msm_cvp_buf.c 61 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/pid.h>
  7. #include <linux/fdtable.h>
  8. #include <linux/rcupdate.h>
  9. #include <linux/fs.h>
  10. #include <linux/dma-buf.h>
  11. #include <linux/sched/task.h>
  12. #include <linux/version.h>
  13. #include "msm_cvp_common.h"
  14. #include "cvp_hfi_api.h"
  15. #include "msm_cvp_debug.h"
  16. #include "msm_cvp_core.h"
  17. #include "msm_cvp_dsp.h"
  18. #include "eva_shared_def.h"
  19. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 16, 0))
  20. #define eva_buf_map dma_buf_map
  21. #define _buf_map_set_vaddr dma_buf_map_set_vaddr
  22. #else
  23. #define eva_buf_map iosys_map
  24. #define _buf_map_set_vaddr iosys_map_set_vaddr
  25. #endif
  26. #define CLEAR_USE_BITMAP(idx, inst) \
  27. do { \
  28. clear_bit(idx, &inst->dma_cache.usage_bitmap); \
  29. dprintk(CVP_MEM, "clear %x bit %d dma_cache bitmap 0x%llx\n", \
  30. hash32_ptr(inst->session), smem->bitmap_index, \
  31. inst->dma_cache.usage_bitmap); \
  32. } while (0)
  33. #define SET_USE_BITMAP(idx, inst) \
  34. do { \
  35. set_bit(idx, &inst->dma_cache.usage_bitmap); \
  36. dprintk(CVP_MEM, "Set %x bit %d dma_cache bitmap 0x%llx\n", \
  37. hash32_ptr(inst->session), idx, \
  38. inst->dma_cache.usage_bitmap); \
  39. } while (0)
  40. struct cvp_oob_pool wncc_buf_pool;
  41. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst);
  42. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  43. struct eva_kmd_oob_wncc *wncc_oob,
  44. struct eva_kmd_wncc_metadata** wncc_metadata);
  45. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log);
  46. int print_smem(u32 tag, const char *str, struct msm_cvp_inst *inst,
  47. struct msm_cvp_smem *smem)
  48. {
  49. int i;
  50. char name[PKT_NAME_LEN] = "Unknown";
  51. if (!(tag & msm_cvp_debug))
  52. return 0;
  53. if (!inst || !smem) {
  54. dprintk(CVP_ERR, "Invalid inst 0x%llx or smem 0x%llx\n",
  55. inst, smem);
  56. return -EINVAL;
  57. }
  58. if (smem->dma_buf) {
  59. i = get_pkt_index_from_type(smem->pkt_type);
  60. if (i > 0)
  61. strlcpy(name, cvp_hfi_defs[i].name, PKT_NAME_LEN);
  62. if (!atomic_read(&smem->refcount))
  63. dprintk(tag,
  64. " UNUSED mapping %s: 0x%llx size %d iova %#x idx %d pkt_type %s buf_idx %#x fd %d",
  65. str, smem->dma_buf,
  66. smem->size, smem->device_addr, smem->bitmap_index, name, smem->buf_idx, smem->fd);
  67. else
  68. dprintk(tag,
  69. "%s: %x : 0x%llx size %d flags %#x iova %#x idx %d ref %d pkt_type %s buf_idx %#x fd %d",
  70. str, hash32_ptr(inst->session), smem->dma_buf,
  71. smem->size, smem->flags, smem->device_addr,
  72. smem->bitmap_index, atomic_read(&smem->refcount),
  73. name, smem->buf_idx, smem->fd);
  74. }
  75. return 0;
  76. }
  77. static void print_internal_buffer(u32 tag, const char *str,
  78. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf)
  79. {
  80. if (!(tag & msm_cvp_debug) || !inst || !cbuf)
  81. return;
  82. if (cbuf->smem->dma_buf) {
  83. dprintk(tag,
  84. "%s: %x : fd %d off %d 0x%llx %s size %d iova %#x",
  85. str, hash32_ptr(inst->session), cbuf->fd,
  86. cbuf->offset, cbuf->smem->dma_buf, cbuf->smem->dma_buf->name,
  87. cbuf->size, cbuf->smem->device_addr);
  88. } else {
  89. dprintk(tag,
  90. "%s: %x : idx %2d fd %d off %d size %d iova %#x",
  91. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  92. cbuf->offset, cbuf->size, cbuf->smem->device_addr);
  93. }
  94. }
  95. void print_cvp_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst,
  96. struct cvp_internal_buf *cbuf)
  97. {
  98. if (!inst || !cbuf) {
  99. dprintk(CVP_ERR,
  100. "%s Invalid params inst %pK, cbuf %pK\n",
  101. str, inst, cbuf);
  102. return;
  103. }
  104. print_smem(tag, str, inst, cbuf->smem);
  105. }
  106. static void _log_smem(struct inst_snapshot *snapshot, struct msm_cvp_inst *inst,
  107. struct msm_cvp_smem *smem, bool logging)
  108. {
  109. if (print_smem(CVP_ERR, "bufdump", inst, smem))
  110. return;
  111. if (!logging || !snapshot)
  112. return;
  113. if (snapshot && snapshot->smem_index < MAX_ENTRIES) {
  114. struct smem_data *s;
  115. s = &snapshot->smem_log[snapshot->smem_index];
  116. snapshot->smem_index++;
  117. s->size = smem->size;
  118. s->flags = smem->flags;
  119. s->device_addr = smem->device_addr;
  120. s->bitmap_index = smem->bitmap_index;
  121. s->refcount = atomic_read(&smem->refcount);
  122. s->pkt_type = smem->pkt_type;
  123. s->buf_idx = smem->buf_idx;
  124. }
  125. }
  126. static void _log_buf(struct inst_snapshot *snapshot, enum smem_prop prop,
  127. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf,
  128. bool logging)
  129. {
  130. struct cvp_buf_data *buf = NULL;
  131. u32 index;
  132. print_cvp_buffer(CVP_ERR, "bufdump", inst, cbuf);
  133. if (!logging)
  134. return;
  135. if (snapshot) {
  136. if (prop == SMEM_ADSP && snapshot->dsp_index < MAX_ENTRIES) {
  137. index = snapshot->dsp_index;
  138. buf = &snapshot->dsp_buf_log[index];
  139. snapshot->dsp_index++;
  140. } else if (prop == SMEM_PERSIST &&
  141. snapshot->persist_index < MAX_ENTRIES) {
  142. index = snapshot->persist_index;
  143. buf = &snapshot->persist_buf_log[index];
  144. snapshot->persist_index++;
  145. }
  146. if (buf) {
  147. buf->device_addr = cbuf->smem->device_addr;
  148. buf->size = cbuf->size;
  149. }
  150. }
  151. }
  152. void print_client_buffer(u32 tag, const char *str,
  153. struct msm_cvp_inst *inst, struct eva_kmd_buffer *cbuf)
  154. {
  155. if (!(tag & msm_cvp_debug) || !str || !inst || !cbuf)
  156. return;
  157. dprintk(tag,
  158. "%s: %x : idx %2d fd %d off %d size %d type %d flags 0x%x"
  159. " reserved[0] %u\n",
  160. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  161. cbuf->offset, cbuf->size, cbuf->type, cbuf->flags,
  162. cbuf->reserved[0]);
  163. }
  164. static bool __is_buf_valid(struct msm_cvp_inst *inst,
  165. struct eva_kmd_buffer *buf)
  166. {
  167. struct cvp_hal_session *session;
  168. struct cvp_internal_buf *cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  169. bool found = false;
  170. if (!inst || !inst->core || !buf) {
  171. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  172. return false;
  173. }
  174. if (buf->fd < 0) {
  175. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  176. return false;
  177. }
  178. if (buf->offset) {
  179. dprintk(CVP_ERR,
  180. "%s: offset is deprecated, set to 0.\n",
  181. __func__);
  182. return false;
  183. }
  184. session = (struct cvp_hal_session *)inst->session;
  185. mutex_lock(&inst->cvpdspbufs.lock);
  186. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  187. if (cbuf->fd == buf->fd) {
  188. if (cbuf->size != buf->size) {
  189. dprintk(CVP_ERR, "%s: buf size mismatch\n",
  190. __func__);
  191. mutex_unlock(&inst->cvpdspbufs.lock);
  192. return false;
  193. }
  194. found = true;
  195. break;
  196. }
  197. }
  198. mutex_unlock(&inst->cvpdspbufs.lock);
  199. if (found) {
  200. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  201. return false;
  202. }
  203. return true;
  204. }
  205. static struct file *msm_cvp_fget(unsigned int fd, struct task_struct *task,
  206. fmode_t mask, unsigned int refs)
  207. {
  208. struct files_struct *files = task->files;
  209. struct file *file;
  210. if (!files)
  211. return NULL;
  212. rcu_read_lock();
  213. loop:
  214. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0))
  215. file = fcheck_files(files, fd);
  216. #else
  217. file = files_lookup_fd_rcu(files, fd);
  218. #endif
  219. if (file) {
  220. /* File object ref couldn't be taken.
