hal_api_mon.h 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413
  1. /*
  2. * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #ifndef _HAL_API_MON_H_
  19. #define _HAL_API_MON_H_
  20. #include "qdf_types.h"
  21. #include "hal_internal.h"
  22. #include <target_type.h>
  23. #define HAL_RX_OFFSET(block, field) block##_##field##_OFFSET
  24. #define HAL_RX_LSB(block, field) block##_##field##_LSB
  25. #define HAL_RX_MASk(block, field) block##_##field##_MASK
  26. #define HAL_RX_GET(_ptr, block, field) \
  27. (((*((volatile uint32_t *)_ptr + (HAL_RX_OFFSET(block, field)>>2))) & \
  28. HAL_RX_MASk(block, field)) >> \
  29. HAL_RX_LSB(block, field))
  30. #define HAL_RX_PHY_DATA_RADAR 0x01
  31. #define HAL_SU_MU_CODING_LDPC 0x01
  32. #define HAL_RX_FCS_LEN (4)
  33. #define KEY_EXTIV 0x20
  34. #define HAL_RX_USER_TLV32_TYPE_OFFSET 0x00000000
  35. #define HAL_RX_USER_TLV32_TYPE_LSB 1
  36. #define HAL_RX_USER_TLV32_TYPE_MASK 0x000003FE
  37. #define HAL_RX_USER_TLV32_LEN_OFFSET 0x00000000
  38. #define HAL_RX_USER_TLV32_LEN_LSB 10
  39. #define HAL_RX_USER_TLV32_LEN_MASK 0x003FFC00
  40. #define HAL_RX_USER_TLV32_USERID_OFFSET 0x00000000
  41. #define HAL_RX_USER_TLV32_USERID_LSB 26
  42. #define HAL_RX_USER_TLV32_USERID_MASK 0xFC000000
  43. #define HAL_ALIGN(x, a) HAL_ALIGN_MASK(x, (a)-1)
  44. #define HAL_ALIGN_MASK(x, mask) (typeof(x))(((uint32)(x) + (mask)) & ~(mask))
  45. #define HAL_RX_TLV32_HDR_SIZE 4
  46. #define HAL_RX_GET_USER_TLV32_TYPE(rx_status_tlv_ptr) \
  47. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  48. HAL_RX_USER_TLV32_TYPE_MASK) >> \
  49. HAL_RX_USER_TLV32_TYPE_LSB)
  50. #define HAL_RX_GET_USER_TLV32_LEN(rx_status_tlv_ptr) \
  51. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  52. HAL_RX_USER_TLV32_LEN_MASK) >> \
  53. HAL_RX_USER_TLV32_LEN_LSB)
  54. #define HAL_RX_GET_USER_TLV32_USERID(rx_status_tlv_ptr) \
  55. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  56. HAL_RX_USER_TLV32_USERID_MASK) >> \
  57. HAL_RX_USER_TLV32_USERID_LSB)
  58. #define HAL_TLV_STATUS_PPDU_NOT_DONE 0
  59. #define HAL_TLV_STATUS_PPDU_DONE 1
  60. #define HAL_TLV_STATUS_BUF_DONE 2
  61. #define HAL_TLV_STATUS_PPDU_NON_STD_DONE 3
  62. #define HAL_MAX_UL_MU_USERS 8
  63. #define HAL_RX_PKT_TYPE_11A 0
  64. #define HAL_RX_PKT_TYPE_11B 1
  65. #define HAL_RX_PKT_TYPE_11N 2
  66. #define HAL_RX_PKT_TYPE_11AC 3
  67. #define HAL_RX_PKT_TYPE_11AX 4
  68. #define HAL_RX_RECEPTION_TYPE_SU 0
  69. #define HAL_RX_RECEPTION_TYPE_MU_MIMO 1
  70. #define HAL_RX_RECEPTION_TYPE_OFDMA 2
  71. #define HAL_RX_RECEPTION_TYPE_MU_OFDMA 3
  72. /* Multiply rate by 2 to avoid float point
  73. * and get rate in units of 500kbps
  74. */
  75. #define HAL_11B_RATE_0MCS 11*2
  76. #define HAL_11B_RATE_1MCS 5.5*2
  77. #define HAL_11B_RATE_2MCS 2*2
  78. #define HAL_11B_RATE_3MCS 1*2
  79. #define HAL_11B_RATE_4MCS 11*2
  80. #define HAL_11B_RATE_5MCS 5.5*2
  81. #define HAL_11B_RATE_6MCS 2*2
  82. #define HAL_11A_RATE_0MCS 48*2
  83. #define HAL_11A_RATE_1MCS 24*2
  84. #define HAL_11A_RATE_2MCS 12*2
  85. #define HAL_11A_RATE_3MCS 6*2
  86. #define HAL_11A_RATE_4MCS 54*2
  87. #define HAL_11A_RATE_5MCS 36*2
  88. #define HAL_11A_RATE_6MCS 18*2
  89. #define HAL_11A_RATE_7MCS 9*2
  90. #define HE_GI_0_8 0
  91. #define HE_GI_1_6 1
  92. #define HE_GI_3_2 2
  93. #define HT_SGI_PRESENT 0x80
  94. #define HE_LTF_1_X 0
  95. #define HE_LTF_2_X 1
  96. #define HE_LTF_4_X 2
  97. #define VHT_SIG_SU_NSS_MASK 0x7
  98. #define HAL_TID_INVALID 31
  99. #define HAL_AST_IDX_INVALID 0xFFFF
  100. #ifdef GET_MSDU_AGGREGATION
  101. #define HAL_RX_GET_MSDU_AGGREGATION(rx_desc, rs)\
  102. {\
  103. struct rx_msdu_end *rx_msdu_end;\
  104. bool first_msdu, last_msdu; \
  105. rx_msdu_end = &rx_desc->msdu_end_tlv.rx_msdu_end;\
  106. first_msdu = HAL_RX_GET(rx_msdu_end, RX_MSDU_END_5, FIRST_MSDU);\
