Files
android_kernel_samsung_sm86…/msm/sde/sde_hw_reg_dma_v1.c
Christopher Braga 43bfd9f435 disp: msm: sde: Validate transaction counts for LUTDMA abs writes
Existing LUTDMA hardware runs into issues when an odd number of
LUTDMA absolute address writes are executed before a GDSC power
collapse. Update LUTDMA logic to force absolute write payloads to
always contain an even number of writes.

Change-Id: I476feeab550f4b176d0adccaa5f2d38041e87657
Signed-off-by: Christopher Braga <cbraga@codeaurora.org>
2021-08-16 15:27:15 -04:00

1324 wiersze
36 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2017-2021, The Linux Foundation. All rights reserved.
*/
#include <linux/iopoll.h>
#include "sde_hw_mdss.h"
#include "sde_hw_ctl.h"
#include "sde_hw_reg_dma_v1.h"
#include "msm_drv.h"
#include "msm_mmu.h"
#include "sde_dbg.h"
#define GUARD_BYTES (BIT(8) - 1)
#define ALIGNED_OFFSET (U32_MAX & ~(GUARD_BYTES))
#define ADDR_ALIGN BIT(8)
#define MAX_RELATIVE_OFF (BIT(21) - 1)
#define ABSOLUTE_RANGE BIT(27)
#define DECODE_SEL_OP (BIT(HW_BLK_SELECT))
#define REG_WRITE_OP ((BIT(REG_SINGLE_WRITE)) | (BIT(REG_BLK_WRITE_SINGLE)) | \
(BIT(REG_BLK_WRITE_INC)) | (BIT(REG_BLK_WRITE_MULTIPLE)) | \
(BIT(REG_SINGLE_MODIFY)) | (BIT(REG_BLK_LUT_WRITE)))
#define REG_DMA_OPS (DECODE_SEL_OP | REG_WRITE_OP)
#define IS_OP_ALLOWED(op, buf_op) (BIT(op) & buf_op)
#define SET_UP_REG_DMA_REG(hw, reg_dma, i) \
do { \
if ((reg_dma)->caps->reg_dma_blks[(i)].valid == false) \
break; \
(hw).base_off = (reg_dma)->addr; \
(hw).blk_off = (reg_dma)->caps->reg_dma_blks[(i)].base; \
(hw).hwversion = (reg_dma)->caps->version; \
(hw).log_mask = SDE_DBG_MASK_REGDMA; \
} while (0)
#define SIZE_DWORD(x) ((x) / (sizeof(u32)))
#define NOT_WORD_ALIGNED(x) ((x) & 0x3)
#define GRP_VIG_HW_BLK_SELECT (VIG0 | VIG1 | VIG2 | VIG3)
#define GRP_DMA_HW_BLK_SELECT (DMA0 | DMA1 | DMA2 | DMA3)
#define GRP_DSPP_HW_BLK_SELECT (DSPP0 | DSPP1 | DSPP2 | DSPP3)
#define GRP_LTM_HW_BLK_SELECT (LTM0 | LTM1)
#define GRP_MDSS_HW_BLK_SELECT (MDSS)
#define BUFFER_SPACE_LEFT(cfg) ((cfg)->dma_buf->buffer_size - \
(cfg)->dma_buf->index)
#define REL_ADDR_OPCODE (BIT(27))
#define NO_OP_OPCODE (0)
#define SINGLE_REG_WRITE_OPCODE (BIT(28))
#define SINGLE_REG_MODIFY_OPCODE (BIT(29))
#define HW_INDEX_REG_WRITE_OPCODE (BIT(28) | BIT(29))
#define AUTO_INC_REG_WRITE_OPCODE (BIT(30))
#define BLK_REG_WRITE_OPCODE (BIT(30) | BIT(28))
#define LUTBUS_WRITE_OPCODE (BIT(30) | BIT(29))
#define WRAP_MIN_SIZE 2
#define WRAP_MAX_SIZE (BIT(4) - 1)
#define MAX_DWORDS_SZ (BIT(14) - 1)
#define REG_DMA_HEADERS_BUFFER_SZ (sizeof(u32) * 128)
#define LUTBUS_TABLE_SEL_MASK 0x10000
#define LUTBUS_BLOCK_SEL_MASK 0xffff
#define LUTBUS_TRANS_SZ_MASK 0xff0000
#define LUTBUS_LUT_SIZE_MASK 0x3fff
static uint32_t reg_dma_register_count;
static uint32_t reg_dma_decode_sel;
static uint32_t reg_dma_opmode_offset;
static uint32_t reg_dma_ctl0_queue0_cmd0_offset;
static uint32_t reg_dma_ctl0_queue1_cmd0_offset;
static uint32_t reg_dma_intr_status_offset;
static uint32_t reg_dma_intr_4_status_offset;
static uint32_t reg_dma_intr_clear_offset;
static uint32_t reg_dma_ctl_trigger_offset;
static uint32_t reg_dma_ctl0_reset_offset;
static uint32_t reg_dma_error_clear_mask;
static uint32_t reg_dma_ctl_queue_off[CTL_MAX];
static uint32_t reg_dma_ctl_queue1_off[CTL_MAX];
typedef int (*reg_dma_internal_ops) (struct sde_reg_dma_setup_ops_cfg *cfg);
static struct sde_hw_reg_dma *reg_dma;
static u32 ops_mem_size[REG_DMA_SETUP_OPS_MAX] = {
[REG_BLK_WRITE_SINGLE] = sizeof(u32) * 2,
[REG_BLK_WRITE_INC] = sizeof(u32) * 2,
[REG_BLK_WRITE_MULTIPLE] = sizeof(u32) * 2,
[HW_BLK_SELECT] = sizeof(u32) * 2,
[REG_SINGLE_WRITE] = sizeof(u32) * 2,
[REG_SINGLE_MODIFY] = sizeof(u32) * 3,
[REG_BLK_LUT_WRITE] = sizeof(u32) * 2,
};
static u32 queue_sel[DMA_CTL_QUEUE_MAX] = {
[DMA_CTL_QUEUE0] = BIT(0),
[DMA_CTL_QUEUE1] = BIT(4),
};
static u32 dspp_read_sel[DSPP_HIST_MAX] = {
[DSPP0_HIST] = 0,
[DSPP1_HIST] = 1,
[DSPP2_HIST] = 2,
[DSPP3_HIST] = 3,
};
static u32 v1_supported[REG_DMA_FEATURES_MAX] = {
[GAMUT] = GRP_VIG_HW_BLK_SELECT | GRP_DSPP_HW_BLK_SELECT,
[VLUT] = GRP_DSPP_HW_BLK_SELECT,
[GC] = GRP_DSPP_HW_BLK_SELECT,
[IGC] = DSPP_IGC | GRP_DSPP_HW_BLK_SELECT,
[PCC] = GRP_DSPP_HW_BLK_SELECT,
};
static u32 ctl_trigger_done_mask[CTL_MAX][DMA_CTL_QUEUE_MAX] = {
[CTL_0][0] = BIT(16),
[CTL_0][1] = BIT(21),
[CTL_1][0] = BIT(17),
[CTL_1][1] = BIT(22),
[CTL_2][0] = BIT(18),
[CTL_2][1] = BIT(23),
[CTL_3][0] = BIT(19),
[CTL_3][1] = BIT(24),
[CTL_4][0] = BIT(25),
[CTL_4][1] = BIT(27),
[CTL_5][0] = BIT(26),
[CTL_5][1] = BIT(28),
};
static int validate_dma_cfg(struct sde_reg_dma_setup_ops_cfg *cfg);
static int validate_write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg);
static int validate_write_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
static int validate_blk_lut_write(struct sde_reg_dma_setup_ops_cfg *cfg);
