOMEM;
  154. }
  155. ret = qdf_mem_map_page(dp_soc->osdev,
  156. (nbuf_frag_info_t->virt_addr).vaddr,
  157. QDF_DMA_FROM_DEVICE,
  158. rx_desc_pool->buf_size,
  159. &nbuf_frag_info_t->paddr);
  160. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  161. qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
  162. dp_err("Frag map failed");
  163. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  164. return QDF_STATUS_E_FAULT;
  165. }
  166. return QDF_STATUS_SUCCESS;
  167. }
  168. #else
  169. static inline QDF_STATUS
  170. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  171. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  172. struct dp_pdev *dp_pdev,
  173. struct rx_desc_pool *rx_desc_pool)
  174. {
  175. return QDF_STATUS_SUCCESS;
  176. }
  177. #endif /* DP_RX_MON_MEM_FRAG */
  178. /**
  179. * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
  180. *
  181. * @dp_soc: struct dp_soc *
  182. * @mac_id: Mac id
  183. * @num_entries_avail: num_entries_avail
  184. * @nbuf_frag_info_t: nbuf frag info
  185. * @dp_pdev: struct dp_pdev *
  186. * @rx_desc_pool: Rx desc pool
  187. *
  188. * Return: QDF_STATUS
  189. */
  190. static inline QDF_STATUS
  191. dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
  192. uint32_t mac_id,
  193. uint32_t num_entries_avail,
  194. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  195. struct dp_pdev *dp_pdev,
  196. struct rx_desc_pool *rx_desc_pool)
  197. {
  198. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  199. (nbuf_frag_info_t->virt_addr).nbuf =
  200. dp_rx_buffer_pool_nbuf_alloc(dp_soc,
  201. mac_id,
  202. rx_desc_pool,
  203. num_entries_avail);
  204. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  205. dp_err("nbuf alloc failed");
  206. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  207. return QDF_STATUS_E_NOMEM;
  208. }
  209. ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
  210. nbuf_frag_info_t);
  211. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  212. dp_rx_buffer_pool_nbuf_free(dp_soc,
  213. (nbuf_frag_info_t->virt_addr).nbuf, mac_id);
  214. dp_err("nbuf map failed");
  215. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  216. return QDF_STATUS_E_FAULT;
  217. }
  218. nbuf_frag_info_t->paddr =
  219. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  220. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  221. &nbuf_frag_info_t->paddr,
  222. rx_desc_pool);
  223. if (ret == QDF_STATUS_E_FAILURE) {
  224. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  225. return QDF_STATUS_E_ADDRNOTAVAIL;
  226. }
  227. return QDF_STATUS_SUCCESS;
  228. }
  229. /*
  230. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  231. * called during dp rx initialization
  232. * and at the end of dp_rx_process.
  233. *
  234. * @soc: core txrx main context
  235. * @mac_id: mac_id which is one of 3 mac_ids
  236. * @dp_rxdma_srng: dp rxdma circular ring
  237. * @rx_desc_pool: Pointer to free Rx descriptor pool
  238. * @num_req_buffers: number of buffer to be replenished
  239. * @desc_list: list of descs if called from dp_rx_process
  240. * or NULL during dp rx initialization or out of buffer
  241. * interrupt.
  242. * @tail: tail of descs list
  243. * @func_name: name of the caller function
  244. * Return: return success or failure
  245. */
  246. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  247. struct dp_srng *dp_rxdma_srng,
  248. struct rx_desc_pool *rx_desc_pool,
  249. uint32_t num_req_buffers,
  250. union dp_rx_desc_list_elem_t **desc_list,
  251. union dp_rx_desc_list_elem_t **tail,
  252. const char *func_name)
  253. {
  254. uint32_t num_alloc_desc;
  255. uint16_t num_desc_to_free = 0;
  256. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  257. uint32_t num_entries_avail;
  258. uint32_t count;
  259. int sync_hw_ptr = 1;
  260. struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
  261. void *rxdma_ring_entry;
  262. union dp_rx_desc_list_elem_t *next;
  263. QDF_STATUS ret;
  264. void *rxdma_srng;
  265. rxdma_srng = dp_rxdma_srng->hal_srng;
  266. if (!rxdma_srng) {
  267. dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
  268. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  269. return QDF_STATUS_E_FAILURE;
  270. }
  271. dp_rx_debug("%pK: requested %d buffers for replenish",
  272. dp_soc, num_req_buffers);
  273. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  274. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  275. rxdma_srng,
  276. sync_hw_ptr);
  277. dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
  278. dp_soc, num_entries_avail);
  279. if (!(*desc_list) && (num_entries_avail >
  280. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  281. num_req_buffers = num_entries_avail;
  282. } else if (num_entries_avail < num_req_buffers) {
  283. num_desc_to_free = num_req_buffers - num_entries_avail;
  284. num_req_buffers = num_entries_avail;
  285. }
  286. if (qdf_unlikely(!num_req_buffers)) {
  287. num_desc_to_free = num_req_buffers;
  288. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  289. goto free_descs;
  290. }
  291. /*
  292. * if desc_list is NULL, allocate the descs from freelist
  293. */
  294. if (!(*desc_list)) {
  295. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  296. rx_desc_pool,
  297. num_req_buffers,
  298. desc_list,
  299. tail);
  300. if (!num_alloc_desc) {
  301. dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
  302. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  303. num_req_buffers);
  304. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  305. return QDF_STATUS_E_NOMEM;
  306. }
  307. dp_rx_debug("%pK: %d rx desc allocated", dp_soc, num_alloc_desc);
  308. num_req_buffers = num_alloc_desc;
  309. }
  310. count = 0;
  311. dp_rx_refill_buff_pool_lock(dp_soc);
  312. while (count < num_req_buffers) {
  313. /* Flag is set while pdev rx_desc_pool initialization */
  314. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  315. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  316. &nbuf_frag_info,
  317. dp_pdev,
  318. rx_desc_pool);
  319. else
  320. ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
  321. mac_id,
  322. num_entries_avail, &nbuf_frag_info,
  323. dp_pdev, rx_desc_pool);
  324. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  325. if (qdf_unlikely(ret == QDF_STATUS_E_FAULT))
  326. continue;
  327. break;
  328. }
  329. count++;
  330. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  331. rxdma_srng);
  332. qdf_assert_always(rxdma_ring_entry);
  333. next = (*desc_list)->next;
  334. /* Flag is set while pdev rx_desc_pool initialization */
  335. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  336. dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
  337. &nbuf_frag_info);
  338. else
  339. dp_rx_desc_prep(&((*desc_list)->rx_desc),
  340. &nbuf_frag_info);
  341. /* rx_desc.in_use should be zero at this time*/
  342. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  343. (*desc_list)->rx_desc.in_use = 1;
  344. (*desc_list)->rx_desc.in_err_state = 0;
  345. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  346. func_name, RX_DESC_REPLENISHED);
  347. dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
  348. nbuf_frag_info.virt_addr.nbuf,
  349. (unsigned long long)(nbuf_frag_info.paddr),
  350. (*desc_list)->rx_desc.cookie);
  351. hal_rxdma_buff_addr_info_set(rxdma_ring_entry,
  352. nbuf_frag_info.paddr,
  353. (*desc_list)->rx_desc.cookie,
  354. rx_desc_pool->owner);
  355. *desc_list = next;
  356. }
  357. dp_rx_refill_buff_pool_unlock(dp_soc);
  358. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  359. dp_rx_schedule_refill_thread(dp_soc);
  360. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  361. count, num_desc_to_free);
  362. /* No need to count the number of bytes received during replenish.
  363. * Therefore set replenish.pkts.bytes as 0.
  364. */
  365. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  366. free_descs:
  367. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  368. /*
  369. * add any available free desc back to the free list
  370. */
  371. if (*desc_list)
  372. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  373. mac_id, rx_desc_pool);
  374. return QDF_STATUS_SUCCESS;
  375. }
  376. /*
  377. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  378. * pkts to RAW mode simulation to
  379. * decapsulate the pkt.
  380. *
  381. * @vdev: vdev on which RAW mode is enabled
  382. * @nbuf_list: list of RAW pkts to process
  383. * @peer: peer object from which the pkt is rx
  384. *
  385. * Return: void
  386. */
  387. void
  388. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  389. struct dp_peer *peer)
  390. {
  391. qdf_nbuf_t deliver_list_head = NULL;
  392. qdf_nbuf_t deliver_list_tail = NULL;
  393. qdf_nbuf_t nbuf;
  394. nbuf = nbuf_list;
  395. while (nbuf) {
  396. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  397. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  398. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  399. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  400. /*
  401. * reset the chfrag_start and chfrag_end bits in nbuf cb
  402. * as this is a non-amsdu pkt and RAW mode simulation expects
  403. * these bit s to be 0 for non-amsdu pkt.
  404. */
  405. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  406. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  407. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  408. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  409. }
  410. nbuf = next;
  411. }
  412. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  413. &deliver_list_tail, peer->mac_addr.raw);
  414. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  415. }
  416. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  417. #ifndef FEATURE_WDS
  418. static void
  419. dp_rx_da_learn(struct dp_soc *soc,
  420. uint8_t *rx_tlv_hdr,
  421. struct dp_peer *ta_peer,
  422. qdf_nbuf_t nbuf)
  423. {
  424. }
  425. #endif
  426. /*
  427. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  428. *
  429. * @soc: core txrx main context
  430. * @ta_peer : source peer entry
  431. * @rx_tlv_hdr : start address of rx tlvs
  432. * @nbuf : nbuf that has to be intrabss forwarded
  433. *
  434. * Return: bool: true if it is forwarded else false
  435. */
  436. static bool
  437. dp_rx_intrabss_fwd(struct dp_soc *soc,
  438. struct dp_peer *ta_peer,
  439. uint8_t *rx_tlv_hdr,
  440. qdf_nbuf_t nbuf,
  441. struct hal_rx_msdu_metadata msdu_metadata)
  442. {
  443. uint16_t len;
  444. uint8_t is_frag;
  445. uint16_t da_peer_id = HTT_INVALID_PEER;
  446. struct dp_peer *da_peer = NULL;
  447. bool is_da_bss_peer = false;
  448. struct dp_ast_entry *ast_entry;
  449. qdf_nbuf_t nbuf_copy;
  450. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  451. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  452. struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats.
  453. tid_stats.tid_rx_stats[ring_id][tid];
  454. /* check if the destination peer is available in peer table
  455. * and also check if the source peer and destination peer
  456. * belong to the same vap and destination peer is not bss peer.
  457. */
  458. if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
  459. ast_entry = soc->ast_table[msdu_metadata.da_idx];
  460. if (!ast_entry)
  461. return false;
  462. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  463. ast_entry->is_active = TRUE;
  464. return false;
  465. }
  466. da_peer_id = ast_entry->peer_id;
  467. if (da_peer_id == HTT_INVALID_PEER)
  468. return false;
  469. /* TA peer cannot be same as peer(DA) on which AST is present
  470. * this indicates a change in topology and that AST entries
  471. * are yet to be updated.
  472. */
  473. if (da_peer_id == ta_peer->peer_id)
  474. return false;
  475. if (ast_entry->vdev_id != ta_peer->vdev->vdev_id)
  476. return false;
  477. da_peer = dp_peer_get_ref_by_id(soc, da_peer_id,
  478. DP_MOD_ID_RX);
  479. if (!da_peer)
  480. return false;
  481. is_da_bss_peer = da_peer->bss_peer;
  482. dp_peer_unref_delete(da_peer, DP_MOD_ID_RX);
  483. if (!is_da_bss_peer) {
  484. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  485. is_frag = qdf_nbuf_is_frag(nbuf);
  486. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  487. /* If the source or destination peer in the isolation
  488. * list then dont forward instead push to bridge stack.
  489. */
  490. if (dp_get_peer_isolation(ta_peer) ||
  491. dp_get_peer_isolation(da_peer))
  492. return false;
  493. /* linearize the nbuf just before we send to
  494. * dp_tx_send()
  495. */
  496. if (qdf_unlikely(is_frag)) {
  497. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  498. return false;
  499. nbuf = qdf_nbuf_unshare(nbuf);
  500. if (!nbuf) {
  501. DP_STATS_INC_PKT(ta_peer,
  502. rx.intra_bss.fail,
  503. 1,
  504. len);
  505. /* return true even though the pkt is
  506. * not forwarded. Basically skb_unshare
  507. * failed and we want to continue with
  508. * next nbuf.
