hal_api_mon.h 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065
  1. /*
  2. * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #ifndef _HAL_API_MON_H_
  19. #define _HAL_API_MON_H_
  20. #include "qdf_types.h"
  21. #include "hal_internal.h"
  22. #define HAL_RX_OFFSET(block, field) block##_##field##_OFFSET
  23. #define HAL_RX_LSB(block, field) block##_##field##_LSB
  24. #define HAL_RX_MASk(block, field) block##_##field##_MASK
  25. #define HAL_RX_GET(_ptr, block, field) \
  26. (((*((volatile uint32_t *)_ptr + (HAL_RX_OFFSET(block, field)>>2))) & \
  27. HAL_RX_MASk(block, field)) >> \
  28. HAL_RX_LSB(block, field))
  29. #define HAL_RX_PHY_DATA_RADAR 0x01
  30. #define HAL_SU_MU_CODING_LDPC 0x01
  31. #define HAL_RX_FCS_LEN (4)
  32. #define KEY_EXTIV 0x20
  33. #define HAL_RX_USER_TLV32_TYPE_OFFSET 0x00000000
  34. #define HAL_RX_USER_TLV32_TYPE_LSB 1
  35. #define HAL_RX_USER_TLV32_TYPE_MASK 0x000003FE
  36. #define HAL_RX_USER_TLV32_LEN_OFFSET 0x00000000
  37. #define HAL_RX_USER_TLV32_LEN_LSB 10
  38. #define HAL_RX_USER_TLV32_LEN_MASK 0x003FFC00
  39. #define HAL_RX_USER_TLV32_USERID_OFFSET 0x00000000
  40. #define HAL_RX_USER_TLV32_USERID_LSB 26
  41. #define HAL_RX_USER_TLV32_USERID_MASK 0xFC000000
  42. #define HAL_ALIGN(x, a) HAL_ALIGN_MASK(x, (a)-1)
  43. #define HAL_ALIGN_MASK(x, mask) (typeof(x))(((uint32)(x) + (mask)) & ~(mask))
  44. #define HAL_RX_TLV32_HDR_SIZE 4
  45. #define HAL_RX_GET_USER_TLV32_TYPE(rx_status_tlv_ptr) \
  46. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  47. HAL_RX_USER_TLV32_TYPE_MASK) >> \
  48. HAL_RX_USER_TLV32_TYPE_LSB)
  49. #define HAL_RX_GET_USER_TLV32_LEN(rx_status_tlv_ptr) \
  50. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  51. HAL_RX_USER_TLV32_LEN_MASK) >> \
  52. HAL_RX_USER_TLV32_LEN_LSB)
  53. #define HAL_RX_GET_USER_TLV32_USERID(rx_status_tlv_ptr) \
  54. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  55. HAL_RX_USER_TLV32_USERID_MASK) >> \
  56. HAL_RX_USER_TLV32_USERID_LSB)
  57. #define HAL_TLV_STATUS_PPDU_NOT_DONE 0
  58. #define HAL_TLV_STATUS_PPDU_DONE 1
  59. #define HAL_TLV_STATUS_BUF_DONE 2
  60. #define HAL_MAX_UL_MU_USERS 8
  61. #define HAL_RX_PKT_TYPE_11A 0
  62. #define HAL_RX_PKT_TYPE_11B 1
  63. #define HAL_RX_PKT_TYPE_11N 2
  64. #define HAL_RX_PKT_TYPE_11AC 3
  65. #define HAL_RX_PKT_TYPE_11AX 4
  66. #define HAL_RX_RECEPTION_TYPE_SU 0
  67. #define HAL_RX_RECEPTION_TYPE_MU_MIMO 1
  68. #define HAL_RX_RECEPTION_TYPE_OFDMA 2
  69. #define HAL_RX_RECEPTION_TYPE_MU_OFDMA 3
  70. /* Multiply rate by 2 to avoid float point
  71. * and get rate in units of 500kbps
  72. */
  73. #define HAL_11B_RATE_0MCS 11*2
  74. #define HAL_11B_RATE_1MCS 5.5*2
  75. #define HAL_11B_RATE_2MCS 2*2
  76. #define HAL_11B_RATE_3MCS 1*2
  77. #define HAL_11B_RATE_4MCS 11*2
  78. #define HAL_11B_RATE_5MCS 5.5*2
  79. #define HAL_11B_RATE_6MCS 2*2
  80. #define HAL_11A_RATE_0MCS 48*2
  81. #define HAL_11A_RATE_1MCS 24*2
  82. #define HAL_11A_RATE_2MCS 12*2
  83. #define HAL_11A_RATE_3MCS 6*2
  84. #define HAL_11A_RATE_4MCS 54*2
  85. #define HAL_11A_RATE_5MCS 36*2
  86. #define HAL_11A_RATE_6MCS 18*2
  87. #define HAL_11A_RATE_7MCS 9*2
  88. #define HE_GI_0_8 0
  89. #define HE_GI_1_6 1
  90. #define HE_GI_3_2 2
  91. #define HT_SGI_PRESENT 0x80
  92. #define HE_LTF_1_X 0
  93. #define HE_LTF_2_X 1
  94. #define HE_LTF_4_X 2
  95. #define VHT_SIG_SU_NSS_MASK 0x7
  96. #define HAL_TID_INVALID 31
  97. #define HAL_AST_IDX_INVALID 0xFFFF
  98. #ifdef GET_MSDU_AGGREGATION
  99. #define HAL_RX_GET_MSDU_AGGREGATION(rx_desc, rs)\
  100. {\
  101. struct rx_msdu_end *rx_msdu_end;\
  102. bool first_msdu, last_msdu; \
  103. rx_msdu_end = &rx_desc->msdu_end_tlv.rx_msdu_end;\
  104. first_msdu = HAL_RX_GET(rx_msdu_end, RX_MSDU_END_5, FIRST_MSDU);\
  105. last_msdu = HAL_RX_GET(rx_msdu_end, RX_MSDU_END_5, LAST_MSDU);\
  106. if (first_msdu && last_msdu)\
  107. rs->rs_flags &= (~IEEE80211_AMSDU_FLAG);\
  108. else\
  109. rs->rs_flags |= (IEEE80211_AMSDU_FLAG); \
  110. } \
  111. #else
  112. #define HAL_RX_GET_MSDU_AGGREGATION(rx_desc, rs)
  113. #endif
  114. enum {
  115. HAL_HW_RX_DECAP_FORMAT_RAW = 0,
  116. HAL_HW_RX_DECAP_FORMAT_NWIFI,
  117. HAL_HW_RX_DECAP_FORMAT_ETH2,
  118. HAL_HW_RX_DECAP_FORMAT_8023,
  119. };
  120. enum {
  121. DP_PPDU_STATUS_START,
  122. DP_PPDU_STATUS_DONE,
  123. };
  124. static inline
  125. uint32_t HAL_RX_MON_HW_RX_DESC_SIZE(void)
  126. {
  127. /* return the HW_RX_DESC size */
  128. return sizeof(struct rx_pkt_tlvs);
  129. }
  130. static inline
  131. uint8_t *HAL_RX_MON_DEST_GET_DESC(uint8_t *data)
  132. {
  133. return data;
  134. }
  135. static inline
  136. uint32_t HAL_RX_DESC_GET_MPDU_LENGTH_ERR(void *hw_desc_addr)
  137. {
  138. struct rx_attention *rx_attn;
  139. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  140. rx_attn = &rx_desc->attn_tlv.rx_attn;