static int validate_write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
static int validate_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg);
static int write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg);
static int write_single_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
static int write_multi_reg_index(struct sde_reg_dma_setup_ops_cfg *cfg);
static int write_multi_reg_inc(struct sde_reg_dma_setup_ops_cfg *cfg);
static int write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
static int write_single_modify(struct sde_reg_dma_setup_ops_cfg *cfg);
static int write_block_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
static int write_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg);
static int reset_reg_dma_buffer_v1(struct sde_reg_dma_buffer *lut_buf);
static int check_support_v1(enum sde_reg_dma_features feature,
enum sde_reg_dma_blk blk, bool *is_supported);
static int setup_payload_v1(struct sde_reg_dma_setup_ops_cfg *cfg);
static int kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg);
static int reset_v1(struct sde_hw_ctl *ctl);
static int last_cmd_v1(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
enum sde_reg_dma_last_cmd_mode mode);
static struct sde_reg_dma_buffer *alloc_reg_dma_buf_v1(u32 size);
static int dealloc_reg_dma_v1(struct sde_reg_dma_buffer *lut_buf);
static void dump_regs_v1(void);
static int last_cmd_sb_v2(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
enum sde_reg_dma_last_cmd_mode mode);
static reg_dma_internal_ops write_dma_op_params[REG_DMA_SETUP_OPS_MAX] = {
[HW_BLK_SELECT] = write_decode_sel,
[REG_SINGLE_WRITE] = write_single_reg,
[REG_BLK_WRITE_SINGLE] = write_multi_reg_inc,
[REG_BLK_WRITE_INC] = write_multi_reg_index,
[REG_BLK_WRITE_MULTIPLE] = write_multi_lut_reg,
[REG_SINGLE_MODIFY] = write_single_modify,
[REG_BLK_LUT_WRITE] = write_block_lut_reg,
};
static reg_dma_internal_ops validate_dma_op_params[REG_DMA_SETUP_OPS_MAX] = {
[HW_BLK_SELECT] = validate_write_decode_sel,
[REG_SINGLE_WRITE] = validate_write_reg,
[REG_BLK_WRITE_SINGLE] = validate_write_reg,
[REG_BLK_WRITE_INC] = validate_write_reg,
[REG_BLK_WRITE_MULTIPLE] = validate_write_multi_lut_reg,
[REG_SINGLE_MODIFY] = validate_write_reg,
[REG_BLK_LUT_WRITE] = validate_blk_lut_write,
};
static struct sde_reg_dma_buffer *last_cmd_buf_db[CTL_MAX];
static struct sde_reg_dma_buffer *last_cmd_buf_sb[CTL_MAX];
static void get_decode_sel(unsigned long blk, u32 *decode_sel)
{
int i = 0;
*decode_sel = 0;
for_each_set_bit(i, &blk, REG_DMA_BLK_MAX) {
switch (BIT(i)) {
case VIG0:
*decode_sel |= BIT(0);
break;
case VIG1:
*decode_sel |= BIT(1);
break;
case VIG2:
*decode_sel |= BIT(2);
break;
case VIG3:
*decode_sel |= BIT(3);
break;
case DMA0:
*decode_sel |= BIT(5);
break;
case DMA1:
*decode_sel |= BIT(6);
break;
case DMA2:
*decode_sel |= BIT(7);
break;
case DMA3:
*decode_sel |= BIT(8);
break;
case DSPP0:
*decode_sel |= BIT(17);
break;
case DSPP1:
*decode_sel |= BIT(18);
break;
case DSPP2:
*decode_sel |= BIT(19);
break;
case DSPP3:
*decode_sel |= BIT(20);
break;
case SSPP_IGC:
*decode_sel |= BIT(4);
break;
case DSPP_IGC:
*decode_sel |= BIT(21);
break;
case LTM0:
*decode_sel |= BIT(22);
break;
case LTM1:
*decode_sel |= BIT(23);
break;
case MDSS:
*decode_sel |= BIT(31);
break;
default:
DRM_ERROR("block not supported %zx\n", (size_t)BIT(i));
break;
}
}
}
static int write_multi_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u8 *loc = NULL;
loc = (u8 *)cfg->dma_buf->vaddr + cfg->dma_buf->index;
memcpy(loc, cfg->data, cfg->data_size);
cfg->dma_buf->index += cfg->data_size;
cfg->dma_buf->next_op_allowed = REG_WRITE_OP | DECODE_SEL_OP;
cfg->dma_buf->ops_completed |= REG_WRITE_OP;
if (cfg->blk == MDSS)
cfg->dma_buf->abs_write_cnt += SIZE_DWORD(cfg->data_size);
return 0;
}
int write_multi_reg_index(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 *loc = NULL;
loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
cfg->dma_buf->index);
loc[0] = HW_INDEX_REG_WRITE_OPCODE;
loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
if (cfg->blk == MDSS)
loc[0] |= ABSOLUTE_RANGE;
loc[1] = SIZE_DWORD(cfg->data_size);
cfg->dma_buf->index += ops_mem_size[cfg->ops];
return write_multi_reg(cfg);
}
int write_multi_reg_inc(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 *loc = NULL;
loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
cfg->dma_buf->index);
loc[0] = AUTO_INC_REG_WRITE_OPCODE;
if (cfg->blk == MDSS)
loc[0] |= ABSOLUTE_RANGE;
loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
loc[1] = SIZE_DWORD(cfg->data_size);
cfg->dma_buf->index += ops_mem_size[cfg->ops];
return write_multi_reg(cfg);
}
static int write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 *loc = NULL;
loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
cfg->dma_buf->index);
loc[0] = BLK_REG_WRITE_OPCODE;
loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
if (cfg->blk == MDSS)
loc[0] |= ABSOLUTE_RANGE;
loc[1] = (cfg->inc) ? 0 : BIT(31);
loc[1] |= (cfg->wrap_size & WRAP_MAX_SIZE) << 16;
loc[1] |= ((SIZE_DWORD(cfg->data_size)) & MAX_DWORDS_SZ);
cfg->dma_buf->next_op_allowed = REG_WRITE_OP;
cfg->dma_buf->index += ops_mem_size[cfg->ops];
return write_multi_reg(cfg);
}
static int write_single_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 *loc = NULL;
loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
cfg->dma_buf->index);
loc[0] = SINGLE_REG_WRITE_OPCODE;
loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
if (cfg->blk == MDSS) {
loc[0] |= ABSOLUTE_RANGE;
cfg->dma_buf->abs_write_cnt++;
}
loc[1] = *cfg->data;
cfg->dma_buf->index += ops_mem_size[cfg->ops];
cfg->dma_buf->ops_completed |= REG_WRITE_OP;
cfg->dma_buf->next_op_allowed = REG_WRITE_OP | DECODE_SEL_OP;
return 0;
}
static int write_single_modify(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 *loc = NULL;
loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
cfg->dma_buf->index);
loc[0] = SINGLE_REG_MODIFY_OPCODE;
loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
if (cfg->blk == MDSS)
loc[0] |= ABSOLUTE_RANGE;
loc[1] = cfg->mask;
loc[2] = *cfg->data;
cfg->dma_buf->index += ops_mem_size[cfg->ops];
cfg->dma_buf->ops_completed |= REG_WRITE_OP;
cfg->dma_buf->next_op_allowed = REG_WRITE_OP | DECODE_SEL_OP;
return 0;
}
static int write_block_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 *loc = NULL;
int rc = -EINVAL;
loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
cfg->dma_buf->index);
loc[0] = LUTBUS_WRITE_OPCODE;
loc[0] |= (cfg->table_sel << 16) & LUTBUS_TABLE_SEL_MASK;
loc[0] |= (cfg->block_sel & LUTBUS_BLOCK_SEL_MASK);
loc[1] = (cfg->trans_size << 16) & LUTBUS_TRANS_SZ_MASK;
loc[1] |= (cfg->lut_size & LUTBUS_LUT_SIZE_MASK);
cfg->dma_buf->index += ops_mem_size[cfg->ops];
rc = write_multi_reg(cfg);
if (rc)
return rc;
/* adding 3 NO OPs as SW workaround for REG_BLK_LUT_WRITE
* HW limitation that requires the residual data plus the
* following opcode to exceed 4 DWORDs length.
*/
loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
cfg->dma_buf->index);
loc[0] = NO_OP_OPCODE;
loc[1] = NO_OP_OPCODE;
loc[2] = NO_OP_OPCODE;
cfg->dma_buf->index += sizeof(u32) * 3;
return 0;
}
static int write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 *loc = NULL;
loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
cfg->dma_buf->index);
loc[0] = reg_dma_decode_sel;
get_decode_sel(cfg->blk, &loc[1]);
cfg->dma_buf->index += ops_mem_size[cfg->ops];
cfg->dma_buf->ops_completed |= DECODE_SEL_OP;
cfg->dma_buf->next_op_allowed = REG_WRITE_OP;
return 0;
}
static int validate_write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
{
int rc;
rc = validate_write_reg(cfg);
if (rc)
return rc;
if (cfg->wrap_size < WRAP_MIN_SIZE || cfg->wrap_size > WRAP_MAX_SIZE) {
DRM_ERROR("invalid wrap sz %d min %d max %zd\n",
cfg->wrap_size, WRAP_MIN_SIZE, (size_t)WRAP_MAX_SIZE);
rc = -EINVAL;
}
return rc;
}
static int validate_blk_lut_write(struct sde_reg_dma_setup_ops_cfg *cfg)
{
int rc;
rc = validate_write_reg(cfg);
if (rc)
return rc;
if (cfg->table_sel >= LUTBUS_TABLE_SELECT_MAX ||
cfg->block_sel >= LUTBUS_BLOCK_MAX ||
(cfg->trans_size != LUTBUS_IGC_TRANS_SIZE &&
cfg->trans_size != LUTBUS_GAMUT_TRANS_SIZE)) {
DRM_ERROR("invalid table_sel %d block_sel %d trans_size %d\n",
cfg->table_sel, cfg->block_sel,
cfg->trans_size);
rc = -EINVAL;
}
return rc;
}
static int validate_write_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 remain_len, write_len;
remain_len = BUFFER_SPACE_LEFT(cfg);
write_len = ops_mem_size[cfg->ops] + cfg->data_size;
if (remain_len < write_len) {
DRM_ERROR("buffer is full sz %d needs %d bytes\n",
remain_len, write_len);
return -EINVAL;
}
if (!cfg->data) {
DRM_ERROR("invalid data %pK size %d exp sz %d\n", cfg->data,
cfg->data_size, write_len);
return -EINVAL;
}
if ((SIZE_DWORD(cfg->data_size)) > MAX_DWORDS_SZ ||
NOT_WORD_ALIGNED(cfg->data_size)) {
DRM_ERROR("Invalid data size %d max %zd align %x\n",
cfg->data_size, (size_t)MAX_DWORDS_SZ,
NOT_WORD_ALIGNED(cfg->data_size));
return -EINVAL;
}
if (cfg->blk_offset > MAX_RELATIVE_OFF ||
NOT_WORD_ALIGNED(cfg->blk_offset)) {
DRM_ERROR("invalid offset %d max %zd align %x\n",
cfg->blk_offset, (size_t)MAX_RELATIVE_OFF,
NOT_WORD_ALIGNED(cfg->blk_offset));
return -EINVAL;
}
return 0;
}
static int validate_write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 remain_len;
bool vig_blk, dma_blk, dspp_blk, mdss_blk;
remain_len = BUFFER_SPACE_LEFT(cfg);
if (remain_len < ops_mem_size[HW_BLK_SELECT]) {
DRM_ERROR("buffer is full needs %d bytes\n",
ops_mem_size[HW_BLK_SELECT]);
return -EINVAL;
}
if (!cfg->blk) {
DRM_ERROR("blk set as 0\n");
return -EINVAL;
}
vig_blk = (cfg->blk & GRP_VIG_HW_BLK_SELECT) ? true : false;