  509. */
  510. tid_stats->fail_cnt[INTRABSS_DROP]++;
  511. return true;
  512. }
  513. }
  514. if (!dp_tx_send((struct cdp_soc_t *)soc,
  515. ta_peer->vdev->vdev_id, nbuf)) {
  516. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  517. len);
  518. return true;
  519. } else {
  520. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  521. len);
  522. tid_stats->fail_cnt[INTRABSS_DROP]++;
  523. return false;
  524. }
  525. }
  526. }
  527. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  528. * source, then clone the pkt and send the cloned pkt for
  529. * intra BSS forwarding and original pkt up the network stack
  530. * Note: how do we handle multicast pkts. do we forward
  531. * all multicast pkts as is or let a higher layer module
  532. * like igmpsnoop decide whether to forward or not with
  533. * Mcast enhancement.
  534. */
  535. else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
  536. !ta_peer->bss_peer))) {
  537. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  538. goto end;
  539. /* If the source peer in the isolation list
  540. * then dont forward instead push to bridge stack
  541. */
  542. if (dp_get_peer_isolation(ta_peer))
  543. goto end;
  544. nbuf_copy = qdf_nbuf_copy(nbuf);
  545. if (!nbuf_copy)
  546. goto end;
  547. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  548. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  549. /* Set cb->ftype to intrabss FWD */
  550. qdf_nbuf_set_tx_ftype(nbuf_copy, CB_FTYPE_INTRABSS_FWD);
  551. if (dp_tx_send((struct cdp_soc_t *)soc,
  552. ta_peer->vdev->vdev_id, nbuf_copy)) {
  553. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  554. tid_stats->fail_cnt[INTRABSS_DROP]++;
  555. qdf_nbuf_free(nbuf_copy);
  556. } else {
  557. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  558. tid_stats->intrabss_cnt++;
  559. }
  560. }
  561. end:
  562. /* return false as we have to still send the original pkt
  563. * up the stack
  564. */
  565. return false;
  566. }
  567. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  568. #ifdef MESH_MODE_SUPPORT
  569. /**
  570. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  571. *
  572. * @vdev: DP Virtual device handle
  573. * @nbuf: Buffer pointer
  574. * @rx_tlv_hdr: start of rx tlv header
  575. * @peer: pointer to peer
  576. *
  577. * This function allocated memory for mesh receive stats and fill the
  578. * required stats. Stores the memory address in skb cb.
  579. *
  580. * Return: void
  581. */
  582. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  583. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  584. {
  585. struct mesh_recv_hdr_s *rx_info = NULL;
  586. uint32_t pkt_type;
  587. uint32_t nss;
  588. uint32_t rate_mcs;
  589. uint32_t bw;
  590. uint8_t primary_chan_num;
  591. uint32_t center_chan_freq;
  592. struct dp_soc *soc;
  593. /* fill recv mesh stats */
  594. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  595. /* upper layers are resposible to free this memory */
  596. if (!rx_info) {
  597. dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
  598. vdev->pdev->soc);
  599. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  600. return;
  601. }
  602. rx_info->rs_flags = MESH_RXHDR_VER1;
  603. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  604. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  605. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  606. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  607. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  608. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  609. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  610. if (vdev->osif_get_key)
  611. vdev->osif_get_key(vdev->osif_vdev,
  612. &rx_info->rs_decryptkey[0],
  613. &peer->mac_addr.raw[0],
  614. rx_info->rs_keyix);
  615. }
  616. rx_info->rs_snr = peer->stats.rx.snr;
  617. rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
  618. soc = vdev->pdev->soc;
  619. primary_chan_num = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  620. center_chan_freq = hal_rx_msdu_start_get_freq(rx_tlv_hdr) >> 16;
  621. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  622. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  623. soc->ctrl_psoc,
  624. vdev->pdev->pdev_id,
  625. center_chan_freq);
  626. }
  627. rx_info->rs_channel = primary_chan_num;
  628. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  629. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  630. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  631. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  632. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  633. (bw << 24);
  634. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  635. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  636. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
  637. rx_info->rs_flags,
  638. rx_info->rs_rssi,
  639. rx_info->rs_channel,
  640. rx_info->rs_ratephy1,
  641. rx_info->rs_keyix,
  642. rx_info->rs_snr);
  643. }
  644. /**
  645. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  646. *
  647. * @vdev: DP Virtual device handle
  648. * @nbuf: Buffer pointer
  649. * @rx_tlv_hdr: start of rx tlv header
  650. *
  651. * This checks if the received packet is matching any filter out
  652. * catogery and and drop the packet if it matches.
  653. *
  654. * Return: status(0 indicates drop, 1 indicate to no drop)
  655. */
  656. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  657. uint8_t *rx_tlv_hdr)
  658. {
  659. union dp_align_mac_addr mac_addr;
  660. struct dp_soc *soc = vdev->pdev->soc;
  661. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  662. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  663. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  664. rx_tlv_hdr))
  665. return QDF_STATUS_SUCCESS;
  666. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  667. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  668. rx_tlv_hdr))
  669. return QDF_STATUS_SUCCESS;
  670. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  671. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  672. rx_tlv_hdr) &&
  673. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  674. rx_tlv_hdr))
  675. return QDF_STATUS_SUCCESS;
  676. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  677. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  678. rx_tlv_hdr,
  679. &mac_addr.raw[0]))
  680. return QDF_STATUS_E_FAILURE;
  681. if (!qdf_mem_cmp(&mac_addr.raw[0],
  682. &vdev->mac_addr.raw[0],
  683. QDF_MAC_ADDR_SIZE))
  684. return QDF_STATUS_SUCCESS;
  685. }
  686. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  687. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  688. rx_tlv_hdr,
  689. &mac_addr.raw[0]))
  690. return QDF_STATUS_E_FAILURE;
  691. if (!qdf_mem_cmp(&mac_addr.raw[0],
  692. &vdev->mac_addr.raw[0],
  693. QDF_MAC_ADDR_SIZE))
  694. return QDF_STATUS_SUCCESS;
  695. }
  696. }
  697. return QDF_STATUS_E_FAILURE;
  698. }
  699. #else
  700. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  701. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  702. {
  703. }
  704. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  705. uint8_t *rx_tlv_hdr)
  706. {
  707. return QDF_STATUS_E_FAILURE;
  708. }
  709. #endif
  710. #ifdef FEATURE_NAC_RSSI
  711. /**
  712. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  713. * clients
  714. * @pdev: DP pdev handle
  715. * @rx_pkt_hdr: Rx packet Header
  716. *
  717. * return: dp_vdev*
  718. */
  719. static
  720. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  721. uint8_t *rx_pkt_hdr)
  722. {
  723. struct ieee80211_frame *wh;
  724. struct dp_neighbour_peer *peer = NULL;
  725. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  726. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  727. return NULL;
  728. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  729. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  730. neighbour_peer_list_elem) {
  731. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  732. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  733. dp_rx_debug("%pK: NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x",
  734. pdev->soc,
  735. peer->neighbour_peers_macaddr.raw[0],
  736. peer->neighbour_peers_macaddr.raw[1],
  737. peer->neighbour_peers_macaddr.raw[2],
  738. peer->neighbour_peers_macaddr.raw[3],
  739. peer->neighbour_peers_macaddr.raw[4],
  740. peer->neighbour_peers_macaddr.raw[5]);
  741. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  742. return pdev->monitor_vdev;
  743. }
  744. }
  745. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  746. return NULL;
  747. }
  748. /**
  749. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  750. * @soc: DP SOC handle
  751. * @mpdu: mpdu for which peer is invalid
  752. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  753. * pool_id has same mapping)
  754. *
  755. * return: integer type
  756. */
  757. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  758. uint8_t mac_id)
  759. {
  760. struct dp_invalid_peer_msg msg;
  761. struct dp_vdev *vdev = NULL;
  762. struct dp_pdev *pdev = NULL;
  763. struct ieee80211_frame *wh;
  764. qdf_nbuf_t curr_nbuf, next_nbuf;
  765. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  766. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  767. rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  768. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  769. dp_rx_debug("%pK: Drop decapped frames", soc);
  770. goto free;
  771. }
  772. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  773. if (!DP_FRAME_IS_DATA(wh)) {
  774. dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
  775. goto free;
  776. }
  777. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  778. dp_rx_err("%pK: Invalid nbuf length", soc);
  779. goto free;
  780. }
  781. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  782. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  783. dp_rx_err("%pK: PDEV %s", soc, !pdev ? "not found" : "down");
  784. goto free;
  785. }
  786. if (pdev->filter_neighbour_peers) {
  787. /* Next Hop scenario not yet handle */
  788. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  789. if (vdev) {
  790. dp_rx_mon_deliver(soc, pdev->pdev_id,
  791. pdev->invalid_peer_head_msdu,
  792. pdev->invalid_peer_tail_msdu);
  793. pdev->invalid_peer_head_msdu = NULL;
  794. pdev->invalid_peer_tail_msdu = NULL;
  795. return 0;
  796. }
  797. }
  798. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  799. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  800. QDF_MAC_ADDR_SIZE) == 0) {
  801. goto out;
  802. }
  803. }
  804. if (!vdev) {
  805. dp_rx_err("%pK: VDEV not found", soc);
  806. goto free;
  807. }
  808. out:
  809. msg.wh = wh;
  810. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  811. msg.nbuf = mpdu;
  812. msg.vdev_id = vdev->vdev_id;
  813. /*
  814. * NOTE: Only valid for HKv1.
  815. * If smart monitor mode is enabled on RE, we are getting invalid
  816. * peer frames with RA as STA mac of RE and the TA not matching
  817. * with any NAC list or the the BSSID.Such frames need to dropped
  818. * in order to avoid HM_WDS false addition.