  141. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, MPDU_LENGTH_ERR);
  142. }
  143. static inline
  144. uint32_t HAL_RX_DESC_GET_MPDU_FCS_ERR(void *hw_desc_addr)
  145. {
  146. struct rx_attention *rx_attn;
  147. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  148. rx_attn = &rx_desc->attn_tlv.rx_attn;
  149. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, FCS_ERR);
  150. }
  151. static inline
  152. uint32_t
  153. HAL_RX_DESC_GET_DECAP_FORMAT(void *hw_desc_addr) {
  154. struct rx_msdu_start *rx_msdu_start;
  155. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  156. rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
  157. return HAL_RX_GET(rx_msdu_start, RX_MSDU_START_2, DECAP_FORMAT);
  158. }
  159. static inline
  160. uint8_t *
  161. HAL_RX_DESC_GET_80211_HDR(void *hw_desc_addr) {
  162. uint8_t *rx_pkt_hdr;
  163. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  164. rx_pkt_hdr = &rx_desc->pkt_hdr_tlv.rx_pkt_hdr[0];
  165. return rx_pkt_hdr;
  166. }
  167. static inline
  168. uint32_t HAL_RX_MON_HW_DESC_GET_PPDUID_GET(void *hw_desc_addr)
  169. {
  170. struct rx_mpdu_info *rx_mpdu_info;
  171. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  172. rx_mpdu_info =
  173. &rx_desc->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  174. return HAL_RX_GET(rx_mpdu_info, RX_MPDU_INFO_0, PHY_PPDU_ID);
  175. }
  176. /* TODO: Move all Rx descriptor functions to hal_rx.h to avoid duplication */
  177. static inline
  178. uint32_t hal_rx_desc_is_first_msdu(void *hw_desc_addr)
  179. {
  180. struct rx_pkt_tlvs *rx_tlvs = (struct rx_pkt_tlvs *)hw_desc_addr;
  181. struct rx_msdu_end *msdu_end = &rx_tlvs->msdu_end_tlv.rx_msdu_end;
  182. return HAL_RX_GET(msdu_end, RX_MSDU_END_5, FIRST_MSDU);
  183. }
  184. #define HAL_RX_BUFFER_ADDR_31_0_GET(buff_addr_info) \
  185. (_HAL_MS((*_OFFSET_TO_WORD_PTR(buff_addr_info, \
  186. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_OFFSET)), \
  187. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_MASK, \
  188. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_LSB))
  189. #define HAL_RX_REO_ENT_BUFFER_ADDR_39_32_GET(reo_ent_desc) \
  190. (HAL_RX_BUFFER_ADDR_39_32_GET(& \
  191. (((struct reo_entrance_ring *)reo_ent_desc) \
  192. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  193. #define HAL_RX_REO_ENT_BUFFER_ADDR_31_0_GET(reo_ent_desc) \
  194. (HAL_RX_BUFFER_ADDR_31_0_GET(& \
  195. (((struct reo_entrance_ring *)reo_ent_desc) \
  196. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  197. #define HAL_RX_REO_ENT_BUF_COOKIE_GET(reo_ent_desc) \
  198. (HAL_RX_BUF_COOKIE_GET(& \
  199. (((struct reo_entrance_ring *)reo_ent_desc) \
  200. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  201. /**
  202. * hal_rx_reo_ent_buf_paddr_get: Gets the physical address and
  203. * cookie from the REO entrance ring element
  204. *
  205. * @ hal_rx_desc_cookie: Opaque cookie pointer used by HAL to get to
  206. * the current descriptor
  207. * @ buf_info: structure to return the buffer information
  208. * @ msdu_cnt: pointer to msdu count in MPDU
  209. * Return: void
  210. */
  211. static inline
  212. void hal_rx_reo_ent_buf_paddr_get(void *rx_desc,
  213. struct hal_buf_info *buf_info,
  214. void **pp_buf_addr_info,
  215. uint32_t *msdu_cnt
  216. )
  217. {
  218. struct reo_entrance_ring *reo_ent_ring =
  219. (struct reo_entrance_ring *)rx_desc;
  220. struct buffer_addr_info *buf_addr_info;
  221. struct rx_mpdu_desc_info *rx_mpdu_desc_info_details;
  222. uint32_t loop_cnt;
  223. rx_mpdu_desc_info_details =
  224. &reo_ent_ring->reo_level_mpdu_frame_info.rx_mpdu_desc_info_details;
  225. *msdu_cnt = HAL_RX_GET(rx_mpdu_desc_info_details,
  226. RX_MPDU_DESC_INFO_0, MSDU_COUNT);
  227. loop_cnt = HAL_RX_GET(reo_ent_ring, REO_ENTRANCE_RING_7, LOOPING_COUNT);
  228. buf_addr_info =
  229. &reo_ent_ring->reo_level_mpdu_frame_info.msdu_link_desc_addr_info;
  230. buf_info->paddr =
  231. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  232. ((uint64_t)
  233. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  234. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  235. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  236. "[%s][%d] ReoAddr=%pK, addrInfo=%pK, paddr=0x%llx, loopcnt=%d\n",
  237. __func__, __LINE__, reo_ent_ring, buf_addr_info,
  238. (unsigned long long)buf_info->paddr, loop_cnt);
  239. *pp_buf_addr_info = (void *)buf_addr_info;
  240. }
  241. static inline
  242. void hal_rx_mon_next_link_desc_get(void *rx_msdu_link_desc,
  243. struct hal_buf_info *buf_info, void **pp_buf_addr_info)
  244. {
  245. struct rx_msdu_link *msdu_link =
  246. (struct rx_msdu_link *)rx_msdu_link_desc;
  247. struct buffer_addr_info *buf_addr_info;
