dp_rx_mon_dest.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498
  1. /*
  2. * Copyright (c) 2017-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_trace.h"
  25. #include "qdf_nbuf.h"
  26. #include "hal_api_mon.h"
  27. #include "dp_rx_mon.h"
  28. #include "wlan_cfg.h"
  29. #include "dp_internal.h"
  30. #ifdef WLAN_TX_PKT_CAPTURE_ENH
  31. #include "dp_rx_mon_feature.h"
  32. static inline void
  33. dp_handle_tx_capture(struct dp_soc *soc, struct dp_pdev *pdev,
  34. qdf_nbuf_t mon_mpdu)
  35. {
  36. struct hal_rx_ppdu_info *ppdu_info = &pdev->ppdu_info;
  37. if (pdev->tx_capture_enabled
  38. == CDP_TX_ENH_CAPTURE_DISABLED)
  39. return;
  40. if ((ppdu_info->sw_frame_group_id ==
  41. HAL_MPDU_SW_FRAME_GROUP_CTRL_NDPA) ||
  42. (ppdu_info->sw_frame_group_id ==
  43. HAL_MPDU_SW_FRAME_GROUP_CTRL_BAR))
  44. dp_handle_tx_capture_from_dest(soc, pdev, mon_mpdu);
  45. }
  46. static void
  47. dp_tx_capture_get_user_id(struct dp_pdev *dp_pdev, void *rx_desc_tlv)
  48. {
  49. if (dp_pdev->tx_capture_enabled
  50. != CDP_TX_ENH_CAPTURE_DISABLED)
  51. dp_pdev->ppdu_info.rx_info.user_id =
  52. HAL_RX_HW_DESC_MPDU_USER_ID(rx_desc_tlv);
  53. }
  54. #else
  55. static inline void
  56. dp_handle_tx_capture(struct dp_soc *soc, struct dp_pdev *pdev,
  57. qdf_nbuf_t mon_mpdu)
  58. {
  59. }
  60. static void
  61. dp_tx_capture_get_user_id(struct dp_pdev *dp_pdev, void *rx_desc_tlv)
  62. {
  63. }
  64. #endif
  65. /* The maxinum buffer length allocated for radio tap */
  66. #define MAX_MONITOR_HEADER (512)
  67. /*
  68. * PPDU id is from 0 to 64k-1. PPDU id read from status ring and PPDU id
  69. * read from destination ring shall track each other. If the distance of
  70. * two ppdu id is less than 20000. It is assume no wrap around. Otherwise,
  71. * It is assume wrap around.
  72. */
  73. #define NOT_PPDU_ID_WRAP_AROUND 20000
  74. /*
  75. * The destination ring processing is stuck if the destrination is not
  76. * moving while status ring moves 16 ppdu. the destination ring processing
  77. * skips this destination ring ppdu as walkaround
  78. */
  79. #define MON_DEST_RING_STUCK_MAX_CNT 16
  80. /**
  81. * dp_rx_mon_link_desc_return() - Return a MPDU link descriptor to HW
  82. * (WBM), following error handling
  83. *
  84. * @dp_pdev: core txrx pdev context
  85. * @buf_addr_info: void pointer to monitor link descriptor buf addr info
  86. * Return: QDF_STATUS
  87. */
  88. QDF_STATUS
  89. dp_rx_mon_link_desc_return(struct dp_pdev *dp_pdev,
  90. hal_buff_addrinfo_t buf_addr_info, int mac_id)
  91. {
  92. struct dp_srng *dp_srng;
  93. hal_ring_handle_t hal_ring_hdl;
  94. hal_soc_handle_t hal_soc;
  95. QDF_STATUS status = QDF_STATUS_E_FAILURE;
  96. void *src_srng_desc;
  97. hal_soc = dp_pdev->soc->hal_soc;
  98. dp_srng = &dp_pdev->soc->rxdma_mon_desc_ring[mac_id];
  99. hal_ring_hdl = dp_srng->hal_srng;
  100. qdf_assert(hal_ring_hdl);
  101. if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring_hdl))) {
  102. /* TODO */
  103. /*
  104. * Need API to convert from hal_ring pointer to
  105. * Ring Type / Ring Id combo
  106. */
  107. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  108. "%s %d : \
  109. HAL RING Access For WBM Release SRNG Failed -- %pK",
  110. __func__, __LINE__, hal_ring_hdl);
  111. goto done;
  112. }
  113. src_srng_desc = hal_srng_src_get_next(hal_soc, hal_ring_hdl);
  114. if (qdf_likely(src_srng_desc)) {
  115. /* Return link descriptor through WBM ring (SW2WBM)*/
  116. hal_rx_mon_msdu_link_desc_set(hal_soc,
  117. src_srng_desc, buf_addr_info);
  118. status = QDF_STATUS_SUCCESS;
  119. } else {
  120. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  121. "%s %d -- Monitor Link Desc WBM Release Ring Full",
  122. __func__, __LINE__);
  123. }
  124. done:
  125. hal_srng_access_end(hal_soc, hal_ring_hdl);
  126. return status;
  127. }
  128. /**
  129. * dp_rx_mon_mpdu_pop() - Return a MPDU link descriptor to HW
  130. * (WBM), following error handling
  131. *
  132. * @soc: core DP main context
  133. * @mac_id: mac id which is one of 3 mac_ids
  134. * @rxdma_dst_ring_desc: void pointer to monitor link descriptor buf addr info
  135. * @head_msdu: head of msdu to be popped
  136. * @tail_msdu: tail of msdu to be popped
  137. * @npackets: number of packet to be popped
  138. * @ppdu_id: ppdu id of processing ppdu
  139. * @head: head of descs list to be freed
  140. * @tail: tail of decs list to be freed
  141. *
  142. * Return: number of msdu in MPDU to be popped
  143. */
  144. static inline uint32_t
  145. dp_rx_mon_mpdu_pop(struct dp_soc *soc, uint32_t mac_id,
  146. hal_rxdma_desc_t rxdma_dst_ring_desc, qdf_nbuf_t *head_msdu,
  147. qdf_nbuf_t *tail_msdu, uint32_t *npackets, uint32_t *ppdu_id,
  148. union dp_rx_desc_list_elem_t **head,
  149. union dp_rx_desc_list_elem_t **tail)
  150. {
  151. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  152. void *rx_desc_tlv;
  153. void *rx_msdu_link_desc;
  154. qdf_nbuf_t msdu;
  155. qdf_nbuf_t last;
  156. struct hal_rx_msdu_list msdu_list;
  157. uint16_t num_msdus;
  158. uint32_t rx_buf_size, rx_pkt_offset;
  159. struct hal_buf_info buf_info;
  160. uint32_t rx_bufs_used = 0;
  161. uint32_t msdu_ppdu_id, msdu_cnt;
  162. uint8_t *data;
  163. uint32_t i;
  164. uint32_t total_frag_len = 0, frag_len = 0;
  165. bool is_frag, is_first_msdu;
  166. bool drop_mpdu = false;
  167. uint8_t bm_action = HAL_BM_ACTION_PUT_IN_IDLE_LIST;
  168. uint64_t nbuf_paddr = 0;
  169. uint32_t rx_link_buf_info[HAL_RX_BUFFINFO_NUM_DWORDS];
  170. struct cdp_mon_status *rs;