  221. * dup2() atomicity guarantee is the reason
  222. * we loop to catch the new file (or NULL pointer)
  223. */
  224. if (file->f_mode & mask)
  225. file = NULL;
  226. else if (!get_file_rcu(file))
  227. goto loop;
  228. }
  229. rcu_read_unlock();
  230. return file;
  231. }
  232. static struct dma_buf *cvp_dma_buf_get(struct file *file, int fd,
  233. struct task_struct *task)
  234. {
  235. if (file->f_op != gfa_cv.dmabuf_f_op) {
  236. dprintk(CVP_WARN, "fd doesn't refer to dma_buf\n");
  237. return ERR_PTR(-EINVAL);
  238. }
  239. return file->private_data;
  240. }
  241. int msm_cvp_map_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  242. {
  243. int rc = 0;
  244. struct cvp_internal_buf *cbuf = NULL;
  245. struct msm_cvp_smem *smem = NULL;
  246. struct dma_buf *dma_buf = NULL;
  247. struct file *file;
  248. if (!__is_buf_valid(inst, buf))
  249. return -EINVAL;
  250. if (!inst->task)
  251. return -EINVAL;
  252. file = msm_cvp_fget(buf->fd, inst->task, FMODE_PATH, 1);
  253. if (file == NULL) {
  254. dprintk(CVP_WARN, "%s fail to get file from fd %d %s\n", __func__, buf->fd, inst->proc_name);
  255. return -EINVAL;
  256. }
  257. dma_buf = cvp_dma_buf_get(
  258. file,
  259. buf->fd,
  260. inst->task);
  261. if (dma_buf == ERR_PTR(-EINVAL)) {
  262. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  263. rc = -EINVAL;
  264. goto exit;
  265. }
  266. if (dma_buf->size < buf->size) {
  267. dprintk(CVP_ERR, "%s DSP client buffer too large %d > %d\n",
  268. __func__, buf->size, dma_buf->size);
  269. rc = -EINVAL;
  270. goto exit;
  271. }
  272. dprintk(CVP_MEM, "dma_buf from internal %llu\n", dma_buf);
  273. cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  274. if (!cbuf) {
  275. rc = -ENOMEM;
  276. goto exit;
  277. }
  278. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  279. if (!smem) {
  280. rc = -ENOMEM;
  281. goto exit;
  282. }
  283. smem->dma_buf = dma_buf;
  284. smem->bitmap_index = MAX_DMABUF_NUMS;
  285. smem->pkt_type = 0;
  286. smem->buf_idx = 0;
  287. smem->fd = buf->fd;
  288. dprintk(CVP_MEM, "%s: dma_buf = %llx\n", __func__, dma_buf);
  289. rc = msm_cvp_map_smem(inst, smem, "map dsp");
  290. if (rc) {
  291. print_client_buffer(CVP_ERR, "map failed", inst, buf);
  292. goto exit;
  293. }
  294. atomic_inc(&smem->refcount);
  295. cbuf->smem = smem;
  296. cbuf->fd = buf->fd;
  297. cbuf->size = buf->size;
  298. cbuf->offset = buf->offset;
  299. cbuf->ownership = CLIENT;
  300. cbuf->index = buf->index;
  301. buf->reserved[0] = (uint32_t)smem->device_addr;
  302. mutex_lock(&inst->cvpdspbufs.lock);
  303. list_add_tail(&cbuf->list, &inst->cvpdspbufs.list);
  304. mutex_unlock(&inst->cvpdspbufs.lock);
  305. return rc;
  306. exit:
  307. fput(file);
  308. if (smem) {
  309. if (smem->device_addr)
  310. msm_cvp_unmap_smem(inst, smem, "unmap dsp");
  311. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  312. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  313. }
  314. if (cbuf)
  315. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  316. return rc;
  317. }
  318. int msm_cvp_unmap_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  319. {
  320. int rc = 0;
  321. bool found;
  322. struct cvp_internal_buf *cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  323. struct cvp_hal_session *session;
  324. if (!inst || !inst->core || !buf) {
  325. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  326. return -EINVAL;
  327. }
  328. session = (struct cvp_hal_session *)inst->session;
  329. if (!session) {
  330. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  331. return -EINVAL;
  332. }
  333. mutex_lock(&inst->cvpdspbufs.lock);
  334. found = false;
  335. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  336. if (cbuf->fd == buf->fd) {
  337. found = true;
  338. break;
  339. }
  340. }
  341. if (!found) {
  342. mutex_unlock(&inst->cvpdspbufs.lock);
  343. print_client_buffer(CVP_ERR, "invalid", inst, buf);
  344. return -EINVAL;
  345. }
  346. if (cbuf->smem->device_addr) {
  347. u64 idx = inst->unused_dsp_bufs.ktid;
  348. inst->unused_dsp_bufs.smem[idx] = *(cbuf->smem);
  349. inst->unused_dsp_bufs.nr++;
  350. inst->unused_dsp_bufs.nr =
  351. (inst->unused_dsp_bufs.nr > MAX_FRAME_BUFFER_NUMS)?
  352. MAX_FRAME_BUFFER_NUMS : inst->unused_dsp_bufs.nr;
  353. inst->unused_dsp_bufs.ktid = ++idx % MAX_FRAME_BUFFER_NUMS;
  354. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  355. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  356. atomic_dec(&cbuf->smem->refcount);
  357. }
  358. list_del(&cbuf->list);
  359. mutex_unlock(&inst->cvpdspbufs.lock);
  360. cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem);
  361. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  362. return rc;
  363. }
  364. int msm_cvp_map_buf_wncc(struct msm_cvp_inst *inst,
  365. struct eva_kmd_buffer *buf)
  366. {
  367. int rc = 0, i;
  368. bool found = false;
  369. struct cvp_internal_buf* cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  370. struct msm_cvp_smem* smem = NULL;
  371. struct dma_buf* dma_buf = NULL;
  372. if (!inst || !inst->core || !buf) {
  373. dprintk(CVP_ERR, "%s: invalid params", __func__);
  374. return -EINVAL;
  375. }
  376. if (!inst->session) {
  377. dprintk(CVP_ERR, "%s: invalid session", __func__);
  378. return -EINVAL;
  379. }
  380. if (buf->index) {
  381. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  382. __func__, buf->fd);
  383. return -EINVAL;
  384. }
  385. if (buf->fd < 0) {
  386. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  387. return -EINVAL;
  388. }
  389. if (buf->offset) {
  390. dprintk(CVP_ERR, "%s: offset is not supported, set to 0.",
  391. __func__);
  392. return -EINVAL;
  393. }
  394. mutex_lock(&inst->cvpwnccbufs.lock);
  395. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  396. if (cbuf->fd == buf->fd) {
  397. if (cbuf->size != buf->size) {
  398. dprintk(CVP_ERR, "%s: buf size mismatch",
  399. __func__);
  400. mutex_unlock(&inst->cvpwnccbufs.lock);
  401. return -EINVAL;
  402. }
  403. found = true;
  404. break;
  405. }
  406. }
  407. mutex_unlock(&inst->cvpwnccbufs.lock);
  408. if (found) {
  409. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  410. return -EINVAL;
  411. }
  412. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  413. if (!dma_buf) {
  414. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  415. return -EINVAL;
  416. }
  417. cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  418. if (!cbuf) {
  419. msm_cvp_smem_put_dma_buf(dma_buf);
  420. return -ENOMEM;
  421. }
  422. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  423. if (!smem) {
  424. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  425. msm_cvp_smem_put_dma_buf(dma_buf);
  426. return -ENOMEM;
  427. }
  428. smem->dma_buf = dma_buf;
  429. smem->bitmap_index = MAX_DMABUF_NUMS;
  430. smem->pkt_type = 0;
  431. smem->buf_idx = 0;
  432. smem->fd = buf->fd;
  433. dprintk(CVP_MEM, "%s: dma_buf = %llx", __func__, dma_buf);
  434. rc = msm_cvp_map_smem(inst, smem, "map wncc");
  435. if (rc) {
  436. dprintk(CVP_ERR, "%s: map failed", __func__);
  437. print_client_buffer(CVP_ERR, __func__, inst, buf);
  438. goto exit;
  439. }
  440. cbuf->smem = smem;
  441. cbuf->fd = buf->fd;
  442. cbuf->size = buf->size;
  443. cbuf->offset = buf->offset;
  444. cbuf->ownership = CLIENT;
  445. cbuf->index = buf->index;
  446. /* Added for PreSil/RUMI testing */
  447. #ifdef USE_PRESIL
  448. dprintk(CVP_DBG,
  449. "wncc buffer is %x for cam_presil_send_buffer"
  450. " with MAP_ADDR_OFFSET %x",
  451. (u64)(smem->device_addr) - MAP_ADDR_OFFSET, MAP_ADDR_OFFSET);
  452. cam_presil_send_buffer((u64)smem->dma_buf, 0,
  453. (u32)cbuf->offset, (u32)cbuf->size,
  454. (u64)(smem->device_addr) - MAP_ADDR_OFFSET);
  455. #endif
  456. mutex_lock(&inst->cvpwnccbufs.lock);
  457. if (inst->cvpwnccbufs_table == NULL) {
  458. inst->cvpwnccbufs_table =
  459. (struct msm_cvp_wncc_buffer*) kzalloc(
  460. sizeof(struct msm_cvp_wncc_buffer) *
  461. EVA_KMD_WNCC_MAX_SRC_BUFS,
  462. GFP_KERNEL);
  463. if (!inst->cvpwnccbufs_table) {
  464. mutex_unlock(&inst->cvpwnccbufs.lock);
  465. goto exit;
  466. }
  467. }
  468. list_add_tail(&cbuf->list, &inst->cvpwnccbufs.list);
  469. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS; i++)
  470. {
  471. if (inst->cvpwnccbufs_table[i].iova == 0)
  472. {
  473. inst->cvpwnccbufs_num++;
  474. inst->cvpwnccbufs_table[i].fd = buf->fd;
  475. inst->cvpwnccbufs_table[i].iova = smem->device_addr;
  476. inst->cvpwnccbufs_table[i].size = smem->size;
  477. /* buf reserved[0] used to store wncc src buf id */
  478. buf->reserved[0] = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  479. /* cbuf ktid used to store wncc src buf id */
  480. cbuf->ktid = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  481. dprintk(CVP_MEM, "%s: wncc buf iova: 0x%08X",
  482. __func__, inst->cvpwnccbufs_table[i].iova);
  483. break;
  484. }
  485. }
  486. if (i == EVA_KMD_WNCC_MAX_SRC_BUFS) {
  487. dprintk(CVP_ERR,
  488. "%s: wncc buf table full - max (%u) already registered",
  489. __func__, EVA_KMD_WNCC_MAX_SRC_BUFS);
  490. /* _wncc_print_cvpwnccbufs_table(inst); */
  491. mutex_unlock(&inst->cvpwnccbufs.lock);
  492. rc = -EDQUOT;
  493. goto exit;
  494. }
  495. mutex_unlock(&inst->cvpwnccbufs.lock);
  496. return rc;
  497. exit:
  498. if (smem->device_addr)
  499. msm_cvp_unmap_smem(inst, smem, "unmap wncc");
  500. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  501. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  502. cbuf = NULL;
  503. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  504. smem = NULL;
  505. return rc;
  506. }
  507. int msm_cvp_unmap_buf_wncc(struct msm_cvp_inst *inst,
  508. struct eva_kmd_buffer *buf)
  509. {
  510. int rc = 0;
  511. bool found;
  512. struct cvp_internal_buf *cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  513. uint32_t buf_id, buf_idx;
  514. if (!inst || !inst->core || !buf) {
  515. dprintk(CVP_ERR, "%s: invalid params", __func__);
  516. return -EINVAL;
  517. }
  518. if (!inst->session) {
  519. dprintk(CVP_ERR, "%s: invalid session", __func__);
  520. return -EINVAL;
  521. }
  522. if (buf->index) {
  523. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  524. __func__, buf->fd);
  525. return -EINVAL;
  526. }
  527. buf_id = buf->reserved[0];
  528. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET || buf_id >=
  529. (EVA_KMD_WNCC_MAX_SRC_BUFS + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET)) {
  530. dprintk(CVP_ERR, "%s: invalid buffer id %d",
  531. __func__, buf->reserved[0]);
  532. return -EINVAL;
  533. }
  534. mutex_lock(&inst->cvpwnccbufs.lock);
  535. if (inst->cvpwnccbufs_num == 0) {
  536. dprintk(CVP_ERR, "%s: no wncc buffers currently mapped", __func__);
  537. mutex_unlock(&inst->cvpwnccbufs.lock);
  538. return -EINVAL;
  539. }
  540. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  541. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  542. dprintk(CVP_ERR, "%s: buffer id %d not found",
  543. __func__, buf_id);
  544. mutex_unlock(&inst->cvpwnccbufs.lock);
  545. return -EINVAL;
  546. }
  547. buf->fd = inst->cvpwnccbufs_table[buf_idx].fd;
  548. found = false;
  549. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  550. if (cbuf->fd == buf->fd) {
  551. found = true;
  552. break;
  553. }
  554. }
  555. if (!found) {
  556. dprintk(CVP_ERR, "%s: buffer id %d not found",
  557. __func__, buf_id);
  558. print_client_buffer(CVP_ERR, __func__, inst, buf);
  559. _wncc_print_cvpwnccbufs_table(inst);
  560. mutex_unlock(&inst->cvpwnccbufs.lock);
  561. return -EINVAL;
  562. }
  563. if (cbuf->smem->device_addr) {
  564. u64 idx = inst->unused_wncc_bufs.ktid;
  565. inst->unused_wncc_bufs.smem[idx] = *(cbuf->smem);
  566. inst->unused_wncc_bufs.nr++;
  567. inst->unused_wncc_bufs.nr =
  568. (inst->unused_wncc_bufs.nr > NUM_WNCC_BUFS)?
