msm_smem.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/dma-buf.h>
  6. #include <linux/dma-heap.h>
  7. #include <linux/dma-direction.h>
  8. #include <linux/iommu.h>
  9. #include <linux/msm_dma_iommu_mapping.h>
  10. #include <linux/ion.h>
  11. #include <linux/msm_ion.h>
  12. #include <linux/slab.h>
  13. #include <linux/types.h>
  14. #include "msm_cvp_core.h"
  15. #include "msm_cvp_debug.h"
  16. #include "msm_cvp_resources.h"
  17. #include "cvp_core_hfi.h"
  18. #include "msm_cvp_dsp.h"
  19. static int msm_dma_get_device_address(struct dma_buf *dbuf, u32 align,
  20. dma_addr_t *iova, u32 flags, unsigned long ion_flags,
  21. struct msm_cvp_platform_resources *res,
  22. struct cvp_dma_mapping_info *mapping_info)
  23. {
  24. int rc = 0;
  25. struct dma_buf_attachment *attach;
  26. struct sg_table *table = NULL;
  27. struct context_bank_info *cb = NULL;
  28. if (!dbuf || !iova || !mapping_info) {
  29. dprintk(CVP_ERR, "Invalid params: %pK, %pK, %pK\n",
  30. dbuf, iova, mapping_info);
  31. return -EINVAL;
  32. }
  33. if (is_iommu_present(res)) {
  34. cb = msm_cvp_smem_get_context_bank((flags & SMEM_SECURE),
  35. res, ion_flags);
  36. if (!cb) {
  37. dprintk(CVP_ERR,
  38. "%s: Failed to get context bank device\n",
  39. __func__);
  40. rc = -EIO;
  41. goto mem_map_failed;
  42. }
  43. /* Prepare a dma buf for dma on the given device */
  44. attach = dma_buf_attach(dbuf, cb->dev);
  45. if (IS_ERR_OR_NULL(attach)) {
  46. rc = PTR_ERR(attach) ?: -ENOMEM;
  47. dprintk(CVP_ERR, "Failed to attach dmabuf\n");
  48. goto mem_buf_attach_failed;
  49. }
  50. /*
  51. * Get the scatterlist for the given attachment
  52. * Mapping of sg is taken care by map attachment
  53. */
  54. attach->dma_map_attrs = DMA_ATTR_DELAYED_UNMAP;
  55. /*
  56. * We do not need dma_map function to perform cache operations
  57. * on the whole buffer size and hence pass skip sync flag.
  58. * We do the required cache operations separately for the
  59. * required buffer size
  60. */
  61. attach->dma_map_attrs |= DMA_ATTR_SKIP_CPU_SYNC;
  62. if (res->sys_cache_present)
  63. attach->dma_map_attrs |=
  64. DMA_ATTR_IOMMU_USE_UPSTREAM_HINT;
  65. table = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
  66. if (IS_ERR_OR_NULL(table)) {
  67. rc = PTR_ERR(table) ?: -ENOMEM;
  68. dprintk(CVP_ERR, "Failed to map table\n");
  69. goto mem_map_table_failed;
  70. }
  71. if (table->sgl) {
  72. *iova = table->sgl->dma_address;
  73. } else {
  74. dprintk(CVP_ERR, "sgl is NULL\n");
  75. rc = -ENOMEM;
  76. goto mem_map_sg_failed;
  77. }
  78. mapping_info->dev = cb->dev;
  79. mapping_info->domain = cb->domain;
  80. mapping_info->table = table;
  81. mapping_info->attach = attach;
  82. mapping_info->buf = dbuf;
  83. mapping_info->cb_info = (void *)cb;
  84. } else {
  85. dprintk(CVP_MEM, "iommu not present, use phys mem addr\n");
  86. }
  87. return 0;
  88. mem_map_sg_failed:
  89. dma_buf_unmap_attachment(attach, table, DMA_BIDIRECTIONAL);
  90. mem_map_table_failed:
  91. dma_buf_detach(dbuf, attach);
  92. mem_buf_attach_failed:
  93. mem_map_failed:
  94. return rc;
  95. }
  96. static int msm_dma_put_device_address(u32 flags,
  97. struct cvp_dma_mapping_info *mapping_info)
  98. {
  99. int rc = 0;
  100. if (!mapping_info) {
  101. dprintk(CVP_WARN, "Invalid mapping_info\n");
  102. return -EINVAL;
  103. }
  104. if (!mapping_info->dev || !mapping_info->table ||
  105. !mapping_info->buf || !mapping_info->attach ||
  106. !mapping_info->cb_info) {