  171. if (qdf_unlikely(!dp_pdev)) {
  172. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  173. "pdev is null for mac_id = %d", mac_id);
  174. return rx_bufs_used;
  175. }
  176. msdu = 0;
  177. last = NULL;
  178. hal_rx_reo_ent_buf_paddr_get(rxdma_dst_ring_desc, &buf_info, &msdu_cnt);
  179. rs = &dp_pdev->rx_mon_recv_status;
  180. rs->cdp_rs_rxdma_err = false;
  181. if ((hal_rx_reo_ent_rxdma_push_reason_get(rxdma_dst_ring_desc) ==
  182. HAL_RX_WBM_RXDMA_PSH_RSN_ERROR)) {
  183. uint8_t rxdma_err =
  184. hal_rx_reo_ent_rxdma_error_code_get(
  185. rxdma_dst_ring_desc);
  186. if (qdf_unlikely((rxdma_err == HAL_RXDMA_ERR_FLUSH_REQUEST) ||
  187. (rxdma_err == HAL_RXDMA_ERR_MPDU_LENGTH) ||
  188. (rxdma_err == HAL_RXDMA_ERR_OVERFLOW) ||
  189. (rxdma_err == HAL_RXDMA_ERR_FCS && dp_pdev->mcopy_mode))) {
  190. drop_mpdu = true;
  191. dp_pdev->rx_mon_stats.dest_mpdu_drop++;
  192. }
  193. rs->cdp_rs_rxdma_err = true;
  194. }
  195. is_frag = false;
  196. is_first_msdu = true;
  197. do {
  198. /* WAR for duplicate link descriptors received from HW */
  199. if (qdf_unlikely(dp_pdev->mon_last_linkdesc_paddr ==
  200. buf_info.paddr)) {
  201. dp_pdev->rx_mon_stats.dup_mon_linkdesc_cnt++;
  202. return rx_bufs_used;
  203. }
  204. rx_msdu_link_desc =
  205. dp_rx_cookie_2_mon_link_desc(dp_pdev,
  206. buf_info, mac_id);
  207. qdf_assert_always(rx_msdu_link_desc);
  208. hal_rx_msdu_list_get(soc->hal_soc, rx_msdu_link_desc,
  209. &msdu_list, &num_msdus);
  210. for (i = 0; i < num_msdus; i++) {
  211. uint32_t l2_hdr_offset;
  212. struct dp_rx_desc *rx_desc = NULL;
  213. struct rx_desc_pool *rx_desc_pool;
  214. rx_desc = dp_rx_get_mon_desc(soc,
  215. msdu_list.sw_cookie[i]);
  216. qdf_assert_always(rx_desc);
  217. msdu = rx_desc->nbuf;
  218. if (msdu)
  219. nbuf_paddr = qdf_nbuf_get_frag_paddr(msdu, 0);
  220. /* WAR for duplicate buffers received from HW */
  221. if (qdf_unlikely(dp_pdev->mon_last_buf_cookie ==
  222. msdu_list.sw_cookie[i] ||
  223. !msdu ||
  224. msdu_list.paddr[i] != nbuf_paddr ||
  225. !rx_desc->in_use)) {
  226. /* Skip duplicate buffer and drop subsequent
  227. * buffers in this MPDU
  228. */
  229. drop_mpdu = true;
  230. dp_pdev->rx_mon_stats.dup_mon_buf_cnt++;
  231. dp_pdev->mon_last_linkdesc_paddr =
  232. buf_info.paddr;
  233. continue;
  234. }
  235. if (rx_desc->unmapped == 0) {
  236. rx_desc_pool = dp_rx_get_mon_desc_pool(
  237. soc,
  238. mac_id,
  239. dp_pdev->pdev_id);
  240. qdf_nbuf_unmap_nbytes_single(
  241. soc->osdev,
  242. rx_desc->nbuf,
  243. QDF_DMA_FROM_DEVICE,
  244. rx_desc_pool->buf_size);
  245. rx_desc->unmapped = 1;
  246. }
  247. if (drop_mpdu) {
  248. dp_pdev->mon_last_linkdesc_paddr =
  249. buf_info.paddr;
  250. qdf_nbuf_free(msdu);
  251. msdu = NULL;
  252. goto next_msdu;
  253. }
  254. data = qdf_nbuf_data(msdu);
  255. rx_desc_tlv = HAL_RX_MON_DEST_GET_DESC(data);
  256. QDF_TRACE(QDF_MODULE_ID_DP,
  257. QDF_TRACE_LEVEL_DEBUG,
  258. "[%s] i=%d, ppdu_id=%x, num_msdus = %u",
  259. __func__, i, *ppdu_id, num_msdus);
  260. if (is_first_msdu) {
  261. if (!hal_rx_mpdu_start_tlv_tag_valid(
  262. soc->hal_soc,
  263. rx_desc_tlv)) {
  264. drop_mpdu = true;
  265. qdf_nbuf_free(msdu);
  266. msdu = NULL;
  267. dp_pdev->mon_last_linkdesc_paddr =
  268. buf_info.paddr;
  269. goto next_msdu;
  270. }
  271. msdu_ppdu_id = hal_rx_hw_desc_get_ppduid_get(
  272. soc->hal_soc,
  273. rx_desc_tlv,
  274. rxdma_dst_ring_desc);
  275. is_first_msdu = false;
  276. QDF_TRACE(QDF_MODULE_ID_DP,
  277. QDF_TRACE_LEVEL_DEBUG,
  278. "[%s] msdu_ppdu_id=%x",
  279. __func__, msdu_ppdu_id);
  280. if (*ppdu_id > msdu_ppdu_id)
  281. QDF_TRACE(QDF_MODULE_ID_DP,
  282. QDF_TRACE_LEVEL_DEBUG,
  283. "[%s][%d] ppdu_id=%d "
  284. "msdu_ppdu_id=%d",
  285. __func__, __LINE__, *ppdu_id,
  286. msdu_ppdu_id);
  287. if ((*ppdu_id < msdu_ppdu_id) && (
  288. (msdu_ppdu_id - *ppdu_id) <
  289. NOT_PPDU_ID_WRAP_AROUND)) {
  290. *ppdu_id = msdu_ppdu_id;
  291. return rx_bufs_used;
  292. } else if ((*ppdu_id > msdu_ppdu_id) && (
  293. (*ppdu_id - msdu_ppdu_id) >
  294. NOT_PPDU_ID_WRAP_AROUND)) {
  295. *ppdu_id = msdu_ppdu_id;
  296. return rx_bufs_used;
  297. }
  298. dp_tx_capture_get_user_id(dp_pdev,
  299. rx_desc_tlv);
  300. if (*ppdu_id == msdu_ppdu_id)
  301. dp_pdev->rx_mon_stats.ppdu_id_match++;
  302. else
  303. dp_pdev->rx_mon_stats.ppdu_id_mismatch
  304. ++;
  305. dp_pdev->mon_last_linkdesc_paddr =
  306. buf_info.paddr;
  307. }
  308. if (hal_rx_desc_is_first_msdu(soc->hal_soc,
  309. rx_desc_tlv))
  310. hal_rx_mon_hw_desc_get_mpdu_status(soc->hal_soc,
  311. rx_desc_tlv,
  312. &(dp_pdev->ppdu_info.rx_status));
  313. if (msdu_list.msdu_info[i].msdu_flags &
  314. HAL_MSDU_F_MSDU_CONTINUATION) {
  315. if (!is_frag) {
  316. total_frag_len =
  317. msdu_list.msdu_info[i].msdu_len;
  318. is_frag = true;
  319. }
  320. dp_mon_adjust_frag_len(
  321. &total_frag_len, &frag_len);
  322. } else {
  323. if (is_frag) {
  324. dp_mon_adjust_frag_len(
  325. &total_frag_len, &frag_len);
  326. } else {
  327. frag_len =
  328. msdu_list.msdu_info[i].msdu_len;
  329. }
  330. is_frag = false;
  331. msdu_cnt--;
  332. }
  333. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  334. "%s total_len %u frag_len %u flags %u",
  335. __func__, total_frag_len, frag_len,
  336. msdu_list.msdu_info[i].msdu_flags);
  337. rx_pkt_offset = SIZE_OF_MONITOR_TLV;
  338. /*
  339. * HW structures call this L3 header padding
  340. * -- even though this is actually the offset
  341. * from the buffer beginning where the L2
  342. * header begins.