  569. NUM_WNCC_BUFS : inst->unused_wncc_bufs.nr;
  570. inst->unused_wncc_bufs.ktid = ++idx % NUM_WNCC_BUFS;
  571. }
  572. mutex_unlock(&inst->cvpwnccbufs.lock);
  573. if (cbuf->smem->device_addr) {
  574. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap wncc");
  575. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  576. }
  577. mutex_lock(&inst->cvpwnccbufs.lock);
  578. list_del(&cbuf->list);
  579. inst->cvpwnccbufs_table[buf_idx].fd = 0;
  580. inst->cvpwnccbufs_table[buf_idx].iova = 0;
  581. inst->cvpwnccbufs_table[buf_idx].size = 0;
  582. inst->cvpwnccbufs_num--;
  583. if (inst->cvpwnccbufs_num == 0) {
  584. kfree(inst->cvpwnccbufs_table);
  585. inst->cvpwnccbufs_table = NULL;
  586. }
  587. mutex_unlock(&inst->cvpwnccbufs.lock);
  588. cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem);
  589. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  590. return rc;
  591. }
  592. static void _wncc_print_oob(struct eva_kmd_oob_wncc* wncc_oob)
  593. {
  594. u32 i, j;
  595. if (!wncc_oob) {
  596. dprintk(CVP_ERR, "%s: invalid params", __func__);
  597. return;
  598. }
  599. dprintk(CVP_DBG, "%s: wncc OOB --", __func__);
  600. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, wncc_oob->num_layers);
  601. for (i = 0; i < wncc_oob->num_layers; i++) {
  602. dprintk(CVP_DBG, "%s: layers[%u].num_addrs: %u",
  603. __func__, i, wncc_oob->layers[i].num_addrs);
  604. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  605. dprintk(CVP_DBG,
  606. "%s: layers[%u].addrs[%u]: %04u 0x%08x",
  607. __func__, i, j,
  608. wncc_oob->layers[i].addrs[j].buffer_id,
  609. wncc_oob->layers[i].addrs[j].offset);
  610. }
  611. }
  612. }
  613. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst)
  614. {
  615. u32 i, entries = 0;
  616. if (!inst) {
  617. dprintk(CVP_ERR, "%s: invalid params", __func__);
  618. return;
  619. }
  620. if (inst->cvpwnccbufs_num == 0) {
  621. dprintk(CVP_DBG, "%s: wncc buffer look-up table is empty",
  622. __func__);
  623. return;
  624. }
  625. if (!inst->cvpwnccbufs_table) {
  626. dprintk(CVP_ERR, "%s: invalid params", __func__);
  627. return;
  628. }
  629. dprintk(CVP_DBG, "%s: wncc buffer table:", __func__);
  630. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS &&
  631. entries < inst->cvpwnccbufs_num; i++) {
  632. if (inst->cvpwnccbufs_table[i].iova != 0) {
  633. dprintk(CVP_DBG,
  634. "%s: buf_idx=%04d --> "
  635. "fd=%03d, iova=0x%08x, size=%d",
  636. __func__, i,
  637. inst->cvpwnccbufs_table[i].fd,
  638. inst->cvpwnccbufs_table[i].iova,
  639. inst->cvpwnccbufs_table[i].size);
  640. entries++;
  641. }
  642. }
  643. }
  644. static void _wncc_print_metadata_buf(u32 num_layers, u32 num_addrs,
  645. struct eva_kmd_wncc_metadata** wncc_metadata)
  646. {
  647. u32 i, j, iova;
  648. if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS ||
  649. !wncc_metadata) {
  650. dprintk(CVP_ERR, "%s: invalid params", __func__);
  651. return;
  652. }
  653. dprintk(CVP_DBG, "%s: wncc metadata buffers --", __func__);
  654. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, num_layers);
  655. dprintk(CVP_DBG, "%s: num_addrs: %u", __func__, num_addrs);
  656. for (i = 0; i < num_layers; i++) {
  657. for (j = 0; j < num_addrs; j++) {
  658. iova = (wncc_metadata[i][j].iova_msb << 22) |
  659. wncc_metadata[i][j].iova_lsb;
  660. dprintk(CVP_DBG,
  661. "%s: wncc_metadata[%u][%u]: "
  662. "%4u %3u %4u %3u 0x%08x %1u %4d %4d %4d %4d",
  663. __func__, i, j,
  664. wncc_metadata[i][j].loc_x_dec,
  665. wncc_metadata[i][j].loc_x_frac,
  666. wncc_metadata[i][j].loc_y_dec,
  667. wncc_metadata[i][j].loc_y_frac,
  668. iova,
  669. wncc_metadata[i][j].scale_idx,
  670. wncc_metadata[i][j].aff_coeff_3,
  671. wncc_metadata[i][j].aff_coeff_2,
  672. wncc_metadata[i][j].aff_coeff_1,
  673. wncc_metadata[i][j].aff_coeff_0);
  674. }
  675. }
  676. }
  677. static int _wncc_copy_oob_from_user(struct eva_kmd_hfi_packet* in_pkt,
  678. struct eva_kmd_oob_wncc* wncc_oob)
  679. {
  680. int rc = 0;
  681. u32 oob_type = 0;
  682. struct eva_kmd_oob_buf* oob_buf_u;
  683. struct eva_kmd_oob_wncc* wncc_oob_u;
  684. struct eva_kmd_oob_wncc* wncc_oob_k;
  685. unsigned int i;
  686. u32 num_addrs;
  687. if (!in_pkt || !wncc_oob) {
  688. dprintk(CVP_ERR, "%s: invalid params", __func__);
  689. return -EINVAL;
  690. }
  691. oob_buf_u = in_pkt->oob_buf;
  692. if (!access_ok(oob_buf_u, sizeof(*oob_buf_u))) {
  693. dprintk(CVP_ERR, "%s: invalid OOB buf pointer", __func__);
  694. return -EINVAL;
  695. }
  696. if (!access_ok(&oob_buf_u->oob_type, sizeof(oob_buf_u->oob_type))) {
  697. dprintk(CVP_ERR,
  698. "%s: bad OOB buf pointer, oob_type inaccessible",
  699. __func__);
  700. return -EINVAL;
  701. }
  702. rc = get_user(oob_type, &oob_buf_u->oob_type);
  703. if (rc)
  704. return rc;
  705. if (oob_type != EVA_KMD_OOB_WNCC) {
  706. dprintk(CVP_ERR, "%s: incorrect OOB type (%d) for wncc",
  707. __func__, oob_type);
  708. return -EINVAL;
  709. }
  710. wncc_oob_u = &oob_buf_u->wncc;
  711. wncc_oob_k = wncc_oob;
  712. if (!access_ok(&wncc_oob_u->metadata_bufs_offset,
  713. sizeof(wncc_oob_u->metadata_bufs_offset))) {
  714. dprintk(CVP_ERR,
  715. "%s: bad OOB buf pointer, wncc.metadata_bufs_offset inaccessible",
  716. __func__);
  717. return -EINVAL;
  718. }
  719. rc = get_user(wncc_oob_k->metadata_bufs_offset,
  720. &wncc_oob_u->metadata_bufs_offset);
  721. if (rc)
  722. return rc;
  723. if (wncc_oob_k->metadata_bufs_offset > ((sizeof(in_pkt->pkt_data)
  724. - sizeof(struct cvp_buf_type)) / sizeof(__u32))) {
  725. dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset",
  726. __func__);
  727. return -EINVAL;
  728. }
  729. if (!access_ok(&wncc_oob_u->num_layers,
  730. sizeof(wncc_oob_u->num_layers))) {
  731. dprintk(CVP_ERR,
  732. "%s: bad OOB buf pointer, wncc.num_layers inaccessible",
  733. __func__);
  734. return -EINVAL;
  735. }
  736. rc = get_user(wncc_oob_k->num_layers, &wncc_oob_u->num_layers);
  737. if (rc)
  738. return rc;
  739. if (wncc_oob_k->num_layers < 1 ||
  740. wncc_oob_k->num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  741. dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
  742. return -EINVAL;
  743. }
  744. for (i = 0; i < wncc_oob_k->num_layers; i++) {
  745. if (!access_ok(&wncc_oob_u->layers[i].num_addrs,
  746. sizeof(wncc_oob_u->layers[i].num_addrs))) {
  747. dprintk(CVP_ERR,
  748. "%s: bad OOB buf pointer, wncc.layers[%u].num_addrs inaccessible",
  749. __func__, i);
  750. return -EINVAL;
  751. }
  752. rc = get_user(wncc_oob_k->layers[i].num_addrs,
  753. &wncc_oob_u->layers[i].num_addrs);
  754. if (rc)
  755. break;
  756. num_addrs = wncc_oob_k->layers[i].num_addrs;
  757. if (num_addrs < 1 || num_addrs > EVA_KMD_WNCC_MAX_ADDRESSES) {
  758. dprintk(CVP_ERR,
  759. "%s: invalid wncc num addrs for layer %u",
  760. __func__, i);
  761. rc = -EINVAL;
  762. break;
  763. }
  764. if (!access_ok(wncc_oob_u->layers[i].addrs,
  765. num_addrs * sizeof(struct eva_kmd_wncc_addr)) ||
  766. !access_ok(&wncc_oob_u->layers[i].addrs[num_addrs - 1],
  767. sizeof(struct eva_kmd_wncc_addr))) {
  768. dprintk(CVP_ERR,
  769. "%s: bad OOB buf pointer, wncc.layers[%u].addrs inaccessible",
  770. __func__, i);
  771. return -EINVAL;
  772. }
  773. rc = copy_from_user(wncc_oob_k->layers[i].addrs,
  774. wncc_oob_u->layers[i].addrs,
  775. num_addrs * sizeof(struct eva_kmd_wncc_addr));
  776. if (rc)
  777. break;
  778. }
  779. if (false)
  780. _wncc_print_oob(wncc_oob);
  781. return rc;
  782. }
  783. static int _wncc_map_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  784. struct eva_kmd_oob_wncc *wncc_oob,
  785. struct eva_kmd_wncc_metadata** wncc_metadata)
  786. {
  787. int rc = 0, i;
  788. struct cvp_buf_type* wncc_metadata_bufs;
  789. struct dma_buf* dmabuf;
  790. struct eva_buf_map map;
  791. __u32 num_layers, metadata_bufs_offset;
  792. if (!in_pkt || !wncc_metadata || !wncc_oob) {
  793. dprintk(CVP_ERR, "%s: invalid params", __func__);
  794. return -EINVAL;
  795. }
  796. num_layers = wncc_oob->num_layers;
  797. metadata_bufs_offset = wncc_oob->metadata_bufs_offset;