  819. */
  820. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
  821. if (!soc->hw_nac_monitor_support &&
  822. pdev->filter_neighbour_peers &&
  823. vdev->opmode == wlan_op_mode_sta) {
  824. dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
  825. soc, wh->i_addr1);
  826. goto free;
  827. }
  828. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  829. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  830. pdev->pdev_id, &msg);
  831. }
  832. free:
  833. /* Drop and free packet */
  834. curr_nbuf = mpdu;
  835. while (curr_nbuf) {
  836. next_nbuf = qdf_nbuf_next(curr_nbuf);
  837. qdf_nbuf_free(curr_nbuf);
  838. curr_nbuf = next_nbuf;
  839. }
  840. return 0;
  841. }
  842. /**
  843. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  844. * @soc: DP SOC handle
  845. * @mpdu: mpdu for which peer is invalid
  846. * @mpdu_done: if an mpdu is completed
  847. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  848. * pool_id has same mapping)
  849. *
  850. * return: integer type
  851. */
  852. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  853. qdf_nbuf_t mpdu, bool mpdu_done,
  854. uint8_t mac_id)
  855. {
  856. /* Only trigger the process when mpdu is completed */
  857. if (mpdu_done)
  858. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  859. }
  860. #else
  861. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  862. uint8_t mac_id)
  863. {
  864. qdf_nbuf_t curr_nbuf, next_nbuf;
  865. struct dp_pdev *pdev;
  866. struct dp_vdev *vdev = NULL;
  867. struct ieee80211_frame *wh;
  868. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  869. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  870. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  871. if (!DP_FRAME_IS_DATA(wh)) {
  872. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  873. "only for data frames");
  874. goto free;
  875. }
  876. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  877. dp_rx_err("%pK: Invalid nbuf length", soc);
  878. goto free;
  879. }
  880. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  881. if (!pdev) {
  882. dp_rx_err("%pK: PDEV not found", soc);
  883. goto free;
  884. }
  885. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  886. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  887. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  888. QDF_MAC_ADDR_SIZE) == 0) {
  889. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  890. goto out;
  891. }
  892. }
  893. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  894. if (!vdev) {
  895. dp_rx_err("%pK: VDEV not found", soc);
  896. goto free;
  897. }
  898. out:
  899. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  900. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  901. free:
  902. /* reset the head and tail pointers */
  903. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  904. if (pdev) {
  905. pdev->invalid_peer_head_msdu = NULL;
  906. pdev->invalid_peer_tail_msdu = NULL;
  907. }
  908. /* Drop and free packet */
  909. curr_nbuf = mpdu;
  910. while (curr_nbuf) {
  911. next_nbuf = qdf_nbuf_next(curr_nbuf);
  912. qdf_nbuf_free(curr_nbuf);
  913. curr_nbuf = next_nbuf;
  914. }
  915. /* Reset the head and tail pointers */
  916. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  917. if (pdev) {
  918. pdev->invalid_peer_head_msdu = NULL;
  919. pdev->invalid_peer_tail_msdu = NULL;
  920. }
  921. return 0;
  922. }
  923. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  924. qdf_nbuf_t mpdu, bool mpdu_done,
  925. uint8_t mac_id)
  926. {
  927. /* Process the nbuf */
  928. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  929. }
  930. #endif
  931. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  932. #ifdef RECEIVE_OFFLOAD
  933. /**
  934. * dp_rx_print_offload_info() - Print offload info from RX TLV
  935. * @soc: dp soc handle
  936. * @rx_tlv: RX TLV for which offload information is to be printed
  937. *
  938. * Return: None
  939. */
  940. static void dp_rx_print_offload_info(struct dp_soc *soc, uint8_t *rx_tlv)
  941. {
  942. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  943. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  944. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  945. dp_verbose_debug("chksum 0x%x", hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  946. rx_tlv));
  947. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  948. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  949. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  950. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  951. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  952. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  953. dp_verbose_debug("---------------------------------------------------------");
  954. }
  955. /**
  956. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  957. * @soc: DP SOC handle
  958. * @rx_tlv: RX TLV received for the msdu
  959. * @msdu: msdu for which GRO info needs to be filled
  960. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  961. *
  962. * Return: None
  963. */
  964. static
  965. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  966. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  967. {
  968. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  969. return;
  970. /* Filling up RX offload info only for TCP packets */
  971. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  972. return;
  973. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  974. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  975. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  976. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  977. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  978. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  979. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  980. rx_tlv);
  981. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  982. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  983. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  984. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  985. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  986. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  987. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  988. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  989. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  990. HAL_RX_TLV_GET_IPV6(rx_tlv);
  991. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  992. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  993. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  994. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  995. dp_rx_print_offload_info(soc, rx_tlv);
  996. }
  997. #else
  998. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  999. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  1000. {
  1001. }
  1002. #endif /* RECEIVE_OFFLOAD */
  1003. /**
  1004. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  1005. *
  1006. * @nbuf: pointer to msdu.
  1007. * @mpdu_len: mpdu length
  1008. *
  1009. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  1010. */
  1011. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  1012. {
  1013. bool last_nbuf;
  1014. if (*mpdu_len > (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  1015. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  1016. last_nbuf = false;
  1017. } else {
  1018. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  1019. last_nbuf = true;
  1020. }
  1021. *mpdu_len -= (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  1022. return last_nbuf;
  1023. }
  1024. /**
  1025. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  1026. * multiple nbufs.
  1027. * @soc: DP SOC handle
  1028. * @nbuf: pointer to the first msdu of an amsdu.
  1029. *
  1030. * This function implements the creation of RX frag_list for cases
  1031. * where an MSDU is spread across multiple nbufs.
  1032. *
  1033. * Return: returns the head nbuf which contains complete frag_list.
  1034. */
  1035. qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1036. {
  1037. qdf_nbuf_t parent, frag_list, next = NULL;
  1038. uint16_t frag_list_len = 0;
  1039. uint16_t mpdu_len;
  1040. bool last_nbuf;
  1041. /*
  1042. * Use msdu len got from REO entry descriptor instead since
  1043. * there is case the RX PKT TLV is corrupted while msdu_len
  1044. * from REO descriptor is right for non-raw RX scatter msdu.
  1045. */
  1046. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1047. /*
  1048. * this is a case where the complete msdu fits in one single nbuf.
  1049. * in this case HW sets both start and end bit and we only need to
  1050. * reset these bits for RAW mode simulator to decap the pkt
  1051. */
  1052. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  1053. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  1054. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  1055. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1056. return nbuf;
  1057. }
  1058. /*
  1059. * This is a case where we have multiple msdus (A-MSDU) spread across
  1060. * multiple nbufs. here we create a fraglist out of these nbufs.
  1061. *
  1062. * the moment we encounter a nbuf with continuation bit set we
  1063. * know for sure we have an MSDU which is spread across multiple
  1064. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  1065. */
  1066. parent = nbuf;
  1067. frag_list = nbuf->next;
  1068. nbuf = nbuf->next;
  1069. /*
  1070. * set the start bit in the first nbuf we encounter with continuation
  1071. * bit set. This has the proper mpdu length set as it is the first
  1072. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  1073. * nbufs will form the frag_list of the parent nbuf.
  1074. */
  1075. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1076. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  1077. /*
  1078. * HW issue: MSDU cont bit is set but reported MPDU length can fit
  1079. * in to single buffer
  1080. *
  1081. * Increment error stats and avoid SG list creation
  1082. */
  1083. if (last_nbuf) {
  1084. DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
  1085. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  1086. return parent;
  1087. }
  1088. /*
  1089. * this is where we set the length of the fragments which are
  1090. * associated to the parent nbuf. We iterate through the frag_list
  1091. * till we hit the last_nbuf of the list.
  1092. */
  1093. do {
  1094. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  1095. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1096. frag_list_len += qdf_nbuf_len(nbuf);
  1097. if (last_nbuf) {
  1098. next = nbuf->next;
  1099. nbuf->next = NULL;
  1100. break;
  1101. }
  1102. nbuf = nbuf->next;
  1103. } while (!last_nbuf);
  1104. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1105. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1106. parent->next = next;
  1107. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  1108. return parent;
  1109. }
  1110. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1111. #ifdef QCA_PEER_EXT_STATS
  1112. /*
  1113. * dp_rx_compute_tid_delay - Computer per TID delay stats
  1114. * @peer: DP soc context
  1115. * @nbuf: NBuffer
  1116. *
  1117. * Return: Void
  1118. */
  1119. void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  1120. qdf_nbuf_t nbuf)
  1121. {
  1122. struct cdp_delay_rx_stats *rx_delay = &stats->rx_delay;
  1123. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1124. dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
  1125. }
  1126. #endif /* QCA_PEER_EXT_STATS */
  1127. /**
  1128. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1129. * to pass in correct fields
  1130. *
  1131. * @vdev: pdev handle
  1132. * @tx_desc: tx descriptor
  1133. * @tid: tid value
  1134. * Return: none
  1135. */
  1136. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1137. {
  1138. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1139. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1140. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1141. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1142. uint32_t interframe_delay =
  1143. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1144. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  1145. CDP_DELAY_STATS_REAP_STACK, ring_id);
  1146. /*
  1147. * Update interframe delay stats calculated at deliver_data_ol point.
  1148. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1149. * interframe delay will not be calculate correctly for 1st frame.
  1150. * On the other side, this will help in avoiding extra per packet check
  1151. * of vdev->prev_rx_deliver_tstamp.
  1152. */
  1153. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  1154. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  1155. vdev->prev_rx_deliver_tstamp = current_ts;
  1156. }
  1157. /**
  1158. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1159. * @pdev: dp pdev reference
  1160. * @buf_list: buffer list to be dropepd
  1161. *
  1162. * Return: int (number of bufs dropped)
  1163. */
  1164. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1165. qdf_nbuf_t buf_list)
  1166. {
  1167. struct cdp_tid_rx_stats *stats = NULL;
  1168. uint8_t tid = 0, ring_id = 0;
  1169. int num_dropped = 0;
  1170. qdf_nbuf_t buf, next_buf;
  1171. buf = buf_list;
  1172. while (buf) {
  1173. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1174. next_buf = qdf_nbuf_queue_next(buf);
  1175. tid = qdf_nbuf_get_tid_val(buf);
  1176. if (qdf_likely(pdev)) {
  1177. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1178. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1179. stats->delivered_to_stack--;
  1180. }
  1181. qdf_nbuf_free(buf);
  1182. buf = next_buf;
  1183. num_dropped++;
  1184. }
  1185. return num_dropped;
  1186. }
  1187. #ifdef QCA_SUPPORT_WDS_EXTENDED
  1188. /**
  1189. * dp_rx_wds_ext() - Make different lists for 4-address and 3-address frames
  1190. * @nbuf_head: skb list head
  1191. * @vdev: vdev
  1192. * @peer: peer
  1193. * @peer_id: peer id of new received frame
  1194. * @vdev_id: vdev_id of new received frame
  1195. *
  1196. * Return: true if peer_ids are different.
  1197. */
  1198. static inline bool
  1199. dp_rx_is_list_ready(qdf_nbuf_t nbuf_head,
  1200. struct dp_vdev *vdev,
  1201. struct dp_peer *peer,
  1202. uint16_t peer_id,
  1203. uint8_t vdev_id)
  1204. {
  1205. if (nbuf_head && peer && (peer->peer_id != peer_id))
  1206. return true;
  1207. return false;
  1208. }
  1209. /**
  1210. * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
  1211. * @soc: core txrx main context
  1212. * @vdev: vdev
  1213. * @peer: peer
  1214. * @nbuf_head: skb list head
  1215. *
  1216. * Return: true if packet is delivered to netdev per STA.
  1217. */
  1218. static inline bool
  1219. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1220. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1221. {
  1222. /*
  1223. * When extended WDS is disabled, frames are sent to AP netdevice.
  1224. */
  1225. if (qdf_likely(!vdev->wds_ext_enabled))
  1226. return false;
  1227. /*
  1228. * There can be 2 cases:
  1229. * 1. Send frame to parent netdev if its not for netdev per STA
  1230. * 2. If frame is meant for netdev per STA:
  1231. * a. Send frame to appropriate netdev using registered fp.
  1232. * b. If fp is NULL, drop the frames.
  1233. */
  1234. if (!peer->wds_ext.init)
  1235. return false;
  1236. if (peer->osif_rx)
  1237. peer->osif_rx(peer->wds_ext.osif_peer, nbuf_head);
  1238. else
  1239. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1240. return true;
  1241. }
  1242. #else
  1243. static inline bool
  1244. dp_rx_is_list_ready(qdf_nbuf_t nbuf_head,
  1245. struct dp_vdev *vdev,
  1246. struct dp_peer *peer,
  1247. uint16_t peer_id,
  1248. uint8_t vdev_id)
  1249. {
  1250. if (nbuf_head && vdev && (vdev->vdev_id != vdev_id))
  1251. return true;
  1252. return false;
  1253. }
  1254. static inline bool
  1255. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1256. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1257. {
  1258. return false;
  1259. }
  1260. #endif
  1261. #ifdef PEER_CACHE_RX_PKTS
  1262. /**
  1263. * dp_rx_flush_rx_cached() - flush cached rx frames
  1264. * @peer: peer
  1265. * @drop: flag to drop frames or forward to net stack
  1266. *
  1267. * Return: None
  1268. */
  1269. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1270. {
  1271. struct dp_peer_cached_bufq *bufqi;
  1272. struct dp_rx_cached_buf *cache_buf = NULL;
  1273. ol_txrx_rx_fp data_rx = NULL;
  1274. int num_buff_elem;
  1275. QDF_STATUS status;
  1276. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1277. qdf_atomic_dec(&peer->flush_in_progress);
  1278. return;
  1279. }
  1280. qdf_spin_lock_bh(&peer->peer_info_lock);
  1281. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1282. data_rx = peer->vdev->osif_rx;
  1283. else
  1284. drop = true;
  1285. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1286. bufqi = &peer->bufq_info;
  1287. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1288. qdf_list_remove_front(&bufqi->cached_bufq,
  1289. (qdf_list_node_t **)&cache_buf);
  1290. while (cache_buf) {
  1291. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1292. cache_buf->buf);
  1293. bufqi->entries -= num_buff_elem;
  1294. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1295. if (drop) {
  1296. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1297. cache_buf->buf);
  1298. } else {
  1299. /* Flush the cached frames to OSIF DEV */
  1300. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1301. if (status != QDF_STATUS_SUCCESS)
  1302. bufqi->dropped = dp_rx_drop_nbuf_list(
  1303. peer->vdev->pdev,
  1304. cache_buf->buf);
  1305. }
  1306. qdf_mem_free(cache_buf);
  1307. cache_buf = NULL;
  1308. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1309. qdf_list_remove_front(&bufqi->cached_bufq,
  1310. (qdf_list_node_t **)&cache_buf);
  1311. }
  1312. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1313. qdf_atomic_dec(&peer->flush_in_progress);
  1314. }
  1315. /**
  1316. * dp_rx_enqueue_rx() - cache rx frames
  1317. * @peer: peer
  1318. * @rx_buf_list: cache buffer list
  1319. *
  1320. * Return: None
  1321. */
  1322. static QDF_STATUS
  1323. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1324. {
  1325. struct dp_rx_cached_buf *cache_buf;
  1326. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1327. int num_buff_elem;
  1328. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1329. bufqi->dropped);
  1330. if (!peer->valid) {
  1331. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1332. rx_buf_list);
  1333. return QDF_STATUS_E_INVAL;
  1334. }
  1335. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1336. if (bufqi->entries >= bufqi->thresh) {
  1337. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1338. rx_buf_list);
  1339. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1340. return QDF_STATUS_E_RESOURCES;
  1341. }
  1342. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1343. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1344. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1345. if (!cache_buf) {
  1346. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1347. "Failed to allocate buf to cache rx frames");
  1348. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1349. rx_buf_list);
  1350. return QDF_STATUS_E_NOMEM;
  1351. }
  1352. cache_buf->buf = rx_buf_list;
  1353. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1354. qdf_list_insert_back(&bufqi->cached_bufq,
  1355. &cache_buf->node);
  1356. bufqi->entries += num_buff_elem;
  1357. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1358. return QDF_STATUS_SUCCESS;
  1359. }
  1360. static inline
  1361. bool dp_rx_is_peer_cache_bufq_supported(void)
  1362. {
  1363. return true;
  1364. }
  1365. #else
  1366. static inline
  1367. bool dp_rx_is_peer_cache_bufq_supported(void)
  1368. {
  1369. return false;
  1370. }
  1371. static inline QDF_STATUS
  1372. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1373. {
  1374. return QDF_STATUS_SUCCESS;
  1375. }
  1376. #endif
  1377. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1378. /**
  1379. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1380. * using the appropriate call back functions.