  343. */
  344. l2_hdr_offset =
  345. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, data);
  346. rx_buf_size = rx_pkt_offset + l2_hdr_offset
  347. + frag_len;
  348. qdf_nbuf_set_pktlen(msdu, rx_buf_size);
  349. #if 0
  350. /* Disble it.see packet on msdu done set to 0 */
  351. /*
  352. * Check if DMA completed -- msdu_done is the
  353. * last bit to be written
  354. */
  355. if (!hal_rx_attn_msdu_done_get(rx_desc_tlv)) {
  356. QDF_TRACE(QDF_MODULE_ID_DP,
  357. QDF_TRACE_LEVEL_ERROR,
  358. "%s:%d: Pkt Desc",
  359. __func__, __LINE__);
  360. QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_DP,
  361. QDF_TRACE_LEVEL_ERROR,
  362. rx_desc_tlv, 128);
  363. qdf_assert_always(0);
  364. }
  365. #endif
  366. QDF_TRACE(QDF_MODULE_ID_DP,
  367. QDF_TRACE_LEVEL_DEBUG,
  368. "%s: rx_pkt_offset=%d, l2_hdr_offset=%d, msdu_len=%d, addr=%pK skb->len %u",
  369. __func__, rx_pkt_offset, l2_hdr_offset,
  370. msdu_list.msdu_info[i].msdu_len,
  371. qdf_nbuf_data(msdu),
  372. (uint32_t)qdf_nbuf_len(msdu));
  373. if (head_msdu && !*head_msdu) {
  374. *head_msdu = msdu;
  375. } else {
  376. if (last)
  377. qdf_nbuf_set_next(last, msdu);
  378. }
  379. last = msdu;
  380. next_msdu:
  381. dp_pdev->mon_last_buf_cookie = msdu_list.sw_cookie[i];
  382. rx_bufs_used++;
  383. dp_rx_add_to_free_desc_list(head,
  384. tail, rx_desc);
  385. }
  386. /*
  387. * Store the current link buffer into to the local
  388. * structure to be used for release purpose.
  389. */
  390. hal_rxdma_buff_addr_info_set(rx_link_buf_info, buf_info.paddr,
  391. buf_info.sw_cookie, buf_info.rbm);
  392. hal_rx_mon_next_link_desc_get(rx_msdu_link_desc, &buf_info);
  393. if (dp_rx_monitor_link_desc_return(dp_pdev,
  394. (hal_buff_addrinfo_t)
  395. rx_link_buf_info,
  396. mac_id,
  397. bm_action)
  398. != QDF_STATUS_SUCCESS)
  399. dp_err_rl("monitor link desc return failed");
  400. } while (buf_info.paddr && msdu_cnt);
  401. if (last)
  402. qdf_nbuf_set_next(last, NULL);
  403. *tail_msdu = msdu;
  404. return rx_bufs_used;
  405. }
  406. static inline
  407. void dp_rx_msdus_set_payload(struct dp_soc *soc, qdf_nbuf_t msdu)
  408. {
  409. uint8_t *data;
  410. uint32_t rx_pkt_offset, l2_hdr_offset;
  411. data = qdf_nbuf_data(msdu);
  412. rx_pkt_offset = SIZE_OF_MONITOR_TLV;
  413. l2_hdr_offset = hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, data);
  414. qdf_nbuf_pull_head(msdu, rx_pkt_offset + l2_hdr_offset);
  415. }
  416. static inline
  417. qdf_nbuf_t dp_rx_mon_restitch_mpdu_from_msdus(struct dp_soc *soc,
  418. uint32_t mac_id, qdf_nbuf_t head_msdu, qdf_nbuf_t last_msdu,
  419. struct cdp_mon_status *rx_status)
  420. {
  421. qdf_nbuf_t msdu, mpdu_buf, prev_buf, msdu_orig, head_frag_list;
  422. uint32_t decap_format, wifi_hdr_len, sec_hdr_len, msdu_llc_len,
  423. mpdu_buf_len, decap_hdr_pull_bytes, frag_list_sum_len, dir,
  424. is_amsdu, is_first_frag, amsdu_pad;
  425. void *rx_desc;
  426. char *hdr_desc;
  427. unsigned char *dest;
  428. struct ieee80211_frame *wh;
  429. struct ieee80211_qoscntl *qos;
  430. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  431. head_frag_list = NULL;
  432. mpdu_buf = NULL;
  433. if (qdf_unlikely(!dp_pdev)) {
  434. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  435. "pdev is null for mac_id = %d", mac_id);
  436. return NULL;
  437. }
  438. /* The nbuf has been pulled just beyond the status and points to the
  439. * payload
  440. */
  441. if (!head_msdu)
  442. goto mpdu_stitch_fail;
  443. msdu_orig = head_msdu;
  444. rx_desc = qdf_nbuf_data(msdu_orig);
  445. if (HAL_RX_DESC_GET_MPDU_LENGTH_ERR(rx_desc)) {
  446. /* It looks like there is some issue on MPDU len err */
  447. /* Need further investigate if drop the packet */
  448. DP_STATS_INC(dp_pdev, dropped.mon_rx_drop, 1);
  449. return NULL;
  450. }
  451. rx_desc = qdf_nbuf_data(last_msdu);
  452. rx_status->cdp_rs_fcs_err = HAL_RX_DESC_GET_MPDU_FCS_ERR(rx_desc);
  453. dp_pdev->ppdu_info.rx_status.rs_fcs_err =
  454. HAL_RX_DESC_GET_MPDU_FCS_ERR(rx_desc);
  455. /* Fill out the rx_status from the PPDU start and end fields */
  456. /* HAL_RX_GET_PPDU_STATUS(soc, mac_id, rx_status); */
  457. rx_desc = qdf_nbuf_data(head_msdu);
  458. decap_format = HAL_RX_DESC_GET_DECAP_FORMAT(rx_desc);
  459. /* Easy case - The MSDU status indicates that this is a non-decapped
  460. * packet in RAW mode.
