hal_srng.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "hal_api.h"
  20. #include "target_type.h"
  21. #include "wcss_version.h"
  22. #include "qdf_module.h"
  23. #ifdef QCA_WIFI_QCA8074
  24. void hal_qca6290_attach(struct hal_soc *hal);
  25. #endif
  26. #ifdef QCA_WIFI_QCA8074
  27. void hal_qca8074_attach(struct hal_soc *hal);
  28. #endif
  29. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018)
  30. void hal_qca8074v2_attach(struct hal_soc *hal);
  31. #endif
  32. #ifdef QCA_WIFI_QCA6390
  33. void hal_qca6390_attach(struct hal_soc *hal);
  34. #endif
  35. #ifdef QCA_WIFI_QCA6490
  36. void hal_qca6490_attach(struct hal_soc *hal);
  37. #endif
  38. #ifdef QCA_WIFI_QCN9000
  39. void hal_qcn9000_attach(struct hal_soc *hal);
  40. #endif
  41. #ifdef QCA_WIFI_QCA6750
  42. void hal_qca6750_attach(struct hal_soc *hal);
  43. #endif
  44. #ifdef ENABLE_VERBOSE_DEBUG
  45. bool is_hal_verbose_debug_enabled;
  46. #endif
  47. #ifdef ENABLE_HAL_REG_WR_HISTORY
  48. struct hal_reg_write_fail_history hal_reg_wr_hist;
  49. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  50. uint32_t offset,
  51. uint32_t wr_val, uint32_t rd_val)
  52. {
  53. struct hal_reg_write_fail_entry *record;
  54. int idx;
  55. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  56. HAL_REG_WRITE_HIST_SIZE);
  57. record = &hal_soc->reg_wr_fail_hist->record[idx];
  58. record->timestamp = qdf_get_log_timestamp();
  59. record->reg_offset = offset;
  60. record->write_val = wr_val;
  61. record->read_val = rd_val;
  62. }
  63. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  64. {
  65. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  66. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  67. }
  68. #else
  69. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  70. {
  71. }
  72. #endif
  73. /**
  74. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  75. * @hal: hal_soc data structure
  76. * @ring_type: type enum describing the ring
  77. * @ring_num: which ring of the ring type
  78. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  79. *
  80. * Return: the ring id or -EINVAL if the ring does not exist.
  81. */
  82. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  83. int ring_num, int mac_id)
  84. {
  85. struct hal_hw_srng_config *ring_config =
  86. HAL_SRNG_CONFIG(hal, ring_type);
  87. int ring_id;
  88. if (ring_num >= ring_config->max_rings) {
  89. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  90. "%s: ring_num exceeded maximum no. of supported rings",
  91. __func__);
  92. /* TODO: This is a programming error. Assert if this happens */
  93. return -EINVAL;
  94. }
  95. if (ring_config->lmac_ring) {
  96. ring_id = ring_config->start_ring_id + ring_num +
  97. (mac_id * HAL_MAX_RINGS_PER_LMAC);
  98. } else {
  99. ring_id = ring_config->start_ring_id + ring_num;
  100. }
  101. return ring_id;
  102. }
  103. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  104. {
  105. /* TODO: Should we allocate srng structures dynamically? */
  106. return &(hal->srng_list[ring_id]);
  107. }
  108. #define HP_OFFSET_IN_REG_START 1
  109. #define OFFSET_FROM_HP_TO_TP 4
  110. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  111. int shadow_config_index,
  112. int ring_type,
  113. int ring_num)
  114. {
  115. struct hal_srng *srng;
  116. int ring_id;
  117. struct hal_hw_srng_config *ring_config =
  118. HAL_SRNG_CONFIG(hal_soc, ring_type);
  119. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  120. if (ring_id < 0)
  121. return;
  122. srng = hal_get_srng(hal_soc, ring_id);
  123. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  124. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  125. + hal_soc->dev_base_addr;
  126. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  127. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  128. shadow_config_index);
  129. } else {
  130. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  131. + hal_soc->dev_base_addr;
  132. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  133. srng->u.src_ring.hp_addr,
  134. hal_soc->dev_base_addr, shadow_config_index);
  135. }
  136. }
  137. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  138. int ring_type,
  139. int ring_num)
  140. {
  141. uint32_t target_register;
  142. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  143. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  144. int shadow_config_index = hal->num_shadow_registers_configured;
  145. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  146. QDF_ASSERT(0);