  798. if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  799. dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
  800. return -EINVAL;
  801. }
  802. if (metadata_bufs_offset > ((sizeof(in_pkt->pkt_data)
  803. - sizeof(struct cvp_buf_type)) / sizeof(__u32))) {
  804. dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset",
  805. __func__);
  806. return -EINVAL;
  807. }
  808. wncc_metadata_bufs = (struct cvp_buf_type*)
  809. &in_pkt->pkt_data[metadata_bufs_offset];
  810. for (i = 0; i < num_layers; i++) {
  811. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  812. if (IS_ERR(dmabuf)) {
  813. rc = PTR_ERR(dmabuf);
  814. dprintk(CVP_ERR,
  815. "%s: dma_buf_get() failed for "
  816. "wncc_metadata_bufs[%d], rc %d",
  817. __func__, i, rc);
  818. break;
  819. }
  820. if (dmabuf->size < wncc_oob->layers[i].num_addrs *
  821. sizeof(struct eva_kmd_wncc_metadata)) {
  822. dprintk(CVP_ERR,
  823. "%s: wncc_metadata_bufs[%d] size insufficient for num addrs in oob",
  824. __func__, i);
  825. dma_buf_put(dmabuf);
  826. rc = -EINVAL;
  827. break;
  828. }
  829. rc = dma_buf_begin_cpu_access(dmabuf, DMA_TO_DEVICE);
  830. if (rc) {
  831. dprintk(CVP_ERR,
  832. "%s: dma_buf_begin_cpu_access() failed "
  833. "for wncc_metadata_bufs[%d], rc %d",
  834. __func__, i, rc);
  835. dma_buf_put(dmabuf);
  836. break;
  837. }
  838. rc = dma_buf_vmap(dmabuf, &map);
  839. if (rc) {
  840. dprintk(CVP_ERR,
  841. "%s: dma_buf_vmap() failed for "
  842. "wncc_metadata_bufs[%d]",
  843. __func__, i);
  844. dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  845. dma_buf_put(dmabuf);
  846. break;
  847. }
  848. dprintk(CVP_DBG,
  849. "%s: wncc_metadata_bufs[%d] map.is_iomem is %d",
  850. __func__, i, map.is_iomem);
  851. wncc_metadata[i] = (struct eva_kmd_wncc_metadata*)map.vaddr;
  852. dma_buf_put(dmabuf);
  853. }
  854. if (rc)
  855. _wncc_unmap_metadata_bufs(in_pkt, wncc_oob, wncc_metadata);
  856. return rc;
  857. }
  858. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  859. struct eva_kmd_oob_wncc *wncc_oob,
  860. struct eva_kmd_wncc_metadata** wncc_metadata)
  861. {
  862. int rc = 0, i;
  863. struct cvp_buf_type* wncc_metadata_bufs;
  864. struct dma_buf* dmabuf;
  865. struct eva_buf_map map;
  866. __u32 num_layers, metadata_bufs_offset;
  867. if (!in_pkt || !wncc_metadata || !wncc_oob) {
  868. dprintk(CVP_ERR, "%s: invalid params", __func__);
  869. return -EINVAL;
  870. }
  871. num_layers = wncc_oob->num_layers;
  872. metadata_bufs_offset = wncc_oob->metadata_bufs_offset;
  873. if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  874. dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
  875. return -EINVAL;
  876. }
  877. if (metadata_bufs_offset > ((sizeof(in_pkt->pkt_data)
  878. - sizeof(struct cvp_buf_type)) / sizeof(__u32))) {
  879. dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset",
  880. __func__);
  881. return -EINVAL;
  882. }
  883. wncc_metadata_bufs = (struct cvp_buf_type*)
  884. &in_pkt->pkt_data[metadata_bufs_offset];
  885. for (i = 0; i < num_layers; i++) {
  886. if (!wncc_metadata[i]) {
  887. continue;
  888. }
  889. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  890. if (IS_ERR(dmabuf)) {
  891. rc = -PTR_ERR(dmabuf);
  892. dprintk(CVP_ERR,
  893. "%s: dma_buf_get() failed for "
  894. "wncc_metadata_bufs[%d], rc %d",
  895. __func__, i, rc);
  896. break;
  897. }
  898. _buf_map_set_vaddr(&map, wncc_metadata[i]);
  899. dma_buf_vunmap(dmabuf, &map);
  900. wncc_metadata[i] = NULL;
  901. rc = dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  902. dma_buf_put(dmabuf);
  903. if (rc) {
  904. dprintk(CVP_ERR,
  905. "%s: dma_buf_end_cpu_access() failed "
  906. "for wncc_metadata_bufs[%d], rc %d",
  907. __func__, i, rc);
  908. break;
  909. }
  910. }
  911. return rc;
  912. }
  913. static int init_wncc_bufs(void)
  914. {
  915. int i;
  916. for (i = 0; i < NUM_WNCC_BUFS; i++) {
  917. wncc_buf_pool.bufs[i] = (struct eva_kmd_oob_wncc*)kzalloc(
  918. sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
  919. if (!wncc_buf_pool.bufs[i]) {
  920. i--;
  921. goto exit_fail;
  922. }
  923. }
  924. wncc_buf_pool.used_bitmap = 0;
  925. wncc_buf_pool.allocated = true;
  926. return 0;
  927. exit_fail:
  928. while (i >= 0) {
  929. kfree(wncc_buf_pool.bufs[i]);
  930. i--;
  931. }
  932. return -ENOMEM;
  933. }
  934. static int alloc_wncc_buf(struct wncc_oob_buf *wob)
  935. {
  936. int rc, i;
  937. mutex_lock(&wncc_buf_pool.lock);
  938. if (!wncc_buf_pool.allocated) {
  939. rc = init_wncc_bufs();
  940. if (rc) {
  941. mutex_unlock(&wncc_buf_pool.lock);
  942. return rc;
  943. }
  944. }
  945. for (i = 0; i < NUM_WNCC_BUFS; i++) {
  946. if (!(wncc_buf_pool.used_bitmap & BIT(i))) {
  947. wncc_buf_pool.used_bitmap |= BIT(i);
  948. wob->bitmap_idx = i;
  949. wob->buf = wncc_buf_pool.bufs[i];
  950. mutex_unlock(&wncc_buf_pool.lock);
  951. return 0;
  952. }
  953. }
  954. mutex_unlock(&wncc_buf_pool.lock);
  955. wob->bitmap_idx = 0xff;
  956. wob->buf = (struct eva_kmd_oob_wncc*)kzalloc(
  957. sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
  958. if (!wob->buf)
  959. rc = -ENOMEM;
  960. else
  961. rc = 0;
  962. return rc;
  963. }
  964. static void free_wncc_buf(struct wncc_oob_buf *wob)
  965. {
  966. if (!wob)
  967. return;
  968. if (wob->bitmap_idx == 0xff) {
  969. kfree(wob->buf);
  970. return;
  971. }
  972. if (wob->bitmap_idx < NUM_WNCC_BUFS) {
  973. mutex_lock(&wncc_buf_pool.lock);
  974. wncc_buf_pool.used_bitmap &= ~BIT(wob->bitmap_idx);
  975. memset(wob->buf, 0, sizeof(struct eva_kmd_oob_wncc));
  976. wob->buf = NULL;
  977. mutex_unlock(&wncc_buf_pool.lock);
  978. }
  979. }
  980. static int msm_cvp_proc_oob_wncc(struct msm_cvp_inst* inst,
  981. struct eva_kmd_hfi_packet* in_pkt)
  982. {
  983. int rc = 0;
  984. struct eva_kmd_oob_wncc* wncc_oob;
  985. struct wncc_oob_buf wob;
  986. struct eva_kmd_wncc_metadata* wncc_metadata[EVA_KMD_WNCC_MAX_LAYERS];
  987. unsigned int i, j;
  988. bool empty = false;
  989. u32 buf_id, buf_idx, buf_offset, iova;
  990. if (!inst || !inst->core || !in_pkt) {
  991. dprintk(CVP_ERR, "%s: invalid params", __func__);
  992. return -EINVAL;
  993. }
  994. rc = alloc_wncc_buf(&wob);
  995. if (rc)
  996. return -ENOMEM;
  997. wncc_oob = wob.buf;
  998. rc = _wncc_copy_oob_from_user(in_pkt, wncc_oob);
  999. if (rc) {
  1000. dprintk(CVP_ERR, "%s: OOB buf copying failed", __func__);
  1001. goto exit;
  1002. }
  1003. memset(wncc_metadata, 0,
  1004. sizeof(*wncc_metadata) * EVA_KMD_WNCC_MAX_LAYERS);
  1005. rc = _wncc_map_metadata_bufs(in_pkt, wncc_oob, wncc_metadata);
  1006. if (rc) {
  1007. dprintk(CVP_ERR, "%s: failed to map wncc metadata bufs",
  1008. __func__);
  1009. goto exit;
  1010. }
  1011. mutex_lock(&inst->cvpwnccbufs.lock);
  1012. if (inst->cvpwnccbufs_num == 0 || inst->cvpwnccbufs_table == NULL) {
  1013. dprintk(CVP_ERR, "%s: no wncc bufs currently mapped", __func__);
  1014. empty = true;
  1015. rc = -EINVAL;
  1016. }
  1017. for (i = 0; !empty && i < wncc_oob->num_layers; i++) {
  1018. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  1019. buf_id = wncc_oob->layers[i].addrs[j].buffer_id;
  1020. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET ||
  1021. buf_id >= (EVA_KMD_WNCC_SRC_BUF_ID_OFFSET +
  1022. EVA_KMD_WNCC_MAX_SRC_BUFS)) {
  1023. dprintk(CVP_ERR,
  1024. "%s: invalid wncc buf id %u "
  1025. "in layer #%u address #%u",
  1026. __func__, buf_id, i, j);
  1027. rc = -EINVAL;
  1028. break;
  1029. }
  1030. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  1031. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  1032. dprintk(CVP_ERR,
  1033. "%s: unmapped wncc buf id %u "
  1034. "in layer #%u address #%u",
  1035. __func__, buf_id, i, j);
  1036. /* _wncc_print_cvpwnccbufs_table(inst); */
  1037. rc = -EINVAL;
  1038. break;
  1039. }
  1040. buf_offset = wncc_oob->layers[i].addrs[j].offset;
  1041. if (buf_offset >=
  1042. inst->cvpwnccbufs_table[buf_idx].size) {
  1043. /* NOTE: This buffer offset validation is
  1044. * not comprehensive since wncc src image
  1045. * resolution information is not known to
  1046. * KMD. UMD is responsible for comprehensive
  1047. * validation.