  1381. * @soc: soc
  1382. * @vdev: vdev
  1383. * @peer: peer
  1384. * @nbuf_head: skb list head
  1385. * @nbuf_tail: skb list tail
  1386. *
  1387. * Return: None
  1388. */
  1389. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1390. struct dp_vdev *vdev,
  1391. struct dp_peer *peer,
  1392. qdf_nbuf_t nbuf_head)
  1393. {
  1394. if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
  1395. peer, nbuf_head)))
  1396. return;
  1397. /* Function pointer initialized only when FISA is enabled */
  1398. if (vdev->osif_fisa_rx)
  1399. /* on failure send it via regular path */
  1400. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1401. else
  1402. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1403. }
  1404. #else
  1405. /**
  1406. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1407. * using the appropriate call back functions.
  1408. * @soc: soc
  1409. * @vdev: vdev
  1410. * @peer: peer
  1411. * @nbuf_head: skb list head
  1412. * @nbuf_tail: skb list tail
  1413. *
  1414. * Check the return status of the call back function and drop
  1415. * the packets if the return status indicates a failure.
  1416. *
  1417. * Return: None
  1418. */
  1419. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1420. struct dp_vdev *vdev,
  1421. struct dp_peer *peer,
  1422. qdf_nbuf_t nbuf_head)
  1423. {
  1424. int num_nbuf = 0;
  1425. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1426. /* Function pointer initialized only when FISA is enabled */
  1427. if (vdev->osif_fisa_rx)
  1428. /* on failure send it via regular path */
  1429. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1430. else if (vdev->osif_rx)
  1431. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1432. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1433. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1434. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1435. if (peer)
  1436. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1437. }
  1438. }
  1439. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1440. void dp_rx_deliver_to_stack(struct dp_soc *soc,
  1441. struct dp_vdev *vdev,
  1442. struct dp_peer *peer,
  1443. qdf_nbuf_t nbuf_head,
  1444. qdf_nbuf_t nbuf_tail)
  1445. {
  1446. int num_nbuf = 0;
  1447. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1448. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1449. /*
  1450. * This is a special case where vdev is invalid,
  1451. * so we cannot know the pdev to which this packet
  1452. * belonged. Hence we update the soc rx error stats.
  1453. */
  1454. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1455. return;
  1456. }
  1457. /*
  1458. * highly unlikely to have a vdev without a registered rx
  1459. * callback function. if so let us free the nbuf_list.
  1460. */
  1461. if (qdf_unlikely(!vdev->osif_rx)) {
  1462. if (peer && dp_rx_is_peer_cache_bufq_supported()) {
  1463. dp_rx_enqueue_rx(peer, nbuf_head);
  1464. } else {
  1465. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1466. nbuf_head);
  1467. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1468. }
  1469. return;
  1470. }
  1471. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1472. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1473. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1474. &nbuf_tail, peer->mac_addr.raw);
  1475. }
  1476. dp_rx_check_delivery_to_stack(soc, vdev, peer, nbuf_head);
  1477. }
  1478. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1479. /**
  1480. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1481. * @nbuf: pointer to the first msdu of an amsdu.
  1482. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1483. *
  1484. * The ipsumed field of the skb is set based on whether HW validated the
  1485. * IP/TCP/UDP checksum.
  1486. *
  1487. * Return: void
  1488. */
  1489. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1490. qdf_nbuf_t nbuf,
  1491. uint8_t *rx_tlv_hdr)
  1492. {
  1493. qdf_nbuf_rx_cksum_t cksum = {0};
  1494. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1495. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1496. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1497. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1498. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1499. } else {
  1500. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1501. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1502. }
  1503. }
  1504. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1505. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer) \
  1506. { \
  1507. qdf_nbuf_t nbuf_local; \
  1508. struct dp_peer *peer_local; \
  1509. struct dp_vdev *vdev_local = vdev_hdl; \
  1510. do { \
  1511. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1512. break; \
  1513. nbuf_local = nbuf; \
  1514. peer_local = peer; \
  1515. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1516. break; \
  1517. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1518. break; \
  1519. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1520. (nbuf_local), \
  1521. (peer_local), 0, 1); \
  1522. } while (0); \
  1523. }
  1524. #else
  1525. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer)
  1526. #endif
  1527. /**
  1528. * dp_rx_msdu_stats_update() - update per msdu stats.
  1529. * @soc: core txrx main context
  1530. * @nbuf: pointer to the first msdu of an amsdu.
  1531. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1532. * @peer: pointer to the peer object.
  1533. * @ring_id: reo dest ring number on which pkt is reaped.
  1534. * @tid_stats: per tid rx stats.
  1535. *
  1536. * update all the per msdu stats for that nbuf.
  1537. * Return: void
  1538. */
  1539. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1540. qdf_nbuf_t nbuf,
  1541. uint8_t *rx_tlv_hdr,
  1542. struct dp_peer *peer,
  1543. uint8_t ring_id,
  1544. struct cdp_tid_rx_stats *tid_stats)
  1545. {
  1546. bool is_ampdu, is_not_amsdu;
  1547. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1548. struct dp_vdev *vdev = peer->vdev;
  1549. qdf_ether_header_t *eh;
  1550. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1551. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, peer);
  1552. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1553. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1554. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1555. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1556. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1557. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1558. tid_stats->msdu_cnt++;
  1559. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1560. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1561. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1562. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1563. tid_stats->mcast_msdu_cnt++;
  1564. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1565. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1566. tid_stats->bcast_msdu_cnt++;
  1567. }
  1568. }
  1569. /*
  1570. * currently we can return from here as we have similar stats
  1571. * updated at per ppdu level instead of msdu level
  1572. */
  1573. if (!soc->process_rx_status)
  1574. return;
  1575. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1576. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1577. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1578. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1579. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1580. tid = qdf_nbuf_get_tid_val(nbuf);
  1581. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1582. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1583. rx_tlv_hdr);
  1584. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1585. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1586. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[mcs], 1,
  1587. ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1588. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
  1589. ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1590. DP_STATS_INC(peer, rx.bw[bw], 1);
  1591. /*
  1592. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1593. * then increase index [nss - 1] in array counter.
  1594. */
  1595. if (nss > 0 && (pkt_type == DOT11_N ||
  1596. pkt_type == DOT11_AC ||
  1597. pkt_type == DOT11_AX))
  1598. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1599. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1600. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1601. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1602. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1603. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1604. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1605. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1606. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1607. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1608. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1609. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1610. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1611. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1612. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1613. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1614. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1615. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1616. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1617. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1618. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1619. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1620. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1621. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1622. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1623. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1624. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1625. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1626. if ((soc->process_rx_status) &&
  1627. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1628. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1629. if (!vdev->pdev)
  1630. return;
  1631. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1632. &peer->stats, peer->peer_id,
  1633. UPDATE_PEER_STATS,
  1634. vdev->pdev->pdev_id);
  1635. #endif
  1636. }
  1637. }
  1638. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1639. uint8_t *rx_tlv_hdr,
  1640. qdf_nbuf_t nbuf,
  1641. struct hal_rx_msdu_metadata msdu_info)
  1642. {
  1643. if ((qdf_nbuf_is_sa_valid(nbuf) &&
  1644. (msdu_info.sa_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1645. (!qdf_nbuf_is_da_mcbc(nbuf) &&
  1646. qdf_nbuf_is_da_valid(nbuf) &&
  1647. (msdu_info.da_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1648. return false;
  1649. return true;
  1650. }
  1651. #ifndef WDS_VENDOR_EXTENSION
  1652. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1653. struct dp_vdev *vdev,
  1654. struct dp_peer *peer)
  1655. {
  1656. return 1;
  1657. }
  1658. #endif
  1659. #ifdef RX_DESC_DEBUG_CHECK
  1660. /**
  1661. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1662. * corruption
  1663. *
  1664. * @ring_desc: REO ring descriptor
  1665. * @rx_desc: Rx descriptor
  1666. *
  1667. * Return: NONE
  1668. */
  1669. static inline
  1670. QDF_STATUS dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1671. struct dp_rx_desc *rx_desc)
  1672. {
  1673. struct hal_buf_info hbi;
  1674. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1675. /* Sanity check for possible buffer paddr corruption */
  1676. if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
  1677. return QDF_STATUS_SUCCESS;
  1678. return QDF_STATUS_E_FAILURE;
  1679. }
  1680. /**
  1681. * dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer
  1682. * out of bound access from H.W
  1683. *
  1684. * @soc: DP soc
  1685. * @pkt_len: Packet length received from H.W
  1686. *
  1687. * Return: NONE
  1688. */
  1689. static inline void
  1690. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc,
  1691. uint32_t pkt_len)
  1692. {
  1693. struct rx_desc_pool *rx_desc_pool;
  1694. rx_desc_pool = &soc->rx_desc_buf[0];
  1695. qdf_assert_always(pkt_len < rx_desc_pool->buf_size);
  1696. }
  1697. #else
  1698. static inline
  1699. QDF_STATUS dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1700. struct dp_rx_desc *rx_desc)
  1701. {
  1702. return QDF_STATUS_SUCCESS;
  1703. }
  1704. static inline void
  1705. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { }
  1706. #endif
  1707. #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
  1708. static inline
  1709. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1710. {
  1711. bool limit_hit = false;
  1712. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  1713. limit_hit =
  1714. (num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
  1715. if (limit_hit)
  1716. DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
  1717. return limit_hit;
  1718. }
  1719. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1720. {
  1721. return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
  1722. }
  1723. #else
  1724. static inline
  1725. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1726. {
  1727. return false;
  1728. }
  1729. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1730. {
  1731. return false;
  1732. }
  1733. #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
  1734. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1735. /**
  1736. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1737. * no corresbonding peer found
  1738. * @soc: core txrx main context
  1739. * @nbuf: pkt skb pointer
  1740. *
  1741. * This function will try to deliver some RX special frames to stack
  1742. * even there is no peer matched found. for instance, LFR case, some
  1743. * eapol data will be sent to host before peer_map done.