  147. return QDF_STATUS_E_RESOURCES;
  148. }
  149. hal->num_shadow_registers_configured++;
  150. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  151. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  152. *ring_num);
  153. /* if the ring is a dst ring, we need to shadow the tail pointer */
  154. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  155. target_register += OFFSET_FROM_HP_TO_TP;
  156. hal->shadow_config[shadow_config_index].addr = target_register;
  157. /* update hp/tp addr in the hal_soc structure*/
  158. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  159. ring_num);
  160. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  161. target_register,
  162. SHADOW_REGISTER(shadow_config_index),
  163. shadow_config_index,
  164. ring_type, ring_num);
  165. return QDF_STATUS_SUCCESS;
  166. }
  167. qdf_export_symbol(hal_set_one_shadow_config);
  168. QDF_STATUS hal_construct_shadow_config(void *hal_soc)
  169. {
  170. int ring_type, ring_num;
  171. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  172. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  173. struct hal_hw_srng_config *srng_config =
  174. &hal->hw_srng_table[ring_type];
  175. if (ring_type == CE_SRC ||
  176. ring_type == CE_DST ||
  177. ring_type == CE_DST_STATUS)
  178. continue;
  179. if (srng_config->lmac_ring)
  180. continue;
  181. for (ring_num = 0; ring_num < srng_config->max_rings;
  182. ring_num++)
  183. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  184. }
  185. return QDF_STATUS_SUCCESS;
  186. }
  187. qdf_export_symbol(hal_construct_shadow_config);
  188. void hal_get_shadow_config(void *hal_soc,
  189. struct pld_shadow_reg_v2_cfg **shadow_config,
  190. int *num_shadow_registers_configured)
  191. {
  192. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  193. *shadow_config = hal->shadow_config;
  194. *num_shadow_registers_configured =
  195. hal->num_shadow_registers_configured;
  196. }
  197. qdf_export_symbol(hal_get_shadow_config);
  198. static void hal_validate_shadow_register(struct hal_soc *hal,
  199. uint32_t *destination,
  200. uint32_t *shadow_address)
  201. {
  202. unsigned int index;
  203. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  204. int destination_ba_offset =
  205. ((char *)destination) - (char *)hal->dev_base_addr;
  206. index = shadow_address - shadow_0_offset;
  207. if (index >= MAX_SHADOW_REGISTERS) {
  208. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  209. "%s: index %x out of bounds", __func__, index);
  210. goto error;
  211. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  212. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  213. "%s: sanity check failure, expected %x, found %x",
  214. __func__, destination_ba_offset,
  215. hal->shadow_config[index].addr);
  216. goto error;
  217. }
  218. return;
  219. error:
  220. qdf_print("%s: baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  221. __func__, hal->dev_base_addr, destination, shadow_address,
  222. shadow_0_offset, index);
  223. QDF_BUG(0);
  224. return;
  225. }
  226. static void hal_target_based_configure(struct hal_soc *hal)
  227. {
  228. switch (hal->target_type) {
  229. #ifdef QCA_WIFI_QCA6290
  230. case TARGET_TYPE_QCA6290:
  231. hal->use_register_windowing = true;
  232. hal_qca6290_attach(hal);
  233. break;
  234. #endif
  235. #ifdef QCA_WIFI_QCA6390
  236. case TARGET_TYPE_QCA6390:
  237. hal->use_register_windowing = true;
  238. hal_qca6390_attach(hal);
  239. break;
  240. #endif
  241. #ifdef QCA_WIFI_QCA6490
  242. case TARGET_TYPE_QCA6490:
  243. hal->use_register_windowing = true;
  244. hal_qca6490_attach(hal);
  245. break;
  246. #endif
  247. #ifdef QCA_WIFI_QCA6750
  248. case TARGET_TYPE_QCA6750:
  249. hal->use_register_windowing = true;
  250. hal->static_window_map = true;
  251. hal_qca6750_attach(hal);
  252. break;
  253. #endif
  254. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  255. case TARGET_TYPE_QCA8074:
  256. hal_qca8074_attach(hal);
  257. break;
  258. #endif
  259. #if defined(QCA_WIFI_QCA8074V2)
  260. case TARGET_TYPE_QCA8074V2:
  261. hal_qca8074v2_attach(hal);
  262. break;
  263. #endif
  264. #if defined(QCA_WIFI_QCA6018)
  265. case TARGET_TYPE_QCA6018:
  266. hal_qca8074v2_attach(hal);
  267. break;
  268. #endif
  269. #ifdef QCA_WIFI_QCN9000
  270. case TARGET_TYPE_QCN9000:
  271. hal->use_register_windowing = true;
  272. /*
  273. * Static window map is enabled for qcn9000 to use 2mb bar
  274. * size and use multiple windows to write into registers.