  248. buf_addr_info = &msdu_link->next_msdu_link_desc_addr_info;
  249. buf_info->paddr =
  250. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  251. ((uint64_t)
  252. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  253. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  254. *pp_buf_addr_info = (void *)buf_addr_info;
  255. }
  256. /**
  257. * hal_rx_msdu_link_desc_set: Retrieves MSDU Link Descriptor to WBM
  258. *
  259. * @ soc : HAL version of the SOC pointer
  260. * @ src_srng_desc : void pointer to the WBM Release Ring descriptor
  261. * @ buf_addr_info : void pointer to the buffer_addr_info
  262. *
  263. * Return: void
  264. */
  265. static inline void hal_rx_mon_msdu_link_desc_set(struct hal_soc *soc,
  266. void *src_srng_desc, void *buf_addr_info)
  267. {
  268. struct buffer_addr_info *wbm_srng_buffer_addr_info =
  269. (struct buffer_addr_info *)src_srng_desc;
  270. uint64_t paddr;
  271. struct buffer_addr_info *p_buffer_addr_info =
  272. (struct buffer_addr_info *)buf_addr_info;
  273. paddr =
  274. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  275. ((uint64_t)
  276. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  277. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  278. "[%s][%d] src_srng_desc=%pK, buf_addr=0x%llx, cookie=0x%llx\n",
  279. __func__, __LINE__, src_srng_desc, (unsigned long long)paddr,
  280. (unsigned long long)p_buffer_addr_info->sw_buffer_cookie);
  281. /* Structure copy !!! */
  282. *wbm_srng_buffer_addr_info =
  283. *((struct buffer_addr_info *)buf_addr_info);
  284. }
  285. static inline
  286. uint32 hal_get_rx_msdu_link_desc_size(void)
  287. {
  288. return sizeof(struct rx_msdu_link);
  289. }
  290. enum {
  291. HAL_PKT_TYPE_OFDM = 0,
  292. HAL_PKT_TYPE_CCK,
  293. HAL_PKT_TYPE_HT,
  294. HAL_PKT_TYPE_VHT,
  295. HAL_PKT_TYPE_HE,
  296. };
  297. enum {
  298. HAL_SGI_0_8_US,
  299. HAL_SGI_0_4_US,
  300. HAL_SGI_1_6_US,
  301. HAL_SGI_3_2_US,
  302. };
  303. enum {
  304. HAL_FULL_RX_BW_20,
  305. HAL_FULL_RX_BW_40,
  306. HAL_FULL_RX_BW_80,
  307. HAL_FULL_RX_BW_160,
  308. };
  309. enum {
  310. HAL_RX_TYPE_SU,
  311. HAL_RX_TYPE_MU_MIMO,
  312. HAL_RX_TYPE_MU_OFDMA,
  313. HAL_RX_TYPE_MU_OFDMA_MIMO,
  314. };
  315. /**
  316. * hal_rx_mon_hw_desc_get_mpdu_status: Retrieve MPDU status
  317. *
  318. * @ hw_desc_addr: Start address of Rx HW TLVs
  319. * @ rs: Status for monitor mode
  320. *
  321. * Return: void
  322. */
  323. static inline
  324. void hal_rx_mon_hw_desc_get_mpdu_status(void *hw_desc_addr,
  325. struct mon_rx_status *rs)
  326. {
  327. struct rx_msdu_start *rx_msdu_start;
  328. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  329. uint32_t reg_value;
  330. static uint32_t sgi_hw_to_cdp[] = {
  331. CDP_SGI_0_8_US,
  332. CDP_SGI_0_4_US,
  333. CDP_SGI_1_6_US,
  334. CDP_SGI_3_2_US,
  335. };
  336. rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
  337. HAL_RX_GET_MSDU_AGGREGATION(rx_desc, rs);
  338. rs->ant_signal_db = HAL_RX_GET(rx_msdu_start,
  339. RX_MSDU_START_5, USER_RSSI);
  340. rs->is_stbc = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, STBC);
  341. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, SGI);
  342. rs->sgi = sgi_hw_to_cdp[reg_value];
  343. #if !defined(QCA_WIFI_QCA6290_11AX)
  344. rs->nr_ant = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, NSS);
  345. #endif
  346. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, RECEPTION_TYPE);
  347. rs->beamformed = (reg_value == HAL_RX_RECEPTION_TYPE_MU_MIMO) ? 1 : 0;
  348. /* TODO: rs->beamformed should be set for SU beamforming also */
  349. }
  350. struct hal_rx_ppdu_user_info {
  351. };
  352. struct hal_rx_ppdu_common_info {
  353. uint32_t ppdu_id;
  354. uint32_t last_ppdu_id;
  355. uint32_t ppdu_timestamp;
  356. uint32_t mpdu_cnt_fcs_ok;
  357. uint32_t mpdu_cnt_fcs_err;
  358. };
  359. struct hal_rx_msdu_payload_info {
  360. uint8_t *first_msdu_payload;
  361. uint32_t payload_len;
  362. };
  363. struct hal_rx_ppdu_info {
  364. struct hal_rx_ppdu_common_info com_info;
  365. struct hal_rx_ppdu_user_info user_info[HAL_MAX_UL_MU_USERS];
  366. struct mon_rx_status rx_status;
  367. struct hal_rx_msdu_payload_info msdu_info;
  368. };
  369. static inline uint32_t
  370. hal_get_rx_status_buf_size(void) {
  371. /* RX status buffer size is hard coded for now */
  372. return 2048;
  373. }
  374. static inline uint8_t*
  375. hal_rx_status_get_next_tlv(uint8_t *rx_tlv) {
  376. uint32_t tlv_len, tlv_tag;
  377. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
  378. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  379. /* The actual length of PPDU_END is the combined lenght of many PHY
  380. * TLVs that follow. Skip the TLV header and
  381. * rx_rxpcu_classification_overview that follows the header to get to
  382. * next TLV.