  1048. */
  1049. dprintk(CVP_ERR,
  1050. "%s: invalid wncc buf offset %u "
  1051. "in layer #%u address #%u",
  1052. __func__, buf_offset, i, j);
  1053. rc = -EINVAL;
  1054. break;
  1055. }
  1056. iova = inst->cvpwnccbufs_table[buf_idx].iova +
  1057. buf_offset;
  1058. wncc_metadata[i][j].iova_lsb = iova;
  1059. wncc_metadata[i][j].iova_msb = iova >> 22;
  1060. }
  1061. }
  1062. mutex_unlock(&inst->cvpwnccbufs.lock);
  1063. if (false)
  1064. _wncc_print_metadata_buf(wncc_oob->num_layers,
  1065. wncc_oob->layers[0].num_addrs, wncc_metadata);
  1066. if (_wncc_unmap_metadata_bufs(in_pkt, wncc_oob, wncc_metadata)) {
  1067. dprintk(CVP_ERR, "%s: failed to unmap wncc metadata bufs",
  1068. __func__);
  1069. }
  1070. exit:
  1071. free_wncc_buf(&wob);
  1072. return rc;
  1073. }
  1074. int msm_cvp_proc_oob(struct msm_cvp_inst* inst,
  1075. struct eva_kmd_hfi_packet* in_pkt)
  1076. {
  1077. int rc = 0;
  1078. struct cvp_hfi_cmd_session_hdr* cmd_hdr =
  1079. (struct cvp_hfi_cmd_session_hdr*)in_pkt;
  1080. if (!inst || !inst->core || !in_pkt) {
  1081. dprintk(CVP_ERR, "%s: invalid params", __func__);
  1082. return -EINVAL;
  1083. }
  1084. switch (cmd_hdr->packet_type) {
  1085. case HFI_CMD_SESSION_CVP_WARP_NCC_FRAME:
  1086. rc = msm_cvp_proc_oob_wncc(inst, in_pkt);
  1087. break;
  1088. default:
  1089. break;
  1090. }
  1091. return rc;
  1092. }
  1093. void msm_cvp_cache_operations(struct msm_cvp_smem *smem, u32 type,
  1094. u32 offset, u32 size)
  1095. {
  1096. enum smem_cache_ops cache_op;
  1097. if (msm_cvp_cacheop_disabled)
  1098. return;
  1099. if (!smem) {
  1100. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1101. return;
  1102. }
  1103. switch (type) {
  1104. case EVA_KMD_BUFTYPE_INPUT:
  1105. cache_op = SMEM_CACHE_CLEAN;
  1106. break;
  1107. case EVA_KMD_BUFTYPE_OUTPUT:
  1108. cache_op = SMEM_CACHE_INVALIDATE;
  1109. break;
  1110. default:
  1111. cache_op = SMEM_CACHE_CLEAN_INVALIDATE;
  1112. }
  1113. dprintk(CVP_MEM,
  1114. "%s: cache operation enabled for dma_buf: %llx, cache_op: %d, offset: %d, size: %d\n",
  1115. __func__, smem->dma_buf, cache_op, offset, size);
  1116. msm_cvp_smem_cache_operations(smem->dma_buf, cache_op, offset, size);
  1117. }
  1118. static struct msm_cvp_smem *msm_cvp_session_find_smem(struct msm_cvp_inst *inst,
  1119. struct dma_buf *dma_buf,
  1120. u32 pkt_type)
  1121. {
  1122. struct msm_cvp_smem *smem;
  1123. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef;
  1124. struct cvp_internal_buf *buf = (struct cvp_internal_buf *)0xdeadbeef;
  1125. int i;
  1126. if (inst->dma_cache.nr > MAX_DMABUF_NUMS)
  1127. return NULL;
  1128. mutex_lock(&inst->dma_cache.lock);
  1129. for (i = 0; i < inst->dma_cache.nr; i++)
  1130. if (inst->dma_cache.entries[i]->dma_buf == dma_buf) {
  1131. SET_USE_BITMAP(i, inst);
  1132. smem = inst->dma_cache.entries[i];
  1133. smem->bitmap_index = i;
  1134. smem->pkt_type = pkt_type;
  1135. atomic_inc(&smem->refcount);
  1136. /*
  1137. * If we find it, it means we already increased
  1138. * refcount before, so we put it to avoid double
  1139. * incremental.
  1140. */
  1141. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  1142. mutex_unlock(&inst->dma_cache.lock);
  1143. print_smem(CVP_MEM, "found in cache", inst, smem);
  1144. return smem;
  1145. }
  1146. mutex_unlock(&inst->dma_cache.lock);
  1147. /* earch persist list */
  1148. mutex_lock(&inst->persistbufs.lock);
  1149. list_for_each_entry(buf, &inst->persistbufs.list, list) {
  1150. smem = buf->smem;
  1151. if (smem && smem->dma_buf == dma_buf) {
  1152. atomic_inc(&smem->refcount);
  1153. mutex_unlock(&inst->persistbufs.lock);
  1154. print_smem(CVP_MEM, "found in persist", inst, smem);
  1155. return smem;
  1156. }
  1157. }
  1158. mutex_unlock(&inst->persistbufs.lock);
  1159. /* Search frame list */
  1160. mutex_lock(&inst->frames.lock);
  1161. list_for_each_entry(frame, &inst->frames.list, list) {
  1162. for (i = 0; i < frame->nr; i++) {
  1163. smem = frame->bufs[i].smem;
  1164. if (smem && smem->dma_buf == dma_buf) {
  1165. atomic_inc(&smem->refcount);
  1166. mutex_unlock(&inst->frames.lock);
  1167. print_smem(CVP_MEM, "found in frame",
  1168. inst, smem);
  1169. return smem;
  1170. }
  1171. }
  1172. }
  1173. mutex_unlock(&inst->frames.lock);
  1174. return NULL;
  1175. }
  1176. static int msm_cvp_session_add_smem(struct msm_cvp_inst *inst,
  1177. struct msm_cvp_smem *smem)
  1178. {
  1179. unsigned int i;
  1180. struct msm_cvp_smem *smem2;
  1181. mutex_lock(&inst->dma_cache.lock);
  1182. if (inst->dma_cache.nr < MAX_DMABUF_NUMS) {
  1183. inst->dma_cache.entries[inst->dma_cache.nr] = smem;
  1184. SET_USE_BITMAP(inst->dma_cache.nr, inst);
  1185. smem->bitmap_index = inst->dma_cache.nr;
  1186. inst->dma_cache.nr++;
  1187. i = smem->bitmap_index;
  1188. } else {
  1189. i = find_first_zero_bit(&inst->dma_cache.usage_bitmap,
  1190. MAX_DMABUF_NUMS);
  1191. if (i < MAX_DMABUF_NUMS) {
  1192. smem2 = inst->dma_cache.entries[i];
  1193. msm_cvp_unmap_smem(inst, smem2, "unmap cpu");
  1194. msm_cvp_smem_put_dma_buf(smem2->dma_buf);
  1195. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem2);
  1196. inst->dma_cache.entries[i] = smem;
  1197. smem->bitmap_index = i;
  1198. SET_USE_BITMAP(i, inst);
  1199. } else {
  1200. dprintk(CVP_WARN,
  1201. "%s: reached limit, fallback to buf mapping list\n"
  1202. , __func__);
  1203. atomic_inc(&smem->refcount);
  1204. mutex_unlock(&inst->dma_cache.lock);
  1205. return -ENOMEM;
  1206. }
  1207. }
  1208. atomic_inc(&smem->refcount);
  1209. mutex_unlock(&inst->dma_cache.lock);
  1210. dprintk(CVP_MEM, "Add entry %d into cache\n", i);
  1211. return 0;
  1212. }
  1213. static struct msm_cvp_smem *msm_cvp_session_get_smem(struct msm_cvp_inst *inst,
  1214. struct cvp_buf_type *buf,
  1215. bool is_persist,
  1216. u32 pkt_type)
  1217. {
  1218. int rc = 0, found = 1;
  1219. struct msm_cvp_smem *smem = NULL;
  1220. struct dma_buf *dma_buf = NULL;
  1221. if (buf->fd < 0) {
  1222. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1223. return NULL;
  1224. }
  1225. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1226. if (!dma_buf) {
  1227. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1228. return NULL;
  1229. }
  1230. if (is_persist) {
  1231. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1232. if (!smem)
  1233. return NULL;
  1234. smem->dma_buf = dma_buf;
  1235. smem->bitmap_index = MAX_DMABUF_NUMS;
  1236. smem->pkt_type = pkt_type;
  1237. smem->flags |= SMEM_PERSIST;
  1238. smem->fd = buf->fd;
  1239. atomic_inc(&smem->refcount);
  1240. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1241. if (rc)
  1242. goto exit;
  1243. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1244. dprintk(CVP_ERR,
  1245. "%s: invalid offset %d or size %d persist\n",
  1246. __func__, buf->offset, buf->size);
  1247. goto exit2;
  1248. }
  1249. return smem;
  1250. }
  1251. smem = msm_cvp_session_find_smem(inst, dma_buf, pkt_type);
  1252. if (!smem) {
  1253. found = 0;
  1254. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1255. if (!smem)
  1256. return NULL;
  1257. smem->dma_buf = dma_buf;
  1258. smem->bitmap_index = MAX_DMABUF_NUMS;
  1259. smem->pkt_type = pkt_type;
  1260. smem->fd = buf->fd;
  1261. if (is_params_pkt(pkt_type))
  1262. smem->flags |= SMEM_PERSIST;
  1263. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1264. if (rc)
  1265. goto exit;
  1266. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1267. dprintk(CVP_ERR,
  1268. "%s: invalid buf %d %d fd %d dma 0x%llx %s %d type %#x\n",
  1269. __func__, buf->offset, buf->size, buf->fd,
  1270. dma_buf, dma_buf->name, dma_buf->size, pkt_type);
  1271. goto exit2;
  1272. }
  1273. rc = msm_cvp_session_add_smem(inst, smem);
  1274. if (rc && rc != -ENOMEM)
  1275. goto exit2;
  1276. return smem;
  1277. }
  1278. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1279. dprintk(CVP_ERR, "%s: invalid offset %d or size %d found\n",
  1280. __func__, buf->offset, buf->size);
  1281. if (found) {
  1282. mutex_lock(&inst->dma_cache.lock);
  1283. atomic_dec(&smem->refcount);
  1284. mutex_unlock(&inst->dma_cache.lock);
  1285. return NULL;
  1286. }
  1287. goto exit2;
  1288. }
  1289. return smem;
  1290. exit2:
  1291. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1292. exit:
  1293. msm_cvp_smem_put_dma_buf(dma_buf);
  1294. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1295. smem = NULL;
  1296. return smem;
  1297. }
  1298. static int msm_cvp_unmap_user_persist_buf(struct msm_cvp_inst *inst,
  1299. struct cvp_buf_type *buf,
  1300. u32 pkt_type, u32 buf_idx, u32 *iova)
  1301. {
  1302. struct msm_cvp_smem *smem = NULL;
  1303. struct list_head *ptr;
  1304. struct list_head *next;
  1305. struct cvp_internal_buf *pbuf;
  1306. struct dma_buf *dma_buf;
  1307. if (!inst) {
  1308. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1309. return -EINVAL;
  1310. }
  1311. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1312. if (!dma_buf)
  1313. return -EINVAL;
  1314. mutex_lock(&inst->persistbufs.lock);
  1315. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1316. if (!ptr) {
  1317. mutex_unlock(&inst->persistbufs.lock);
  1318. return -EINVAL;
  1319. }
  1320. pbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1321. if (dma_buf == pbuf->smem->dma_buf && (pbuf->smem->flags & SMEM_PERSIST)) {
  1322. *iova = pbuf->smem->device_addr;
  1323. dprintk(CVP_MEM,
  1324. "Unmap persist fd %d, dma_buf %#llx iova %#x\n",
  1325. pbuf->fd, pbuf->smem->dma_buf, *iova);
  1326. list_del(&pbuf->list);
  1327. if (*iova) {
  1328. msm_cvp_unmap_smem(inst, pbuf->smem, "unmap user persist");
  1329. msm_cvp_smem_put_dma_buf(pbuf->smem->dma_buf);
  1330. pbuf->smem->device_addr = 0;
  1331. }
  1332. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1333. pbuf->smem = NULL;
  1334. cvp_kmem_cache_free(&cvp_driver->buf_cache, pbuf);
  1335. mutex_unlock(&inst->persistbufs.lock);
  1336. dma_buf_put(dma_buf);
  1337. return 0;
  1338. }
  1339. }
  1340. mutex_unlock(&inst->persistbufs.lock);
  1341. dma_buf_put(dma_buf);
  1342. return -EINVAL;
  1343. }
  1344. static int msm_cvp_map_user_persist_buf(struct msm_cvp_inst *inst,
  1345. struct cvp_buf_type *buf,
  1346. u32 pkt_type, u32 buf_idx, u32 *iova)
  1347. {
  1348. struct msm_cvp_smem *smem = NULL;
  1349. struct list_head *ptr;
  1350. struct list_head *next;
  1351. struct cvp_internal_buf *pbuf;
  1352. struct dma_buf *dma_buf;
  1353. int ret;
  1354. if (!inst) {
  1355. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1356. return -EINVAL;
  1357. }
  1358. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1359. if (!dma_buf)
  1360. return -EINVAL;
  1361. mutex_lock(&inst->persistbufs.lock);
  1362. if (!inst->persistbufs.list.next) {
  1363. mutex_unlock(&inst->persistbufs.lock);
  1364. return -EINVAL;
  1365. }
  1366. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1367. if (!ptr)
  1368. return -EINVAL;
  1369. pbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1370. if (dma_buf == pbuf->smem->dma_buf) {
  1371. pbuf->size =
  1372. (pbuf->size >= buf->size) ?