  275. */
  276. hal->static_window_map = true;
  277. hal_qcn9000_attach(hal);
  278. break;
  279. #endif
  280. default:
  281. break;
  282. }
  283. }
  284. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  285. {
  286. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  287. struct hif_target_info *tgt_info =
  288. hif_get_target_info_handle(hal_soc->hif_handle);
  289. return tgt_info->target_type;
  290. }
  291. qdf_export_symbol(hal_get_target_type);
  292. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  293. #ifdef MEMORY_DEBUG
  294. /*
  295. * Length of the queue(array) used to hold delayed register writes.
  296. * Must be a multiple of 2.
  297. */
  298. #define HAL_REG_WRITE_QUEUE_LEN 128
  299. #else
  300. #define HAL_REG_WRITE_QUEUE_LEN 32
  301. #endif
  302. /**
  303. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  304. * @hal: hal_soc pointer
  305. *
  306. * Return: true if throughput is high, else false.
  307. */
  308. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  309. {
  310. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  311. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  312. }
  313. /**
  314. * hal_process_reg_write_q_elem() - process a regiter write queue element
  315. * @hal: hal_soc pointer
  316. * @q_elem: pointer to hal regiter write queue element
  317. *
  318. * Return: None
  319. */
  320. static void hal_process_reg_write_q_elem(struct hal_soc *hal,
  321. struct hal_reg_write_q_elem *q_elem)
  322. {
  323. struct hal_srng *srng = q_elem->srng;
  324. SRNG_LOCK(&srng->lock);
  325. srng->reg_write_in_progress = false;
  326. srng->wstats.dequeues++;
  327. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  328. hal_write_address_32_mb(hal,
  329. srng->u.src_ring.hp_addr,
  330. srng->u.src_ring.hp);
  331. else
  332. hal_write_address_32_mb(hal,
  333. srng->u.dst_ring.tp_addr,
  334. srng->u.dst_ring.tp);
  335. SRNG_UNLOCK(&srng->lock);
  336. }
  337. /**
  338. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  339. * @hal: hal_soc pointer
  340. * @delay: delay in us
  341. *
  342. * Return: None
  343. */
  344. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  345. uint64_t delay_us)
  346. {
  347. uint32_t *hist;
  348. hist = hal->stats.wstats.sched_delay;
  349. if (delay_us < 100)
  350. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  351. else if (delay_us < 1000)
  352. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  353. else if (delay_us < 5000)
  354. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  355. else
  356. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  357. }
  358. /**
  359. * hal_reg_write_work() - Worker to process delayed writes
  360. * @arg: hal_soc pointer
  361. *
  362. * Return: None
  363. */
  364. static void hal_reg_write_work(void *arg)
  365. {
  366. int32_t q_depth;
  367. struct hal_soc *hal = arg;
  368. struct hal_reg_write_q_elem *q_elem;
  369. qdf_time_t delta_us;
  370. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  371. if (!q_elem->valid)
  372. return;
  373. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  374. if (q_depth > hal->stats.wstats.max_q_depth)
  375. hal->stats.wstats.max_q_depth = q_depth;
  376. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  377. hal->stats.wstats.prevent_l1_fails++;
  378. return;
  379. }
  380. while (q_elem->valid) {
  381. q_elem->dequeue_time = qdf_get_log_timestamp();
  382. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  383. q_elem->enqueue_time);
  384. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  385. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%x val %u sched delay %u us",
  386. hal->read_idx,
  387. q_elem->srng->ring_id,
  388. q_elem->addr,
  389. q_elem->val,
  390. delta_us);
  391. hal->stats.wstats.dequeues++;
  392. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  393. hal_process_reg_write_q_elem(hal, q_elem);
  394. q_elem->valid = 0;
  395. hal->read_idx = (hal->read_idx + 1) &
  396. (HAL_REG_WRITE_QUEUE_LEN - 1);
  397. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  398. }
  399. hif_allow_link_low_power_states(hal->hif_handle);
  400. }
  401. /**
  402. * hal_flush_reg_write_work() - flush all writes from regiter write queue
  403. * @arg: hal_soc pointer
  404. *
  405. * Return: None
  406. */
  407. static inline void hal_flush_reg_write_work(struct hal_soc *hal)
  408. {
  409. qdf_cancel_work(&hal->reg_write_work);
  410. qdf_flush_work(&hal->reg_write_work);
  411. qdf_flush_workqueue(0, hal->reg_write_wq);
  412. }
  413. /**
  414. * hal_reg_write_enqueue() - enqueue register writes into kworker
  415. * @hal_soc: hal_soc pointer
  416. * @srng: srng pointer
  417. * @addr: iomem address of regiter
  418. * @value: value to be written to iomem address
  419. *
  420. * This function executes from within the SRNG LOCK
  421. *
  422. * Return: None
  423. */
  424. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  425. struct hal_srng *srng,
  426. void __iomem *addr,
  427. uint32_t value)
  428. {
  429. struct hal_reg_write_q_elem *q_elem;