  383. */
  384. if (tlv_tag == WIFIRX_PPDU_END_E)
  385. tlv_len = sizeof(struct rx_rxpcu_classification_overview);
  386. return (uint8_t *)(((unsigned long)(rx_tlv + tlv_len +
  387. HAL_RX_TLV32_HDR_SIZE + 3)) & (~((unsigned long)3)));
  388. }
  389. static inline uint32_t
  390. hal_rx_status_get_tlv_info(void *rx_tlv, struct hal_rx_ppdu_info *ppdu_info)
  391. {
  392. uint32_t tlv_tag, user_id, tlv_len, value;
  393. uint8_t group_id = 0;
  394. uint8_t he_dcm = 0;
  395. uint8_t he_stbc = 0;
  396. uint16_t he_gi = 0;
  397. uint16_t he_ltf = 0;
  398. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  399. user_id = HAL_RX_GET_USER_TLV32_USERID(rx_tlv);
  400. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
  401. rx_tlv = (uint8_t *) rx_tlv + HAL_RX_TLV32_HDR_SIZE;
  402. switch (tlv_tag) {
  403. case WIFIRX_PPDU_START_E:
  404. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  405. "[%s][%d] ppdu_start_e len=%d",
  406. __func__, __LINE__, tlv_len);
  407. ppdu_info->com_info.ppdu_id =
  408. HAL_RX_GET(rx_tlv, RX_PPDU_START_0,
  409. PHY_PPDU_ID);
  410. /* channel number is set in PHY meta data */
  411. ppdu_info->rx_status.chan_num =
  412. HAL_RX_GET(rx_tlv, RX_PPDU_START_1,
  413. SW_PHY_META_DATA);
  414. ppdu_info->com_info.ppdu_timestamp =
  415. HAL_RX_GET(rx_tlv, RX_PPDU_START_2,
  416. PPDU_START_TIMESTAMP);
  417. break;
  418. case WIFIRX_PPDU_START_USER_INFO_E:
  419. break;
  420. case WIFIRX_PPDU_END_E:
  421. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  422. "[%s][%d] ppdu_end_e len=%d",
  423. __func__, __LINE__, tlv_len);
  424. /* This is followed by sub-TLVs of PPDU_END */
  425. break;
  426. case WIFIRXPCU_PPDU_END_INFO_E:
  427. ppdu_info->rx_status.tsft =
  428. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_1,
  429. WB_TIMESTAMP_UPPER_32);
  430. ppdu_info->rx_status.tsft = (ppdu_info->rx_status.tsft << 32) |
  431. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_0,
  432. WB_TIMESTAMP_LOWER_32);
  433. ppdu_info->rx_status.duration =
  434. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_8,
  435. RX_PPDU_DURATION);
  436. break;
  437. case WIFIRX_PPDU_END_USER_STATS_E:
  438. {
  439. unsigned long tid = 0;
  440. uint16_t seq = 0;
  441. ppdu_info->rx_status.ast_index =
  442. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_4,
  443. AST_INDEX);
  444. ppdu_info->rx_status.mcs =
  445. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_1, MCS);
  446. tid = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_12,
  447. RECEIVED_QOS_DATA_TID_BITMAP);
  448. ppdu_info->rx_status.tid = qdf_find_first_bit(&tid, sizeof(tid)*8);
  449. if (ppdu_info->rx_status.tid == (sizeof(tid) * 8))
  450. ppdu_info->rx_status.tid = HAL_TID_INVALID;
  451. ppdu_info->rx_status.tcp_msdu_count =
  452. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  453. TCP_MSDU_COUNT) +
  454. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  455. TCP_ACK_MSDU_COUNT);
  456. ppdu_info->rx_status.udp_msdu_count =
  457. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  458. UDP_MSDU_COUNT);
  459. ppdu_info->rx_status.other_msdu_count =
  460. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  461. OTHER_MSDU_COUNT);
  462. ppdu_info->rx_status.frame_control_info_valid =
  463. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  464. DATA_SEQUENCE_CONTROL_INFO_VALID);
  465. seq = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_5,
  466. FIRST_DATA_SEQ_CTRL);
  467. if (ppdu_info->rx_status.frame_control_info_valid)
  468. ppdu_info->rx_status.first_data_seq_ctrl = seq;
  469. ppdu_info->rx_status.preamble_type =
  470. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  471. HT_CONTROL_FIELD_PKT_TYPE);
  472. switch (ppdu_info->rx_status.preamble_type) {
  473. case HAL_RX_PKT_TYPE_11N:
  474. ppdu_info->rx_status.ht_flags = 1;
  475. ppdu_info->rx_status.rtap_flags |= HT_SGI_PRESENT;
  476. break;
  477. case HAL_RX_PKT_TYPE_11AC:
  478. ppdu_info->rx_status.vht_flags = 1;
  479. break;
  480. case HAL_RX_PKT_TYPE_11AX:
  481. ppdu_info->rx_status.he_flags = 1;
  482. break;
  483. default:
  484. break;
  485. }
  486. ppdu_info->com_info.mpdu_cnt_fcs_ok =
  487. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  488. MPDU_CNT_FCS_OK);
  489. ppdu_info->com_info.mpdu_cnt_fcs_err =
  490. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_2,
  491. MPDU_CNT_FCS_ERR);
  492. if ((ppdu_info->com_info.mpdu_cnt_fcs_ok |
  493. ppdu_info->com_info.mpdu_cnt_fcs_err) > 1)
  494. ppdu_info->rx_status.rs_flags |= IEEE80211_AMPDU_FLAG;
  495. else
  496. ppdu_info->rx_status.rs_flags &=
  497. (~IEEE80211_AMPDU_FLAG);
  498. break;
  499. }
  500. case WIFIRX_PPDU_END_USER_STATS_EXT_E:
  501. break;
  502. case WIFIRX_PPDU_END_STATUS_DONE_E:
  503. return HAL_TLV_STATUS_PPDU_DONE;
  504. case WIFIDUMMY_E:
  505. return HAL_TLV_STATUS_BUF_DONE;
  506. case WIFIPHYRX_HT_SIG_E:
  507. {
  508. uint8_t *ht_sig_info = (uint8_t *)rx_tlv +
  509. HAL_RX_OFFSET(PHYRX_HT_SIG_0,
  510. HT_SIG_INFO_PHYRX_HT_SIG_INFO_DETAILS);
  511. value = HAL_RX_GET(ht_sig_info, HT_SIG_INFO_1,
  512. FEC_CODING);
  513. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  514. 1 : 0;
  515. ppdu_info->rx_status.mcs = HAL_RX_GET(ht_sig_info,
  516. HT_SIG_INFO_0, MCS);
  517. ppdu_info->rx_status.bw = HAL_RX_GET(ht_sig_info,
  518. HT_SIG_INFO_0, CBW);
  519. ppdu_info->rx_status.sgi = HAL_RX_GET(ht_sig_info,
  520. HT_SIG_INFO_1, SHORT_GI);
  521. break;
  522. }
  523. case WIFIPHYRX_L_SIG_B_E:
  524. {
  525. uint8_t *l_sig_b_info = (uint8_t *)rx_tlv +
  526. HAL_RX_OFFSET(PHYRX_L_SIG_B_0,
  527. L_SIG_B_INFO_PHYRX_L_SIG_B_INFO_DETAILS);
  528. value = HAL_RX_GET(l_sig_b_info, L_SIG_B_INFO_0, RATE);
  529. switch (value) {
  530. case 1:
  531. ppdu_info->rx_status.rate = HAL_11B_RATE_3MCS;
  532. break;
  533. case 2:
  534. ppdu_info->rx_status.rate = HAL_11B_RATE_2MCS;
  535. break;
  536. case 3:
  537. ppdu_info->rx_status.rate = HAL_11B_RATE_1MCS;
  538. break;
  539. case 4:
  540. ppdu_info->rx_status.rate = HAL_11B_RATE_0MCS;
  541. break;
  542. case 5:
  543. ppdu_info->rx_status.rate = HAL_11B_RATE_6MCS;
  544. break;
  545. case 6:
  546. ppdu_info->rx_status.rate = HAL_11B_RATE_5MCS;
  547. break;
  548. case 7:
  549. ppdu_info->rx_status.rate = HAL_11B_RATE_4MCS;
  550. break;
  551. default:
  552. break;
  553. }
  554. ppdu_info->rx_status.cck_flag = 1;
  555. break;
  556. }
  557. case WIFIPHYRX_L_SIG_A_E:
  558. {
  559. uint8_t *l_sig_a_info = (uint8_t *)rx_tlv +
  560. HAL_RX_OFFSET(PHYRX_L_SIG_A_0,
  561. L_SIG_A_INFO_PHYRX_L_SIG_A_INFO_DETAILS);
  562. value = HAL_RX_GET(l_sig_a_info, L_SIG_A_INFO_0, RATE);
  563. switch (value) {
  564. case 8:
  565. ppdu_info->rx_status.rate = HAL_11A_RATE_0MCS;
  566. break;
  567. case 9:
  568. ppdu_info->rx_status.rate = HAL_11A_RATE_1MCS;
  569. break;
  570. case 10:
  571. ppdu_info->rx_status.rate = HAL_11A_RATE_2MCS;
  572. break;
  573. case 11:
  574. ppdu_info->rx_status.rate = HAL_11A_RATE_3MCS;
  575. break;
  576. case 12:
  577. ppdu_info->rx_status.rate = HAL_11A_RATE_4MCS;
  578. break;
  579. case 13:
  580. ppdu_info->rx_status.rate = HAL_11A_RATE_5MCS;
  581. break;
  582. case 14:
  583. ppdu_info->rx_status.rate = HAL_11A_RATE_6MCS;
  584. break;
  585. case 15:
  586. ppdu_info->rx_status.rate = HAL_11A_RATE_7MCS;
  587. break;
  588. default:
  589. break;
  590. }
  591. ppdu_info->rx_status.ofdm_flag = 1;
  592. break;
  593. }
  594. case WIFIPHYRX_VHT_SIG_A_E:
  595. {
  596. uint8_t *vht_sig_a_info = (uint8_t *)rx_tlv +
  597. HAL_RX_OFFSET(PHYRX_VHT_SIG_A_0,
  598. VHT_SIG_A_INFO_PHYRX_VHT_SIG_A_INFO_DETAILS);
  599. value = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_1,
  600. SU_MU_CODING);
  601. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  602. 1 : 0;
  603. group_id = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_0, GROUP_ID);
  604. ppdu_info->rx_status.vht_flag_values5 = group_id;
  605. ppdu_info->rx_status.mcs = HAL_RX_GET(vht_sig_a_info,
  606. VHT_SIG_A_INFO_1, MCS);