  107. last_msdu = HAL_RX_GET(rx_msdu_end, RX_MSDU_END_5, LAST_MSDU);\
  108. if (first_msdu && last_msdu)\
  109. rs->rs_flags &= (~IEEE80211_AMSDU_FLAG);\
  110. else\
  111. rs->rs_flags |= (IEEE80211_AMSDU_FLAG); \
  112. } \
  113. #else
  114. #define HAL_RX_GET_MSDU_AGGREGATION(rx_desc, rs)
  115. #endif
  116. #define HAL_MAC_ADDR_LEN 6
  117. enum {
  118. HAL_HW_RX_DECAP_FORMAT_RAW = 0,
  119. HAL_HW_RX_DECAP_FORMAT_NWIFI,
  120. HAL_HW_RX_DECAP_FORMAT_ETH2,
  121. HAL_HW_RX_DECAP_FORMAT_8023,
  122. };
  123. enum {
  124. DP_PPDU_STATUS_START,
  125. DP_PPDU_STATUS_DONE,
  126. };
  127. static inline
  128. uint32_t HAL_RX_MON_HW_RX_DESC_SIZE(void)
  129. {
  130. /* return the HW_RX_DESC size */
  131. return sizeof(struct rx_pkt_tlvs);
  132. }
  133. static inline
  134. uint8_t *HAL_RX_MON_DEST_GET_DESC(uint8_t *data)
  135. {
  136. return data;
  137. }
  138. static inline
  139. uint32_t HAL_RX_DESC_GET_MPDU_LENGTH_ERR(void *hw_desc_addr)
  140. {
  141. struct rx_attention *rx_attn;
  142. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  143. rx_attn = &rx_desc->attn_tlv.rx_attn;
  144. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, MPDU_LENGTH_ERR);
  145. }
  146. static inline
  147. uint32_t HAL_RX_DESC_GET_MPDU_FCS_ERR(void *hw_desc_addr)
  148. {
  149. struct rx_attention *rx_attn;
  150. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  151. rx_attn = &rx_desc->attn_tlv.rx_attn;
  152. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, FCS_ERR);
  153. }
  154. static inline
  155. uint32_t
  156. HAL_RX_DESC_GET_DECAP_FORMAT(void *hw_desc_addr) {
  157. struct rx_msdu_start *rx_msdu_start;
  158. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  159. rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
  160. return HAL_RX_GET(rx_msdu_start, RX_MSDU_START_2, DECAP_FORMAT);
  161. }
  162. static inline
  163. uint8_t *
  164. HAL_RX_DESC_GET_80211_HDR(void *hw_desc_addr) {
  165. uint8_t *rx_pkt_hdr;
  166. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  167. rx_pkt_hdr = &rx_desc->pkt_hdr_tlv.rx_pkt_hdr[0];
  168. return rx_pkt_hdr;
  169. }
  170. /*
  171. * HAL_RX_HW_DESC_MPDU_VALID() - check MPDU start TLV tag in MPDU
  172. * start TLV of Hardware TLV descriptor
  173. * @hw_desc_addr: Hardware desciptor address
  174. *
  175. * Return: bool: if TLV tag match
  176. */
  177. static inline
  178. bool HAL_RX_HW_DESC_MPDU_VALID(void *hw_desc_addr)
  179. {
  180. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  181. uint32_t tlv_tag;
  182. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(
  183. &rx_desc->mpdu_start_tlv);
  184. return tlv_tag == WIFIRX_MPDU_START_E ? true : false;
  185. }
  186. static inline
  187. uint32_t HAL_RX_HW_DESC_GET_PPDUID_GET(void *hw_desc_addr)
  188. {
  189. struct rx_mpdu_info *rx_mpdu_info;
  190. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  191. rx_mpdu_info =
  192. &rx_desc->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  193. return HAL_RX_GET(rx_mpdu_info, RX_MPDU_INFO_0, PHY_PPDU_ID);
  194. }
  195. /* TODO: Move all Rx descriptor functions to hal_rx.h to avoid duplication */
  196. static inline
  197. uint32_t hal_rx_desc_is_first_msdu(void *hw_desc_addr)
  198. {
  199. struct rx_pkt_tlvs *rx_tlvs = (struct rx_pkt_tlvs *)hw_desc_addr;
  200. struct rx_msdu_end *msdu_end = &rx_tlvs->msdu_end_tlv.rx_msdu_end;
  201. return HAL_RX_GET(msdu_end, RX_MSDU_END_5, FIRST_MSDU);
  202. }
  203. #define HAL_RX_BUFFER_ADDR_31_0_GET(buff_addr_info) \
  204. (_HAL_MS((*_OFFSET_TO_WORD_PTR(buff_addr_info, \
  205. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_OFFSET)), \
  206. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_MASK, \
  207. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_LSB))