  1744. *
  1745. * Return: None
  1746. */
  1747. static
  1748. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1749. {
  1750. uint16_t peer_id;
  1751. uint8_t vdev_id;
  1752. struct dp_vdev *vdev = NULL;
  1753. uint32_t l2_hdr_offset = 0;
  1754. uint16_t msdu_len = 0;
  1755. uint32_t pkt_len = 0;
  1756. uint8_t *rx_tlv_hdr;
  1757. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  1758. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  1759. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1760. if (peer_id > soc->max_peers)
  1761. goto deliver_fail;
  1762. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1763. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
  1764. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  1765. goto deliver_fail;
  1766. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  1767. goto deliver_fail;
  1768. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1769. l2_hdr_offset =
  1770. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1771. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1772. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1773. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  1774. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1775. qdf_nbuf_pull_head(nbuf,
  1776. RX_PKT_TLVS_LEN +
  1777. l2_hdr_offset);
  1778. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  1779. qdf_nbuf_set_exc_frame(nbuf, 1);
  1780. if (QDF_STATUS_SUCCESS !=
  1781. vdev->osif_rx(vdev->osif_vdev, nbuf))
  1782. goto deliver_fail;
  1783. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1784. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1785. return;
  1786. }
  1787. deliver_fail:
  1788. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1789. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1790. qdf_nbuf_free(nbuf);
  1791. if (vdev)
  1792. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1793. }
  1794. #else
  1795. static inline
  1796. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1797. {
  1798. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1799. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1800. qdf_nbuf_free(nbuf);
  1801. }
  1802. #endif
  1803. /**
  1804. * dp_rx_srng_get_num_pending() - get number of pending entries
  1805. * @hal_soc: hal soc opaque pointer
  1806. * @hal_ring: opaque pointer to the HAL Rx Ring
  1807. * @num_entries: number of entries in the hal_ring.
  1808. * @near_full: pointer to a boolean. This is set if ring is near full.
  1809. *
  1810. * The function returns the number of entries in a destination ring which are
  1811. * yet to be reaped. The function also checks if the ring is near full.
  1812. * If more than half of the ring needs to be reaped, the ring is considered
  1813. * approaching full.
  1814. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1815. * entries. It should not be called within a SRNG lock. HW pointer value is
  1816. * synced into cached_hp.
  1817. *
  1818. * Return: Number of pending entries if any
  1819. */
  1820. static
  1821. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1822. hal_ring_handle_t hal_ring_hdl,
  1823. uint32_t num_entries,
  1824. bool *near_full)
  1825. {
  1826. uint32_t num_pending = 0;
  1827. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1828. hal_ring_hdl,
  1829. true);
  1830. if (num_entries && (num_pending >= num_entries >> 1))
  1831. *near_full = true;
  1832. else
  1833. *near_full = false;
  1834. return num_pending;
  1835. }
  1836. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1837. #ifdef WLAN_SUPPORT_RX_FISA
  1838. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1839. {
  1840. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1841. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1842. }
  1843. /**
  1844. * dp_rx_set_hdr_pad() - set l3 padding in nbuf cb
  1845. * @nbuf: pkt skb pointer
  1846. * @l3_padding: l3 padding
  1847. *
  1848. * Return: None
  1849. */
  1850. static inline
  1851. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1852. {
  1853. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1854. }
  1855. #else
  1856. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1857. {
  1858. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1859. }
  1860. static inline
  1861. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1862. {
  1863. }
  1864. #endif
  1865. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1866. #ifdef DP_RX_DROP_RAW_FRM
  1867. /**
  1868. * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
  1869. * @nbuf: pkt skb pointer
  1870. *
  1871. * Return: true - raw frame, dropped
  1872. * false - not raw frame, do nothing
  1873. */
  1874. static inline
  1875. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  1876. {
  1877. if (qdf_nbuf_is_raw_frame(nbuf)) {
  1878. qdf_nbuf_free(nbuf);
  1879. return true;
  1880. }
  1881. return false;
  1882. }
  1883. #else
  1884. static inline
  1885. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  1886. {
  1887. return false;
  1888. }
  1889. #endif
  1890. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1891. /**
  1892. * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
  1893. * @soc: Datapath soc structure
  1894. * @ring_num: REO ring number
  1895. * @ring_desc: REO ring descriptor
  1896. *
  1897. * Returns: None
  1898. */
  1899. static inline void
  1900. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  1901. hal_ring_desc_t ring_desc)
  1902. {
  1903. struct dp_buf_info_record *record;
  1904. uint8_t rbm;
  1905. struct hal_buf_info hbi;
  1906. uint32_t idx;
  1907. if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
  1908. return;
  1909. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1910. rbm = hal_rx_ret_buf_manager_get(ring_desc);
  1911. idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
  1912. DP_RX_HIST_MAX);
  1913. /* No NULL check needed for record since its an array */
  1914. record = &soc->rx_ring_history[ring_num]->entry[idx];
  1915. record->timestamp = qdf_get_log_timestamp();
  1916. record->hbi.paddr = hbi.paddr;
  1917. record->hbi.sw_cookie = hbi.sw_cookie;
  1918. record->hbi.rbm = rbm;
  1919. }
  1920. #else
  1921. static inline void
  1922. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  1923. hal_ring_desc_t ring_desc)
  1924. {
  1925. }
  1926. #endif
  1927. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  1928. /**
  1929. * dp_rx_update_stats() - Update soc level rx packet count
  1930. * @soc: DP soc handle
  1931. * @nbuf: nbuf received
  1932. *
  1933. * Returns: none
  1934. */
  1935. static inline void dp_rx_update_stats(struct dp_soc *soc,
  1936. qdf_nbuf_t nbuf)
  1937. {
  1938. DP_STATS_INC_PKT(soc, rx.ingress, 1,
  1939. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1940. }
  1941. #else
  1942. static inline void dp_rx_update_stats(struct dp_soc *soc,
  1943. qdf_nbuf_t nbuf)
  1944. {
  1945. }
  1946. #endif
  1947. #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
  1948. /**
  1949. * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
  1950. * @soc : dp_soc handle
  1951. * @pdev: dp_pdev handle
  1952. * @peer_id: peer_id of the peer for which completion came
  1953. * @ppdu_id: ppdu_id
  1954. * @netbuf: Buffer pointer
  1955. *
  1956. * This function is used to deliver rx packet to packet capture
  1957. */
  1958. void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc, struct dp_pdev *pdev,
  1959. uint16_t peer_id, uint32_t is_offload,
  1960. qdf_nbuf_t netbuf)
  1961. {
  1962. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
  1963. peer_id, is_offload, pdev->pdev_id);
  1964. }
  1965. void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1966. uint32_t is_offload)
  1967. {
  1968. uint16_t msdu_len = 0;
  1969. uint16_t peer_id, vdev_id;
  1970. uint32_t pkt_len = 0;
  1971. uint8_t *rx_tlv_hdr;
  1972. uint32_t l2_hdr_offset = 0;
  1973. struct hal_rx_msdu_metadata msdu_metadata;
  1974. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1975. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1976. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1977. hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr, &msdu_metadata);
  1978. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1979. pkt_len = msdu_len + msdu_metadata.l3_hdr_pad +
  1980. RX_PKT_TLVS_LEN;
  1981. l2_hdr_offset =
  1982. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1983. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1984. dp_rx_skip_tlvs(nbuf, msdu_metadata.l3_hdr_pad);
  1985. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, nbuf,
  1986. HTT_INVALID_VDEV, is_offload, 0);
  1987. }
  1988. #endif
  1989. #if defined(FEATURE_MCL_REPEATER) && defined(FEATURE_MEC)
  1990. /**
  1991. * dp_rx_mec_check_wrapper() - wrapper to dp_rx_mcast_echo_check
  1992. * @soc: core DP main context
  1993. * @peer: dp peer handler
  1994. * @rx_tlv_hdr: start of the rx TLV header
  1995. * @nbuf: pkt buffer
  1996. *
  1997. * Return: bool (true if it is a looped back pkt else false)
  1998. */
  1999. static inline bool dp_rx_mec_check_wrapper(struct dp_soc *soc,
  2000. struct dp_peer *peer,
  2001. uint8_t *rx_tlv_hdr,
  2002. qdf_nbuf_t nbuf)
  2003. {
  2004. return dp_rx_mcast_echo_check(soc, peer, rx_tlv_hdr, nbuf);
  2005. }
  2006. #else
  2007. static inline bool dp_rx_mec_check_wrapper(struct dp_soc *soc,
  2008. struct dp_peer *peer,
  2009. uint8_t *rx_tlv_hdr,
  2010. qdf_nbuf_t nbuf)
  2011. {
  2012. return false;
  2013. }
  2014. #endif
  2015. /**
  2016. * dp_rx_process() - Brain of the Rx processing functionality
  2017. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  2018. * @int_ctx: per interrupt context
  2019. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  2020. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  2021. * @quota: No. of units (packets) that can be serviced in one shot.
  2022. *
  2023. * This function implements the core of Rx functionality. This is
  2024. * expected to handle only non-error frames.
  2025. *
  2026. * Return: uint32_t: No. of elements processed
  2027. */
  2028. uint32_t dp_rx_process(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl,
  2029. uint8_t reo_ring_num, uint32_t quota)
  2030. {
  2031. hal_ring_desc_t ring_desc;
  2032. hal_soc_handle_t hal_soc;
  2033. struct dp_rx_desc *rx_desc = NULL;
  2034. qdf_nbuf_t nbuf, next;
  2035. bool near_full;
  2036. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
  2037. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
  2038. uint32_t num_pending;
  2039. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  2040. uint16_t msdu_len = 0;
  2041. uint16_t peer_id;
  2042. uint8_t vdev_id;
  2043. struct dp_peer *peer;
  2044. struct dp_vdev *vdev;
  2045. uint32_t pkt_len = 0;
  2046. struct hal_rx_mpdu_desc_info mpdu_desc_info;
  2047. struct hal_rx_msdu_desc_info msdu_desc_info;
  2048. enum hal_reo_error_status error;
  2049. uint32_t peer_mdata;
  2050. uint8_t *rx_tlv_hdr;
  2051. uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
  2052. uint8_t mac_id = 0;
  2053. struct dp_pdev *rx_pdev;
  2054. struct dp_srng *dp_rxdma_srng;
  2055. struct rx_desc_pool *rx_desc_pool;
  2056. struct dp_soc *soc = int_ctx->soc;
  2057. uint8_t ring_id = 0;
  2058. uint8_t core_id = 0;
  2059. struct cdp_tid_rx_stats *tid_stats;
  2060. qdf_nbuf_t nbuf_head;
  2061. qdf_nbuf_t nbuf_tail;
  2062. qdf_nbuf_t deliver_list_head;
  2063. qdf_nbuf_t deliver_list_tail;
  2064. uint32_t num_rx_bufs_reaped = 0;
  2065. uint32_t intr_id;
  2066. struct hif_opaque_softc *scn;
  2067. int32_t tid = 0;
  2068. bool is_prev_msdu_last = true;
  2069. uint32_t num_entries_avail = 0;
  2070. uint32_t rx_ol_pkt_cnt = 0;
  2071. uint32_t num_entries = 0;
  2072. struct hal_rx_msdu_metadata msdu_metadata;
  2073. QDF_STATUS status;
  2074. qdf_nbuf_t ebuf_head;
  2075. qdf_nbuf_t ebuf_tail;
  2076. uint8_t pkt_capture_offload = 0;
  2077. DP_HIST_INIT();
  2078. qdf_assert_always(soc && hal_ring_hdl);
  2079. hal_soc = soc->hal_soc;
  2080. qdf_assert_always(hal_soc);
  2081. scn = soc->hif_handle;
  2082. hif_pm_runtime_mark_dp_rx_busy(scn);
  2083. intr_id = int_ctx->dp_intr_id;
  2084. num_entries = hal_srng_get_num_entries(hal_soc, hal_ring_hdl);
  2085. more_data:
  2086. /* reset local variables here to be re-used in the function */
  2087. nbuf_head = NULL;
  2088. nbuf_tail = NULL;
  2089. deliver_list_head = NULL;
  2090. deliver_list_tail = NULL;
  2091. peer = NULL;
  2092. vdev = NULL;
  2093. num_rx_bufs_reaped = 0;
  2094. ebuf_head = NULL;
  2095. ebuf_tail = NULL;
  2096. qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
  2097. qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
  2098. qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
  2099. qdf_mem_zero(head, sizeof(head));
  2100. qdf_mem_zero(tail, sizeof(tail));
  2101. if (qdf_unlikely(dp_rx_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
  2102. /*
  2103. * Need API to convert from hal_ring pointer to
  2104. * Ring Type / Ring Id combo
  2105. */
  2106. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  2107. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  2108. FL("HAL RING Access Failed -- %pK"), hal_ring_hdl);
  2109. goto done;
  2110. }
  2111. /*
  2112. * start reaping the buffers from reo ring and queue
  2113. * them in per vdev queue.