  607. ppdu_info->rx_status.sgi = HAL_RX_GET(vht_sig_a_info,
  608. VHT_SIG_A_INFO_1, GI_SETTING);
  609. #if !defined(QCA_WIFI_QCA6290_11AX)
  610. value = HAL_RX_GET(vht_sig_a_info,
  611. VHT_SIG_A_INFO_0, N_STS);
  612. ppdu_info->rx_status.nss = ((value & VHT_SIG_SU_NSS_MASK) + 1);
  613. #else
  614. ppdu_info->rx_status.nss = 0;
  615. #endif
  616. ppdu_info->rx_status.vht_flag_values3[0] =
  617. (((ppdu_info->rx_status.mcs) << 4)
  618. | ppdu_info->rx_status.nss);
  619. ppdu_info->rx_status.bw = HAL_RX_GET(vht_sig_a_info,
  620. VHT_SIG_A_INFO_0, BANDWIDTH);
  621. ppdu_info->rx_status.vht_flag_values2 =
  622. ppdu_info->rx_status.bw;
  623. ppdu_info->rx_status.vht_flag_values4 =
  624. HAL_RX_GET(vht_sig_a_info,
  625. VHT_SIG_A_INFO_1, SU_MU_CODING);
  626. break;
  627. }
  628. case WIFIPHYRX_HE_SIG_A_SU_E:
  629. {
  630. uint8_t *he_sig_a_su_info = (uint8_t *)rx_tlv +
  631. HAL_RX_OFFSET(PHYRX_HE_SIG_A_SU_0,
  632. HE_SIG_A_SU_INFO_PHYRX_HE_SIG_A_SU_INFO_DETAILS);
  633. ppdu_info->rx_status.he_flags = 1;
  634. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  635. FORMAT_INDICATION);
  636. if (value == 0) {
  637. ppdu_info->rx_status.he_data1 =
  638. QDF_MON_STATUS_HE_TRIG_FORMAT_TYPE;
  639. } else {
  640. ppdu_info->rx_status.he_data1 =
  641. QDF_MON_STATUS_HE_SU_OR_EXT_SU_FORMAT_TYPE;
  642. }
  643. /*data1*/
  644. ppdu_info->rx_status.he_data1 |=
  645. QDF_MON_STATUS_HE_BSS_COLOR_KNOWN |
  646. QDF_MON_STATUS_HE_BEAM_CHANGE_KNOWN |
  647. QDF_MON_STATUS_HE_DL_UL_KNOWN |
  648. QDF_MON_STATUS_HE_MCS_KNOWN |
  649. QDF_MON_STATUS_HE_DCM_KNOWN |
  650. QDF_MON_STATUS_HE_CODING_KNOWN |
  651. QDF_MON_STATUS_HE_LDPC_EXTRA_SYMBOL_KNOWN |
  652. QDF_MON_STATUS_HE_STBC_KNOWN |
  653. QDF_MON_STATUS_HE_DATA_BW_RU_KNOWN |
  654. QDF_MON_STATUS_HE_DOPPLER_KNOWN;
  655. /*data2*/
  656. ppdu_info->rx_status.he_data2 =
  657. QDF_MON_STATUS_HE_GI_KNOWN;
  658. ppdu_info->rx_status.he_data2 |=
  659. QDF_MON_STATUS_TXBF_KNOWN |
  660. QDF_MON_STATUS_PE_DISAMBIGUITY_KNOWN |
  661. QDF_MON_STATUS_TXOP_KNOWN |
  662. QDF_MON_STATUS_LTF_SYMBOLS_KNOWN |
  663. QDF_MON_STATUS_PRE_FEC_PADDING_KNOWN |
  664. QDF_MON_STATUS_MIDABLE_PERIODICITY_KNOWN;
  665. /*data3*/
  666. value = HAL_RX_GET(he_sig_a_su_info,
  667. HE_SIG_A_SU_INFO_0, BSS_COLOR_ID);
  668. ppdu_info->rx_status.he_data3 = value;
  669. value = HAL_RX_GET(he_sig_a_su_info,
  670. HE_SIG_A_SU_INFO_0, BEAM_CHANGE);
  671. value = value << QDF_MON_STATUS_BEAM_CHANGE_SHIFT;
  672. ppdu_info->rx_status.he_data3 |= value;
  673. value = HAL_RX_GET(he_sig_a_su_info,
  674. HE_SIG_A_SU_INFO_0, DL_UL_FLAG);
  675. value = value << QDF_MON_STATUS_DL_UL_SHIFT;
  676. ppdu_info->rx_status.he_data3 |= value;
  677. value = HAL_RX_GET(he_sig_a_su_info,
  678. HE_SIG_A_SU_INFO_0, TRANSMIT_MCS);
  679. ppdu_info->rx_status.mcs = value;
  680. value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
  681. ppdu_info->rx_status.he_data3 |= value;
  682. value = HAL_RX_GET(he_sig_a_su_info,
  683. HE_SIG_A_SU_INFO_0, DCM);
  684. he_dcm = value;
  685. value = value << QDF_MON_STATUS_DCM_SHIFT;
  686. ppdu_info->rx_status.he_data3 |= value;
  687. value = HAL_RX_GET(he_sig_a_su_info,
  688. HE_SIG_A_SU_INFO_1, CODING);
  689. value = value << QDF_MON_STATUS_CODING_SHIFT;
  690. ppdu_info->rx_status.he_data3 |= value;
  691. value = HAL_RX_GET(he_sig_a_su_info,
  692. HE_SIG_A_SU_INFO_1,
  693. LDPC_EXTRA_SYMBOL);
  694. value = value << QDF_MON_STATUS_LDPC_EXTRA_SYMBOL_SHIFT;
  695. ppdu_info->rx_status.he_data3 |= value;
  696. value = HAL_RX_GET(he_sig_a_su_info,
  697. HE_SIG_A_SU_INFO_1, STBC);
  698. he_stbc = value;
  699. value = value << QDF_MON_STATUS_STBC_SHIFT;
  700. ppdu_info->rx_status.he_data3 |= value;
  701. /*data4*/
  702. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  703. SPATIAL_REUSE);
  704. ppdu_info->rx_status.he_data4 = value;
  705. /*data5*/
  706. value = HAL_RX_GET(he_sig_a_su_info,
  707. HE_SIG_A_SU_INFO_0, TRANSMIT_BW);
  708. ppdu_info->rx_status.he_data5 = value;
  709. ppdu_info->rx_status.bw = value;