  208. #define HAL_RX_REO_ENT_BUFFER_ADDR_39_32_GET(reo_ent_desc) \
  209. (HAL_RX_BUFFER_ADDR_39_32_GET(& \
  210. (((struct reo_entrance_ring *)reo_ent_desc) \
  211. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  212. #define HAL_RX_REO_ENT_BUFFER_ADDR_31_0_GET(reo_ent_desc) \
  213. (HAL_RX_BUFFER_ADDR_31_0_GET(& \
  214. (((struct reo_entrance_ring *)reo_ent_desc) \
  215. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  216. #define HAL_RX_REO_ENT_BUF_COOKIE_GET(reo_ent_desc) \
  217. (HAL_RX_BUF_COOKIE_GET(& \
  218. (((struct reo_entrance_ring *)reo_ent_desc) \
  219. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  220. /**
  221. * hal_rx_reo_ent_buf_paddr_get: Gets the physical address and
  222. * cookie from the REO entrance ring element
  223. *
  224. * @ hal_rx_desc_cookie: Opaque cookie pointer used by HAL to get to
  225. * the current descriptor
  226. * @ buf_info: structure to return the buffer information
  227. * @ msdu_cnt: pointer to msdu count in MPDU
  228. * Return: void
  229. */
  230. static inline
  231. void hal_rx_reo_ent_buf_paddr_get(void *rx_desc,
  232. struct hal_buf_info *buf_info,
  233. void **pp_buf_addr_info,
  234. uint32_t *msdu_cnt
  235. )
  236. {
  237. struct reo_entrance_ring *reo_ent_ring =
  238. (struct reo_entrance_ring *)rx_desc;
  239. struct buffer_addr_info *buf_addr_info;
  240. struct rx_mpdu_desc_info *rx_mpdu_desc_info_details;
  241. uint32_t loop_cnt;
  242. rx_mpdu_desc_info_details =
  243. &reo_ent_ring->reo_level_mpdu_frame_info.rx_mpdu_desc_info_details;
  244. *msdu_cnt = HAL_RX_GET(rx_mpdu_desc_info_details,
  245. RX_MPDU_DESC_INFO_0, MSDU_COUNT);
  246. loop_cnt = HAL_RX_GET(reo_ent_ring, REO_ENTRANCE_RING_7, LOOPING_COUNT);
  247. buf_addr_info =
  248. &reo_ent_ring->reo_level_mpdu_frame_info.msdu_link_desc_addr_info;
  249. buf_info->paddr =
  250. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  251. ((uint64_t)
  252. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  253. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  254. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  255. "[%s][%d] ReoAddr=%pK, addrInfo=%pK, paddr=0x%llx, loopcnt=%d",
  256. __func__, __LINE__, reo_ent_ring, buf_addr_info,
  257. (unsigned long long)buf_info->paddr, loop_cnt);
  258. *pp_buf_addr_info = (void *)buf_addr_info;
  259. }
  260. static inline
  261. void hal_rx_mon_next_link_desc_get(void *rx_msdu_link_desc,
  262. struct hal_buf_info *buf_info, void **pp_buf_addr_info)
  263. {
  264. struct rx_msdu_link *msdu_link =
  265. (struct rx_msdu_link *)rx_msdu_link_desc;
  266. struct buffer_addr_info *buf_addr_info;
  267. buf_addr_info = &msdu_link->next_msdu_link_desc_addr_info;
  268. buf_info->paddr =
  269. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  270. ((uint64_t)
  271. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  272. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  273. *pp_buf_addr_info = (void *)buf_addr_info;
  274. }
  275. /**
  276. * hal_rx_msdu_link_desc_set: Retrieves MSDU Link Descriptor to WBM
  277. *
  278. * @ soc : HAL version of the SOC pointer
  279. * @ src_srng_desc : void pointer to the WBM Release Ring descriptor
  280. * @ buf_addr_info : void pointer to the buffer_addr_info
  281. *
  282. * Return: void
  283. */
  284. static inline void hal_rx_mon_msdu_link_desc_set(struct hal_soc *soc,
  285. void *src_srng_desc, void *buf_addr_info)
  286. {
  287. struct buffer_addr_info *wbm_srng_buffer_addr_info =
  288. (struct buffer_addr_info *)src_srng_desc;
  289. uint64_t paddr;
  290. struct buffer_addr_info *p_buffer_addr_info =
  291. (struct buffer_addr_info *)buf_addr_info;
  292. paddr =
  293. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  294. ((uint64_t)