dma_blk = (cfg->blk & GRP_DMA_HW_BLK_SELECT) ? true : false;
dspp_blk = (cfg->blk & GRP_DSPP_HW_BLK_SELECT) ? true : false;
mdss_blk = (cfg->blk & MDSS) ? true : false;
if ((vig_blk && dspp_blk) || (dma_blk && dspp_blk) ||
(vig_blk && dma_blk) ||
(mdss_blk && (vig_blk | dma_blk | dspp_blk))) {
DRM_ERROR("invalid blk combination %x\n", cfg->blk);
return -EINVAL;
}
return 0;
}
static int validate_dma_cfg(struct sde_reg_dma_setup_ops_cfg *cfg)
{
int rc = 0;
bool supported;
if (!cfg || cfg->ops >= REG_DMA_SETUP_OPS_MAX || !cfg->dma_buf) {
DRM_ERROR("invalid param cfg %pK ops %d dma_buf %pK\n",
cfg, ((cfg) ? cfg->ops : REG_DMA_SETUP_OPS_MAX),
((cfg) ? cfg->dma_buf : NULL));
return -EINVAL;
}
rc = check_support_v1(cfg->feature, cfg->blk, &supported);
if (rc || !supported) {
DRM_ERROR("check support failed rc %d supported %d\n",
rc, supported);
rc = -EINVAL;
return rc;
}
if (cfg->dma_buf->index >= cfg->dma_buf->buffer_size ||
NOT_WORD_ALIGNED(cfg->dma_buf->index)) {
DRM_ERROR("Buf Overflow index %d max size %d align %x\n",
cfg->dma_buf->index, cfg->dma_buf->buffer_size,
NOT_WORD_ALIGNED(cfg->dma_buf->index));
return -EINVAL;
}
if (cfg->dma_buf->iova & GUARD_BYTES || !cfg->dma_buf->vaddr) {
DRM_ERROR("iova not aligned to %zx iova %llx kva %pK",
(size_t)ADDR_ALIGN, cfg->dma_buf->iova,
cfg->dma_buf->vaddr);
return -EINVAL;
}
if (!IS_OP_ALLOWED(cfg->ops, cfg->dma_buf->next_op_allowed)) {
DRM_ERROR("invalid op %x allowed %x\n", cfg->ops,
cfg->dma_buf->next_op_allowed);
return -EINVAL;
}
if (!validate_dma_op_params[cfg->ops] ||
!write_dma_op_params[cfg->ops]) {
DRM_ERROR("invalid op %d validate %pK write %pK\n", cfg->ops,
validate_dma_op_params[cfg->ops],
write_dma_op_params[cfg->ops]);
return -EINVAL;
}
return rc;
}
static int validate_kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg)
{
if (!cfg || !cfg->ctl || !cfg->dma_buf ||
cfg->dma_type >= REG_DMA_TYPE_MAX) {
DRM_ERROR("invalid cfg %pK ctl %pK dma_buf %pK dma type %d\n",
cfg, ((!cfg) ? NULL : cfg->ctl),
((!cfg) ? NULL : cfg->dma_buf),
((!cfg) ? 0 : cfg->dma_type));
return -EINVAL;
}
if (reg_dma->caps->reg_dma_blks[cfg->dma_type].valid == false) {
DRM_DEBUG("REG dma type %d is not supported\n", cfg->dma_type);
return -EOPNOTSUPP;
}
if (cfg->ctl->idx < CTL_0 || cfg->ctl->idx >= CTL_MAX) {
DRM_ERROR("invalid ctl idx %d\n", cfg->ctl->idx);
return -EINVAL;
}
if (cfg->op >= REG_DMA_OP_MAX) {
DRM_ERROR("invalid op %d\n", cfg->op);
return -EINVAL;
}
if ((cfg->op == REG_DMA_WRITE) &&
(!(cfg->dma_buf->ops_completed & DECODE_SEL_OP) ||
!(cfg->dma_buf->ops_completed & REG_WRITE_OP))) {
DRM_ERROR("incomplete write ops %x\n",
cfg->dma_buf->ops_completed);
return -EINVAL;
}
if (cfg->op == REG_DMA_READ && cfg->block_select >= DSPP_HIST_MAX) {
DRM_ERROR("invalid block for read %d\n", cfg->block_select);
return -EINVAL;
}
/* Only immediate triggers are supported now hence hardcode */
cfg->trigger_mode = (cfg->op == REG_DMA_READ) ? (READ_TRIGGER) :
(WRITE_TRIGGER);
if (cfg->dma_buf->iova & GUARD_BYTES) {
DRM_ERROR("Address is not aligned to %zx iova %llx",
(size_t)ADDR_ALIGN, cfg->dma_buf->iova);
return -EINVAL;
}
if (cfg->queue_select >= DMA_CTL_QUEUE_MAX) {
DRM_ERROR("invalid queue selected %d\n", cfg->queue_select);
return -EINVAL;
}
if (SIZE_DWORD(cfg->dma_buf->index) > MAX_DWORDS_SZ ||
!cfg->dma_buf->index) {
DRM_ERROR("invalid dword size %zd max %zd\n",
(size_t)SIZE_DWORD(cfg->dma_buf->index),
(size_t)MAX_DWORDS_SZ);
return -EINVAL;
}
if (cfg->dma_type == REG_DMA_TYPE_SB &&
(cfg->queue_select != DMA_CTL_QUEUE1 ||
cfg->op == REG_DMA_READ)) {
DRM_ERROR("invalid queue selected %d or op %d for SB LUTDMA\n",
cfg->queue_select, cfg->op);
return -EINVAL;
}
if ((cfg->dma_buf->abs_write_cnt % 2) != 0) {
/* Touch up buffer to avoid HW issues with odd number of abs writes */
u32 reg = 0;
struct sde_reg_dma_setup_ops_cfg dma_write_cfg;
dma_write_cfg.dma_buf = cfg->dma_buf;
dma_write_cfg.blk = MDSS;
dma_write_cfg.feature = REG_DMA_FEATURES_MAX;
dma_write_cfg.ops = HW_BLK_SELECT;
if (validate_write_decode_sel(&dma_write_cfg) || write_decode_sel(&dma_write_cfg)) {
DRM_ERROR("Failed setting MDSS decode select for LUTDMA touch up\n");
return -EINVAL;
}
/* Perform dummy write on LUTDMA RO version reg */
dma_write_cfg.ops = REG_SINGLE_WRITE;
dma_write_cfg.blk_offset = reg_dma->caps->base_off +
reg_dma->caps->reg_dma_blks[cfg->dma_type].base;
dma_write_cfg.data = &reg;
dma_write_cfg.data_size = sizeof(uint32_t);
if (validate_write_reg(&dma_write_cfg) || write_single_reg(&dma_write_cfg)) {
DRM_ERROR("Failed to add touch up write to LUTDMA buffer\n");
return -EINVAL;
}
}
return 0;
}
static int write_kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg)
{
u32 cmd1, mask = 0, val = 0;
struct sde_hw_blk_reg_map hw;
memset(&hw, 0, sizeof(hw));
msm_gem_sync(cfg->dma_buf->buf);
cmd1 = (cfg->op == REG_DMA_READ) ?