  710. value = HAL_RX_GET(he_sig_a_su_info,
  711. HE_SIG_A_SU_INFO_0, CP_LTF_SIZE);
  712. switch (value) {
  713. case 0:
  714. he_gi = HE_GI_0_8;
  715. he_ltf = HE_LTF_1_X;
  716. break;
  717. case 1:
  718. he_gi = HE_GI_0_8;
  719. he_ltf = HE_LTF_2_X;
  720. break;
  721. case 2:
  722. he_gi = HE_GI_1_6;
  723. he_ltf = HE_LTF_2_X;
  724. break;
  725. case 3:
  726. if (he_dcm && he_stbc) {
  727. he_gi = HE_GI_0_8;
  728. he_ltf = HE_LTF_4_X;
  729. } else {
  730. he_gi = HE_GI_3_2;
  731. he_ltf = HE_LTF_4_X;
  732. }
  733. break;
  734. }
  735. ppdu_info->rx_status.sgi = he_gi;
  736. value = he_gi << QDF_MON_STATUS_GI_SHIFT;
  737. ppdu_info->rx_status.he_data5 |= value;
  738. value = he_ltf << QDF_MON_STATUS_HE_LTF_SHIFT;
  739. ppdu_info->rx_status.he_data5 |= value;
  740. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  741. PACKET_EXTENSION_A_FACTOR);
  742. value = value << QDF_MON_STATUS_PRE_FEC_PAD_SHIFT;
  743. ppdu_info->rx_status.he_data5 |= value;
  744. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1, TXBF);
  745. value = value << QDF_MON_STATUS_TXBF_SHIFT;
  746. ppdu_info->rx_status.he_data5 |= value;
  747. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  748. PACKET_EXTENSION_PE_DISAMBIGUITY);
  749. value = value << QDF_MON_STATUS_PE_DISAMBIGUITY_SHIFT;
  750. ppdu_info->rx_status.he_data5 |= value;
  751. /*data6*/
  752. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0, NSTS);
  753. value++;
  754. ppdu_info->rx_status.nss = value;
  755. ppdu_info->rx_status.he_data6 = value;
  756. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  757. DOPPLER_INDICATION);
  758. value = value << QDF_MON_STATUS_DOPPLER_SHIFT;
  759. ppdu_info->rx_status.he_data6 |= value;
  760. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  761. TXOP_DURATION);
  762. value = value << QDF_MON_STATUS_TXOP_SHIFT;
  763. ppdu_info->rx_status.he_data6 |= value;
  764. break;
  765. }
  766. case WIFIPHYRX_HE_SIG_A_MU_DL_E:
  767. ppdu_info->rx_status.he_sig_A1 =
  768. *((uint32_t *)((uint8_t *)rx_tlv +
  769. HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_0,
  770. HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS)));
  771. ppdu_info->rx_status.he_sig_A1 |=
  772. QDF_MON_STATUS_HE_SIG_A1_HE_FORMAT_MU;
  773. ppdu_info->rx_status.he_sig_A1_known =
  774. QDF_MON_STATUS_HE_SIG_A1_MU_KNOWN_ALL;
  775. ppdu_info->rx_status.he_sig_A2 =
  776. *((uint32_t *)((uint8_t *)rx_tlv +
  777. HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_1,
  778. HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS)));
  779. ppdu_info->rx_status.he_sig_A2_known =
  780. QDF_MON_STATUS_HE_SIG_A2_MU_KNOWN_ALL;
  781. break;
  782. case WIFIPHYRX_HE_SIG_B1_MU_E:
  783. {
  784. uint8_t *he_sig_b1_mu_info = (uint8_t *)rx_tlv +
  785. *((uint32_t *)((uint8_t *)rx_tlv +
  786. HAL_RX_OFFSET(PHYRX_HE_SIG_B1_MU_0,
  787. HE_SIG_B1_MU_INFO_PHYRX_HE_SIG_B1_MU_INFO_DETAILS)));
  788. ppdu_info->rx_status.he_sig_b_common_RU[0] =
  789. HAL_RX_GET(he_sig_b1_mu_info, HE_SIG_B1_MU_INFO_0,
  790. RU_ALLOCATION);
  791. ppdu_info->rx_status.he_sig_b_common_known =
  792. QDF_MON_STATUS_HE_SIG_B_COMMON_KNOWN_RU0;
  793. /* TODO: Check on the availability of other fields in
  794. * sig_b_common
  795. */
  796. break;
  797. }
  798. case WIFIPHYRX_HE_SIG_B2_MU_E:
  799. ppdu_info->rx_status.he_sig_b_user =
  800. *((uint32_t *)((uint8_t *)rx_tlv +
  801. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_MU_0,
  802. HE_SIG_B2_MU_INFO_PHYRX_HE_SIG_B2_MU_INFO_DETAILS)));
  803. ppdu_info->rx_status.he_sig_b_user_known =
  804. QDF_MON_STATUS_HE_SIG_B_USER_KNOWN_SIG_B_ALL;
  805. break;
  806. case WIFIPHYRX_HE_SIG_B2_OFDMA_E:
  807. ppdu_info->rx_status.he_sig_b_user =
  808. *((uint32_t *)((uint8_t *)rx_tlv +
  809. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_OFDMA_0,
  810. HE_SIG_B2_OFDMA_INFO_PHYRX_HE_SIG_B2_OFDMA_INFO_DETAILS)));
  811. ppdu_info->rx_status.he_sig_b_user_known =
  812. QDF_MON_STATUS_HE_SIG_B_USER_KNOWN_SIG_B_ALL;
  813. break;