  430. uint32_t write_idx;
  431. if (srng->reg_write_in_progress) {
  432. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%x val %u",
  433. srng->ring_id, addr, value);
  434. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  435. srng->wstats.coalesces++;
  436. return;
  437. }
  438. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  439. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  440. q_elem = &hal_soc->reg_write_queue[write_idx];
  441. if (q_elem->valid) {
  442. hal_err("queue full");
  443. QDF_BUG(0);
  444. return;
  445. }
  446. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  447. srng->wstats.enqueues++;
  448. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  449. q_elem->srng = srng;
  450. q_elem->addr = addr;
  451. q_elem->val = value;
  452. q_elem->enqueue_time = qdf_get_log_timestamp();
  453. q_elem->valid = true;
  454. srng->reg_write_in_progress = true;
  455. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%x val %u",
  456. write_idx, srng->ring_id, addr, value);
  457. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  458. &hal_soc->reg_write_work);
  459. }
  460. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  461. struct hal_srng *srng,
  462. void __iomem *addr,
  463. uint32_t value)
  464. {
  465. if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
  466. hal_is_reg_write_tput_level_high(hal_soc)) {
  467. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  468. srng->wstats.direct++;
  469. hal_write_address_32_mb(hal_soc, addr, value);
  470. } else {
  471. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  472. }
  473. }
  474. /**
  475. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  476. * @hal_soc: hal_soc pointer
  477. *
  478. * Initialize main data structures to process register writes in a delayed
  479. * workqueue.
  480. *
  481. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  482. */
  483. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  484. {
  485. hal->reg_write_wq =
  486. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  487. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  488. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  489. sizeof(*hal->reg_write_queue));
  490. if (!hal->reg_write_queue) {
  491. hal_err("unable to allocate memory");
  492. QDF_BUG(0);
  493. return QDF_STATUS_E_NOMEM;
  494. }
  495. /* Initial value of indices */
  496. hal->read_idx = 0;
  497. qdf_atomic_set(&hal->write_idx, -1);
  498. return QDF_STATUS_SUCCESS;
  499. }
  500. /**
  501. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  502. * @hal_soc: hal_soc pointer
  503. *
  504. * De-initialize main data structures to process register writes in a delayed
  505. * workqueue.
  506. *
  507. * Return: None
  508. */
  509. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  510. {
  511. hal_flush_reg_write_work(hal);
  512. qdf_destroy_workqueue(0, hal->reg_write_wq);
  513. qdf_mem_free(hal->reg_write_queue);
  514. }
  515. static inline
  516. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  517. char *buf, qdf_size_t size)
  518. {
  519. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  520. srng->wstats.enqueues, srng->wstats.dequeues,
  521. srng->wstats.coalesces, srng->wstats.direct);
  522. return buf;
  523. }
  524. /* bytes for local buffer */
  525. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  526. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  527. {
  528. struct hal_srng *srng;
  529. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  530. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  531. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  532. hal_debug("SW2TCL1: %s",
  533. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  534. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  535. hal_debug("WBM2SW0: %s",
  536. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  537. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  538. hal_debug("REO2SW1: %s",
  539. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  540. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  541. hal_debug("REO2SW2: %s",
  542. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  543. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  544. hal_debug("REO2SW3: %s",
  545. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  546. }
  547. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  548. {
  549. uint32_t *hist;
  550. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  551. hist = hal->stats.wstats.sched_delay;
  552. hal_debug("enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  553. qdf_atomic_read(&hal->stats.wstats.enqueues),
  554. hal->stats.wstats.dequeues,
  555. qdf_atomic_read(&hal->stats.wstats.coalesces),
  556. qdf_atomic_read(&hal->stats.wstats.direct),
  557. qdf_atomic_read(&hal->stats.wstats.q_depth),
  558. hal->stats.wstats.max_q_depth,
  559. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  560. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  561. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  562. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  563. }