(dspp_read_sel[cfg->block_select] << 30) : 0;
cmd1 |= (cfg->last_command) ? BIT(24) : 0;
cmd1 |= (cfg->op == REG_DMA_READ) ? (2 << 22) : 0;
cmd1 |= (cfg->op == REG_DMA_WRITE) ? (BIT(22)) : 0;
cmd1 |= (SIZE_DWORD(cfg->dma_buf->index) & MAX_DWORDS_SZ);
if (cfg->dma_type == REG_DMA_TYPE_DB)
SET_UP_REG_DMA_REG(hw, reg_dma, REG_DMA_TYPE_DB);
else if (cfg->dma_type == REG_DMA_TYPE_SB)
SET_UP_REG_DMA_REG(hw, reg_dma, REG_DMA_TYPE_SB);
if (hw.hwversion == 0) {
DRM_ERROR("DMA type %d is unsupported\n", cfg->dma_type);
return -EOPNOTSUPP;
}
SDE_REG_WRITE(&hw, reg_dma_opmode_offset, BIT(0));
val = SDE_REG_READ(&hw, reg_dma_intr_4_status_offset);
if (val) {
DRM_DEBUG("LUT dma status %x\n", val);
mask = reg_dma_error_clear_mask;
SDE_REG_WRITE(&hw, reg_dma_intr_clear_offset + sizeof(u32) * 4,
mask);
SDE_EVT32(val);
}
if (cfg->dma_type == REG_DMA_TYPE_DB) {
SDE_REG_WRITE(&hw, reg_dma_ctl_queue_off[cfg->ctl->idx],
cfg->dma_buf->iova);
SDE_REG_WRITE(&hw, reg_dma_ctl_queue_off[cfg->ctl->idx] + 0x4,
cmd1);
} else if (cfg->dma_type == REG_DMA_TYPE_SB) {
SDE_REG_WRITE(&hw, reg_dma_ctl_queue1_off[cfg->ctl->idx],
cfg->dma_buf->iova);
SDE_REG_WRITE(&hw, reg_dma_ctl_queue1_off[cfg->ctl->idx] + 0x4,
cmd1);
}
if (cfg->last_command) {
mask = ctl_trigger_done_mask[cfg->ctl->idx][cfg->queue_select];
SDE_REG_WRITE(&hw, reg_dma_intr_clear_offset, mask);
/* DB LUTDMA use SW trigger while SB LUTDMA uses DSPP_SB
* flush as its trigger event.
*/
if (cfg->dma_type == REG_DMA_TYPE_DB) {
SDE_REG_WRITE(&cfg->ctl->hw, reg_dma_ctl_trigger_offset,
queue_sel[cfg->queue_select]);
}
}
SDE_EVT32(cfg->feature, cfg->dma_type,
((uint64_t)cfg->dma_buf) >> 32,
((uint64_t)cfg->dma_buf) & 0xFFFFFFFF,
(cfg->dma_buf->iova) >> 32,
(cfg->dma_buf->iova) & 0xFFFFFFFF,
cfg->op,
cfg->queue_select, cfg->ctl->idx,
SIZE_DWORD(cfg->dma_buf->index));
return 0;
}
int init_v1(struct sde_hw_reg_dma *cfg)
{
int i = 0, rc = 0;
if (!cfg)
return -EINVAL;
reg_dma = cfg;
for (i = CTL_0; i < CTL_MAX; i++) {
if (!last_cmd_buf_db[i]) {
last_cmd_buf_db[i] =
alloc_reg_dma_buf_v1(REG_DMA_HEADERS_BUFFER_SZ);
if (IS_ERR_OR_NULL(last_cmd_buf_db[i])) {
/*
* This will allow reg dma to fall back to
* AHB domain
*/
pr_info("Failed to allocate reg dma, ret:%lu\n",
PTR_ERR(last_cmd_buf_db[i]));
return 0;
}
}
if (!last_cmd_buf_sb[i]) {
last_cmd_buf_sb[i] =
alloc_reg_dma_buf_v1(REG_DMA_HEADERS_BUFFER_SZ);
if (IS_ERR_OR_NULL(last_cmd_buf_sb[i])) {
/*
* This will allow reg dma to fall back to
* AHB domain
*/
pr_info("Failed to allocate reg dma, ret:%lu\n",
PTR_ERR(last_cmd_buf_sb[i]));
return 0;
}
}
}
if (rc) {
for (i = 0; i < CTL_MAX; i++) {
if (!last_cmd_buf_db[i])
continue;
dealloc_reg_dma_v1(last_cmd_buf_db[i]);
last_cmd_buf_db[i] = NULL;
}
for (i = 0; i < CTL_MAX; i++) {
if (!last_cmd_buf_sb[i])
continue;
dealloc_reg_dma_v1(last_cmd_buf_sb[i]);
last_cmd_buf_sb[i] = NULL;
}
return rc;
}
reg_dma->ops.check_support = check_support_v1;
reg_dma->ops.setup_payload = setup_payload_v1;
reg_dma->ops.kick_off = kick_off_v1;
reg_dma->ops.reset = reset_v1;
reg_dma->ops.alloc_reg_dma_buf = alloc_reg_dma_buf_v1;
reg_dma->ops.dealloc_reg_dma = dealloc_reg_dma_v1;
reg_dma->ops.reset_reg_dma_buf = reset_reg_dma_buffer_v1;
reg_dma->ops.last_command = last_cmd_v1;
reg_dma->ops.dump_regs = dump_regs_v1;
reg_dma_register_count = 60;
reg_dma_decode_sel = 0x180ac060;
reg_dma_opmode_offset = 0x4;
reg_dma_ctl0_queue0_cmd0_offset = 0x14;
reg_dma_intr_status_offset = 0x90;
reg_dma_intr_4_status_offset = 0xa0;
reg_dma_intr_clear_offset = 0xb0;
reg_dma_ctl_trigger_offset = 0xd4;
reg_dma_ctl0_reset_offset = 0xe4;
reg_dma_error_clear_mask = BIT(0) | BIT(1) | BIT(2) | BIT(16);
reg_dma_ctl_queue_off[CTL_0] = reg_dma_ctl0_queue0_cmd0_offset;
for (i = CTL_1; i < ARRAY_SIZE(reg_dma_ctl_queue_off); i++)
reg_dma_ctl_queue_off[i] = reg_dma_ctl_queue_off[i - 1] +
(sizeof(u32) * 4);
return 0;
}
int init_v11(struct sde_hw_reg_dma *cfg)
{
int ret = 0, i = 0;
ret = init_v1(cfg);
if (ret) {
DRM_ERROR("failed to initialize v1: ret %d\n", ret);
return -EINVAL;
}