  107. dprintk(CVP_WARN, "Invalid params\n");
  108. return -EINVAL;
  109. }
  110. dma_buf_unmap_attachment(mapping_info->attach,
  111. mapping_info->table, DMA_BIDIRECTIONAL);
  112. dma_buf_detach(mapping_info->buf, mapping_info->attach);
  113. mapping_info->dev = NULL;
  114. mapping_info->domain = NULL;
  115. mapping_info->table = NULL;
  116. mapping_info->attach = NULL;
  117. mapping_info->buf = NULL;
  118. mapping_info->cb_info = NULL;
  119. return rc;
  120. }
  121. struct dma_buf *msm_cvp_smem_get_dma_buf(int fd)
  122. {
  123. struct dma_buf *dma_buf;
  124. dma_buf = dma_buf_get(fd);
  125. if (IS_ERR_OR_NULL(dma_buf)) {
  126. dprintk(CVP_ERR, "Failed to get dma_buf for %d, error %ld\n",
  127. fd, PTR_ERR(dma_buf));
  128. dma_buf = NULL;
  129. }
  130. return dma_buf;
  131. }
  132. void msm_cvp_smem_put_dma_buf(void *dma_buf)
  133. {
  134. if (!dma_buf) {
  135. dprintk(CVP_ERR, "%s: NULL dma_buf\n", __func__);
  136. return;
  137. }
  138. dma_heap_buffer_free((struct dma_buf *)dma_buf);
  139. }
  140. int msm_cvp_map_smem(struct msm_cvp_inst *inst,
  141. struct msm_cvp_smem *smem,
  142. const char *str)
  143. {
  144. int rc = 0;
  145. dma_addr_t iova = 0;
  146. u32 temp = 0;
  147. u32 align = SZ_4K;
  148. struct dma_buf *dma_buf;
  149. unsigned long ion_flags = 0;
  150. if (!inst || !smem) {
  151. dprintk(CVP_ERR, "%s: Invalid params: %pK %pK\n",
  152. __func__, inst, smem);
  153. return -EINVAL;
  154. }
  155. dma_buf = smem->dma_buf;
  156. rc = dma_buf_get_flags(dma_buf, &ion_flags);
  157. if (rc) {
  158. dprintk(CVP_ERR, "Failed to get dma buf flags: %d\n", rc);
  159. goto exit;
  160. }
  161. if (ion_flags & ION_FLAG_CACHED)
  162. smem->flags |= SMEM_CACHED;
  163. if (ion_flags & ION_FLAG_SECURE)
  164. smem->flags |= SMEM_SECURE;
  165. rc = msm_dma_get_device_address(dma_buf, align, &iova, smem->flags,
  166. ion_flags, &(inst->core->resources),
  167. &smem->mapping_info);
  168. if (rc) {
  169. dprintk(CVP_ERR, "Failed to get device address: %d\n", rc);
  170. goto exit;
  171. }
  172. temp = (u32)iova;
  173. if ((dma_addr_t)temp != iova) {
  174. dprintk(CVP_ERR, "iova(%pa) truncated to %#x", &iova, temp);
  175. rc = -EINVAL;
  176. goto exit;
  177. }
  178. smem->size = dma_buf->size;
  179. smem->device_addr = (u32)iova;
  180. print_smem(CVP_MEM, str, inst, smem);
  181. return rc;
  182. exit:
  183. smem->device_addr = 0x0;
  184. return rc;
  185. }
  186. int msm_cvp_unmap_smem(struct msm_cvp_inst *inst,
  187. struct msm_cvp_smem *smem,
  188. const char *str)
  189. {
  190. int rc = 0;
  191. if (!smem) {
  192. dprintk(CVP_ERR, "%s: Invalid params: %pK\n", __func__, smem);
  193. rc = -EINVAL;
  194. goto exit;
  195. }
  196. print_smem(CVP_MEM, str, inst, smem);
  197. rc = msm_dma_put_device_address(smem->flags, &smem->mapping_info);
  198. if (rc) {
  199. dprintk(CVP_ERR, "Failed to put device address: %d\n", rc);
  200. goto exit;
  201. }
  202. smem->device_addr = 0x0;
  203. exit:
  204. return rc;
  205. }
  206. static int alloc_dma_mem(size_t size, u32 align, u32 flags, int map_kernel,
  207. struct msm_cvp_platform_resources *res, struct msm_cvp_smem *mem)
  208. {
  209. dma_addr_t iova = 0;
  210. int rc = 0;
  211. int ion_flags = 0;
  212. struct dma_buf *dbuf = NULL;
  213. struct dma_heap *heap;
  214. if (!res) {
  215. dprintk(CVP_ERR, "%s: NULL res\n", __func__);
  216. return -EINVAL;
  217. }
  218. align = ALIGN(align, SZ_4K);
  219. size = ALIGN(size, SZ_4K);
  220. if (is_iommu_present(res)) {