  1373. pbuf->size : buf->size;
  1374. *iova = pbuf->smem->device_addr + buf->offset;
  1375. mutex_unlock(&inst->persistbufs.lock);
  1376. atomic_inc(&pbuf->smem->refcount);
  1377. dma_buf_put(dma_buf);
  1378. dprintk(CVP_MEM,
  1379. "map persist Reuse fd %d, dma_buf %#llx\n",
  1380. pbuf->fd, pbuf->smem->dma_buf);
  1381. return 0;
  1382. }
  1383. }
  1384. mutex_unlock(&inst->persistbufs.lock);
  1385. dma_buf_put(dma_buf);
  1386. pbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  1387. if (!pbuf) {
  1388. dprintk(CVP_ERR, "%s failed to allocate kmem obj\n",
  1389. __func__);
  1390. return -ENOMEM;
  1391. }
  1392. if (is_params_pkt(pkt_type))
  1393. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1394. else
  1395. smem = msm_cvp_session_get_smem(inst, buf, true, pkt_type);
  1396. if (!smem) {
  1397. ret = -ENOMEM;
  1398. goto exit;
  1399. }
  1400. smem->pkt_type = pkt_type;
  1401. smem->buf_idx = buf_idx;
  1402. smem->fd = buf->fd;
  1403. pbuf->smem = smem;
  1404. pbuf->fd = buf->fd;
  1405. pbuf->size = buf->size;
  1406. pbuf->offset = buf->offset;
  1407. pbuf->ownership = CLIENT;
  1408. mutex_lock(&inst->persistbufs.lock);
  1409. list_add_tail(&pbuf->list, &inst->persistbufs.list);
  1410. mutex_unlock(&inst->persistbufs.lock);
  1411. print_internal_buffer(CVP_MEM, "map persist", inst, pbuf);
  1412. *iova = smem->device_addr + buf->offset;
  1413. return 0;
  1414. exit:
  1415. cvp_kmem_cache_free(&cvp_driver->buf_cache, pbuf);
  1416. return ret;
  1417. }
  1418. static u32 msm_cvp_map_frame_buf(struct msm_cvp_inst *inst,
  1419. struct cvp_buf_type *buf,
  1420. struct msm_cvp_frame *frame,
  1421. u32 pkt_type, u32 buf_idx)
  1422. {
  1423. u32 iova = 0;
  1424. struct msm_cvp_smem *smem = NULL;
  1425. u32 nr;
  1426. u32 type;
  1427. if (!inst || !frame) {
  1428. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1429. return 0;
  1430. }
  1431. nr = frame->nr;
  1432. if (nr == MAX_FRAME_BUFFER_NUMS) {
  1433. dprintk(CVP_ERR, "%s: max frame buffer reached\n", __func__);
  1434. return 0;
  1435. }
  1436. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1437. if (!smem)
  1438. return 0;
  1439. smem->buf_idx = buf_idx;
  1440. frame->bufs[nr].fd = buf->fd;
  1441. frame->bufs[nr].smem = smem;
  1442. frame->bufs[nr].size = buf->size;
  1443. frame->bufs[nr].offset = buf->offset;
  1444. print_internal_buffer(CVP_MEM, "map cpu", inst, &frame->bufs[nr]);
  1445. frame->nr++;
  1446. type = EVA_KMD_BUFTYPE_INPUT | EVA_KMD_BUFTYPE_OUTPUT;
  1447. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1448. iova = smem->device_addr + buf->offset;
  1449. return iova;
  1450. }
  1451. static void msm_cvp_unmap_frame_buf(struct msm_cvp_inst *inst,
  1452. struct msm_cvp_frame *frame)
  1453. {
  1454. u32 i;
  1455. u32 type;
  1456. struct msm_cvp_smem *smem = NULL;
  1457. struct cvp_internal_buf *buf;
  1458. type = EVA_KMD_BUFTYPE_OUTPUT;
  1459. for (i = 0; i < frame->nr; ++i) {
  1460. buf = &frame->bufs[i];
  1461. smem = buf->smem;
  1462. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1463. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1464. /* smem not in dmamap cache */
  1465. if (atomic_dec_and_test(&smem->refcount)) {
  1466. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1467. dma_heap_buffer_free(smem->dma_buf);
  1468. smem->buf_idx |= 0xdead0000;
  1469. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1470. buf->smem = NULL;
  1471. }
  1472. } else {
  1473. mutex_lock(&inst->dma_cache.lock);
  1474. if (atomic_dec_and_test(&smem->refcount)) {
  1475. CLEAR_USE_BITMAP(smem->bitmap_index, inst);
  1476. print_smem(CVP_MEM, "Map dereference",
  1477. inst, smem);
  1478. smem->buf_idx |= 0x10000000;
  1479. }
  1480. mutex_unlock(&inst->dma_cache.lock);
  1481. }
  1482. }
  1483. cvp_kmem_cache_free(&cvp_driver->frame_cache, frame);
  1484. }
  1485. static void backup_frame_buffers(struct msm_cvp_inst *inst,
  1486. struct msm_cvp_frame *frame)
  1487. {
  1488. /* Save frame buffers before unmap them */
  1489. int i = frame->nr;
  1490. if (i == 0 || i > MAX_FRAME_BUFFER_NUMS)
  1491. return;
  1492. inst->last_frame.ktid = frame->ktid;
  1493. inst->last_frame.nr = frame->nr;
  1494. do {
  1495. i--;
  1496. if (frame->bufs[i].smem->bitmap_index < MAX_DMABUF_NUMS) {
  1497. /*
  1498. * Frame buffer info can be found in dma_cache table,
  1499. * Skip saving
  1500. */
  1501. inst->last_frame.nr = 0;
  1502. return;
  1503. }
  1504. inst->last_frame.smem[i] = *(frame->bufs[i].smem);
  1505. } while (i);
  1506. }
  1507. void msm_cvp_unmap_frame(struct msm_cvp_inst *inst, u64 ktid)
  1508. {
  1509. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef, *dummy1;
  1510. bool found;
  1511. if (!inst) {
  1512. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1513. return;
  1514. }
  1515. ktid &= (FENCE_BIT - 1);
  1516. dprintk(CVP_MEM, "%s: (%#x) unmap frame %llu\n",
  1517. __func__, hash32_ptr(inst->session), ktid);
  1518. found = false;
  1519. mutex_lock(&inst->frames.lock);
  1520. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1521. if (frame->ktid == ktid) {
  1522. found = true;
  1523. list_del(&frame->list);
  1524. dprintk(CVP_CMD, "%s: "
  1525. "pkt_type %08x sess_id %08x trans_id <> ktid %llu\n",
  1526. __func__, frame->pkt_type,
  1527. hash32_ptr(inst->session),
  1528. frame->ktid);
  1529. /* Save the previous frame mappings for debug */
  1530. backup_frame_buffers(inst, frame);
  1531. msm_cvp_unmap_frame_buf(inst, frame);
  1532. break;
  1533. }
  1534. }
  1535. mutex_unlock(&inst->frames.lock);
  1536. if (!found)
  1537. dprintk(CVP_WARN, "%s frame %llu not found!\n", __func__, ktid);
  1538. }
  1539. /*
  1540. * Unmap persistent buffer before sending RELEASE_PERSIST_BUFFERS to FW
  1541. * This packet is sent after SESSION_STOP. The assumption is FW/HW will
  1542. * NOT access any of the 3 persist buffer.