/* initialize register offsets and v1_supported based on version */
reg_dma_register_count = 133;
reg_dma_decode_sel = 0x180ac114;
reg_dma_opmode_offset = 0x4;
reg_dma_ctl0_queue0_cmd0_offset = 0x14;
reg_dma_intr_status_offset = 0x160;
reg_dma_intr_4_status_offset = 0x170;
reg_dma_intr_clear_offset = 0x1a0;
reg_dma_ctl_trigger_offset = 0xd4;
reg_dma_ctl0_reset_offset = 0x200;
reg_dma_error_clear_mask = BIT(0) | BIT(1) | BIT(2) | BIT(16) |
BIT(17) | BIT(18);
reg_dma_ctl_queue_off[CTL_0] = reg_dma_ctl0_queue0_cmd0_offset;
for (i = CTL_1; i < ARRAY_SIZE(reg_dma_ctl_queue_off); i++)
reg_dma_ctl_queue_off[i] = reg_dma_ctl_queue_off[i - 1] +
(sizeof(u32) * 4);
v1_supported[IGC] = DSPP_IGC | GRP_DSPP_HW_BLK_SELECT |
GRP_VIG_HW_BLK_SELECT | GRP_DMA_HW_BLK_SELECT;
v1_supported[GC] = GRP_DMA_HW_BLK_SELECT | GRP_DSPP_HW_BLK_SELECT;
v1_supported[HSIC] = GRP_DSPP_HW_BLK_SELECT;
v1_supported[SIX_ZONE] = GRP_DSPP_HW_BLK_SELECT;
v1_supported[MEMC_SKIN] = GRP_DSPP_HW_BLK_SELECT;
v1_supported[MEMC_SKY] = GRP_DSPP_HW_BLK_SELECT;
v1_supported[MEMC_FOLIAGE] = GRP_DSPP_HW_BLK_SELECT;
v1_supported[MEMC_PROT] = GRP_DSPP_HW_BLK_SELECT;
v1_supported[QSEED] = GRP_VIG_HW_BLK_SELECT;
return 0;
}
int init_v12(struct sde_hw_reg_dma *cfg)
{
int ret = 0;
ret = init_v11(cfg);
if (ret) {
DRM_ERROR("failed to initialize v11: ret %d\n", ret);
return ret;
}
v1_supported[LTM_INIT] = GRP_LTM_HW_BLK_SELECT;
v1_supported[LTM_ROI] = GRP_LTM_HW_BLK_SELECT;
v1_supported[LTM_VLUT] = GRP_LTM_HW_BLK_SELECT;
v1_supported[RC_DATA] = (GRP_DSPP_HW_BLK_SELECT |
GRP_MDSS_HW_BLK_SELECT);
v1_supported[SPR_INIT] = (GRP_DSPP_HW_BLK_SELECT |
GRP_MDSS_HW_BLK_SELECT);
v1_supported[SPR_PU_CFG] = (GRP_DSPP_HW_BLK_SELECT |
GRP_MDSS_HW_BLK_SELECT);
v1_supported[DEMURA_CFG] = MDSS | DSPP0 | DSPP1;
return 0;
}
int init_v2(struct sde_hw_reg_dma *cfg)
{
int ret = 0, i = 0;
ret = init_v12(cfg);
if (ret) {
DRM_ERROR("failed to initialize v12: ret %d\n", ret);
return ret;
}
/* initialize register offsets based on version delta */
reg_dma_register_count = 0x91;
reg_dma_ctl0_queue1_cmd0_offset = 0x1c;
reg_dma_error_clear_mask |= BIT(19);
reg_dma_ctl_queue1_off[CTL_0] = reg_dma_ctl0_queue1_cmd0_offset;
for (i = CTL_1; i < ARRAY_SIZE(reg_dma_ctl_queue_off); i++)
reg_dma_ctl_queue1_off[i] = reg_dma_ctl_queue1_off[i - 1] +
(sizeof(u32) * 4);
v1_supported[IGC] = GRP_DSPP_HW_BLK_SELECT | GRP_VIG_HW_BLK_SELECT |
GRP_DMA_HW_BLK_SELECT;
if (cfg->caps->reg_dma_blks[REG_DMA_TYPE_SB].valid == true)
reg_dma->ops.last_command_sb = last_cmd_sb_v2;
return 0;
}
static int check_support_v1(enum sde_reg_dma_features feature,
enum sde_reg_dma_blk blk,
bool *is_supported)
{
int ret = 0;
if (!is_supported)
return -EINVAL;
if (feature >= REG_DMA_FEATURES_MAX
|| blk >= BIT_ULL(REG_DMA_BLK_MAX)) {
*is_supported = false;
return ret;
}
*is_supported = (blk & v1_supported[feature]) ? true : false;
return ret;
}
static int setup_payload_v1(struct sde_reg_dma_setup_ops_cfg *cfg)
{
int rc = 0;
rc = validate_dma_cfg(cfg);
if (!rc)
rc = validate_dma_op_params[cfg->ops](cfg);
if (!rc)
rc = write_dma_op_params[cfg->ops](cfg);
return rc;
}
static int kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg)
{
int rc = 0;
rc = validate_kick_off_v1(cfg);
if (rc)
return rc;
rc = write_kick_off_v1(cfg);
return rc;
}
int reset_v1(struct sde_hw_ctl *ctl)
{
struct sde_hw_blk_reg_map hw;
u32 index, val, i = 0, k = 0;
if (!ctl || ctl->idx > CTL_MAX) {
DRM_ERROR("invalid ctl %pK ctl idx %d\n",
ctl, ((ctl) ? ctl->idx : 0));
return -EINVAL;
}
index = ctl->idx - CTL_0;
for (k = 0; k < REG_DMA_TYPE_MAX; k++) {
memset(&hw, 0, sizeof(hw));
SET_UP_REG_DMA_REG(hw, reg_dma, k);
if (hw.hwversion == 0)
continue;
SDE_REG_WRITE(&hw, reg_dma_opmode_offset, BIT(0));
SDE_REG_WRITE(&hw, (reg_dma_ctl0_reset_offset +
index * sizeof(u32)), BIT(0));
i = 0;
do {
udelay(1000);
i++;
val = SDE_REG_READ(&hw,
(reg_dma_ctl0_reset_offset +
index * sizeof(u32)));
} while (i < 2 && val);
}
return 0;
}
static void sde_reg_dma_aspace_cb_locked(void *cb_data, bool is_detach)
{