  2114. * Process the received pkts in a different per vdev loop.
  2115. */
  2116. while (qdf_likely(quota &&
  2117. (ring_desc = hal_srng_dst_peek(hal_soc,
  2118. hal_ring_hdl)))) {
  2119. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  2120. ring_id = hal_srng_ring_id_get(hal_ring_hdl);
  2121. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  2122. dp_rx_err("%pK: HAL RING 0x%pK:error %d",
  2123. soc, hal_ring_hdl, error);
  2124. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  2125. /* Don't know how to deal with this -- assert */
  2126. qdf_assert(0);
  2127. }
  2128. dp_rx_ring_record_entry(soc, reo_ring_num, ring_desc);
  2129. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  2130. status = dp_rx_cookie_check_and_invalidate(ring_desc);
  2131. if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) {
  2132. DP_STATS_INC(soc, rx.err.stale_cookie, 1);
  2133. qdf_assert_always(0);
  2134. }
  2135. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  2136. status = dp_rx_desc_sanity(soc, hal_soc, hal_ring_hdl,
  2137. ring_desc, rx_desc);
  2138. if (QDF_IS_STATUS_ERROR(status)) {
  2139. if (qdf_unlikely(rx_desc && rx_desc->nbuf)) {
  2140. qdf_assert_always(rx_desc->unmapped);
  2141. dp_ipa_handle_rx_buf_smmu_mapping(
  2142. soc,
  2143. rx_desc->nbuf,
  2144. RX_DATA_BUFFER_SIZE,
  2145. false);
  2146. qdf_nbuf_unmap_nbytes_single(
  2147. soc->osdev,
  2148. rx_desc->nbuf,
  2149. QDF_DMA_FROM_DEVICE,
  2150. RX_DATA_BUFFER_SIZE);
  2151. rx_desc->unmapped = 1;
  2152. dp_rx_buffer_pool_nbuf_free(soc, rx_desc->nbuf,
  2153. rx_desc->pool_id);
  2154. dp_rx_add_to_free_desc_list(
  2155. &head[rx_desc->pool_id],
  2156. &tail[rx_desc->pool_id],
  2157. rx_desc);
  2158. }
  2159. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2160. continue;
  2161. }
  2162. /*
  2163. * this is a unlikely scenario where the host is reaping
  2164. * a descriptor which it already reaped just a while ago
  2165. * but is yet to replenish it back to HW.
  2166. * In this case host will dump the last 128 descriptors
  2167. * including the software descriptor rx_desc and assert.
  2168. */
  2169. if (qdf_unlikely(!rx_desc->in_use)) {
  2170. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  2171. dp_info_rl("Reaping rx_desc not in use!");
  2172. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2173. ring_desc, rx_desc);
  2174. /* ignore duplicate RX desc and continue to process */
  2175. /* Pop out the descriptor */
  2176. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2177. continue;
  2178. }
  2179. status = dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
  2180. if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) {
  2181. DP_STATS_INC(soc, rx.err.nbuf_sanity_fail, 1);
  2182. dp_info_rl("Nbuf sanity check failure!");
  2183. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2184. ring_desc, rx_desc);
  2185. rx_desc->in_err_state = 1;
  2186. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2187. continue;
  2188. }
  2189. if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
  2190. dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
  2191. DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
  2192. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2193. ring_desc, rx_desc);
  2194. }
  2195. /* Get MPDU DESC info */
  2196. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  2197. /* Get MSDU DESC info */
  2198. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  2199. if (qdf_unlikely(msdu_desc_info.msdu_flags &
  2200. HAL_MSDU_F_MSDU_CONTINUATION)) {
  2201. /* previous msdu has end bit set, so current one is
  2202. * the new MPDU
  2203. */
  2204. if (is_prev_msdu_last) {
  2205. /* Get number of entries available in HW ring */
  2206. num_entries_avail =
  2207. hal_srng_dst_num_valid(hal_soc,
  2208. hal_ring_hdl, 1);
  2209. /* For new MPDU check if we can read complete
  2210. * MPDU by comparing the number of buffers
  2211. * available and number of buffers needed to
  2212. * reap this MPDU
  2213. */
  2214. if (((msdu_desc_info.msdu_len /
  2215. (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN) +
  2216. 1)) > num_entries_avail) {
  2217. DP_STATS_INC(
  2218. soc,
  2219. rx.msdu_scatter_wait_break,
  2220. 1);
  2221. break;
  2222. }
  2223. is_prev_msdu_last = false;
  2224. }
  2225. }
  2226. core_id = smp_processor_id();
  2227. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  2228. if (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RETRY_BIT)
  2229. qdf_nbuf_set_rx_retry_flag(rx_desc->nbuf, 1);
  2230. if (qdf_unlikely(mpdu_desc_info.mpdu_flags &
  2231. HAL_MPDU_F_RAW_AMPDU))
  2232. qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1);
  2233. if (!is_prev_msdu_last &&
  2234. msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  2235. is_prev_msdu_last = true;
  2236. /* Pop out the descriptor*/
  2237. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2238. rx_bufs_reaped[rx_desc->pool_id]++;
  2239. peer_mdata = mpdu_desc_info.peer_meta_data;
  2240. QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
  2241. DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  2242. QDF_NBUF_CB_RX_VDEV_ID(rx_desc->nbuf) =
  2243. DP_PEER_METADATA_VDEV_ID_GET(peer_mdata);
  2244. /* to indicate whether this msdu is rx offload */
  2245. pkt_capture_offload =
  2246. DP_PEER_METADATA_OFFLOAD_GET(peer_mdata);
  2247. /*
  2248. * save msdu flags first, last and continuation msdu in
  2249. * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
  2250. * length to nbuf->cb. This ensures the info required for
  2251. * per pkt processing is always in the same cache line.
  2252. * This helps in improving throughput for smaller pkt
  2253. * sizes.
  2254. */
  2255. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  2256. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  2257. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  2258. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  2259. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  2260. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  2261. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
  2262. qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
  2263. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
  2264. qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
  2265. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
  2266. qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
  2267. qdf_nbuf_set_tid_val(rx_desc->nbuf,
  2268. HAL_RX_REO_QUEUE_NUMBER_GET(ring_desc));
  2269. qdf_nbuf_set_rx_reo_dest_ind(
  2270. rx_desc->nbuf,
  2271. HAL_RX_REO_MSDU_REO_DST_IND_GET(ring_desc));
  2272. QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
  2273. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  2274. /*
  2275. * move unmap after scattered msdu waiting break logic
  2276. * in case double skb unmap happened.
  2277. */
  2278. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  2279. dp_ipa_handle_rx_buf_smmu_mapping(soc, rx_desc->nbuf,
  2280. rx_desc_pool->buf_size,
  2281. false);
  2282. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  2283. QDF_DMA_FROM_DEVICE,
  2284. rx_desc_pool->buf_size);
  2285. rx_desc->unmapped = 1;
  2286. DP_RX_PROCESS_NBUF(soc, nbuf_head, nbuf_tail, ebuf_head,
  2287. ebuf_tail, rx_desc);
  2288. /*
  2289. * if continuation bit is set then we have MSDU spread
  2290. * across multiple buffers, let us not decrement quota
  2291. * till we reap all buffers of that MSDU.
  2292. */
  2293. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  2294. quota -= 1;
  2295. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  2296. &tail[rx_desc->pool_id],
  2297. rx_desc);
  2298. num_rx_bufs_reaped++;
  2299. /*
  2300. * only if complete msdu is received for scatter case,
  2301. * then allow break.
  2302. */
  2303. if (is_prev_msdu_last &&
  2304. dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
  2305. break;
  2306. }
  2307. done:
  2308. dp_rx_srng_access_end(int_ctx, soc, hal_ring_hdl);
  2309. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  2310. /*
  2311. * continue with next mac_id if no pkts were reaped
  2312. * from that pool
  2313. */
  2314. if (!rx_bufs_reaped[mac_id])
  2315. continue;
  2316. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_id];
  2317. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  2318. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  2319. rx_desc_pool, rx_bufs_reaped[mac_id],
  2320. &head[mac_id], &tail[mac_id]);
  2321. }
  2322. dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
  2323. /* Peer can be NULL is case of LFR */
  2324. if (qdf_likely(peer))
  2325. vdev = NULL;
  2326. /*
  2327. * BIG loop where each nbuf is dequeued from global queue,
  2328. * processed and queued back on a per vdev basis. These nbufs
  2329. * are sent to stack as and when we run out of nbufs
  2330. * or a new nbuf dequeued from global queue has a different
  2331. * vdev when compared to previous nbuf.
  2332. */
  2333. nbuf = nbuf_head;
  2334. while (nbuf) {
  2335. next = nbuf->next;
  2336. if (qdf_unlikely(dp_rx_is_raw_frame_dropped(nbuf))) {
  2337. nbuf = next;
  2338. DP_STATS_INC(soc, rx.err.raw_frm_drop, 1);
  2339. continue;
  2340. }
  2341. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  2342. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  2343. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  2344. if (dp_rx_is_list_ready(deliver_list_head, vdev, peer,
  2345. peer_id, vdev_id)) {
  2346. dp_rx_deliver_to_stack(soc, vdev, peer,
  2347. deliver_list_head,
  2348. deliver_list_tail);
  2349. deliver_list_head = NULL;
  2350. deliver_list_tail = NULL;
  2351. }
  2352. /* Get TID from struct cb->tid_val, save to tid */
  2353. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  2354. tid = qdf_nbuf_get_tid_val(nbuf);
  2355. if (qdf_unlikely(!peer)) {
  2356. peer = dp_peer_get_ref_by_id(soc, peer_id,
  2357. DP_MOD_ID_RX);
  2358. } else if (peer && peer->peer_id != peer_id) {
  2359. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2360. peer = dp_peer_get_ref_by_id(soc, peer_id,
  2361. DP_MOD_ID_RX);
  2362. }
  2363. if (peer) {
  2364. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  2365. qdf_dp_trace_set_track(nbuf, QDF_RX);
  2366. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  2367. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  2368. QDF_NBUF_RX_PKT_DATA_TRACK;
  2369. }
  2370. rx_bufs_used++;
  2371. if (qdf_likely(peer)) {
  2372. vdev = peer->vdev;
  2373. /*
  2374. * In encryption mode, all data packets except
  2375. * EAPOL frames should be dropped when peer is not
  2376. * authenticated. Thie feature is enabled for all peers
  2377. * under this vdev when peer_authorize flag is set.