  1543. */
  1544. int msm_cvp_unmap_user_persist(struct msm_cvp_inst *inst,
  1545. struct eva_kmd_hfi_packet *in_pkt,
  1546. unsigned int offset, unsigned int buf_num)
  1547. {
  1548. struct cvp_buf_type *buf;
  1549. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1550. int i, ret;
  1551. u32 iova;
  1552. if (!offset || !buf_num)
  1553. return 0;
  1554. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1555. for (i = 0; i < buf_num; i++) {
  1556. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1557. offset += sizeof(*buf) >> 2;
  1558. if (buf->fd < 0 || !buf->size)
  1559. continue;
  1560. ret = msm_cvp_unmap_user_persist_buf(inst, buf,
  1561. cmd_hdr->packet_type, i, &iova);
  1562. if (ret) {
  1563. dprintk(CVP_ERR,
  1564. "%s: buf %d unmap failed.\n",
  1565. __func__, i);
  1566. return ret;
  1567. }
  1568. buf->fd = iova;
  1569. }
  1570. return 0;
  1571. }
  1572. int msm_cvp_map_user_persist(struct msm_cvp_inst *inst,
  1573. struct eva_kmd_hfi_packet *in_pkt,
  1574. unsigned int offset, unsigned int buf_num)
  1575. {
  1576. struct cvp_buf_type *buf;
  1577. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1578. int i, ret;
  1579. u32 iova;
  1580. if (!offset || !buf_num)
  1581. return 0;
  1582. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1583. for (i = 0; i < buf_num; i++) {
  1584. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1585. offset += sizeof(*buf) >> 2;
  1586. if (buf->fd < 0 || !buf->size)
  1587. continue;
  1588. ret = msm_cvp_map_user_persist_buf(inst, buf,
  1589. cmd_hdr->packet_type, i, &iova);
  1590. if (ret) {
  1591. dprintk(CVP_ERR,
  1592. "%s: buf %d map failed.\n",
  1593. __func__, i);
  1594. return ret;
  1595. }
  1596. buf->fd = iova;
  1597. }
  1598. return 0;
  1599. }
  1600. int msm_cvp_map_frame(struct msm_cvp_inst *inst,
  1601. struct eva_kmd_hfi_packet *in_pkt,
  1602. unsigned int offset, unsigned int buf_num)
  1603. {
  1604. struct cvp_buf_type *buf;
  1605. int i;
  1606. u32 iova;
  1607. u64 ktid;
  1608. struct msm_cvp_frame *frame;
  1609. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1610. struct msm_cvp_inst *instance = (struct msm_cvp_inst *)0xdeadbeef;
  1611. struct msm_cvp_core *core = NULL;
  1612. core = cvp_driver->cvp_core;
  1613. if (!core)
  1614. return -EINVAL;
  1615. if (!offset || !buf_num)
  1616. return 0;
  1617. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1618. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  1619. ktid &= (FENCE_BIT - 1);
  1620. cmd_hdr->client_data.kdata = ktid;
  1621. dprintk(CVP_CMD, "%s: "
  1622. "pkt_type %08x sess_id %08x trans_id %u ktid %llu\n",
  1623. __func__, cmd_hdr->packet_type,
  1624. cmd_hdr->session_id,
  1625. cmd_hdr->client_data.transaction_id,
  1626. cmd_hdr->client_data.kdata & (FENCE_BIT - 1));
  1627. frame = cvp_kmem_cache_zalloc(&cvp_driver->frame_cache, GFP_KERNEL);
  1628. if (!frame)
  1629. return -ENOMEM;
  1630. frame->ktid = ktid;
  1631. frame->nr = 0;
  1632. frame->pkt_type = cmd_hdr->packet_type;
  1633. for (i = 0; i < buf_num; i++) {
  1634. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1635. offset += sizeof(*buf) >> 2;
  1636. if (buf->fd < 0 || !buf->size) {
  1637. buf->fd = 0;
  1638. buf->size = 0;
  1639. continue;
  1640. }
  1641. iova = msm_cvp_map_frame_buf(inst, buf, frame, cmd_hdr->packet_type, i);
  1642. if (!iova) {
  1643. dprintk(CVP_ERR,
  1644. "%s: buf %d register failed.\n",
  1645. __func__, i);
  1646. dprintk(CVP_ERR, "smem_leak_count %d\n", core->smem_leak_count);
  1647. mutex_lock(&core->lock);
  1648. list_for_each_entry(instance, &core->instances, list) {
  1649. msm_cvp_print_inst_bufs(instance, false);
  1650. }
  1651. mutex_unlock(&core->lock);
  1652. msm_cvp_unmap_frame_buf(inst, frame);
  1653. return -EINVAL;
  1654. }
  1655. buf->fd = iova;
  1656. }
  1657. mutex_lock(&inst->frames.lock);
  1658. list_add_tail(&frame->list, &inst->frames.list);
  1659. mutex_unlock(&inst->frames.lock);
  1660. dprintk(CVP_MEM, "%s: map frame %llu\n", __func__, ktid);
  1661. return 0;
  1662. }
  1663. int msm_cvp_session_deinit_buffers(struct msm_cvp_inst *inst)
  1664. {
  1665. int rc = 0, i;
  1666. struct cvp_internal_buf *cbuf, *dummy;
  1667. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef, *dummy1;
  1668. struct msm_cvp_smem *smem;
  1669. struct cvp_hal_session *session;
  1670. struct eva_kmd_buffer buf;
  1671. struct list_head *ptr = (struct list_head *)0xdead;
  1672. struct list_head *next = (struct list_head *)0xdead;
  1673. session = (struct cvp_hal_session *)inst->session;
  1674. mutex_lock(&inst->frames.lock);
  1675. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1676. list_del(&frame->list);
  1677. msm_cvp_unmap_frame_buf(inst, frame);
  1678. }
  1679. mutex_unlock(&inst->frames.lock);
  1680. mutex_lock(&inst->persistbufs.lock);
  1681. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1682. if (!ptr)
  1683. return -EINVAL;
  1684. cbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1685. smem = cbuf->smem;
  1686. if (!smem) {
  1687. dprintk(CVP_ERR, "%s invalid persist smem\n", __func__);
  1688. mutex_unlock(&inst->persistbufs.lock);
  1689. return -EINVAL;
  1690. }
  1691. if (cbuf->ownership != DRIVER) {
  1692. dprintk(CVP_MEM,
  1693. "%s: %x : fd %d %pK size %d",
  1694. "free user persistent", hash32_ptr(inst->session), cbuf->fd,
  1695. smem->dma_buf, cbuf->size);
  1696. list_del(&cbuf->list);
  1697. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1698. /*
  1699. * don't care refcount, has to remove mapping
  1700. * this is user persistent buffer
  1701. */
  1702. if (smem->device_addr) {
  1703. msm_cvp_unmap_smem(inst, smem,
  1704. "unmap persist");
  1705. msm_cvp_smem_put_dma_buf(
  1706. cbuf->smem->dma_buf);
  1707. smem->device_addr = 0;
  1708. }
  1709. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1710. cbuf->smem = NULL;
  1711. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1712. } else {
  1713. /*
  1714. * DMM_PARAMS and WAP_NCC_PARAMS cases
  1715. * Leave dma_cache cleanup to unmap
  1716. */
  1717. cbuf->smem = NULL;
  1718. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1719. }
  1720. }
  1721. }
  1722. mutex_unlock(&inst->persistbufs.lock);
  1723. mutex_lock(&inst->dma_cache.lock);
  1724. for (i = 0; i < inst->dma_cache.nr; i++) {
  1725. smem = inst->dma_cache.entries[i];
  1726. if (atomic_read(&smem->refcount) == 0) {
  1727. print_smem(CVP_MEM, "free", inst, smem);
  1728. } else if (!(smem->flags & SMEM_PERSIST)) {
  1729. print_smem(CVP_WARN, "in use", inst, smem);
  1730. }
  1731. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1732. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  1733. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1734. inst->dma_cache.entries[i] = NULL;
  1735. }
  1736. mutex_unlock(&inst->dma_cache.lock);
  1737. cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  1738. mutex_lock(&inst->cvpdspbufs.lock);
  1739. list_for_each_entry_safe(cbuf, dummy, &inst->cvpdspbufs.list, list) {
  1740. print_internal_buffer(CVP_MEM, "remove dspbufs", inst, cbuf);
  1741. if (cbuf->ownership == CLIENT) {
  1742. rc = cvp_dsp_deregister_buffer(hash32_ptr(session),
  1743. cbuf->fd, cbuf->smem->dma_buf->size, cbuf->size,
  1744. cbuf->offset, cbuf->index,
  1745. (uint32_t)cbuf->smem->device_addr);
  1746. if (rc)
  1747. dprintk(CVP_ERR,
  1748. "%s: failed dsp deregistration fd=%d rc=%d",
  1749. __func__, cbuf->fd, rc);
  1750. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  1751. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  1752. } else if (cbuf->ownership == DSP) {
  1753. rc = cvp_dsp_fastrpc_unmap(inst->dsp_handle, cbuf);
  1754. if (rc)
  1755. dprintk(CVP_ERR,
  1756. "%s: failed to unmap buf from DSP\n",
  1757. __func__);
  1758. rc = cvp_release_dsp_buffers(inst, cbuf);
  1759. if (rc)
  1760. dprintk(CVP_ERR,
  1761. "%s Fail to free buffer 0x%x\n",
  1762. __func__, rc);
  1763. }
  1764. list_del(&cbuf->list);
  1765. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1766. }
  1767. mutex_unlock(&inst->cvpdspbufs.lock);
  1768. mutex_lock(&inst->cvpwnccbufs.lock);
  1769. if (inst->cvpwnccbufs_num != 0)
  1770. dprintk(CVP_WARN, "%s: cvpwnccbufs not empty, contains %d bufs",
  1771. __func__, inst->cvpwnccbufs_num);
  1772. list_for_each_entry_safe(cbuf, dummy, &inst->cvpwnccbufs.list, list) {
  1773. print_internal_buffer(CVP_MEM, "remove wnccbufs", inst, cbuf);
  1774. buf.fd = cbuf->fd;
  1775. buf.reserved[0] = cbuf->ktid;
  1776. mutex_unlock(&inst->cvpwnccbufs.lock);
  1777. msm_cvp_unmap_buf_wncc(inst, &buf);
  1778. mutex_lock(&inst->cvpwnccbufs.lock);
  1779. }
  1780. mutex_unlock(&inst->cvpwnccbufs.lock);
  1781. return rc;
  1782. }
  1783. #define MAX_NUM_FRAMES_DUMP 4
  1784. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log)
  1785. {
  1786. struct cvp_internal_buf *buf = (struct cvp_internal_buf *)0xdeadbeef;
  1787. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef;
  1788. struct msm_cvp_core *core;
  1789. struct inst_snapshot *snap = NULL;
  1790. int i = 0, c = 0;
  1791. core = cvp_driver->cvp_core;
  1792. if (log && core->log.snapshot_index < 16) {
  1793. snap = &core->log.snapshot[core->log.snapshot_index];
  1794. snap->session = inst->session;
  1795. core->log.snapshot_index++;
  1796. }
  1797. if (!inst) {
  1798. dprintk(CVP_ERR, "%s - invalid param %pK\n",
  1799. __func__, inst);
  1800. return;
  1801. }
  1802. dprintk(CVP_ERR,
  1803. "---Buffer details for inst: %pK %s of type: %d---\n",
  1804. inst, inst->proc_name, inst->session_type);
  1805. dprintk(CVP_ERR, "dma_cache entries %d\n", inst->dma_cache.nr);
  1806. mutex_lock(&inst->dma_cache.lock);
  1807. if (inst->dma_cache.nr <= MAX_DMABUF_NUMS)
  1808. for (i = 0; i < inst->dma_cache.nr; i++)
  1809. _log_smem(snap, inst, inst->dma_cache.entries[i], log);
  1810. mutex_unlock(&inst->dma_cache.lock);
  1811. i = 0;
  1812. dprintk(CVP_ERR, "frame buffer list\n");
  1813. mutex_lock(&inst->frames.lock);
  1814. list_for_each_entry(frame, &inst->frames.list, list) {
  1815. i++;
  1816. if (i <= MAX_NUM_FRAMES_DUMP) {
  1817. dprintk(CVP_ERR, "frame no %d tid %llx bufs\n",
  1818. i, frame->ktid);
  1819. for (c = 0; c < frame->nr; c++)
  1820. _log_smem(snap, inst, frame->bufs[c].smem,