  814. case WIFIPHYRX_RSSI_LEGACY_E:
  815. {
  816. uint8_t *rssi_info_tlv = (uint8_t *)rx_tlv +
  817. HAL_RX_OFFSET(PHYRX_RSSI_LEGACY_3,
  818. RECEIVE_RSSI_INFO_PRE_RSSI_INFO_DETAILS);
  819. ppdu_info->rx_status.rssi_comb = HAL_RX_GET(rx_tlv,
  820. PHYRX_RSSI_LEGACY_35, RSSI_COMB);
  821. ppdu_info->rx_status.bw = HAL_RX_GET(rx_tlv,
  822. #if !defined(QCA_WIFI_QCA6290_11AX)
  823. PHYRX_RSSI_LEGACY_35, RECEIVE_BANDWIDTH);
  824. #else
  825. PHYRX_RSSI_LEGACY_0, RECEIVE_BANDWIDTH);
  826. #endif
  827. ppdu_info->rx_status.he_re = 0;
  828. ppdu_info->rx_status.reception_type = HAL_RX_GET(rx_tlv,
  829. PHYRX_RSSI_LEGACY_0, RECEPTION_TYPE);
  830. value = HAL_RX_GET(rssi_info_tlv,
  831. RECEIVE_RSSI_INFO_0, RSSI_PRI20_CHAIN0);
  832. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  833. "RSSI_PRI20_CHAIN0: %d\n", value);
  834. value = HAL_RX_GET(rssi_info_tlv,
  835. RECEIVE_RSSI_INFO_0, RSSI_EXT20_CHAIN0);
  836. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  837. "RSSI_EXT20_CHAIN0: %d\n", value);
  838. value = HAL_RX_GET(rssi_info_tlv,
  839. RECEIVE_RSSI_INFO_0, RSSI_EXT40_LOW20_CHAIN0);
  840. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  841. "RSSI_EXT40_LOW20_CHAIN0: %d\n", value);
  842. value = HAL_RX_GET(rssi_info_tlv,
  843. RECEIVE_RSSI_INFO_0, RSSI_EXT40_HIGH20_CHAIN0);
  844. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  845. "RSSI_EXT40_HIGH20_CHAIN0: %d\n", value);
  846. value = HAL_RX_GET(rssi_info_tlv,
  847. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW20_CHAIN0);
  848. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  849. "RSSI_EXT80_LOW20_CHAIN0: %d\n", value);
  850. value = HAL_RX_GET(rssi_info_tlv,
  851. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW_HIGH20_CHAIN0);
  852. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  853. "RSSI_EXT80_LOW_HIGH20_CHAIN0: %d\n", value);
  854. value = HAL_RX_GET(rssi_info_tlv,
  855. RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH_LOW20_CHAIN0);
  856. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  857. "RSSI_EXT80_HIGH_LOW20_CHAIN0: %d\n", value);
  858. value = HAL_RX_GET(rssi_info_tlv,
  859. RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH20_CHAIN0);
  860. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  861. "RSSI_EXT80_HIGH20_CHAIN0: %d\n", value);
  862. break;
  863. }
  864. case WIFIRX_HEADER_E:
  865. ppdu_info->msdu_info.first_msdu_payload = rx_tlv;
  866. ppdu_info->msdu_info.payload_len = tlv_len;
  867. break;
  868. case WIFIRX_MPDU_START_E:
  869. {
  870. uint8_t *rx_mpdu_start =
  871. (uint8_t *)rx_tlv + HAL_RX_OFFSET(RX_MPDU_START_0,
  872. RX_MPDU_INFO_RX_MPDU_INFO_DETAILS);
  873. uint32_t ppdu_id = HAL_RX_GET(rx_mpdu_start, RX_MPDU_INFO_0,
  874. PHY_PPDU_ID);
  875. if (ppdu_info->rx_status.prev_ppdu_id != ppdu_id) {
  876. ppdu_info->rx_status.prev_ppdu_id = ppdu_id;
  877. ppdu_info->rx_status.ppdu_len =
  878. HAL_RX_GET(rx_mpdu_start, RX_MPDU_INFO_13,
  879. MPDU_LENGTH);
  880. } else {
  881. ppdu_info->rx_status.ppdu_len +=
  882. HAL_RX_GET(rx_mpdu_start, RX_MPDU_INFO_13,
  883. MPDU_LENGTH);
  884. }
  885. break;
  886. }
  887. case 0:
  888. return HAL_TLV_STATUS_PPDU_DONE;
  889. default:
  890. break;
  891. }
  892. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  893. "%s TLV type: %d, TLV len:%d",
  894. __func__, tlv_tag, tlv_len);
  895. return HAL_TLV_STATUS_PPDU_NOT_DONE;
  896. }
  897. static inline
  898. uint32_t hal_get_rx_status_done_tlv_size(void *hal_soc)
  899. {
  900. return HAL_RX_TLV32_HDR_SIZE;
  901. }
  902. static inline QDF_STATUS
  903. hal_get_rx_status_done(uint8_t *rx_tlv)
  904. {
  905. uint32_t tlv_tag;
  906. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  907. if (tlv_tag == WIFIRX_STATUS_BUFFER_DONE_E)
  908. return QDF_STATUS_SUCCESS;
  909. else
  910. return QDF_STATUS_E_EMPTY;
  911. }
  912. static inline QDF_STATUS
  913. hal_clear_rx_status_done(uint8_t *rx_tlv)
  914. {
  915. *(uint32_t *)rx_tlv = 0;
  916. return QDF_STATUS_SUCCESS;
  917. }
  918. #endif