  221. heap = dma_heap_find("qcom,system");
  222. dprintk(CVP_MEM, "%s size %zx align %d flag %d\n",
  223. __func__, size, align, flags);
  224. } else {
  225. dprintk(CVP_ERR,
  226. "No IOMMU CB: allocate shared memory heap size %zx align %d\n",
  227. size, align);
  228. }
  229. if (flags & SMEM_CACHED)
  230. ion_flags |= ION_FLAG_CACHED;
  231. if (flags & SMEM_NON_PIXEL) {
  232. heap = dma_heap_find("qcom,secure-non-pixel");
  233. ion_flags |= ION_FLAG_CP_NON_PIXEL;
  234. } else if (flags & SMEM_PIXEL) {
  235. heap = dma_heap_find("qcom,secure-pixel");
  236. ion_flags |= ION_FLAG_CP_PIXEL;
  237. }
  238. dbuf = dma_heap_buffer_alloc(heap, size, 0, 0);
  239. if (IS_ERR_OR_NULL(dbuf)) {
  240. dprintk(CVP_ERR,
  241. "Failed to allocate shared memory = %x bytes, %x %x\n",
  242. size, ion_flags, PTR_ERR(dbuf));
  243. rc = -ENOMEM;
  244. goto fail_shared_mem_alloc;
  245. }
  246. if (!gfa_cv.dmabuf_f_op)
  247. gfa_cv.dmabuf_f_op = (const struct file_operations *)dbuf->file->f_op;
  248. mem->flags = flags;
  249. mem->ion_flags = ion_flags;
  250. mem->size = size;
  251. mem->dma_buf = dbuf;
  252. mem->kvaddr = NULL;
  253. rc = msm_dma_get_device_address(dbuf, align, &iova, flags,
  254. ion_flags, res, &mem->mapping_info);
  255. if (rc) {
  256. dprintk(CVP_ERR, "Failed to get device address: %d\n",
  257. rc);
  258. goto fail_device_address;
  259. }
  260. mem->device_addr = (u32)iova;
  261. if ((dma_addr_t)mem->device_addr != iova) {
  262. dprintk(CVP_ERR, "iova(%pa) truncated to %#x",
  263. &iova, mem->device_addr);
  264. goto fail_device_address;
  265. }
  266. if (map_kernel) {
  267. dma_buf_begin_cpu_access(dbuf, DMA_BIDIRECTIONAL);
  268. mem->kvaddr = dma_buf_vmap(dbuf);
  269. if (!mem->kvaddr) {
  270. dprintk(CVP_ERR,
  271. "Failed to map shared mem in kernel\n");
  272. rc = -EIO;
  273. goto fail_map;
  274. }
  275. }
  276. dprintk(CVP_MEM,
  277. "%s: dma_buf = %pK, device_addr = %x, size = %d, kvaddr = %pK, ion_flags = %#x, flags = %#lx\n",
  278. __func__, mem->dma_buf, mem->device_addr, mem->size,
  279. mem->kvaddr, mem->ion_flags, mem->flags);
  280. return rc;
  281. fail_map:
  282. if (map_kernel)
  283. dma_buf_end_cpu_access(dbuf, DMA_BIDIRECTIONAL);
  284. fail_device_address:
  285. dma_heap_buffer_free(dbuf);
  286. fail_shared_mem_alloc:
  287. return rc;
  288. }
  289. static int free_dma_mem(struct msm_cvp_smem *mem)
  290. {
  291. dprintk(CVP_MEM,
  292. "%s: dma_buf = %pK, device_addr = %x, size = %d, kvaddr = %pK, ion_flags = %#x\n",
  293. __func__, mem->dma_buf, mem->device_addr, mem->size,
  294. mem->kvaddr, mem->ion_flags);
  295. if (mem->device_addr) {
  296. msm_dma_put_device_address(mem->flags, &mem->mapping_info);
  297. mem->device_addr = 0x0;
  298. }
  299. if (mem->kvaddr) {
  300. dma_buf_vunmap(mem->dma_buf, mem->kvaddr);
  301. mem->kvaddr = NULL;
  302. dma_buf_end_cpu_access(mem->dma_buf, DMA_BIDIRECTIONAL);
  303. }
  304. if (mem->dma_buf) {
  305. dma_heap_buffer_free(mem->dma_buf);
  306. mem->dma_buf = NULL;
  307. }
  308. return 0;
  309. }
  310. int msm_cvp_smem_alloc(size_t size, u32 align, u32 flags, int map_kernel,
  311. void *res, struct msm_cvp_smem *smem)
  312. {
  313. int rc = 0;
  314. if (!smem || !size) {
  315. dprintk(CVP_ERR, "%s: NULL smem or %d size\n",
  316. __func__, (u32)size);
  317. return -EINVAL;
  318. }
  319. rc = alloc_dma_mem(size, align, flags, map_kernel,
  320. (struct msm_cvp_platform_resources *)res,
  321. smem);
  322. return rc;
  323. }
  324. int msm_cvp_smem_free(struct msm_cvp_smem *smem)