  461. */
  462. if (decap_format == HAL_HW_RX_DECAP_FORMAT_RAW) {
  463. /* Note that this path might suffer from headroom unavailabilty
  464. * - but the RX status is usually enough
  465. */
  466. dp_rx_msdus_set_payload(soc, head_msdu);
  467. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  468. "[%s][%d] decap format raw head %pK head->next %pK last_msdu %pK last_msdu->next %pK",
  469. __func__, __LINE__, head_msdu, head_msdu->next,
  470. last_msdu, last_msdu->next);
  471. mpdu_buf = head_msdu;
  472. prev_buf = mpdu_buf;
  473. frag_list_sum_len = 0;
  474. msdu = qdf_nbuf_next(head_msdu);
  475. is_first_frag = 1;
  476. while (msdu) {
  477. dp_rx_msdus_set_payload(soc, msdu);
  478. if (is_first_frag) {
  479. is_first_frag = 0;
  480. head_frag_list = msdu;
  481. }
  482. frag_list_sum_len += qdf_nbuf_len(msdu);
  483. /* Maintain the linking of the cloned MSDUS */
  484. qdf_nbuf_set_next_ext(prev_buf, msdu);
  485. /* Move to the next */
  486. prev_buf = msdu;
  487. msdu = qdf_nbuf_next(msdu);
  488. }
  489. qdf_nbuf_trim_tail(prev_buf, HAL_RX_FCS_LEN);
  490. /* If there were more fragments to this RAW frame */
  491. if (head_frag_list) {
  492. if (frag_list_sum_len <
  493. sizeof(struct ieee80211_frame_min_one)) {
  494. DP_STATS_INC(dp_pdev, dropped.mon_rx_drop, 1);
  495. return NULL;
  496. }
  497. frag_list_sum_len -= HAL_RX_FCS_LEN;
  498. qdf_nbuf_append_ext_list(mpdu_buf, head_frag_list,
  499. frag_list_sum_len);
  500. qdf_nbuf_set_next(mpdu_buf, NULL);
  501. }
  502. goto mpdu_stitch_done;
  503. }
  504. /* Decap mode:
  505. * Calculate the amount of header in decapped packet to knock off based
  506. * on the decap type and the corresponding number of raw bytes to copy
  507. * status header
  508. */
  509. rx_desc = qdf_nbuf_data(head_msdu);
  510. hdr_desc = HAL_RX_DESC_GET_80211_HDR(rx_desc);
  511. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  512. "[%s][%d] decap format not raw",
  513. __func__, __LINE__);
  514. /* Base size */
  515. wifi_hdr_len = sizeof(struct ieee80211_frame);
  516. wh = (struct ieee80211_frame *)hdr_desc;
  517. dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
  518. if (dir == IEEE80211_FC1_DIR_DSTODS)
  519. wifi_hdr_len += 6;
  520. is_amsdu = 0;
  521. if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
  522. qos = (struct ieee80211_qoscntl *)
  523. (hdr_desc + wifi_hdr_len);
  524. wifi_hdr_len += 2;
  525. is_amsdu = (qos->i_qos[0] & IEEE80211_QOS_AMSDU);
  526. }
  527. /*Calculate security header length based on 'Protected'
  528. * and 'EXT_IV' flag
  529. * */
  530. if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
  531. char *iv = (char *)wh + wifi_hdr_len;
  532. if (iv[3] & KEY_EXTIV)
  533. sec_hdr_len = 8;
  534. else
  535. sec_hdr_len = 4;
  536. } else {
  537. sec_hdr_len = 0;
  538. }
  539. wifi_hdr_len += sec_hdr_len;
  540. /* MSDU related stuff LLC - AMSDU subframe header etc */
  541. msdu_llc_len = is_amsdu ? (14 + 8) : 8;
  542. mpdu_buf_len = wifi_hdr_len + msdu_llc_len;
  543. /* "Decap" header to remove from MSDU buffer */
  544. decap_hdr_pull_bytes = 14;
  545. /* Allocate a new nbuf for holding the 802.11 header retrieved from the
  546. * status of the now decapped first msdu. Leave enough headroom for
  547. * accomodating any radio-tap /prism like PHY header
  548. */
  549. mpdu_buf = qdf_nbuf_alloc(soc->osdev,
  550. MAX_MONITOR_HEADER + mpdu_buf_len,
  551. MAX_MONITOR_HEADER, 4, FALSE);
  552. if (!mpdu_buf)
  553. goto mpdu_stitch_done;
  554. /* Copy the MPDU related header and enc headers into the first buffer
  555. * - Note that there can be a 2 byte pad between heaader and enc header
  556. */
  557. prev_buf = mpdu_buf;
  558. dest = qdf_nbuf_put_tail(prev_buf, wifi_hdr_len);
  559. if (!dest)
  560. goto mpdu_stitch_fail;
  561. qdf_mem_copy(dest, hdr_desc, wifi_hdr_len);
  562. hdr_desc += wifi_hdr_len;
  563. #if 0
  564. dest = qdf_nbuf_put_tail(prev_buf, sec_hdr_len);
  565. adf_os_mem_copy(dest, hdr_desc, sec_hdr_len);
  566. hdr_desc += sec_hdr_len;
  567. #endif
  568. /* The first LLC len is copied into the MPDU buffer */
  569. frag_list_sum_len = 0;
  570. msdu_orig = head_msdu;
  571. is_first_frag = 1;
  572. amsdu_pad = 0;
  573. while (msdu_orig) {
  574. /* TODO: intra AMSDU padding - do we need it ??? */
  575. msdu = msdu_orig;
  576. if (is_first_frag) {
  577. head_frag_list = msdu;
  578. } else {
  579. /* Reload the hdr ptr only on non-first MSDUs */
  580. rx_desc = qdf_nbuf_data(msdu_orig);
  581. hdr_desc = HAL_RX_DESC_GET_80211_HDR(rx_desc);
  582. }
  583. /* Copy this buffers MSDU related status into the prev buffer */
  584. if (is_first_frag) {
  585. is_first_frag = 0;
  586. }
  587. /* Update protocol and flow tag for MSDU */
  588. dp_rx_mon_update_protocol_flow_tag(soc, dp_pdev,
  589. msdu_orig, rx_desc);
  590. dest = qdf_nbuf_put_tail(prev_buf,
  591. msdu_llc_len + amsdu_pad);
  592. if (!dest)
  593. goto mpdu_stitch_fail;
  594. dest += amsdu_pad;
  595. qdf_mem_copy(dest, hdr_desc, msdu_llc_len);
  596. dp_rx_msdus_set_payload(soc, msdu);
  597. /* Push the MSDU buffer beyond the decap header */
  598. qdf_nbuf_pull_head(msdu, decap_hdr_pull_bytes);
  599. frag_list_sum_len += msdu_llc_len + qdf_nbuf_len(msdu)
  600. + amsdu_pad;
  601. /* Set up intra-AMSDU pad to be added to start of next buffer -
  602. * AMSDU pad is 4 byte pad on AMSDU subframe */
  603. amsdu_pad = (msdu_llc_len + qdf_nbuf_len(msdu)) & 0x3;
  604. amsdu_pad = amsdu_pad ? (4 - amsdu_pad) : 0;
  605. /* TODO FIXME How do we handle MSDUs that have fraglist - Should
  606. * probably iterate all the frags cloning them along the way and
  607. * and also updating the prev_buf pointer
  608. */
  609. /* Move to the next */
  610. prev_buf = msdu;
  611. msdu_orig = qdf_nbuf_next(msdu_orig);
  612. }
  613. #if 0
  614. /* Add in the trailer section - encryption trailer + FCS */
  615. qdf_nbuf_put_tail(prev_buf, HAL_RX_FCS_LEN);
  616. frag_list_sum_len += HAL_RX_FCS_LEN;
  617. #endif
  618. frag_list_sum_len -= msdu_llc_len;
  619. /* TODO: Convert this to suitable adf routines */
  620. qdf_nbuf_append_ext_list(mpdu_buf, head_frag_list,
  621. frag_list_sum_len);
  622. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  623. "%s %d mpdu_buf %pK mpdu_buf->len %u",
  624. __func__, __LINE__,
  625. mpdu_buf, mpdu_buf->len);