  295. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  296. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  297. "[%s][%d] src_srng_desc=%pK, buf_addr=0x%llx, cookie=0x%llx",
  298. __func__, __LINE__, src_srng_desc, (unsigned long long)paddr,
  299. (unsigned long long)p_buffer_addr_info->sw_buffer_cookie);
  300. /* Structure copy !!! */
  301. *wbm_srng_buffer_addr_info =
  302. *((struct buffer_addr_info *)buf_addr_info);
  303. }
  304. static inline
  305. uint32 hal_get_rx_msdu_link_desc_size(void)
  306. {
  307. return sizeof(struct rx_msdu_link);
  308. }
  309. enum {
  310. HAL_PKT_TYPE_OFDM = 0,
  311. HAL_PKT_TYPE_CCK,
  312. HAL_PKT_TYPE_HT,
  313. HAL_PKT_TYPE_VHT,
  314. HAL_PKT_TYPE_HE,
  315. };
  316. enum {
  317. HAL_SGI_0_8_US,
  318. HAL_SGI_0_4_US,
  319. HAL_SGI_1_6_US,
  320. HAL_SGI_3_2_US,
  321. };
  322. enum {
  323. HAL_FULL_RX_BW_20,
  324. HAL_FULL_RX_BW_40,
  325. HAL_FULL_RX_BW_80,
  326. HAL_FULL_RX_BW_160,
  327. };
  328. enum {
  329. HAL_RX_TYPE_SU,
  330. HAL_RX_TYPE_MU_MIMO,
  331. HAL_RX_TYPE_MU_OFDMA,
  332. HAL_RX_TYPE_MU_OFDMA_MIMO,
  333. };
  334. /**
  335. * enum
  336. * @HAL_RX_MON_PPDU_START: PPDU start TLV is decoded in HAL
  337. * @HAL_RX_MON_PPDU_END: PPDU end TLV is decided in HAL
  338. */
  339. enum {
  340. HAL_RX_MON_PPDU_START = 0,
  341. HAL_RX_MON_PPDU_END,
  342. };
  343. struct hal_rx_ppdu_user_info {
  344. };
  345. struct hal_rx_ppdu_common_info {
  346. uint32_t ppdu_id;
  347. uint32_t ppdu_timestamp;
  348. uint32_t mpdu_cnt_fcs_ok;
  349. uint32_t mpdu_cnt_fcs_err;
  350. };
  351. struct hal_rx_msdu_payload_info {
  352. uint8_t *first_msdu_payload;
  353. uint32_t payload_len;
  354. };
  355. /**
  356. * struct hal_rx_nac_info - struct for neighbour info
  357. * @fc_valid: flag indicate if it has valid frame control information
  358. * @to_ds_flag: flag indicate to_ds bit
  359. * @mac_addr2_valid: flag indicate if mac_addr2 is valid
  360. * @mac_addr2: mac address2 in wh
  361. */
  362. struct hal_rx_nac_info {
  363. uint8_t fc_valid;
  364. uint8_t to_ds_flag;
  365. uint8_t mac_addr2_valid;
  366. uint8_t mac_addr2[HAL_MAC_ADDR_LEN];
  367. };
  368. struct hal_rx_ppdu_info {
  369. struct hal_rx_ppdu_common_info com_info;
  370. struct hal_rx_ppdu_user_info user_info[HAL_MAX_UL_MU_USERS];
  371. struct mon_rx_status rx_status;
  372. struct hal_rx_msdu_payload_info msdu_info;
  373. struct hal_rx_nac_info nac_info;
  374. /* status ring PPDU start and end state */
  375. uint32_t rx_state;
  376. };
  377. static inline uint32_t
  378. hal_get_rx_status_buf_size(void) {
  379. /* RX status buffer size is hard coded for now */
  380. return 2048;
  381. }
  382. static inline uint8_t*
  383. hal_rx_status_get_next_tlv(uint8_t *rx_tlv) {
  384. uint32_t tlv_len, tlv_tag;
  385. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
  386. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  387. /* The actual length of PPDU_END is the combined length of many PHY
  388. * TLVs that follow. Skip the TLV header and
  389. * rx_rxpcu_classification_overview that follows the header to get to
  390. * next TLV.
  391. */
  392. if (tlv_tag == WIFIRX_PPDU_END_E)
  393. tlv_len = sizeof(struct rx_rxpcu_classification_overview);
  394. return (uint8_t *)(((unsigned long)(rx_tlv + tlv_len +
  395. HAL_RX_TLV32_HDR_SIZE + 3)) & (~((unsigned long)3)));
  396. }
  397. static void hal_rx_proc_phyrx_other_receive_info_tlv(struct hal_soc *hal_soc,
  398. void *rx_tlv_hdr,
  399. struct hal_rx_ppdu_info
  400. *ppdu_info)
  401. {
  402. hal_soc->ops->hal_rx_proc_phyrx_other_receive_info_tlv(rx_tlv_hdr,
  403. (void *)ppdu_info);
  404. }
  405. /**
  406. * hal_rx_status_get_tlv_info() - process receive info TLV
  407. * @rx_tlv_hdr: pointer to TLV header
  408. * @ppdu_info: pointer to ppdu_info
  409. *
  410. * Return: HAL_TLV_STATUS_PPDU_NOT_DONE or HAL_TLV_STATUS_PPDU_DONE from tlv