  325. {
  326. int rc = 0;
  327. if (!smem) {
  328. dprintk(CVP_ERR, "NULL smem passed\n");
  329. return -EINVAL;
  330. }
  331. rc = free_dma_mem(smem);
  332. return rc;
  333. };
  334. int msm_cvp_smem_cache_operations(struct dma_buf *dbuf,
  335. enum smem_cache_ops cache_op, unsigned long offset, unsigned long size)
  336. {
  337. int rc = 0;
  338. unsigned long flags = 0;
  339. if (!dbuf) {
  340. dprintk(CVP_ERR, "%s: Invalid params\n", __func__);
  341. return -EINVAL;
  342. }
  343. /* Return if buffer doesn't support caching */
  344. rc = dma_buf_get_flags(dbuf, &flags);
  345. if (rc) {
  346. dprintk(CVP_ERR, "%s: dma_buf_get_flags failed, err %d\n",
  347. __func__, rc);
  348. return rc;
  349. } else if (!(flags & ION_FLAG_CACHED)) {
  350. return rc;
  351. }
  352. switch (cache_op) {
  353. case SMEM_CACHE_CLEAN:
  354. case SMEM_CACHE_CLEAN_INVALIDATE:
  355. rc = dma_buf_begin_cpu_access_partial(dbuf, DMA_BIDIRECTIONAL,
  356. offset, size);
  357. if (rc)
  358. break;
  359. rc = dma_buf_end_cpu_access_partial(dbuf, DMA_BIDIRECTIONAL,
  360. offset, size);
  361. break;
  362. case SMEM_CACHE_INVALIDATE:
  363. rc = dma_buf_begin_cpu_access_partial(dbuf, DMA_TO_DEVICE,
  364. offset, size);
  365. if (rc)
  366. break;
  367. rc = dma_buf_end_cpu_access_partial(dbuf, DMA_FROM_DEVICE,
  368. offset, size);
  369. break;
  370. default:
  371. dprintk(CVP_ERR, "%s: cache (%d) operation not supported\n",
  372. __func__, cache_op);
  373. rc = -EINVAL;
  374. break;
  375. }
  376. return rc;
  377. }
  378. struct context_bank_info *msm_cvp_smem_get_context_bank(bool is_secure,
  379. struct msm_cvp_platform_resources *res, unsigned long ion_flags)
  380. {
  381. struct context_bank_info *cb = NULL, *match = NULL;
  382. char *search_str;
  383. char *non_secure_cb = "cvp_hlos";
  384. char *secure_nonpixel_cb = "cvp_sec_nonpixel";
  385. char *secure_pixel_cb = "cvp_sec_pixel";
  386. if (ion_flags & ION_FLAG_CP_PIXEL)
  387. search_str = secure_pixel_cb;
  388. else if (ion_flags & ION_FLAG_CP_NON_PIXEL)
  389. search_str = secure_nonpixel_cb;
  390. else
  391. search_str = non_secure_cb;
  392. list_for_each_entry(cb, &res->context_banks, list) {
  393. if (cb->is_secure == is_secure &&
  394. !strcmp(search_str, cb->name)) {
  395. match = cb;
  396. break;
  397. }
  398. }
  399. if (!match)
  400. dprintk(CVP_ERR,
  401. "%s: cb not found for ion_flags %x, is_secure %d\n",
  402. __func__, ion_flags, is_secure);
  403. return match;
  404. }
  405. int msm_cvp_map_ipcc_regs(u32 *iova)
  406. {
  407. struct context_bank_info *cb;
  408. struct msm_cvp_core *core;
  409. struct cvp_hfi_device *hfi_ops;
  410. struct iris_hfi_device *dev = NULL;
  411. phys_addr_t paddr;
  412. u32 size;
  413. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  414. if (core) {
  415. hfi_ops = core->device;
  416. if (hfi_ops)
  417. dev = hfi_ops->hfi_device_data;
  418. }
  419. if (!dev)
  420. return -EINVAL;
  421. paddr = dev->res->ipcc_reg_base;
  422. size = dev->res->ipcc_reg_size;
  423. if (!paddr || !size)
  424. return -EINVAL;
  425. cb = msm_cvp_smem_get_context_bank(false, dev->res, 0);
  426. if (!cb) {
  427. dprintk(CVP_ERR, "%s: fail to get context bank\n", __func__);
  428. return -EINVAL;
  429. }
  430. *iova = dma_map_resource(cb->dev, paddr, size, DMA_BIDIRECTIONAL, 0);
  431. if (*iova == DMA_MAPPING_ERROR) {
  432. dprintk(CVP_WARN, "%s: fail to map IPCC regs\n", __func__);
  433. return -EFAULT;
  434. }
  435. return 0;
  436. }