  564. #else
  565. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  566. {
  567. return QDF_STATUS_SUCCESS;
  568. }
  569. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  570. {
  571. }
  572. #endif
  573. /**
  574. * hal_attach - Initialize HAL layer
  575. * @hif_handle: Opaque HIF handle
  576. * @qdf_dev: QDF device
  577. *
  578. * Return: Opaque HAL SOC handle
  579. * NULL on failure (if given ring is not available)
  580. *
  581. * This function should be called as part of HIF initialization (for accessing
  582. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  583. *
  584. */
  585. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  586. {
  587. struct hal_soc *hal;
  588. int i;
  589. hal = qdf_mem_malloc(sizeof(*hal));
  590. if (!hal) {
  591. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  592. "%s: hal_soc allocation failed", __func__);
  593. goto fail0;
  594. }
  595. hal->hif_handle = hif_handle;
  596. hal->dev_base_addr = hif_get_dev_ba(hif_handle);
  597. hal->qdf_dev = qdf_dev;
  598. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  599. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  600. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  601. if (!hal->shadow_rdptr_mem_paddr) {
  602. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  603. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  604. __func__);
  605. goto fail1;
  606. }
  607. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  608. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  609. hal->shadow_wrptr_mem_vaddr =
  610. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  611. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  612. &(hal->shadow_wrptr_mem_paddr));
  613. if (!hal->shadow_wrptr_mem_vaddr) {
  614. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  615. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  616. __func__);
  617. goto fail2;
  618. }
  619. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  620. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  621. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  622. hal->srng_list[i].initialized = 0;
  623. hal->srng_list[i].ring_id = i;
  624. }
  625. qdf_spinlock_create(&hal->register_access_lock);
  626. hal->register_window = 0;
  627. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  628. hal_target_based_configure(hal);
  629. hal_reg_write_fail_history_init(hal);
  630. /**
  631. * Indicate Initialization of srngs to avoid force wake
  632. * as umac power collapse is not enabled yet
  633. */
  634. hal->init_phase = true;
  635. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  636. hal_delayed_reg_write_init(hal);
  637. return (void *)hal;
  638. fail2:
  639. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  640. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  641. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  642. fail1:
  643. qdf_mem_free(hal);
  644. fail0:
  645. return NULL;
  646. }
  647. qdf_export_symbol(hal_attach);
  648. /**
  649. * hal_mem_info - Retrieve hal memory base address
  650. *
  651. * @hal_soc: Opaque HAL SOC handle
  652. * @mem: pointer to structure to be updated with hal mem info
  653. */
  654. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  655. {
  656. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  657. mem->dev_base_addr = (void *)hal->dev_base_addr;
  658. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  659. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  660. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  661. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  662. hif_read_phy_mem_base((void *)hal->hif_handle,
  663. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  664. return;
  665. }
  666. qdf_export_symbol(hal_get_meminfo);
  667. /**
  668. * hal_detach - Detach HAL layer
  669. * @hal_soc: HAL SOC handle
  670. *
  671. * Return: Opaque HAL SOC handle
  672. * NULL on failure (if given ring is not available)
  673. *
  674. * This function should be called as part of HIF initialization (for accessing
  675. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  676. *
  677. */
  678. extern void hal_detach(void *hal_soc)
  679. {
  680. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  681. hal_delayed_reg_write_deinit(hal);
  682. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  683. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  684. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  685. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  686. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  687. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  688. qdf_minidump_remove(hal);
  689. qdf_mem_free(hal);
  690. return;
  691. }
  692. qdf_export_symbol(hal_detach);
  693. /**
  694. * hal_ce_dst_setup - Initialize CE destination ring registers
  695. * @hal_soc: HAL SOC handle
  696. * @srng: SRNG ring pointer
  697. */
  698. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  699. int ring_num)
  700. {