struct sde_reg_dma_buffer *dma_buf = NULL;
struct msm_gem_address_space *aspace = NULL;
u32 iova_aligned, offset;
int rc;
if (!cb_data) {
DRM_ERROR("aspace cb called with invalid dma_buf\n");
return;
}
dma_buf = (struct sde_reg_dma_buffer *)cb_data;
aspace = dma_buf->aspace;
if (is_detach) {
/* invalidate the stored iova */
dma_buf->iova = 0;
/* return the virtual address mapping */
msm_gem_put_vaddr(dma_buf->buf);
msm_gem_vunmap(dma_buf->buf, OBJ_LOCK_NORMAL);
} else {
rc = msm_gem_get_iova(dma_buf->buf, aspace,
&dma_buf->iova);
if (rc) {
DRM_ERROR("failed to get the iova rc %d\n", rc);
return;
}
dma_buf->vaddr = msm_gem_get_vaddr(dma_buf->buf);
if (IS_ERR_OR_NULL(dma_buf->vaddr)) {
DRM_ERROR("failed to get va rc %d\n", rc);
return;
}
iova_aligned = (dma_buf->iova + GUARD_BYTES) & ALIGNED_OFFSET;
offset = iova_aligned - dma_buf->iova;
dma_buf->iova = dma_buf->iova + offset;
dma_buf->vaddr = (void *)(((u8 *)dma_buf->vaddr) + offset);
dma_buf->next_op_allowed = DECODE_SEL_OP;
}
}
static struct sde_reg_dma_buffer *alloc_reg_dma_buf_v1(u32 size)
{
struct sde_reg_dma_buffer *dma_buf = NULL;
u32 iova_aligned, offset;
u32 rsize = size + GUARD_BYTES;
struct msm_gem_address_space *aspace = NULL;
int rc = 0;
if (!size || SIZE_DWORD(size) > MAX_DWORDS_SZ) {
DRM_ERROR("invalid buffer size %lu, max %lu\n",
SIZE_DWORD(size), MAX_DWORDS_SZ);
return ERR_PTR(-EINVAL);
}
dma_buf = kzalloc(sizeof(*dma_buf), GFP_KERNEL);
if (!dma_buf)
return ERR_PTR(-ENOMEM);
dma_buf->buf = msm_gem_new(reg_dma->drm_dev,
rsize, MSM_BO_UNCACHED);
if (IS_ERR_OR_NULL(dma_buf->buf)) {
rc = -EINVAL;
goto fail;
}
aspace = msm_gem_smmu_address_space_get(reg_dma->drm_dev,
MSM_SMMU_DOMAIN_UNSECURE);
if (PTR_ERR(aspace) == -ENODEV) {
aspace = NULL;
DRM_DEBUG("IOMMU not present, relying on VRAM\n");
} else if (IS_ERR_OR_NULL(aspace)) {
rc = PTR_ERR(aspace);
aspace = NULL;
DRM_ERROR("failed to get aspace %d", rc);
goto free_gem;
} else if (aspace) {
/* register to aspace */
rc = msm_gem_address_space_register_cb(aspace,
sde_reg_dma_aspace_cb_locked,
(void *)dma_buf);
if (rc) {
DRM_ERROR("failed to register callback %d", rc);
goto free_gem;
}
}
dma_buf->aspace = aspace;
rc = msm_gem_get_iova(dma_buf->buf, aspace, &dma_buf->iova);
if (rc) {
DRM_ERROR("failed to get the iova rc %d\n", rc);
goto free_aspace_cb;
}
dma_buf->vaddr = msm_gem_get_vaddr(dma_buf->buf);
if (IS_ERR_OR_NULL(dma_buf->vaddr)) {
DRM_ERROR("failed to get va rc %d\n", rc);
rc = -EINVAL;
goto put_iova;
}
dma_buf->buffer_size = size;
iova_aligned = (dma_buf->iova + GUARD_BYTES) & ALIGNED_OFFSET;
offset = iova_aligned - dma_buf->iova;
dma_buf->iova = dma_buf->iova + offset;
dma_buf->vaddr = (void *)(((u8 *)dma_buf->vaddr) + offset);
dma_buf->next_op_allowed = DECODE_SEL_OP;
return dma_buf;
put_iova:
msm_gem_put_iova(dma_buf->buf, aspace);
free_aspace_cb:
msm_gem_address_space_unregister_cb(aspace,
sde_reg_dma_aspace_cb_locked, dma_buf);
free_gem:
mutex_lock(&reg_dma->drm_dev->struct_mutex);
msm_gem_free_object(dma_buf->buf);
mutex_unlock(&reg_dma->drm_dev->struct_mutex);
fail:
kfree(dma_buf);
return ERR_PTR(rc);
}
static int dealloc_reg_dma_v1(struct sde_reg_dma_buffer *dma_buf)
{
if (!dma_buf) {
DRM_ERROR("invalid param reg_buf %pK\n", dma_buf);
return -EINVAL;
}
if (dma_buf->buf) {
msm_gem_put_iova(dma_buf->buf, 0);
msm_gem_address_space_unregister_cb(dma_buf->aspace,
sde_reg_dma_aspace_cb_locked, dma_buf);
mutex_lock(&reg_dma->drm_dev->struct_mutex);
msm_gem_free_object(dma_buf->buf);
mutex_unlock(&reg_dma->drm_dev->struct_mutex);
}
kfree(dma_buf);
return 0;
}
static int reset_reg_dma_buffer_v1(struct sde_reg_dma_buffer *lut_buf)
{
if (!lut_buf)
return -EINVAL;
lut_buf->index = 0;
lut_buf->ops_completed = 0;
lut_buf->next_op_allowed = DECODE_SEL_OP;
lut_buf->abs_write_cnt = 0;
return 0;
}
static int validate_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 remain_len, write_len;
remain_len = BUFFER_SPACE_LEFT(cfg);
write_len = sizeof(u32);
if (remain_len < write_len) {
DRM_ERROR("buffer is full sz %d needs %d bytes\n",