  411. */
  412. static inline uint32_t
  413. hal_rx_status_get_tlv_info(void *rx_tlv_hdr, struct hal_rx_ppdu_info *ppdu_info,
  414. struct hal_soc *hal)
  415. {
  416. uint32_t tlv_tag, user_id, tlv_len, value;
  417. uint8_t group_id = 0;
  418. uint8_t he_dcm = 0;
  419. uint8_t he_stbc = 0;
  420. uint16_t he_gi = 0;
  421. uint16_t he_ltf = 0;
  422. void *rx_tlv;
  423. bool unhandled = false;
  424. bool is_no_payload_ppdu = false;
  425. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv_hdr);
  426. user_id = HAL_RX_GET_USER_TLV32_USERID(rx_tlv_hdr);
  427. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv_hdr);
  428. rx_tlv = (uint8_t *)rx_tlv_hdr + HAL_RX_TLV32_HDR_SIZE;
  429. switch (tlv_tag) {
  430. case WIFIRX_PPDU_START_E:
  431. ppdu_info->com_info.ppdu_id =
  432. HAL_RX_GET(rx_tlv, RX_PPDU_START_0,
  433. PHY_PPDU_ID);
  434. /* channel number is set in PHY meta data */
  435. ppdu_info->rx_status.chan_num =
  436. HAL_RX_GET(rx_tlv, RX_PPDU_START_1,
  437. SW_PHY_META_DATA);
  438. ppdu_info->com_info.ppdu_timestamp =
  439. HAL_RX_GET(rx_tlv, RX_PPDU_START_2,
  440. PPDU_START_TIMESTAMP);
  441. ppdu_info->rx_status.ppdu_timestamp =
  442. ppdu_info->com_info.ppdu_timestamp;
  443. ppdu_info->rx_state = HAL_RX_MON_PPDU_START;
  444. break;
  445. case WIFIRX_PPDU_START_USER_INFO_E:
  446. break;
  447. case WIFIRX_PPDU_END_E:
  448. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  449. "[%s][%d] ppdu_end_e len=%d",
  450. __func__, __LINE__, tlv_len);
  451. /* This is followed by sub-TLVs of PPDU_END */
  452. ppdu_info->rx_state = HAL_RX_MON_PPDU_END;
  453. break;
  454. case WIFIRXPCU_PPDU_END_INFO_E:
  455. ppdu_info->rx_status.tsft =
  456. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_1,
  457. WB_TIMESTAMP_UPPER_32);
  458. ppdu_info->rx_status.tsft = (ppdu_info->rx_status.tsft << 32) |
  459. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_0,
  460. WB_TIMESTAMP_LOWER_32);
  461. ppdu_info->rx_status.duration =
  462. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_8,
  463. RX_PPDU_DURATION);
  464. break;
  465. case WIFIRX_PPDU_END_USER_STATS_E:
  466. {
  467. unsigned long tid = 0;
  468. uint16_t seq = 0;
  469. ppdu_info->rx_status.ast_index =
  470. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_4,
  471. AST_INDEX);
  472. tid = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_12,
  473. RECEIVED_QOS_DATA_TID_BITMAP);
  474. ppdu_info->rx_status.tid = qdf_find_first_bit(&tid, sizeof(tid)*8);
  475. if (ppdu_info->rx_status.tid == (sizeof(tid) * 8))
  476. ppdu_info->rx_status.tid = HAL_TID_INVALID;
  477. ppdu_info->rx_status.tcp_msdu_count =
  478. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  479. TCP_MSDU_COUNT) +
  480. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  481. TCP_ACK_MSDU_COUNT);
  482. ppdu_info->rx_status.udp_msdu_count =
  483. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  484. UDP_MSDU_COUNT);
  485. ppdu_info->rx_status.other_msdu_count =
  486. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  487. OTHER_MSDU_COUNT);
  488. ppdu_info->rx_status.frame_control_info_valid =
  489. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  490. DATA_SEQUENCE_CONTROL_INFO_VALID);
  491. seq = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_5,
  492. FIRST_DATA_SEQ_CTRL);
  493. if (ppdu_info->rx_status.frame_control_info_valid)
  494. ppdu_info->rx_status.first_data_seq_ctrl = seq;
  495. ppdu_info->rx_status.preamble_type =
  496. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  497. HT_CONTROL_FIELD_PKT_TYPE);
  498. switch (ppdu_info->rx_status.preamble_type) {
  499. case HAL_RX_PKT_TYPE_11N:
  500. ppdu_info->rx_status.ht_flags = 1;
  501. ppdu_info->rx_status.rtap_flags |= HT_SGI_PRESENT;
  502. break;