  2378. */
  2379. if (qdf_unlikely(vdev->peer_authorize)) {
  2380. if (qdf_unlikely(vdev->sec_type != cdp_sec_type_none)) {
  2381. /*
  2382. * Allow only EAPOL frames
  2383. */
  2384. if (qdf_unlikely(!peer->authorize &&
  2385. !qdf_nbuf_is_ipv4_eapol_pkt(nbuf))) {
  2386. qdf_nbuf_free(nbuf);
  2387. nbuf = next;
  2388. DP_STATS_INC(soc, rx.err.peer_unauth_rx_pkt_drop, 1);
  2389. continue;
  2390. }
  2391. }
  2392. }
  2393. } else {
  2394. nbuf->next = NULL;
  2395. dp_rx_deliver_to_pkt_capture_no_peer(
  2396. soc, nbuf, pkt_capture_offload);
  2397. if (!pkt_capture_offload)
  2398. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2399. nbuf = next;
  2400. continue;
  2401. }
  2402. if (qdf_unlikely(!vdev)) {
  2403. qdf_nbuf_free(nbuf);
  2404. nbuf = next;
  2405. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  2406. continue;
  2407. }
  2408. /* when hlos tid override is enabled, save tid in
  2409. * skb->priority
  2410. */
  2411. if (qdf_unlikely(vdev->skip_sw_tid_classification &
  2412. DP_TXRX_HLOS_TID_OVERRIDE_ENABLED))
  2413. qdf_nbuf_set_priority(nbuf, tid);
  2414. rx_pdev = vdev->pdev;
  2415. DP_RX_TID_SAVE(nbuf, tid);
  2416. if (qdf_unlikely(rx_pdev->delay_stats_flag) ||
  2417. qdf_unlikely(wlan_cfg_is_peer_ext_stats_enabled(
  2418. soc->wlan_cfg_ctx)))
  2419. qdf_nbuf_set_timestamp(nbuf);
  2420. ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  2421. tid_stats =
  2422. &rx_pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  2423. /*
  2424. * Check if DMA completed -- msdu_done is the last bit
  2425. * to be written
  2426. */
  2427. if (qdf_unlikely(!qdf_nbuf_is_rx_chfrag_cont(nbuf) &&
  2428. !hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  2429. dp_err("MSDU DONE failure");
  2430. DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
  2431. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  2432. QDF_TRACE_LEVEL_INFO);
  2433. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  2434. qdf_nbuf_free(nbuf);
  2435. qdf_assert(0);
  2436. nbuf = next;
  2437. continue;
  2438. }
  2439. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  2440. /*
  2441. * First IF condition:
  2442. * 802.11 Fragmented pkts are reinjected to REO
  2443. * HW block as SG pkts and for these pkts we only
  2444. * need to pull the RX TLVS header length.
  2445. * Second IF condition:
  2446. * The below condition happens when an MSDU is spread
  2447. * across multiple buffers. This can happen in two cases
  2448. * 1. The nbuf size is smaller then the received msdu.
  2449. * ex: we have set the nbuf size to 2048 during
  2450. * nbuf_alloc. but we received an msdu which is
  2451. * 2304 bytes in size then this msdu is spread
  2452. * across 2 nbufs.
  2453. *
  2454. * 2. AMSDUs when RAW mode is enabled.
  2455. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  2456. * across 1st nbuf and 2nd nbuf and last MSDU is
  2457. * spread across 2nd nbuf and 3rd nbuf.
  2458. *
  2459. * for these scenarios let us create a skb frag_list and
  2460. * append these buffers till the last MSDU of the AMSDU
  2461. * Third condition:
  2462. * This is the most likely case, we receive 802.3 pkts
  2463. * decapsulated by HW, here we need to set the pkt length.
  2464. */
  2465. hal_rx_msdu_metadata_get(hal_soc, rx_tlv_hdr, &msdu_metadata);
  2466. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2467. bool is_mcbc, is_sa_vld, is_da_vld;
  2468. is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(soc->hal_soc,
  2469. rx_tlv_hdr);
  2470. is_sa_vld =
  2471. hal_rx_msdu_end_sa_is_valid_get(soc->hal_soc,
  2472. rx_tlv_hdr);
  2473. is_da_vld =
  2474. hal_rx_msdu_end_da_is_valid_get(soc->hal_soc,
  2475. rx_tlv_hdr);
  2476. qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
  2477. qdf_nbuf_set_da_valid(nbuf, is_da_vld);
  2478. qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
  2479. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  2480. } else if (qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  2481. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2482. nbuf = dp_rx_sg_create(soc, nbuf);
  2483. next = nbuf->next;
  2484. if (qdf_nbuf_is_raw_frame(nbuf)) {
  2485. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  2486. DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
  2487. } else {
  2488. qdf_nbuf_free(nbuf);
  2489. DP_STATS_INC(soc, rx.err.scatter_msdu, 1);
  2490. dp_info_rl("scatter msdu len %d, dropped",
  2491. msdu_len);
  2492. nbuf = next;
  2493. continue;
  2494. }
  2495. } else {
  2496. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2497. pkt_len = msdu_len +
  2498. msdu_metadata.l3_hdr_pad +
  2499. RX_PKT_TLVS_LEN;
  2500. dp_rx_desc_nbuf_len_sanity_check(soc, pkt_len);
  2501. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  2502. dp_rx_skip_tlvs(nbuf, msdu_metadata.l3_hdr_pad);
  2503. }
  2504. /*
  2505. * process frame for mulitpass phrase processing
  2506. */
  2507. if (qdf_unlikely(vdev->multipass_en)) {
  2508. if (dp_rx_multipass_process(peer, nbuf, tid) == false) {
  2509. DP_STATS_INC(peer, rx.multipass_rx_pkt_drop, 1);
  2510. qdf_nbuf_free(nbuf);
  2511. nbuf = next;
  2512. continue;
  2513. }
  2514. }
  2515. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
  2516. dp_rx_err("%pK: Policy Check Drop pkt", soc);
  2517. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  2518. /* Drop & free packet */
  2519. qdf_nbuf_free(nbuf);
  2520. /* Statistics */
  2521. nbuf = next;
  2522. continue;
  2523. }
  2524. if (qdf_unlikely(peer && (peer->nawds_enabled) &&
  2525. (qdf_nbuf_is_da_mcbc(nbuf)) &&
  2526. (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc,
  2527. rx_tlv_hdr) ==
  2528. false))) {
  2529. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  2530. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  2531. qdf_nbuf_free(nbuf);
  2532. nbuf = next;
  2533. continue;
  2534. }
  2535. if (soc->process_rx_status)
  2536. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  2537. /* Update the protocol tag in SKB based on CCE metadata */
  2538. dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
  2539. reo_ring_num, false, true);
  2540. /* Update the flow tag in SKB based on FSE metadata */
  2541. dp_rx_update_flow_tag(soc, vdev, nbuf, rx_tlv_hdr, true);
  2542. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
  2543. ring_id, tid_stats);
  2544. if (qdf_unlikely(vdev->mesh_vdev)) {
  2545. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  2546. == QDF_STATUS_SUCCESS) {
  2547. dp_rx_info("%pK: mesh pkt filtered", soc);
  2548. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  2549. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  2550. 1);
  2551. qdf_nbuf_free(nbuf);
  2552. nbuf = next;
  2553. continue;
  2554. }
  2555. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  2556. }
  2557. if (qdf_likely(vdev->rx_decap_type ==
  2558. htt_cmn_pkt_type_ethernet) &&
  2559. qdf_likely(!vdev->mesh_vdev)) {
  2560. /* WDS Destination Address Learning */
  2561. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  2562. /* Due to HW issue, sometimes we see that the sa_idx
  2563. * and da_idx are invalid with sa_valid and da_valid
  2564. * bits set
  2565. *
  2566. * in this case we also see that value of
  2567. * sa_sw_peer_id is set as 0
  2568. *
  2569. * Drop the packet if sa_idx and da_idx OOB or
  2570. * sa_sw_peerid is 0
  2571. */
  2572. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf,
  2573. msdu_metadata)) {
  2574. qdf_nbuf_free(nbuf);
  2575. nbuf = next;
  2576. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  2577. continue;
  2578. }
  2579. /* WDS Source Port Learning */
  2580. if (qdf_likely(vdev->wds_enabled))
  2581. dp_rx_wds_srcport_learn(soc,
  2582. rx_tlv_hdr,
  2583. peer,
  2584. nbuf,
  2585. msdu_metadata);
  2586. /* Intrabss-fwd */
  2587. if (dp_rx_check_ap_bridge(vdev))
  2588. if (dp_rx_intrabss_fwd(soc,
  2589. peer,
  2590. rx_tlv_hdr,
  2591. nbuf,
  2592. msdu_metadata)) {
  2593. nbuf = next;
  2594. tid_stats->intrabss_cnt++;
  2595. continue; /* Get next desc */
  2596. }
  2597. if (qdf_unlikely(dp_rx_mec_check_wrapper(soc,
  2598. peer,
  2599. rx_tlv_hdr,
  2600. nbuf))) {
  2601. /* this is a looped back MCBC pkt,drop it */
  2602. DP_STATS_INC_PKT(peer, rx.mec_drop, 1,
  2603. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2604. qdf_nbuf_free(nbuf);
  2605. nbuf = next;
  2606. continue;
  2607. }
  2608. }
  2609. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf, &rx_ol_pkt_cnt);
  2610. dp_rx_update_stats(soc, nbuf);
  2611. DP_RX_LIST_APPEND(deliver_list_head,
  2612. deliver_list_tail,
  2613. nbuf);
  2614. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  2615. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2616. if (qdf_unlikely(peer->in_twt))
  2617. DP_STATS_INC_PKT(peer, rx.to_stack_twt, 1,
  2618. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2619. tid_stats->delivered_to_stack++;
  2620. nbuf = next;
  2621. }
  2622. if (qdf_likely(deliver_list_head)) {
  2623. if (qdf_likely(peer)) {
  2624. dp_rx_deliver_to_pkt_capture(soc, vdev->pdev, peer_id,
  2625. pkt_capture_offload,
  2626. deliver_list_head);
  2627. if (!pkt_capture_offload)
  2628. dp_rx_deliver_to_stack(soc, vdev, peer,
  2629. deliver_list_head,
  2630. deliver_list_tail);
  2631. }
  2632. else {
  2633. nbuf = deliver_list_head;
  2634. while (nbuf) {
  2635. next = nbuf->next;
  2636. nbuf->next = NULL;
  2637. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2638. nbuf = next;
  2639. }
  2640. }
  2641. }
  2642. if (qdf_likely(peer))
  2643. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2644. if (dp_rx_enable_eol_data_check(soc) && rx_bufs_used) {
  2645. if (quota) {
  2646. num_pending =
  2647. dp_rx_srng_get_num_pending(hal_soc,
  2648. hal_ring_hdl,
  2649. num_entries,
  2650. &near_full);
  2651. if (num_pending) {
  2652. DP_STATS_INC(soc, rx.hp_oos2, 1);
  2653. if (!hif_exec_should_yield(scn, intr_id))
  2654. goto more_data;
  2655. if (qdf_unlikely(near_full)) {
  2656. DP_STATS_INC(soc, rx.near_full, 1);
  2657. goto more_data;
  2658. }
  2659. }
  2660. }
  2661. if (vdev && vdev->osif_fisa_flush)
  2662. vdev->osif_fisa_flush(soc, reo_ring_num);
  2663. if (vdev && vdev->osif_gro_flush && rx_ol_pkt_cnt) {
  2664. vdev->osif_gro_flush(vdev->osif_vdev,
  2665. reo_ring_num);
  2666. }
  2667. }
  2668. /* Update histogram statistics by looping through pdev's */
  2669. DP_RX_HIST_STATS_PER_PDEV();
  2670. return rx_bufs_used; /* Assume no scale factor for now */
  2671. }
  2672. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  2673. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2674. {
  2675. QDF_STATUS ret;
  2676. if (vdev->osif_rx_flush) {
  2677. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2678. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  2679. dp_err("Failed to flush rx pkts for vdev %d\n",
  2680. vdev->vdev_id);
  2681. return ret;
  2682. }
  2683. }
  2684. return QDF_STATUS_SUCCESS;
  2685. }
  2686. static QDF_STATUS
  2687. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
  2688. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  2689. struct dp_pdev *dp_pdev,
  2690. struct rx_desc_pool *rx_desc_pool)
  2691. {
  2692. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2693. (nbuf_frag_info_t->virt_addr).nbuf =
  2694. qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  2695. RX_BUFFER_RESERVATION,
  2696. rx_desc_pool->buf_alignment, FALSE);
  2697. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  2698. dp_err("nbuf alloc failed");
  2699. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2700. return ret;
  2701. }
  2702. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  2703. (nbuf_frag_info_t->virt_addr).nbuf,
  2704. QDF_DMA_FROM_DEVICE,
  2705. rx_desc_pool->buf_size);
  2706. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2707. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  2708. dp_err("nbuf map failed");
  2709. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2710. return ret;
  2711. }
  2712. nbuf_frag_info_t->paddr =
  2713. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  2714. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  2715. &nbuf_frag_info_t->paddr,
  2716. rx_desc_pool);
  2717. if (ret == QDF_STATUS_E_FAILURE) {
  2718. dp_err("nbuf check x86 failed");
  2719. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2720. return ret;
  2721. }
  2722. return QDF_STATUS_SUCCESS;
  2723. }
  2724. QDF_STATUS
  2725. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2726. struct dp_srng *dp_rxdma_srng,
  2727. struct rx_desc_pool *rx_desc_pool,
  2728. uint32_t num_req_buffers)
  2729. {
  2730. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2731. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2732. union dp_rx_desc_list_elem_t *next;
  2733. void *rxdma_ring_entry;
  2734. qdf_dma_addr_t paddr;
  2735. struct dp_rx_nbuf_frag_info *nf_info;
  2736. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2737. uint32_t buffer_index, nbuf_ptrs_per_page;
  2738. qdf_nbuf_t nbuf;
  2739. QDF_STATUS ret;
  2740. int page_idx, total_pages;
  2741. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2742. union dp_rx_desc_list_elem_t *tail = NULL;
  2743. int sync_hw_ptr = 1;
  2744. uint32_t num_entries_avail;
  2745. if (qdf_unlikely(!rxdma_srng)) {
  2746. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2747. return QDF_STATUS_E_FAILURE;
  2748. }
  2749. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2750. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2751. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  2752. rxdma_srng,
  2753. sync_hw_ptr);
  2754. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2755. if (!num_entries_avail) {
  2756. dp_err("Num of available entries is zero, nothing to do");
  2757. return QDF_STATUS_E_NOMEM;
  2758. }
  2759. if (num_entries_avail < num_req_buffers)
  2760. num_req_buffers = num_entries_avail;
  2761. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2762. num_req_buffers, &desc_list, &tail);
  2763. if (!nr_descs) {
  2764. dp_err("no free rx_descs in freelist");
  2765. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2766. return QDF_STATUS_E_NOMEM;
  2767. }
  2768. dp_debug("got %u RX descs for driver attach", nr_descs);
  2769. /*
  2770. * Try to allocate pointers to the nbuf one page at a time.