  626. mpdu_stitch_done:
  627. /* Check if this buffer contains the PPDU end status for TSF */
  628. /* Need revist this code to see where we can get tsf timestamp */
  629. #if 0
  630. /* PPDU end TLV will be retrieved from monitor status ring */
  631. last_mpdu =
  632. (*(((u_int32_t *)&rx_desc->attention)) &
  633. RX_ATTENTION_0_LAST_MPDU_MASK) >>
  634. RX_ATTENTION_0_LAST_MPDU_LSB;
  635. if (last_mpdu)
  636. rx_status->rs_tstamp.tsf = rx_desc->ppdu_end.tsf_timestamp;
  637. #endif
  638. return mpdu_buf;
  639. mpdu_stitch_fail:
  640. if ((mpdu_buf) && (decap_format != HAL_HW_RX_DECAP_FORMAT_RAW)) {
  641. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  642. "%s mpdu_stitch_fail mpdu_buf %pK",
  643. __func__, mpdu_buf);
  644. /* Free the head buffer */
  645. qdf_nbuf_free(mpdu_buf);
  646. }
  647. return NULL;
  648. }
  649. /**
  650. * dp_send_mgmt_packet_to_stack(): send indicataion to upper layers
  651. *
  652. * @soc: soc handle
  653. * @nbuf: Mgmt packet
  654. * @pdev: pdev handle
  655. *
  656. * Return: QDF_STATUS_SUCCESS on success
  657. * QDF_STATUS_E_INVAL in error
  658. */
  659. #ifdef FEATURE_PERPKT_INFO
  660. static inline QDF_STATUS dp_send_mgmt_packet_to_stack(struct dp_soc *soc,
  661. qdf_nbuf_t nbuf,
  662. struct dp_pdev *pdev)
  663. {
  664. uint32_t *nbuf_data;
  665. struct ieee80211_frame *wh;
  666. if (!nbuf)
  667. return QDF_STATUS_E_INVAL;
  668. /*check if this is not a mgmt packet*/
  669. wh = (struct ieee80211_frame *)qdf_nbuf_data(nbuf);
  670. if (((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
  671. IEEE80211_FC0_TYPE_MGT) &&
  672. ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
  673. IEEE80211_FC0_TYPE_CTL)) {
  674. qdf_nbuf_free(nbuf);
  675. return QDF_STATUS_E_INVAL;
  676. }
  677. nbuf_data = (uint32_t *)qdf_nbuf_push_head(nbuf, 4);
  678. if (!nbuf_data) {
  679. QDF_TRACE(QDF_MODULE_ID_DP,
  680. QDF_TRACE_LEVEL_ERROR,
  681. FL("No headroom"));
  682. qdf_nbuf_free(nbuf);
  683. return QDF_STATUS_E_INVAL;
  684. }
  685. *nbuf_data = pdev->ppdu_info.com_info.ppdu_id;
  686. dp_wdi_event_handler(WDI_EVENT_RX_MGMT_CTRL, soc, nbuf,
  687. HTT_INVALID_PEER,
  688. WDI_NO_VAL, pdev->pdev_id);
  689. return QDF_STATUS_SUCCESS;
  690. }
  691. #else
  692. static inline QDF_STATUS dp_send_mgmt_packet_to_stack(struct dp_soc *soc,
  693. qdf_nbuf_t nbuf,
  694. struct dp_pdev *pdev)
  695. {
  696. return QDF_STATUS_SUCCESS;
  697. }
  698. #endif
  699. /**
  700. * dp_rx_extract_radiotap_info(): Extract and populate information in
  701. * struct mon_rx_status type
  702. * @rx_status: Receive status
  703. * @mon_rx_status: Monitor mode status
  704. *
  705. * Returns: None
  706. */
  707. static inline
  708. void dp_rx_extract_radiotap_info(struct cdp_mon_status *rx_status,
  709. struct mon_rx_status *rx_mon_status)
  710. {
  711. rx_mon_status->tsft = rx_status->cdp_rs_tstamp.cdp_tsf;
  712. rx_mon_status->chan_freq = rx_status->rs_freq;
  713. rx_mon_status->chan_num = rx_status->rs_channel;
  714. rx_mon_status->chan_flags = rx_status->rs_flags;
  715. rx_mon_status->rate = rx_status->rs_datarate;
  716. /* TODO: rx_mon_status->ant_signal_db */
  717. /* TODO: rx_mon_status->nr_ant */
  718. rx_mon_status->mcs = rx_status->cdf_rs_rate_mcs;
  719. rx_mon_status->is_stbc = rx_status->cdp_rs_stbc;
  720. rx_mon_status->sgi = rx_status->cdp_rs_sgi;
  721. /* TODO: rx_mon_status->ldpc */
  722. /* TODO: rx_mon_status->beamformed */
  723. /* TODO: rx_mon_status->vht_flags */
  724. /* TODO: rx_mon_status->vht_flag_values1 */
  725. }
  726. /*
  727. * dp_rx_mon_deliver(): function to deliver packets to stack
  728. * @soc: DP soc
  729. * @mac_id: MAC ID
  730. * @head_msdu: head of msdu list
  731. * @tail_msdu: tail of msdu list
  732. *
  733. * Return: status: 0 - Success, non-zero: Failure
  734. */
  735. QDF_STATUS dp_rx_mon_deliver(struct dp_soc *soc, uint32_t mac_id,
  736. qdf_nbuf_t head_msdu, qdf_nbuf_t tail_msdu)
  737. {
  738. struct dp_pdev *pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  739. struct cdp_mon_status *rs = &pdev->rx_mon_recv_status;
  740. qdf_nbuf_t mon_skb, skb_next;
  741. qdf_nbuf_t mon_mpdu = NULL;
  742. if (!pdev || (!pdev->monitor_vdev && !pdev->mcopy_mode))
  743. goto mon_deliver_fail;
  744. /* restitch mon MPDU for delivery via monitor interface */
  745. mon_mpdu = dp_rx_mon_restitch_mpdu_from_msdus(soc, mac_id, head_msdu,
  746. tail_msdu, rs);
  747. /* monitor vap cannot be present when mcopy is enabled
  748. * hence same skb can be consumed
  749. */
  750. if (pdev->mcopy_mode)
  751. return dp_send_mgmt_packet_to_stack(soc, mon_mpdu, pdev);
  752. if (mon_mpdu && pdev->monitor_vdev && pdev->monitor_vdev->osif_vdev &&
  753. pdev->monitor_vdev->osif_rx_mon) {
  754. pdev->ppdu_info.rx_status.ppdu_id =
  755. pdev->ppdu_info.com_info.ppdu_id;
  756. pdev->ppdu_info.rx_status.device_id = soc->device_id;
  757. pdev->ppdu_info.rx_status.chan_noise_floor =
  758. pdev->chan_noise_floor;
  759. dp_handle_tx_capture(soc, pdev, mon_mpdu);
  760. if (!qdf_nbuf_update_radiotap(&pdev->ppdu_info.rx_status,
  761. mon_mpdu,
  762. qdf_nbuf_headroom(mon_mpdu))) {
  763. DP_STATS_INC(pdev, dropped.mon_radiotap_update_err, 1);
  764. goto mon_deliver_fail;
  765. }
  766. pdev->monitor_vdev->osif_rx_mon(pdev->monitor_vdev->osif_vdev,
  767. mon_mpdu,
  768. &pdev->ppdu_info.rx_status);
  769. } else {
  770. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  771. "[%s][%d] mon_mpdu=%pK monitor_vdev %pK osif_vdev %pK"
  772. , __func__, __LINE__, mon_mpdu, pdev->monitor_vdev,
  773. (pdev->monitor_vdev ? pdev->monitor_vdev->osif_vdev
  774. : NULL));
  775. goto mon_deliver_fail;
  776. }
  777. return QDF_STATUS_SUCCESS;
  778. mon_deliver_fail:
  779. mon_skb = head_msdu;
  780. while (mon_skb) {
  781. skb_next = qdf_nbuf_next(mon_skb);
  782. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  783. "[%s][%d] mon_skb=%pK len %u", __func__,
  784. __LINE__, mon_skb, mon_skb->len);
  785. qdf_nbuf_free(mon_skb);
  786. mon_skb = skb_next;
  787. }
  788. return QDF_STATUS_E_INVAL;
  789. }
  790. /**
  791. * dp_rx_mon_deliver_non_std()
  792. * @soc: core txrx main contex
  793. * @mac_id: MAC ID
  794. *
  795. * This function delivers the radio tap and dummy MSDU
  796. * into user layer application for preamble only PPDU.