  503. case HAL_RX_PKT_TYPE_11AC:
  504. ppdu_info->rx_status.vht_flags = 1;
  505. break;
  506. case HAL_RX_PKT_TYPE_11AX:
  507. ppdu_info->rx_status.he_flags = 1;
  508. break;
  509. default:
  510. break;
  511. }
  512. ppdu_info->com_info.mpdu_cnt_fcs_ok =
  513. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  514. MPDU_CNT_FCS_OK);
  515. ppdu_info->com_info.mpdu_cnt_fcs_err =
  516. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_2,
  517. MPDU_CNT_FCS_ERR);
  518. if ((ppdu_info->com_info.mpdu_cnt_fcs_ok |
  519. ppdu_info->com_info.mpdu_cnt_fcs_err) > 1)
  520. ppdu_info->rx_status.rs_flags |= IEEE80211_AMPDU_FLAG;
  521. else
  522. ppdu_info->rx_status.rs_flags &=
  523. (~IEEE80211_AMPDU_FLAG);
  524. break;
  525. }
  526. case WIFIRX_PPDU_END_USER_STATS_EXT_E:
  527. break;
  528. case WIFIRX_PPDU_END_STATUS_DONE_E:
  529. {
  530. if (is_no_payload_ppdu)
  531. return HAL_TLV_STATUS_PPDU_NON_STD_DONE;
  532. else
  533. return HAL_TLV_STATUS_PPDU_DONE;
  534. }
  535. case WIFIDUMMY_E:
  536. return HAL_TLV_STATUS_BUF_DONE;
  537. case WIFIPHYRX_HT_SIG_E:
  538. {
  539. uint8_t *ht_sig_info = (uint8_t *)rx_tlv +
  540. HAL_RX_OFFSET(PHYRX_HT_SIG_0,
  541. HT_SIG_INFO_PHYRX_HT_SIG_INFO_DETAILS);
  542. value = HAL_RX_GET(ht_sig_info, HT_SIG_INFO_1,
  543. FEC_CODING);
  544. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  545. 1 : 0;
  546. ppdu_info->rx_status.mcs = HAL_RX_GET(ht_sig_info,
  547. HT_SIG_INFO_0, MCS);
  548. ppdu_info->rx_status.bw = HAL_RX_GET(ht_sig_info,
  549. HT_SIG_INFO_0, CBW);
  550. ppdu_info->rx_status.sgi = HAL_RX_GET(ht_sig_info,
  551. HT_SIG_INFO_1, SHORT_GI);
  552. break;
  553. }
  554. case WIFIPHYRX_L_SIG_B_E:
  555. {
  556. uint8_t *l_sig_b_info = (uint8_t *)rx_tlv +
  557. HAL_RX_OFFSET(PHYRX_L_SIG_B_0,
  558. L_SIG_B_INFO_PHYRX_L_SIG_B_INFO_DETAILS);
  559. value = HAL_RX_GET(l_sig_b_info, L_SIG_B_INFO_0, RATE);
  560. ppdu_info->rx_status.l_sig_b_info = *((uint32_t *)l_sig_b_info);
  561. switch (value) {
  562. case 1:
  563. ppdu_info->rx_status.rate = HAL_11B_RATE_3MCS;
  564. break;
  565. case 2:
  566. ppdu_info->rx_status.rate = HAL_11B_RATE_2MCS;
  567. break;
  568. case 3:
  569. ppdu_info->rx_status.rate = HAL_11B_RATE_1MCS;
  570. break;
  571. case 4:
  572. ppdu_info->rx_status.rate = HAL_11B_RATE_0MCS;
  573. break;
  574. case 5:
  575. ppdu_info->rx_status.rate = HAL_11B_RATE_6MCS;
  576. break;
  577. case 6:
  578. ppdu_info->rx_status.rate = HAL_11B_RATE_5MCS;
  579. break;
  580. case 7:
  581. ppdu_info->rx_status.rate = HAL_11B_RATE_4MCS;
  582. break;
  583. default:
  584. break;
  585. }
  586. ppdu_info->rx_status.cck_flag = 1;
  587. break;
  588. }
  589. case WIFIPHYRX_L_SIG_A_E:
  590. {
  591. uint8_t *l_sig_a_info = (uint8_t *)rx_tlv +
  592. HAL_RX_OFFSET(PHYRX_L_SIG_A_0,
  593. L_SIG_A_INFO_PHYRX_L_SIG_A_INFO_DETAILS);
  594. value = HAL_RX_GET(l_sig_a_info, L_SIG_A_INFO_0, RATE);
  595. ppdu_info->rx_status.l_sig_a_info = *((uint32_t *)l_sig_a_info);
  596. switch (value) {
  597. case 8:
  598. ppdu_info->rx_status.rate = HAL_11A_RATE_0MCS;
  599. break;
  600. case 9:
  601. ppdu_info->rx_status.rate = HAL_11A_RATE_1MCS;
  602. break;
  603. case 10:
  604. ppdu_info->rx_status.rate = HAL_11A_RATE_2MCS;
  605. break;
  606. case 11:
  607. ppdu_info->rx_status.rate = HAL_11A_RATE_3MCS;
  608. break;
  609. case 12:
  610. ppdu_info->rx_status.rate = HAL_11A_RATE_4MCS;
  611. break;
  612. case 13:
  613. ppdu_info->rx_status.rate = HAL_11A_RATE_5MCS;
  614. break;
  615. case 14:
  616. ppdu_info->rx_status.rate = HAL_11A_RATE_6MCS;
  617. break;
  618. case 15:
  619. ppdu_info->rx_status.rate = HAL_11A_RATE_7MCS;
  620. break;
  621. default:
  622. break;
  623. }
  624. ppdu_info->rx_status.ofdm_flag = 1;
  625. break;
  626. }
  627. case WIFIPHYRX_VHT_SIG_A_E:
  628. {