  2771. * Take pointers that can fit in one page of memory and
  2772. * iterate through the total descriptors that need to be
  2773. * allocated in order of pages. Reuse the pointers that
  2774. * have been allocated to fit in one page across each
  2775. * iteration to index into the nbuf.
  2776. */
  2777. total_pages = (nr_descs * sizeof(*nf_info)) / PAGE_SIZE;
  2778. /*
  2779. * Add an extra page to store the remainder if any
  2780. */
  2781. if ((nr_descs * sizeof(*nf_info)) % PAGE_SIZE)
  2782. total_pages++;
  2783. nf_info = qdf_mem_malloc(PAGE_SIZE);
  2784. if (!nf_info) {
  2785. dp_err("failed to allocate nbuf array");
  2786. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2787. QDF_BUG(0);
  2788. return QDF_STATUS_E_NOMEM;
  2789. }
  2790. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*nf_info);
  2791. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2792. qdf_mem_zero(nf_info, PAGE_SIZE);
  2793. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2794. /*
  2795. * The last page of buffer pointers may not be required
  2796. * completely based on the number of descriptors. Below
  2797. * check will ensure we are allocating only the
  2798. * required number of descriptors.
  2799. */
  2800. if (nr_nbuf_total >= nr_descs)
  2801. break;
  2802. /* Flag is set while pdev rx_desc_pool initialization */
  2803. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2804. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  2805. &nf_info[nr_nbuf], dp_pdev,
  2806. rx_desc_pool);
  2807. else
  2808. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2809. &nf_info[nr_nbuf], dp_pdev,
  2810. rx_desc_pool);
  2811. if (QDF_IS_STATUS_ERROR(ret))
  2812. break;
  2813. nr_nbuf_total++;
  2814. }
  2815. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2816. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2817. rxdma_ring_entry =
  2818. hal_srng_src_get_next(dp_soc->hal_soc,
  2819. rxdma_srng);
  2820. qdf_assert_always(rxdma_ring_entry);
  2821. next = desc_list->next;
  2822. paddr = nf_info[buffer_index].paddr;
  2823. nbuf = nf_info[buffer_index].virt_addr.nbuf;
  2824. /* Flag is set while pdev rx_desc_pool initialization */
  2825. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2826. dp_rx_desc_frag_prep(&desc_list->rx_desc,
  2827. &nf_info[buffer_index]);
  2828. else
  2829. dp_rx_desc_prep(&desc_list->rx_desc,
  2830. &nf_info[buffer_index]);
  2831. desc_list->rx_desc.in_use = 1;
  2832. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  2833. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  2834. __func__,
  2835. RX_DESC_REPLENISHED);
  2836. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  2837. desc_list->rx_desc.cookie,
  2838. rx_desc_pool->owner);
  2839. dp_ipa_handle_rx_buf_smmu_mapping(
  2840. dp_soc, nbuf,
  2841. rx_desc_pool->buf_size,
  2842. true);
  2843. desc_list = next;
  2844. }
  2845. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2846. }
  2847. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2848. qdf_mem_free(nf_info);
  2849. if (!nr_nbuf_total) {
  2850. dp_err("No nbuf's allocated");
  2851. QDF_BUG(0);
  2852. return QDF_STATUS_E_RESOURCES;
  2853. }
  2854. /* No need to count the number of bytes received during replenish.
  2855. * Therefore set replenish.pkts.bytes as 0.
  2856. */
  2857. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2858. return QDF_STATUS_SUCCESS;
  2859. }
  2860. /**
  2861. * dp_rx_enable_mon_dest_frag() - Enable frag processing for
  2862. * monitor destination ring via frag.
  2863. *
  2864. * Enable this flag only for monitor destination buffer processing
  2865. * if DP_RX_MON_MEM_FRAG feature is enabled.
  2866. * If flag is set then frag based function will be called for alloc,
  2867. * map, prep desc and free ops for desc buffer else normal nbuf based
  2868. * function will be called.
  2869. *
  2870. * @rx_desc_pool: Rx desc pool
  2871. * @is_mon_dest_desc: Is it for monitor dest buffer
  2872. *
  2873. * Return: None
  2874. */
  2875. #ifdef DP_RX_MON_MEM_FRAG
  2876. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2877. bool is_mon_dest_desc)
  2878. {
  2879. rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
  2880. if (is_mon_dest_desc)
  2881. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
  2882. }
  2883. #else
  2884. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2885. bool is_mon_dest_desc)
  2886. {
  2887. rx_desc_pool->rx_mon_dest_frag_enable = false;
  2888. if (is_mon_dest_desc)
  2889. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
  2890. }
  2891. #endif
  2892. /*
  2893. * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
  2894. * pool
  2895. *
  2896. * @pdev: core txrx pdev context
  2897. *
  2898. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2899. * QDF_STATUS_E_NOMEM
  2900. */
  2901. QDF_STATUS
  2902. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2903. {
  2904. struct dp_soc *soc = pdev->soc;
  2905. uint32_t rxdma_entries;
  2906. uint32_t rx_sw_desc_num;
  2907. struct dp_srng *dp_rxdma_srng;
  2908. struct rx_desc_pool *rx_desc_pool;
  2909. uint32_t status = QDF_STATUS_SUCCESS;
  2910. int mac_for_pdev;
  2911. mac_for_pdev = pdev->lmac_id;
  2912. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2913. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2914. soc, mac_for_pdev);
  2915. return status;
  2916. }
  2917. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2918. rxdma_entries = dp_rxdma_srng->num_entries;
  2919. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2920. rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2921. rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
  2922. status = dp_rx_desc_pool_alloc(soc,
  2923. rx_sw_desc_num,
  2924. rx_desc_pool);
  2925. if (status != QDF_STATUS_SUCCESS)
  2926. return status;
  2927. return status;
  2928. }
  2929. /*
  2930. * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
  2931. *
  2932. * @pdev: core txrx pdev context
  2933. */
  2934. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2935. {
  2936. int mac_for_pdev = pdev->lmac_id;
  2937. struct dp_soc *soc = pdev->soc;
  2938. struct rx_desc_pool *rx_desc_pool;
  2939. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2940. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2941. }
  2942. /*
  2943. * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
  2944. *
  2945. * @pdev: core txrx pdev context
  2946. *
  2947. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2948. * QDF_STATUS_E_NOMEM
  2949. */
  2950. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2951. {
  2952. int mac_for_pdev = pdev->lmac_id;
  2953. struct dp_soc *soc = pdev->soc;
  2954. uint32_t rxdma_entries;
  2955. uint32_t rx_sw_desc_num;
  2956. struct dp_srng *dp_rxdma_srng;
  2957. struct rx_desc_pool *rx_desc_pool;
  2958. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2959. /**
  2960. * If NSS is enabled, rx_desc_pool is already filled.
  2961. * Hence, just disable desc_pool frag flag.
  2962. */
  2963. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2964. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2965. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2966. soc, mac_for_pdev);
  2967. return QDF_STATUS_SUCCESS;
  2968. }
  2969. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2970. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2971. return QDF_STATUS_E_NOMEM;
  2972. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2973. rxdma_entries = dp_rxdma_srng->num_entries;
  2974. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2975. rx_sw_desc_num =
  2976. wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2977. rx_desc_pool->owner = DP_WBM2SW_RBM;
  2978. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2979. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2980. /* Disable monitor dest processing via frag */
  2981. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2982. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2983. rx_sw_desc_num, rx_desc_pool);
  2984. return QDF_STATUS_SUCCESS;
  2985. }
  2986. /*
  2987. * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
  2988. * @pdev: core txrx pdev context
  2989. *
  2990. * This function resets the freelist of rx descriptors and destroys locks
  2991. * associated with this list of descriptors.
  2992. */
  2993. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  2994. {
  2995. int mac_for_pdev = pdev->lmac_id;
  2996. struct dp_soc *soc = pdev->soc;
  2997. struct rx_desc_pool *rx_desc_pool;
  2998. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2999. dp_rx_desc_pool_deinit(soc, rx_desc_pool);
  3000. }
  3001. /*
  3002. * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
  3003. *
  3004. * @pdev: core txrx pdev context
  3005. *
  3006. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  3007. * QDF_STATUS_E_NOMEM
  3008. */
  3009. QDF_STATUS
  3010. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  3011. {
  3012. int mac_for_pdev = pdev->lmac_id;
  3013. struct dp_soc *soc = pdev->soc;
  3014. struct dp_srng *dp_rxdma_srng;
  3015. struct rx_desc_pool *rx_desc_pool;
  3016. uint32_t rxdma_entries;
  3017. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  3018. rxdma_entries = dp_rxdma_srng->num_entries;
  3019. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  3020. /* Initialize RX buffer pool which will be
  3021. * used during low memory conditions
  3022. */
  3023. dp_rx_buffer_pool_init(soc, mac_for_pdev);
  3024. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev, dp_rxdma_srng,
  3025. rx_desc_pool, rxdma_entries - 1);
  3026. }
  3027. /*
  3028. * dp_rx_pdev_buffers_free - Free nbufs (skbs)
  3029. *
  3030. * @pdev: core txrx pdev context
  3031. */
  3032. void
  3033. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  3034. {
  3035. int mac_for_pdev = pdev->lmac_id;
  3036. struct dp_soc *soc = pdev->soc;
  3037. struct rx_desc_pool *rx_desc_pool;
  3038. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  3039. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  3040. dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
  3041. }
  3042. #ifdef DP_RX_SPECIAL_FRAME_NEED
  3043. bool dp_rx_deliver_special_frame(struct dp_soc *soc, struct dp_peer *peer,
  3044. qdf_nbuf_t nbuf, uint32_t frame_mask,
  3045. uint8_t *rx_tlv_hdr)
  3046. {
  3047. uint32_t l2_hdr_offset = 0;
  3048. uint16_t msdu_len = 0;
  3049. uint32_t skip_len;
  3050. l2_hdr_offset =
  3051. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  3052. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  3053. skip_len = l2_hdr_offset;
  3054. } else {
  3055. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  3056. skip_len = l2_hdr_offset + RX_PKT_TLVS_LEN;
  3057. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  3058. }
  3059. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  3060. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  3061. qdf_nbuf_pull_head(nbuf, skip_len);
  3062. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  3063. qdf_nbuf_set_exc_frame(nbuf, 1);
  3064. dp_rx_deliver_to_stack(soc, peer->vdev, peer,
  3065. nbuf, NULL);
  3066. return true;
  3067. }
  3068. return false;
  3069. }
  3070. #endif