  797. *
  798. * Return: QDF_STATUS
  799. */
  800. QDF_STATUS dp_rx_mon_deliver_non_std(struct dp_soc *soc,
  801. uint32_t mac_id)
  802. {
  803. struct dp_pdev *pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  804. ol_txrx_rx_mon_fp osif_rx_mon;
  805. qdf_nbuf_t dummy_msdu;
  806. /* Sanity checking */
  807. if (!pdev || !pdev->monitor_vdev || !pdev->monitor_vdev->osif_rx_mon)
  808. goto mon_deliver_non_std_fail;
  809. /* Generate a dummy skb_buff */
  810. osif_rx_mon = pdev->monitor_vdev->osif_rx_mon;
  811. dummy_msdu = qdf_nbuf_alloc(soc->osdev, MAX_MONITOR_HEADER,
  812. MAX_MONITOR_HEADER, 4, FALSE);
  813. if (!dummy_msdu)
  814. goto allocate_dummy_msdu_fail;
  815. qdf_nbuf_set_pktlen(dummy_msdu, 0);
  816. qdf_nbuf_set_next(dummy_msdu, NULL);
  817. pdev->ppdu_info.rx_status.ppdu_id =
  818. pdev->ppdu_info.com_info.ppdu_id;
  819. /* Apply the radio header to this dummy skb */
  820. if (!qdf_nbuf_update_radiotap(&pdev->ppdu_info.rx_status, dummy_msdu,
  821. qdf_nbuf_headroom(dummy_msdu))) {
  822. DP_STATS_INC(pdev, dropped.mon_radiotap_update_err, 1);
  823. qdf_nbuf_free(dummy_msdu);
  824. goto mon_deliver_non_std_fail;
  825. }
  826. /* deliver to the user layer application */
  827. osif_rx_mon(pdev->monitor_vdev->osif_vdev,
  828. dummy_msdu, NULL);
  829. /* Clear rx_status*/
  830. qdf_mem_zero(&pdev->ppdu_info.rx_status,
  831. sizeof(pdev->ppdu_info.rx_status));
  832. pdev->mon_ppdu_status = DP_PPDU_STATUS_START;
  833. return QDF_STATUS_SUCCESS;
  834. allocate_dummy_msdu_fail:
  835. QDF_TRACE_DEBUG_RL(QDF_MODULE_ID_DP, "[%s][%d] mon_skb=%pK ",
  836. __func__, __LINE__, dummy_msdu);
  837. mon_deliver_non_std_fail:
  838. return QDF_STATUS_E_INVAL;
  839. }
  840. void dp_rx_mon_dest_process(struct dp_soc *soc, struct dp_intr *int_ctx,
  841. uint32_t mac_id, uint32_t quota)
  842. {
  843. struct dp_pdev *pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  844. uint8_t pdev_id;
  845. hal_rxdma_desc_t rxdma_dst_ring_desc;
  846. hal_soc_handle_t hal_soc;
  847. void *mon_dst_srng;
  848. union dp_rx_desc_list_elem_t *head = NULL;
  849. union dp_rx_desc_list_elem_t *tail = NULL;
  850. uint32_t ppdu_id;
  851. uint32_t rx_bufs_used;
  852. uint32_t mpdu_rx_bufs_used;
  853. int mac_for_pdev = mac_id;
  854. struct cdp_pdev_mon_stats *rx_mon_stats;
  855. if (!pdev) {
  856. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  857. "pdev is null for mac_id = %d", mac_id);
  858. return;
  859. }
  860. mon_dst_srng = dp_rxdma_get_mon_dst_ring(pdev, mac_for_pdev);
  861. if (!mon_dst_srng || !hal_srng_initialized(mon_dst_srng)) {
  862. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  863. "%s %d : HAL Monitor Destination Ring Init Failed -- %pK",
  864. __func__, __LINE__, mon_dst_srng);
  865. return;
  866. }
  867. hal_soc = soc->hal_soc;
  868. qdf_assert((hal_soc && pdev));
  869. qdf_spin_lock_bh(&pdev->mon_lock);
  870. if (qdf_unlikely(dp_srng_access_start(int_ctx, soc, mon_dst_srng))) {
  871. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  872. "%s %d : HAL Monitor Destination Ring access Failed -- %pK",
  873. __func__, __LINE__, mon_dst_srng);
  874. return;
  875. }
  876. pdev_id = pdev->pdev_id;
  877. ppdu_id = pdev->ppdu_info.com_info.ppdu_id;
  878. rx_bufs_used = 0;
  879. rx_mon_stats = &pdev->rx_mon_stats;
  880. while (qdf_likely(rxdma_dst_ring_desc =
  881. hal_srng_dst_peek(hal_soc, mon_dst_srng))) {
  882. qdf_nbuf_t head_msdu, tail_msdu;
  883. uint32_t npackets;
  884. head_msdu = (qdf_nbuf_t) NULL;
  885. tail_msdu = (qdf_nbuf_t) NULL;
  886. mpdu_rx_bufs_used =
  887. dp_rx_mon_mpdu_pop(soc, mac_id,
  888. rxdma_dst_ring_desc,
  889. &head_msdu, &tail_msdu,
  890. &npackets, &ppdu_id,
  891. &head, &tail);
  892. rx_bufs_used += mpdu_rx_bufs_used;
  893. if (mpdu_rx_bufs_used)
  894. pdev->mon_dest_ring_stuck_cnt = 0;
  895. else
  896. pdev->mon_dest_ring_stuck_cnt++;
  897. if (pdev->mon_dest_ring_stuck_cnt >
  898. MON_DEST_RING_STUCK_MAX_CNT) {
  899. dp_info("destination ring stuck");
  900. dp_info("ppdu_id status=%d dest=%d",
  901. pdev->ppdu_info.com_info.ppdu_id, ppdu_id);
  902. rx_mon_stats->mon_rx_dest_stuck++;
  903. pdev->ppdu_info.com_info.ppdu_id = ppdu_id;
  904. continue;
  905. }
  906. if (ppdu_id != pdev->ppdu_info.com_info.ppdu_id) {
  907. rx_mon_stats->stat_ring_ppdu_id_hist[
  908. rx_mon_stats->ppdu_id_hist_idx] =
  909. pdev->ppdu_info.com_info.ppdu_id;
  910. rx_mon_stats->dest_ring_ppdu_id_hist[
  911. rx_mon_stats->ppdu_id_hist_idx] = ppdu_id;
  912. rx_mon_stats->ppdu_id_hist_idx =
  913. (rx_mon_stats->ppdu_id_hist_idx + 1) &
  914. (MAX_PPDU_ID_HIST - 1);
  915. pdev->mon_ppdu_status = DP_PPDU_STATUS_START;
  916. qdf_mem_zero(&(pdev->ppdu_info.rx_status),
  917. sizeof(pdev->ppdu_info.rx_status));
  918. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  919. "%s %d ppdu_id %x != ppdu_info.com_info.ppdu_id %x",
  920. __func__, __LINE__,
  921. ppdu_id, pdev->ppdu_info.com_info.ppdu_id);
  922. break;
  923. }
  924. if (qdf_likely((head_msdu) && (tail_msdu))) {
  925. rx_mon_stats->dest_mpdu_done++;
  926. dp_rx_mon_deliver(soc, mac_id, head_msdu, tail_msdu);
  927. }
  928. rxdma_dst_ring_desc = hal_srng_dst_get_next(hal_soc,
  929. mon_dst_srng);
  930. }
  931. dp_srng_access_end(int_ctx, soc, mon_dst_srng);
  932. qdf_spin_unlock_bh(&pdev->mon_lock);
  933. if (rx_bufs_used) {
  934. rx_mon_stats->dest_ppdu_done++;
  935. dp_rx_buffers_replenish(soc, mac_id,
  936. dp_rxdma_get_mon_buf_ring(pdev,
  937. mac_for_pdev),
  938. dp_rx_get_mon_desc_pool(soc, mac_id,
  939. pdev_id),
  940. rx_bufs_used, &head, &tail);
  941. }
  942. }
  943. QDF_STATUS
  944. dp_rx_pdev_mon_buf_buffers_alloc(struct dp_pdev *pdev, uint32_t mac_id,
  945. bool delayed_replenish)
  946. {
  947. uint8_t pdev_id = pdev->pdev_id;
  948. struct dp_soc *soc = pdev->soc;
  949. struct dp_srng *mon_buf_ring;
  950. uint32_t num_entries;
  951. struct rx_desc_pool *rx_desc_pool;
  952. QDF_STATUS status = QDF_STATUS_SUCCESS;
  953. struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx = soc->wlan_cfg_ctx;
  954. mon_buf_ring = dp_rxdma_get_mon_buf_ring(pdev, mac_id);
  955. num_entries = mon_buf_ring->num_entries;
  956. rx_desc_pool = dp_rx_get_mon_desc_pool(soc, mac_id, pdev_id);
  957. dp_debug("Mon RX Desc Pool[%d] entries=%u", pdev_id, num_entries);
  958. /* Replenish RXDMA monitor buffer ring with 8 buffers only
  959. * delayed_replenish_entries is actually 8 but when we call
  960. * dp_pdev_rx_buffers_attach() we pass 1 less than 8, hence
  961. * added 1 to delayed_replenish_entries to ensure we have 8
  962. * entries. Once the monitor VAP is configured we replenish
  963. * the complete RXDMA monitor buffer ring.