  629. uint8_t *vht_sig_a_info = (uint8_t *)rx_tlv +
  630. HAL_RX_OFFSET(PHYRX_VHT_SIG_A_0,
  631. VHT_SIG_A_INFO_PHYRX_VHT_SIG_A_INFO_DETAILS);
  632. value = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_1,
  633. SU_MU_CODING);
  634. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  635. 1 : 0;
  636. group_id = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_0, GROUP_ID);
  637. ppdu_info->rx_status.vht_flag_values5 = group_id;
  638. ppdu_info->rx_status.mcs = HAL_RX_GET(vht_sig_a_info,
  639. VHT_SIG_A_INFO_1, MCS);
  640. ppdu_info->rx_status.sgi = HAL_RX_GET(vht_sig_a_info,
  641. VHT_SIG_A_INFO_1, GI_SETTING);
  642. switch (hal->target_type) {
  643. case TARGET_TYPE_QCA8074:
  644. case TARGET_TYPE_QCA8074V2:
  645. ppdu_info->rx_status.is_stbc =
  646. HAL_RX_GET(vht_sig_a_info,
  647. VHT_SIG_A_INFO_0, STBC);
  648. value = HAL_RX_GET(vht_sig_a_info,
  649. VHT_SIG_A_INFO_0, N_STS);
  650. if (ppdu_info->rx_status.is_stbc && (value > 0))
  651. value = ((value + 1) >> 1) - 1;
  652. ppdu_info->rx_status.nss =
  653. ((value & VHT_SIG_SU_NSS_MASK) + 1);
  654. break;
  655. case TARGET_TYPE_QCA6290:
  656. #if !defined(QCA_WIFI_QCA6290_11AX)
  657. ppdu_info->rx_status.is_stbc =
  658. HAL_RX_GET(vht_sig_a_info,
  659. VHT_SIG_A_INFO_0, STBC);
  660. value = HAL_RX_GET(vht_sig_a_info,
  661. VHT_SIG_A_INFO_0, N_STS);
  662. if (ppdu_info->rx_status.is_stbc && (value > 0))
  663. value = ((value + 1) >> 1) - 1;
  664. ppdu_info->rx_status.nss =
  665. ((value & VHT_SIG_SU_NSS_MASK) + 1);
  666. #else
  667. ppdu_info->rx_status.nss = 0;
  668. #endif
  669. break;
  670. #ifdef QCA_WIFI_QCA6390
  671. case TARGET_TYPE_QCA6390:
  672. ppdu_info->rx_status.nss = 0;
  673. break;
  674. #endif
  675. default:
  676. break;
  677. }
  678. ppdu_info->rx_status.vht_flag_values3[0] =
  679. (((ppdu_info->rx_status.mcs) << 4)
  680. | ppdu_info->rx_status.nss);
  681. ppdu_info->rx_status.bw = HAL_RX_GET(vht_sig_a_info,
  682. VHT_SIG_A_INFO_0, BANDWIDTH);
  683. ppdu_info->rx_status.vht_flag_values2 =
  684. ppdu_info->rx_status.bw;
  685. ppdu_info->rx_status.vht_flag_values4 =
  686. HAL_RX_GET(vht_sig_a_info,
  687. VHT_SIG_A_INFO_1, SU_MU_CODING);
  688. ppdu_info->rx_status.beamformed = HAL_RX_GET(vht_sig_a_info,
  689. VHT_SIG_A_INFO_1, BEAMFORMED);
  690. break;
  691. }
  692. case WIFIPHYRX_HE_SIG_A_SU_E:
  693. {
  694. uint8_t *he_sig_a_su_info = (uint8_t *)rx_tlv +
  695. HAL_RX_OFFSET(PHYRX_HE_SIG_A_SU_0,
  696. HE_SIG_A_SU_INFO_PHYRX_HE_SIG_A_SU_INFO_DETAILS);
  697. ppdu_info->rx_status.he_flags = 1;
  698. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  699. FORMAT_INDICATION);
  700. if (value == 0) {
  701. ppdu_info->rx_status.he_data1 =
  702. QDF_MON_STATUS_HE_TRIG_FORMAT_TYPE;
  703. } else {
  704. ppdu_info->rx_status.he_data1 =
  705. QDF_MON_STATUS_HE_SU_FORMAT_TYPE;
  706. }
  707. /* data1 */
  708. ppdu_info->rx_status.he_data1 |=
  709. QDF_MON_STATUS_HE_BSS_COLOR_KNOWN |
  710. QDF_MON_STATUS_HE_BEAM_CHANGE_KNOWN |
  711. QDF_MON_STATUS_HE_DL_UL_KNOWN |
  712. QDF_MON_STATUS_HE_MCS_KNOWN |
  713. QDF_MON_STATUS_HE_DCM_KNOWN |
  714. QDF_MON_STATUS_HE_CODING_KNOWN |
  715. QDF_MON_STATUS_HE_LDPC_EXTRA_SYMBOL_KNOWN |
  716. QDF_MON_STATUS_HE_STBC_KNOWN |
  717. QDF_MON_STATUS_HE_DATA_BW_RU_KNOWN |
  718. QDF_MON_STATUS_HE_DOPPLER_KNOWN;
  719. /* data2 */
  720. ppdu_info->rx_status.he_data2 =
  721. QDF_MON_STATUS_HE_GI_KNOWN;
  722. ppdu_info->rx_status.he_data2 |=
  723. QDF_MON_STATUS_TXBF_KNOWN |
  724. QDF_MON_STATUS_PE_DISAMBIGUITY_KNOWN |
  725. QDF_MON_STATUS_TXOP_KNOWN |
  726. QDF_MON_STATUS_LTF_SYMBOLS_KNOWN |
  727. QDF_MON_STATUS_PRE_FEC_PADDING_KNOWN |
  728. QDF_MON_STATUS_MIDABLE_PERIODICITY_KNOWN;
  729. /* data3 */
  730. value = HAL_RX_GET(he_sig_a_su_info,
  731. HE_SIG_A_SU_INFO_0, BSS_COLOR_ID);