  701. uint32_t reg_val = 0;
  702. uint32_t reg_addr;
  703. struct hal_hw_srng_config *ring_config =
  704. HAL_SRNG_CONFIG(hal, CE_DST);
  705. /* set DEST_MAX_LENGTH according to ce assignment */
  706. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_ADDR(
  707. ring_config->reg_start[R0_INDEX] +
  708. (ring_num * ring_config->reg_size[R0_INDEX]));
  709. reg_val = HAL_REG_READ(hal, reg_addr);
  710. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  711. reg_val |= srng->u.dst_ring.max_buffer_length &
  712. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  713. HAL_REG_WRITE(hal, reg_addr, reg_val);
  714. }
  715. /**
  716. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  717. * @hal: HAL SOC handle
  718. * @read: boolean value to indicate if read or write
  719. * @ix0: pointer to store IX0 reg value
  720. * @ix1: pointer to store IX1 reg value
  721. * @ix2: pointer to store IX2 reg value
  722. * @ix3: pointer to store IX3 reg value
  723. */
  724. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  725. uint32_t *ix0, uint32_t *ix1,
  726. uint32_t *ix2, uint32_t *ix3)
  727. {
  728. uint32_t reg_offset;
  729. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  730. if (read) {
  731. if (ix0) {
  732. reg_offset =
  733. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  734. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  735. *ix0 = HAL_REG_READ(hal, reg_offset);
  736. }
  737. if (ix1) {
  738. reg_offset =
  739. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  740. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  741. *ix1 = HAL_REG_READ(hal, reg_offset);
  742. }
  743. if (ix2) {
  744. reg_offset =
  745. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  746. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  747. *ix2 = HAL_REG_READ(hal, reg_offset);
  748. }
  749. if (ix3) {
  750. reg_offset =
  751. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  752. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  753. *ix3 = HAL_REG_READ(hal, reg_offset);
  754. }
  755. } else {
  756. if (ix0) {
  757. reg_offset =
  758. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  759. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  760. HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix0);
  761. }
  762. if (ix1) {
  763. reg_offset =
  764. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  765. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  766. HAL_REG_WRITE(hal, reg_offset, *ix1);
  767. }
  768. if (ix2) {
  769. reg_offset =
  770. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  771. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  772. HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix2);
  773. }
  774. if (ix3) {
  775. reg_offset =
  776. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  777. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  778. HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix3);
  779. }
  780. }
  781. }
  782. /**
  783. * hal_srng_dst_set_hp_paddr() - Set physical address to dest ring head pointer
  784. * @srng: sring pointer
  785. * @paddr: physical address
  786. */
  787. void hal_srng_dst_set_hp_paddr(struct hal_srng *srng,
  788. uint64_t paddr)
  789. {
  790. SRNG_DST_REG_WRITE(srng, HP_ADDR_LSB,
  791. paddr & 0xffffffff);
  792. SRNG_DST_REG_WRITE(srng, HP_ADDR_MSB,
  793. paddr >> 32);
  794. }
  795. /**
  796. * hal_srng_dst_init_hp() - Initilaize destination ring head pointer
  797. * @srng: sring pointer
  798. * @vaddr: virtual address
  799. */
  800. void hal_srng_dst_init_hp(struct hal_srng *srng,
  801. uint32_t *vaddr)
  802. {
  803. if (!srng)
  804. return;
  805. srng->u.dst_ring.hp_addr = vaddr;
  806. SRNG_DST_REG_WRITE(srng, HP, srng->u.dst_ring.cached_hp);
  807. if (vaddr) {
  808. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  809. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  810. "hp_addr=%pK, cached_hp=%d, hp=%d",
  811. (void *)srng->u.dst_ring.hp_addr,
  812. srng->u.dst_ring.cached_hp,
  813. *srng->u.dst_ring.hp_addr);
  814. }
  815. }
  816. /**
  817. * hal_srng_hw_init - Private function to initialize SRNG HW
  818. * @hal_soc: HAL SOC handle
  819. * @srng: SRNG ring pointer
  820. */
  821. static inline void hal_srng_hw_init(struct hal_soc *hal,
  822. struct hal_srng *srng)
  823. {
  824. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  825. hal_srng_src_hw_init(hal, srng);
  826. else
  827. hal_srng_dst_hw_init(hal, srng);
  828. }
  829. #ifdef CONFIG_SHADOW_V2
  830. #define ignore_shadow false
  831. #define CHECK_SHADOW_REGISTERS true
  832. #else
  833. #define ignore_shadow true
  834. #define CHECK_SHADOW_REGISTERS false
  835. #endif
  836. /**
  837. * hal_srng_setup - Initialize HW SRNG ring.
  838. * @hal_soc: Opaque HAL SOC handle
  839. * @ring_type: one of the types from hal_ring_type
  840. * @ring_num: Ring number if there are multiple rings of same type (staring
  841. * from 0)
  842. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  843. * @ring_params: SRNG ring params in hal_srng_params structure.