  964. */
  965. if (delayed_replenish) {
  966. num_entries = soc_cfg_ctx->delayed_replenish_entries + 1;
  967. status = dp_pdev_rx_buffers_attach(soc, mac_id, mon_buf_ring,
  968. rx_desc_pool,
  969. num_entries - 1);
  970. } else {
  971. union dp_rx_desc_list_elem_t *tail = NULL;
  972. union dp_rx_desc_list_elem_t *desc_list = NULL;
  973. status = dp_rx_buffers_replenish(soc, mac_id,
  974. mon_buf_ring,
  975. rx_desc_pool,
  976. num_entries,
  977. &desc_list,
  978. &tail);
  979. }
  980. return status;
  981. }
  982. static QDF_STATUS
  983. dp_rx_pdev_mon_cmn_buffers_alloc(struct dp_pdev *pdev, int mac_id)
  984. {
  985. struct dp_soc *soc = pdev->soc;
  986. uint8_t pdev_id = pdev->pdev_id;
  987. int mac_for_pdev;
  988. bool delayed_replenish;
  989. QDF_STATUS status = QDF_STATUS_SUCCESS;
  990. struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx = soc->wlan_cfg_ctx;
  991. delayed_replenish = soc_cfg_ctx->delayed_replenish_entries ? 1 : 0;
  992. mac_for_pdev = dp_get_lmac_id_for_pdev_id(pdev->soc, mac_id, pdev_id);
  993. status = dp_rx_pdev_mon_status_buffers_alloc(pdev, mac_for_pdev);
  994. if (!QDF_IS_STATUS_SUCCESS(status)) {
  995. dp_err("%s: dp_rx_pdev_mon_status_desc_pool_alloc() failed",
  996. __func__);
  997. goto fail;
  998. }
  999. if (!soc->wlan_cfg_ctx->rxdma1_enable)
  1000. return status;
  1001. status = dp_rx_pdev_mon_buf_buffers_alloc(pdev, mac_for_pdev,
  1002. delayed_replenish);
  1003. if (!QDF_IS_STATUS_SUCCESS(status)) {
  1004. dp_err("%s: dp_rx_pdev_mon_buf_desc_pool_alloc() failed\n",
  1005. __func__);
  1006. goto mon_stat_buf_dealloc;
  1007. }
  1008. return status;
  1009. mon_stat_buf_dealloc:
  1010. dp_rx_pdev_mon_status_buffers_free(pdev, mac_for_pdev);
  1011. fail:
  1012. return status;
  1013. }
  1014. static void
  1015. dp_rx_pdev_mon_buf_desc_pool_init(struct dp_pdev *pdev, uint32_t mac_id)
  1016. {
  1017. uint8_t pdev_id = pdev->pdev_id;
  1018. struct dp_soc *soc = pdev->soc;
  1019. struct dp_srng *mon_buf_ring;
  1020. uint32_t num_entries;
  1021. struct rx_desc_pool *rx_desc_pool;
  1022. uint32_t rx_desc_pool_size;
  1023. struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx = soc->wlan_cfg_ctx;
  1024. mon_buf_ring = &soc->rxdma_mon_buf_ring[mac_id];
  1025. num_entries = mon_buf_ring->num_entries;
  1026. rx_desc_pool = &soc->rx_desc_mon[mac_id];
  1027. dp_debug("Mon RX Desc buf Pool[%d] init entries=%u",
  1028. pdev_id, num_entries);
  1029. rx_desc_pool_size = wlan_cfg_get_dp_soc_rx_sw_desc_weight(soc_cfg_ctx) *
  1030. num_entries;
  1031. rx_desc_pool->owner = HAL_RX_BUF_RBM_SW3_BM;
  1032. rx_desc_pool->buf_size = RX_MONITOR_BUFFER_SIZE;
  1033. rx_desc_pool->buf_alignment = RX_MONITOR_BUFFER_ALIGNMENT;
  1034. dp_rx_desc_pool_init(soc, mac_id, rx_desc_pool_size, rx_desc_pool);
  1035. pdev->mon_last_linkdesc_paddr = 0;
  1036. pdev->mon_last_buf_cookie = DP_RX_DESC_COOKIE_MAX + 1;
  1037. /* Attach full monitor mode resources */
  1038. dp_full_mon_attach(pdev);
  1039. }
  1040. static void
  1041. dp_rx_pdev_mon_cmn_desc_pool_init(struct dp_pdev *pdev, int mac_id)
  1042. {
  1043. struct dp_soc *soc = pdev->soc;
  1044. uint32_t mac_for_pdev;
  1045. mac_for_pdev = dp_get_lmac_id_for_pdev_id(soc, mac_id, pdev->pdev_id);
  1046. dp_rx_pdev_mon_status_desc_pool_init(pdev, mac_for_pdev);
  1047. if (!soc->wlan_cfg_ctx->rxdma1_enable)
  1048. return;
  1049. dp_rx_pdev_mon_buf_desc_pool_init(pdev, mac_for_pdev);
  1050. dp_link_desc_ring_replenish(soc, mac_for_pdev);
  1051. }
  1052. static void
  1053. dp_rx_pdev_mon_buf_desc_pool_deinit(struct dp_pdev *pdev, uint32_t mac_id)
  1054. {
  1055. uint8_t pdev_id = pdev->pdev_id;
  1056. struct dp_soc *soc = pdev->soc;
  1057. struct rx_desc_pool *rx_desc_pool;
  1058. rx_desc_pool = &soc->rx_desc_mon[mac_id];
  1059. dp_debug("Mon RX Desc buf Pool[%d] deinit", pdev_id);
  1060. dp_rx_desc_pool_deinit(soc, rx_desc_pool);
  1061. /* Detach full monitor mode resources */
  1062. dp_full_mon_detach(pdev);
  1063. }
  1064. static void
  1065. dp_rx_pdev_mon_cmn_desc_pool_deinit(struct dp_pdev *pdev, int mac_id)
  1066. {
  1067. struct dp_soc *soc = pdev->soc;
  1068. uint8_t pdev_id = pdev->pdev_id;
  1069. int mac_for_pdev = dp_get_lmac_id_for_pdev_id(soc, mac_id, pdev_id);
  1070. dp_rx_pdev_mon_status_desc_pool_deinit(pdev, mac_for_pdev);
  1071. if (!soc->wlan_cfg_ctx->rxdma1_enable)
  1072. return;
  1073. dp_rx_pdev_mon_buf_desc_pool_deinit(pdev, mac_for_pdev);
  1074. }
  1075. static void
  1076. dp_rx_pdev_mon_buf_desc_pool_free(struct dp_pdev *pdev, uint32_t mac_id)
  1077. {
  1078. uint8_t pdev_id = pdev->pdev_id;
  1079. struct dp_soc *soc = pdev->soc;
  1080. struct rx_desc_pool *rx_desc_pool;
  1081. rx_desc_pool = &soc->rx_desc_mon[mac_id];
  1082. dp_debug("Mon RX Buf Desc Pool Free pdev[%d]", pdev_id);
  1083. dp_rx_desc_pool_free(soc, rx_desc_pool);
  1084. }
  1085. static void
  1086. dp_rx_pdev_mon_cmn_desc_pool_free(struct dp_pdev *pdev, int mac_id)
  1087. {
  1088. struct dp_soc *soc = pdev->soc;
  1089. uint8_t pdev_id = pdev->pdev_id;
  1090. int mac_for_pdev = dp_get_lmac_id_for_pdev_id(soc, mac_id, pdev_id);
  1091. dp_rx_pdev_mon_status_desc_pool_free(pdev, mac_for_pdev);
  1092. dp_rx_pdev_mon_buf_desc_pool_free(pdev, mac_for_pdev);
  1093. dp_hw_link_desc_pool_banks_free(soc, mac_for_pdev);
  1094. }
  1095. void dp_rx_pdev_mon_buf_buffers_free(struct dp_pdev *pdev, uint32_t mac_id)