  1821. log);
  1822. }
  1823. }
  1824. if (i > MAX_NUM_FRAMES_DUMP)
  1825. dprintk(CVP_ERR, "Skipped %d frames' buffers\n",
  1826. (i - MAX_NUM_FRAMES_DUMP));
  1827. mutex_unlock(&inst->frames.lock);
  1828. mutex_lock(&inst->cvpdspbufs.lock);
  1829. dprintk(CVP_ERR, "dsp buffer list:\n");
  1830. list_for_each_entry(buf, &inst->cvpdspbufs.list, list)
  1831. _log_buf(snap, SMEM_ADSP, inst, buf, log);
  1832. mutex_unlock(&inst->cvpdspbufs.lock);
  1833. mutex_lock(&inst->cvpwnccbufs.lock);
  1834. dprintk(CVP_ERR, "wncc buffer list:\n");
  1835. list_for_each_entry(buf, &inst->cvpwnccbufs.list, list)
  1836. print_cvp_buffer(CVP_ERR, "bufdump", inst, buf);
  1837. mutex_unlock(&inst->cvpwnccbufs.lock);
  1838. mutex_lock(&inst->persistbufs.lock);
  1839. dprintk(CVP_ERR, "persist buffer list:\n");
  1840. list_for_each_entry(buf, &inst->persistbufs.list, list)
  1841. _log_buf(snap, SMEM_PERSIST, inst, buf, log);
  1842. mutex_unlock(&inst->persistbufs.lock);
  1843. dprintk(CVP_ERR, "last frame ktid %llx\n", inst->last_frame.ktid);
  1844. for (i = 0; i < inst->last_frame.nr; i++)
  1845. _log_smem(snap, inst, &inst->last_frame.smem[i], log);
  1846. dprintk(CVP_ERR, "unmapped wncc bufs\n");
  1847. for (i = 0; i < inst->unused_wncc_bufs.nr; i++)
  1848. _log_smem(snap, inst, &inst->unused_wncc_bufs.smem[i], log);
  1849. dprintk(CVP_ERR, "unmapped dsp bufs\n");
  1850. for (i = 0; i < inst->unused_dsp_bufs.nr; i++)
  1851. _log_smem(snap, inst, &inst->unused_dsp_bufs.smem[i], log);
  1852. }
  1853. struct cvp_internal_buf *cvp_allocate_arp_bufs(struct msm_cvp_inst *inst,
  1854. u32 buffer_size)
  1855. {
  1856. struct cvp_internal_buf *buf;
  1857. struct msm_cvp_list *buf_list;
  1858. u32 smem_flags = SMEM_UNCACHED;
  1859. int rc = 0;
  1860. if (!inst) {
  1861. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1862. return NULL;
  1863. }
  1864. buf_list = &inst->persistbufs;
  1865. if (!buffer_size)
  1866. return NULL;
  1867. /* If PERSIST buffer requires secure mapping, uncomment
  1868. * below flags setting
  1869. * smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1870. */
  1871. buf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  1872. if (!buf) {
  1873. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1874. goto fail_kzalloc;
  1875. }
  1876. buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1877. if (!buf->smem) {
  1878. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1879. goto fail_kzalloc;
  1880. }
  1881. buf->smem->flags = smem_flags;
  1882. rc = msm_cvp_smem_alloc(buffer_size, 1, 0, /* 0: no mapping in kernel space */
  1883. &(inst->core->resources), buf->smem);
  1884. if (rc) {
  1885. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  1886. goto err_no_mem;
  1887. }
  1888. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1889. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1890. atomic_inc(&buf->smem->refcount);
  1891. buf->size = buf->smem->size;
  1892. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1893. buf->ownership = DRIVER;
  1894. mutex_lock(&buf_list->lock);
  1895. list_add_tail(&buf->list, &buf_list->list);
  1896. mutex_unlock(&buf_list->lock);
  1897. return buf;
  1898. err_no_mem:
  1899. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1900. fail_kzalloc:
  1901. return NULL;
  1902. }
  1903. int cvp_release_arp_buffers(struct msm_cvp_inst *inst)
  1904. {
  1905. struct msm_cvp_smem *smem;
  1906. struct list_head *ptr = (struct list_head *)0xdead;
  1907. struct list_head *next = (struct list_head *)0xdead;
  1908. struct cvp_internal_buf *buf;
  1909. int rc = 0;
  1910. struct msm_cvp_core *core;
  1911. struct cvp_hfi_ops *ops_tbl;
  1912. if (!inst) {
  1913. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1914. return -EINVAL;
  1915. }
  1916. core = inst->core;
  1917. if (!core) {
  1918. dprintk(CVP_ERR, "Invalid core pointer = %pK\n", core);
  1919. return -EINVAL;
  1920. }
  1921. ops_tbl = core->dev_ops;
  1922. if (!ops_tbl) {
  1923. dprintk(CVP_ERR, "Invalid device pointer = %pK\n", ops_tbl);
  1924. return -EINVAL;
  1925. }
  1926. dprintk(CVP_MEM, "release persist buffer!\n");
  1927. mutex_lock(&inst->persistbufs.lock);
  1928. /* Workaround for FW: release buffer means release all */
  1929. if (inst->state > MSM_CVP_CORE_INIT_DONE && inst->state <= MSM_CVP_CLOSE_DONE) {
  1930. rc = call_hfi_op(ops_tbl, session_release_buffers,
  1931. (void *)inst->session);
  1932. if (!rc) {
  1933. mutex_unlock(&inst->persistbufs.lock);
  1934. rc = wait_for_sess_signal_receipt(inst,
  1935. HAL_SESSION_RELEASE_BUFFER_DONE);
  1936. if (rc)
  1937. dprintk(CVP_WARN,
  1938. "%s: wait release_arp signal failed, rc %d\n",
  1939. __func__, rc);
  1940. mutex_lock(&inst->persistbufs.lock);
  1941. } else {
  1942. dprintk_rl(CVP_WARN, "Fail to send Rel prst buf\n");
  1943. }
  1944. }
  1945. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1946. if (!ptr)
  1947. return -EINVAL;
  1948. buf = list_entry(ptr, struct cvp_internal_buf, list);
  1949. smem = buf->smem;
  1950. if (!smem) {
  1951. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1952. mutex_unlock(&inst->persistbufs.lock);
  1953. return -EINVAL;
  1954. }
  1955. if (buf->ownership == DRIVER) {
  1956. dprintk(CVP_MEM,
  1957. "%s: %x : fd %d %pK size %d",
  1958. "free arp", hash32_ptr(inst->session), buf->fd,
  1959. smem->dma_buf, buf->size);
  1960. list_del(&buf->list);
  1961. atomic_dec(&smem->refcount);
  1962. msm_cvp_smem_free(smem);
  1963. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1964. buf->smem = NULL;
  1965. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1966. }
  1967. }
  1968. mutex_unlock(&inst->persistbufs.lock);
  1969. return rc;
  1970. }
  1971. int cvp_allocate_dsp_bufs(struct msm_cvp_inst *inst,
  1972. struct cvp_internal_buf *buf,
  1973. u32 buffer_size,
  1974. u32 secure_type)
  1975. {
  1976. u32 smem_flags = SMEM_UNCACHED;
  1977. int rc = 0;
  1978. if (!inst) {
  1979. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1980. return -EINVAL;
  1981. }
  1982. if (!buf)
  1983. return -EINVAL;
  1984. if (!buffer_size)
  1985. return -EINVAL;
  1986. switch (secure_type) {
  1987. case 0:
  1988. break;
  1989. case 1:
  1990. smem_flags |= SMEM_SECURE | SMEM_PIXEL;
  1991. break;
  1992. case 2:
  1993. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1994. break;
  1995. default:
  1996. dprintk(CVP_ERR, "%s Invalid secure_type %d\n",
  1997. __func__, secure_type);
  1998. return -EINVAL;
  1999. }
  2000. dprintk(CVP_MEM, "%s smem_flags 0x%x\n", __func__, smem_flags);
  2001. buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  2002. if (!buf->smem) {
  2003. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  2004. goto fail_kzalloc_smem_cache;
  2005. }
  2006. buf->smem->flags = smem_flags;
  2007. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  2008. &(inst->core->resources), buf->smem);
  2009. if (rc) {
  2010. dprintk(CVP_ERR, "Failed to allocate DSP buf\n");
  2011. goto err_no_mem;
  2012. }
  2013. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  2014. atomic_inc(&buf->smem->refcount);
  2015. dprintk(CVP_MEM, "%s dma_buf %pK\n", __func__, buf->smem->dma_buf);
  2016. buf->size = buf->smem->size;
  2017. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  2018. buf->ownership = DSP;
  2019. return rc;
  2020. err_no_mem:
  2021. cvp_kmem_cache_free(&cvp_driver->smem_cache, buf->smem);
  2022. fail_kzalloc_smem_cache:
  2023. return rc;
  2024. }
  2025. int cvp_release_dsp_buffers(struct msm_cvp_inst *inst,
  2026. struct cvp_internal_buf *buf)
  2027. {
  2028. struct msm_cvp_smem *smem;
  2029. int rc = 0;
  2030. if (!inst) {
  2031. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  2032. return -EINVAL;
  2033. }
  2034. if (!buf) {
  2035. dprintk(CVP_ERR, "Invalid buffer pointer = %pK\n", inst);
  2036. return -EINVAL;
  2037. }
  2038. smem = buf->smem;
  2039. if (!smem) {
  2040. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  2041. return -EINVAL;
  2042. }
  2043. if (buf->ownership == DSP) {
  2044. dprintk(CVP_MEM,
  2045. "%s: %x : fd %x %s size %d",
  2046. __func__, hash32_ptr(inst->session), buf->fd,
  2047. smem->dma_buf->name, buf->size);
  2048. atomic_dec(&smem->refcount);
  2049. msm_cvp_smem_free(smem);
  2050. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  2051. } else {
  2052. dprintk(CVP_ERR,
  2053. "%s: wrong owner %d %x : fd %x %s size %d",
  2054. __func__, buf->ownership, hash32_ptr(inst->session),
  2055. buf->fd, smem->dma_buf->name, buf->size);
  2056. }
  2057. return rc;
  2058. }
  2059. int msm_cvp_register_buffer(struct msm_cvp_inst *inst,
  2060. struct eva_kmd_buffer *buf)
  2061. {
  2062. struct cvp_hfi_ops *ops_tbl;
  2063. struct cvp_hal_session *session;
  2064. struct msm_cvp_inst *s;
  2065. int rc = 0;
  2066. if (!inst || !inst->core || !buf) {
  2067. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  2068. return -EINVAL;
  2069. }
  2070. s = cvp_get_inst_validate(inst->core, inst);
  2071. if (!s)
  2072. return -ECONNRESET;
  2073. session = (struct cvp_hal_session *)inst->session;
  2074. if (!session) {
  2075. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  2076. rc = -EINVAL;
  2077. goto exit;
  2078. }
  2079. ops_tbl = inst->core->dev_ops;
  2080. print_client_buffer(CVP_HFI, "register", inst, buf);
  2081. if (buf->index)
  2082. rc = msm_cvp_map_buf_dsp(inst, buf);
  2083. else
  2084. rc = msm_cvp_map_buf_wncc(inst, buf);
  2085. dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__,
  2086. buf->fd, buf->reserved[0]);
  2087. exit:
  2088. cvp_put_inst(s);
  2089. return rc;
  2090. }
  2091. int msm_cvp_unregister_buffer(struct msm_cvp_inst *inst,
  2092. struct eva_kmd_buffer *buf)
  2093. {
  2094. struct msm_cvp_inst *s;
  2095. int rc = 0;
  2096. if (!inst || !inst->core || !buf) {
  2097. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  2098. return -EINVAL;
  2099. }
  2100. s = cvp_get_inst_validate(inst->core, inst);
  2101. if (!s)
  2102. return -ECONNRESET;
  2103. print_client_buffer(CVP_HFI, "unregister", inst, buf);
  2104. if (buf->index)
  2105. rc = msm_cvp_unmap_buf_dsp(inst, buf);
  2106. else
  2107. rc = msm_cvp_unmap_buf_wncc(inst, buf);
  2108. cvp_put_inst(s);
  2109. return rc;
  2110. }