  844. * Callers are expected to allocate contiguous ring memory of size
  845. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  846. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  847. * hal_srng_params structure. Ring base address should be 8 byte aligned
  848. * and size of each ring entry should be queried using the API
  849. * hal_srng_get_entrysize
  850. *
  851. * Return: Opaque pointer to ring on success
  852. * NULL on failure (if given ring is not available)
  853. */
  854. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  855. int mac_id, struct hal_srng_params *ring_params)
  856. {
  857. int ring_id;
  858. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  859. struct hal_srng *srng;
  860. struct hal_hw_srng_config *ring_config =
  861. HAL_SRNG_CONFIG(hal, ring_type);
  862. void *dev_base_addr;
  863. int i;
  864. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  865. if (ring_id < 0)
  866. return NULL;
  867. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  868. srng = hal_get_srng(hal_soc, ring_id);
  869. if (srng->initialized) {
  870. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  871. return NULL;
  872. }
  873. dev_base_addr = hal->dev_base_addr;
  874. srng->ring_id = ring_id;
  875. srng->ring_dir = ring_config->ring_dir;
  876. srng->ring_base_paddr = ring_params->ring_base_paddr;
  877. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  878. srng->entry_size = ring_config->entry_size;
  879. srng->num_entries = ring_params->num_entries;
  880. srng->ring_size = srng->num_entries * srng->entry_size;
  881. srng->ring_size_mask = srng->ring_size - 1;
  882. srng->msi_addr = ring_params->msi_addr;
  883. srng->msi_data = ring_params->msi_data;
  884. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  885. srng->intr_batch_cntr_thres_entries =
  886. ring_params->intr_batch_cntr_thres_entries;
  887. srng->hal_soc = hal_soc;
  888. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  889. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  890. + (ring_num * ring_config->reg_size[i]);
  891. }
  892. /* Zero out the entire ring memory */
  893. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  894. srng->num_entries) << 2);
  895. srng->flags = ring_params->flags;
  896. #ifdef BIG_ENDIAN_HOST
  897. /* TODO: See if we should we get these flags from caller */
  898. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  899. srng->flags |= HAL_SRNG_MSI_SWAP;
  900. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  901. #endif
  902. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  903. srng->u.src_ring.hp = 0;
  904. srng->u.src_ring.reap_hp = srng->ring_size -
  905. srng->entry_size;
  906. srng->u.src_ring.tp_addr =
  907. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  908. srng->u.src_ring.low_threshold =
  909. ring_params->low_threshold * srng->entry_size;
  910. if (ring_config->lmac_ring) {
  911. /* For LMAC rings, head pointer updates will be done
  912. * through FW by writing to a shared memory location
  913. */
  914. srng->u.src_ring.hp_addr =
  915. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  916. HAL_SRNG_LMAC1_ID_START]);
  917. srng->flags |= HAL_SRNG_LMAC_RING;
  918. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  919. srng->u.src_ring.hp_addr =
  920. hal_get_window_address(hal,
  921. SRNG_SRC_ADDR(srng, HP));
  922. if (CHECK_SHADOW_REGISTERS) {
  923. QDF_TRACE(QDF_MODULE_ID_TXRX,
  924. QDF_TRACE_LEVEL_ERROR,
  925. "%s: Ring (%d, %d) missing shadow config",
  926. __func__, ring_type, ring_num);
  927. }
  928. } else {
  929. hal_validate_shadow_register(hal,
  930. SRNG_SRC_ADDR(srng, HP),
  931. srng->u.src_ring.hp_addr);
  932. }
  933. } else {
  934. /* During initialization loop count in all the descriptors
  935. * will be set to zero, and HW will set it to 1 on completing
  936. * descriptor update in first loop, and increments it by 1 on
  937. * subsequent loops (loop count wraps around after reaching
  938. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  939. * loop count in descriptors updated by HW (to be processed
  940. * by SW).