remain_len, write_len);
return -EINVAL;
}
return 0;
}
static int write_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 *loc = NULL;
loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
cfg->dma_buf->index);
loc[0] = reg_dma_decode_sel;
loc[1] = 0;
cfg->dma_buf->index = sizeof(u32) * 2;
cfg->dma_buf->ops_completed = REG_WRITE_OP | DECODE_SEL_OP;
cfg->dma_buf->next_op_allowed = REG_WRITE_OP;
return 0;
}
static int last_cmd_v1(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
enum sde_reg_dma_last_cmd_mode mode)
{
struct sde_reg_dma_setup_ops_cfg cfg;
struct sde_reg_dma_kickoff_cfg kick_off;
struct sde_hw_blk_reg_map hw;
u32 val;
int rc;
if (!ctl || ctl->idx >= CTL_MAX || q >= DMA_CTL_QUEUE_MAX) {
DRM_ERROR("ctl %pK q %d index %d\n", ctl, q,
((ctl) ? ctl->idx : -1));
return -EINVAL;
}
if (!last_cmd_buf_db[ctl->idx] || !last_cmd_buf_db[ctl->idx]->iova) {
DRM_ERROR("invalid last cmd buf for idx %d\n", ctl->idx);
return -EINVAL;
}
cfg.dma_buf = last_cmd_buf_db[ctl->idx];
reset_reg_dma_buffer_v1(last_cmd_buf_db[ctl->idx]);
if (validate_last_cmd(&cfg)) {
DRM_ERROR("validate buf failed\n");
return -EINVAL;
}
if (write_last_cmd(&cfg)) {
DRM_ERROR("write buf failed\n");
return -EINVAL;
}
kick_off.ctl = ctl;
kick_off.queue_select = q;
kick_off.trigger_mode = WRITE_IMMEDIATE;
kick_off.last_command = 1;
kick_off.op = REG_DMA_WRITE;
kick_off.dma_type = REG_DMA_TYPE_DB;
kick_off.dma_buf = last_cmd_buf_db[ctl->idx];
kick_off.feature = REG_DMA_FEATURES_MAX;
rc = kick_off_v1(&kick_off);
if (rc) {
DRM_ERROR("kick off last cmd failed\n");
return rc;
}
//Lack of block support will be caught by kick_off
memset(&hw, 0, sizeof(hw));
SET_UP_REG_DMA_REG(hw, reg_dma, kick_off.dma_type);
SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY, mode, ctl->idx, kick_off.queue_select,
kick_off.dma_type, kick_off.op);
if (mode == REG_DMA_WAIT4_COMP) {
rc = readl_poll_timeout(hw.base_off + hw.blk_off +
reg_dma_intr_status_offset, val,
(val & ctl_trigger_done_mask[ctl->idx][q]),
10, 20000);
if (rc)
DRM_ERROR("poll wait failed %d val %x mask %x\n",
rc, val, ctl_trigger_done_mask[ctl->idx][q]);
SDE_EVT32(SDE_EVTLOG_FUNC_EXIT, mode);
}
return rc;
}
void deinit_v1(void)
{
int i = 0;
for (i = CTL_0; i < CTL_MAX; i++) {
if (last_cmd_buf_db[i])
dealloc_reg_dma_v1(last_cmd_buf_db[i]);
last_cmd_buf_db[i] = NULL;
if (last_cmd_buf_sb[i])
dealloc_reg_dma_v1(last_cmd_buf_sb[i]);
last_cmd_buf_sb[i] = NULL;
}
}
static void dump_regs_v1(void)
{
uint32_t i = 0, k = 0;
u32 val;
struct sde_hw_blk_reg_map hw;
for (k = 0; k < REG_DMA_TYPE_MAX; k++) {
memset(&hw, 0, sizeof(hw));
SET_UP_REG_DMA_REG(hw, reg_dma, k);
if (hw.hwversion == 0)
continue;
for (i = 0; i < reg_dma_register_count; i++) {
val = SDE_REG_READ(&hw, i * sizeof(u32));
DRM_ERROR("offset %x val %x\n", (u32)(i * sizeof(u32)),
val);
}
}
}
static int last_cmd_sb_v2(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
enum sde_reg_dma_last_cmd_mode mode)
{
struct sde_reg_dma_setup_ops_cfg cfg;
struct sde_reg_dma_kickoff_cfg kick_off;
int rc = 0;
if (!ctl || ctl->idx >= CTL_MAX || q >= DMA_CTL_QUEUE_MAX) {
DRM_ERROR("ctl %pK q %d index %d\n", ctl, q,
((ctl) ? ctl->idx : -1));
return -EINVAL;
}
if (!last_cmd_buf_sb[ctl->idx] || !last_cmd_buf_sb[ctl->idx]->iova) {
DRM_ERROR("invalid last cmd buf for idx %d\n", ctl->idx);
return -EINVAL;
}
cfg.dma_buf = last_cmd_buf_sb[ctl->idx];
reset_reg_dma_buffer_v1(last_cmd_buf_sb[ctl->idx]);
if (validate_last_cmd(&cfg)) {
DRM_ERROR("validate buf failed\n");
return -EINVAL;
}
if (write_last_cmd(&cfg)) {
DRM_ERROR("write buf failed\n");
return -EINVAL;
}
kick_off.ctl = ctl;
kick_off.trigger_mode = WRITE_IMMEDIATE;
kick_off.last_command = 1;
kick_off.op = REG_DMA_WRITE;
kick_off.dma_type = REG_DMA_TYPE_SB;
kick_off.queue_select = DMA_CTL_QUEUE1;
kick_off.dma_buf = last_cmd_buf_sb[ctl->idx];
kick_off.feature = REG_DMA_FEATURES_MAX;
rc = kick_off_v1(&kick_off);
if (rc)
DRM_ERROR("kick off last cmd failed\n");
SDE_EVT32(ctl->idx, kick_off.queue_select, kick_off.dma_type,
kick_off.op);
return rc;
}