  1096. {
  1097. uint8_t pdev_id = pdev->pdev_id;
  1098. struct dp_soc *soc = pdev->soc;
  1099. struct rx_desc_pool *rx_desc_pool;
  1100. rx_desc_pool = &soc->rx_desc_mon[mac_id];
  1101. dp_debug("Mon RX Buf buffers Free pdev[%d]", pdev_id);
  1102. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  1103. }
  1104. static QDF_STATUS
  1105. dp_rx_pdev_mon_buf_desc_pool_alloc(struct dp_pdev *pdev, uint32_t mac_id)
  1106. {
  1107. uint8_t pdev_id = pdev->pdev_id;
  1108. struct dp_soc *soc = pdev->soc;
  1109. struct dp_srng *mon_buf_ring;
  1110. uint32_t num_entries;
  1111. struct rx_desc_pool *rx_desc_pool;
  1112. uint32_t rx_desc_pool_size;
  1113. struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx = soc->wlan_cfg_ctx;
  1114. mon_buf_ring = &soc->rxdma_mon_buf_ring[mac_id];
  1115. num_entries = mon_buf_ring->num_entries;
  1116. rx_desc_pool = &soc->rx_desc_mon[mac_id];
  1117. dp_debug("Mon RX Desc Pool[%d] entries=%u",
  1118. pdev_id, num_entries);
  1119. rx_desc_pool_size = wlan_cfg_get_dp_soc_rx_sw_desc_weight(soc_cfg_ctx) *
  1120. num_entries;
  1121. return dp_rx_desc_pool_alloc(soc, rx_desc_pool_size, rx_desc_pool);
  1122. }
  1123. static QDF_STATUS
  1124. dp_rx_pdev_mon_cmn_desc_pool_alloc(struct dp_pdev *pdev, int mac_id)
  1125. {
  1126. struct dp_soc *soc = pdev->soc;
  1127. uint8_t pdev_id = pdev->pdev_id;
  1128. uint32_t mac_for_pdev;
  1129. QDF_STATUS status;
  1130. mac_for_pdev = dp_get_lmac_id_for_pdev_id(soc, mac_id, pdev_id);
  1131. /* Allocate sw rx descriptor pool for monitor status ring */
  1132. status = dp_rx_pdev_mon_status_desc_pool_alloc(pdev, mac_for_pdev);
  1133. if (!QDF_IS_STATUS_SUCCESS(status)) {
  1134. dp_err("%s: dp_rx_pdev_mon_status_desc_pool_alloc() failed",
  1135. __func__);
  1136. goto fail;
  1137. }
  1138. if (!soc->wlan_cfg_ctx->rxdma1_enable)
  1139. return status;
  1140. /* Allocate sw rx descriptor pool for monitor RxDMA buffer ring */
  1141. status = dp_rx_pdev_mon_buf_desc_pool_alloc(pdev, mac_for_pdev);
  1142. if (!QDF_IS_STATUS_SUCCESS(status)) {
  1143. dp_err("%s: dp_rx_pdev_mon_buf_desc_pool_alloc() failed\n",
  1144. __func__);
  1145. goto mon_status_dealloc;
  1146. }
  1147. /* Allocate link descriptors for the monitor link descriptor ring */
  1148. status = dp_hw_link_desc_pool_banks_alloc(soc, mac_for_pdev);
  1149. if (!QDF_IS_STATUS_SUCCESS(status)) {
  1150. dp_err("%s: dp_hw_link_desc_pool_banks_alloc() failed",
  1151. __func__);
  1152. goto mon_buf_dealloc;
  1153. }
  1154. return status;
  1155. mon_buf_dealloc:
  1156. dp_rx_pdev_mon_buf_desc_pool_free(pdev, mac_for_pdev);
  1157. mon_status_dealloc:
  1158. dp_rx_pdev_mon_status_desc_pool_free(pdev, mac_for_pdev);
  1159. fail:
  1160. return status;
  1161. }
  1162. static void
  1163. dp_rx_pdev_mon_cmn_buffers_free(struct dp_pdev *pdev, int mac_id)
  1164. {
  1165. uint8_t pdev_id = pdev->pdev_id;
  1166. struct dp_soc *soc = pdev->soc;
  1167. int mac_for_pdev;
  1168. mac_for_pdev = dp_get_lmac_id_for_pdev_id(pdev->soc, mac_id, pdev_id);
  1169. dp_rx_pdev_mon_status_buffers_free(pdev, mac_for_pdev);
  1170. if (!soc->wlan_cfg_ctx->rxdma1_enable)
  1171. return;
  1172. dp_rx_pdev_mon_buf_buffers_free(pdev, mac_for_pdev);
  1173. }
  1174. QDF_STATUS
  1175. dp_rx_pdev_mon_desc_pool_alloc(struct dp_pdev *pdev)
  1176. {
  1177. QDF_STATUS status;
  1178. int mac_id, count;
  1179. for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
  1180. status = dp_rx_pdev_mon_cmn_desc_pool_alloc(pdev, mac_id);
  1181. if (!QDF_IS_STATUS_SUCCESS(status)) {
  1182. QDF_TRACE(QDF_MODULE_ID_DP,
  1183. QDF_TRACE_LEVEL_ERROR, "%s: %d failed\n",
  1184. __func__, mac_id);
  1185. for (count = 0; count < mac_id; count++)
  1186. dp_rx_pdev_mon_cmn_desc_pool_free(pdev, count);
  1187. return status;
  1188. }
  1189. }
  1190. return status;
  1191. }
  1192. void
  1193. dp_rx_pdev_mon_desc_pool_init(struct dp_pdev *pdev)
  1194. {
  1195. int mac_id;
  1196. for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++)
  1197. dp_rx_pdev_mon_cmn_desc_pool_init(pdev, mac_id);
  1198. qdf_spinlock_create(&pdev->mon_lock);
  1199. }
  1200. void
  1201. dp_rx_pdev_mon_desc_pool_deinit(struct dp_pdev *pdev)
  1202. {
  1203. int mac_id;
  1204. for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++)
  1205. dp_rx_pdev_mon_cmn_desc_pool_deinit(pdev, mac_id);
  1206. qdf_spinlock_destroy(&pdev->mon_lock);
  1207. }
  1208. void dp_rx_pdev_mon_desc_pool_free(struct dp_pdev *pdev)
  1209. {
  1210. int mac_id;
  1211. for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++)
  1212. dp_rx_pdev_mon_cmn_desc_pool_free(pdev, mac_id);
  1213. }
  1214. void
  1215. dp_rx_pdev_mon_buffers_free(struct dp_pdev *pdev)
  1216. {
  1217. int mac_id;
  1218. for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++)
  1219. dp_rx_pdev_mon_cmn_buffers_free(pdev, mac_id);
  1220. }
  1221. QDF_STATUS
  1222. dp_rx_pdev_mon_buffers_alloc(struct dp_pdev *pdev)
  1223. {
  1224. int mac_id;
  1225. QDF_STATUS status;
  1226. for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
  1227. status = dp_rx_pdev_mon_cmn_buffers_alloc(pdev, mac_id);
  1228. if (!QDF_IS_STATUS_SUCCESS(status)) {
  1229. QDF_TRACE(QDF_MODULE_ID_DP,
  1230. QDF_TRACE_LEVEL_ERROR, "%s: %d failed\n",
  1231. __func__, mac_id);
  1232. return status;
  1233. }
  1234. }
  1235. return status;
  1236. }