  941. */
  942. srng->u.dst_ring.loop_cnt = 1;
  943. srng->u.dst_ring.tp = 0;
  944. srng->u.dst_ring.hp_addr =
  945. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  946. if (ring_config->lmac_ring) {
  947. /* For LMAC rings, tail pointer updates will be done
  948. * through FW by writing to a shared memory location
  949. */
  950. srng->u.dst_ring.tp_addr =
  951. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  952. HAL_SRNG_LMAC1_ID_START]);
  953. srng->flags |= HAL_SRNG_LMAC_RING;
  954. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  955. srng->u.dst_ring.tp_addr =
  956. hal_get_window_address(hal,
  957. SRNG_DST_ADDR(srng, TP));
  958. if (CHECK_SHADOW_REGISTERS) {
  959. QDF_TRACE(QDF_MODULE_ID_TXRX,
  960. QDF_TRACE_LEVEL_ERROR,
  961. "%s: Ring (%d, %d) missing shadow config",
  962. __func__, ring_type, ring_num);
  963. }
  964. } else {
  965. hal_validate_shadow_register(hal,
  966. SRNG_DST_ADDR(srng, TP),
  967. srng->u.dst_ring.tp_addr);
  968. }
  969. }
  970. if (!(ring_config->lmac_ring)) {
  971. hal_srng_hw_init(hal, srng);
  972. if (ring_type == CE_DST) {
  973. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  974. hal_ce_dst_setup(hal, srng, ring_num);
  975. }
  976. }
  977. SRNG_LOCK_INIT(&srng->lock);
  978. srng->srng_event = 0;
  979. srng->initialized = true;
  980. return (void *)srng;
  981. }
  982. qdf_export_symbol(hal_srng_setup);
  983. /**
  984. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  985. * @hal_soc: Opaque HAL SOC handle
  986. * @hal_srng: Opaque HAL SRNG pointer
  987. */
  988. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  989. {
  990. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  991. SRNG_LOCK_DESTROY(&srng->lock);
  992. srng->initialized = 0;
  993. }
  994. qdf_export_symbol(hal_srng_cleanup);
  995. /**
  996. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  997. * @hal_soc: Opaque HAL SOC handle
  998. * @ring_type: one of the types from hal_ring_type
  999. *
  1000. */
  1001. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1002. {
  1003. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1004. struct hal_hw_srng_config *ring_config =
  1005. HAL_SRNG_CONFIG(hal, ring_type);
  1006. return ring_config->entry_size << 2;
  1007. }
  1008. qdf_export_symbol(hal_srng_get_entrysize);
  1009. /**
  1010. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1011. * @hal_soc: Opaque HAL SOC handle
  1012. * @ring_type: one of the types from hal_ring_type
  1013. *
  1014. * Return: Maximum number of entries for the given ring_type
  1015. */
  1016. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1017. {
  1018. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1019. struct hal_hw_srng_config *ring_config =
  1020. HAL_SRNG_CONFIG(hal, ring_type);
  1021. return ring_config->max_size / ring_config->entry_size;
  1022. }
  1023. qdf_export_symbol(hal_srng_max_entries);
  1024. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1025. {
  1026. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1027. struct hal_hw_srng_config *ring_config =
  1028. HAL_SRNG_CONFIG(hal, ring_type);
  1029. return ring_config->ring_dir;
  1030. }
  1031. /**
  1032. * hal_srng_dump - Dump ring status
  1033. * @srng: hal srng pointer
  1034. */
  1035. void hal_srng_dump(struct hal_srng *srng)
  1036. {
  1037. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1038. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1039. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1040. srng->u.src_ring.hp,
  1041. srng->u.src_ring.reap_hp,
  1042. *srng->u.src_ring.tp_addr,
  1043. srng->u.src_ring.cached_tp);
  1044. } else {
  1045. hal_debug("=== DST RING %d ===", srng->ring_id);
  1046. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1047. srng->u.dst_ring.tp,
  1048. *srng->u.dst_ring.hp_addr,
  1049. srng->u.dst_ring.cached_hp,
  1050. srng->u.dst_ring.loop_cnt);
  1051. }
  1052. }
  1053. /**
  1054. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1055. *
  1056. * @hal_soc: Opaque HAL SOC handle
  1057. * @hal_ring: Ring pointer (Source or Destination ring)
  1058. * @ring_params: SRNG parameters will be returned through this structure
  1059. */
  1060. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1061. hal_ring_handle_t hal_ring_hdl,
  1062. struct hal_srng_params *ring_params)
  1063. {
  1064. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1065. int i =0;
  1066. ring_params->ring_id = srng->ring_id;
  1067. ring_params->ring_dir = srng->ring_dir;
  1068. ring_params->entry_size = srng->entry_size;
  1069. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1070. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1071. ring_params->num_entries = srng->num_entries;
  1072. ring_params->msi_addr = srng->msi_addr;
  1073. ring_params->msi_data = srng->msi_data;
  1074. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1075. ring_params->intr_batch_cntr_thres_entries =
  1076. srng->intr_batch_cntr_thres_entries;
  1077. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1078. ring_params->flags = srng->flags;
  1079. ring_params->ring_id = srng->ring_id;
  1080. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1081. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1082. }
  1083. qdf_export_symbol(hal_get_srng_params);
  1084. #ifdef FORCE_WAKE
  1085. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1086. {
  1087. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1088. hal_soc->init_phase = init_phase;
  1089. }
  1090. #endif /* FORCE_WAKE */