  732. ppdu_info->rx_status.he_data3 = value;
  733. value = HAL_RX_GET(he_sig_a_su_info,
  734. HE_SIG_A_SU_INFO_0, BEAM_CHANGE);
  735. value = value << QDF_MON_STATUS_BEAM_CHANGE_SHIFT;
  736. ppdu_info->rx_status.he_data3 |= value;
  737. value = HAL_RX_GET(he_sig_a_su_info,
  738. HE_SIG_A_SU_INFO_0, DL_UL_FLAG);
  739. value = value << QDF_MON_STATUS_DL_UL_SHIFT;
  740. ppdu_info->rx_status.he_data3 |= value;
  741. value = HAL_RX_GET(he_sig_a_su_info,
  742. HE_SIG_A_SU_INFO_0, TRANSMIT_MCS);
  743. ppdu_info->rx_status.mcs = value;
  744. value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
  745. ppdu_info->rx_status.he_data3 |= value;
  746. value = HAL_RX_GET(he_sig_a_su_info,
  747. HE_SIG_A_SU_INFO_0, DCM);
  748. he_dcm = value;
  749. value = value << QDF_MON_STATUS_DCM_SHIFT;
  750. ppdu_info->rx_status.he_data3 |= value;
  751. value = HAL_RX_GET(he_sig_a_su_info,
  752. HE_SIG_A_SU_INFO_1, CODING);
  753. value = value << QDF_MON_STATUS_CODING_SHIFT;
  754. ppdu_info->rx_status.he_data3 |= value;
  755. value = HAL_RX_GET(he_sig_a_su_info,
  756. HE_SIG_A_SU_INFO_1,
  757. LDPC_EXTRA_SYMBOL);
  758. value = value << QDF_MON_STATUS_LDPC_EXTRA_SYMBOL_SHIFT;
  759. ppdu_info->rx_status.he_data3 |= value;
  760. value = HAL_RX_GET(he_sig_a_su_info,
  761. HE_SIG_A_SU_INFO_1, STBC);
  762. he_stbc = value;
  763. value = value << QDF_MON_STATUS_STBC_SHIFT;
  764. ppdu_info->rx_status.he_data3 |= value;
  765. /* data4 */
  766. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  767. SPATIAL_REUSE);
  768. ppdu_info->rx_status.he_data4 = value;
  769. /* data5 */
  770. value = HAL_RX_GET(he_sig_a_su_info,
  771. HE_SIG_A_SU_INFO_0, TRANSMIT_BW);
  772. ppdu_info->rx_status.he_data5 = value;
  773. ppdu_info->rx_status.bw = value;
  774. value = HAL_RX_GET(he_sig_a_su_info,
  775. HE_SIG_A_SU_INFO_0, CP_LTF_SIZE);
  776. switch (value) {
  777. case 0:
  778. he_gi = HE_GI_0_8;
  779. he_ltf = HE_LTF_1_X;
  780. break;
  781. case 1:
  782. he_gi = HE_GI_0_8;
  783. he_ltf = HE_LTF_2_X;
  784. break;
  785. case 2:
  786. he_gi = HE_GI_1_6;
  787. he_ltf = HE_LTF_2_X;
  788. break;
  789. case 3:
  790. if (he_dcm && he_stbc) {
  791. he_gi = HE_GI_0_8;
  792. he_ltf = HE_LTF_4_X;
  793. } else {
  794. he_gi = HE_GI_3_2;
  795. he_ltf = HE_LTF_4_X;
  796. }
  797. break;
  798. }
  799. ppdu_info->rx_status.sgi = he_gi;
  800. value = he_gi << QDF_MON_STATUS_GI_SHIFT;
  801. ppdu_info->rx_status.he_data5 |= value;
  802. value = he_ltf << QDF_MON_STATUS_HE_LTF_SIZE_SHIFT;
  803. ppdu_info->rx_status.he_data5 |= value;
  804. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0, NSTS);
  805. value = (value << QDF_MON_STATUS_HE_LTF_SYM_SHIFT);
  806. ppdu_info->rx_status.he_data5 |= value;
  807. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  808. PACKET_EXTENSION_A_FACTOR);
  809. value = value << QDF_MON_STATUS_PRE_FEC_PAD_SHIFT;
  810. ppdu_info->rx_status.he_data5 |= value;
  811. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1, TXBF);
  812. value = value << QDF_MON_STATUS_TXBF_SHIFT;
  813. ppdu_info->rx_status.he_data5 |= value;
  814. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  815. PACKET_EXTENSION_PE_DISAMBIGUITY);
  816. value = value << QDF_MON_STATUS_PE_DISAMBIGUITY_SHIFT;
  817. ppdu_info->rx_status.he_data5 |= value;
  818. /* data6 */
  819. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0, NSTS);
  820. value++;
  821. ppdu_info->rx_status.nss = value;
  822. ppdu_info->rx_status.he_data6 = value;
  823. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  824. DOPPLER_INDICATION);
  825. value = value << QDF_MON_STATUS_DOPPLER_SHIFT;
  826. ppdu_info->rx_status.he_data6 |= value;
  827. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  828. TXOP_DURATION);
  829. value = value << QDF_MON_STATUS_TXOP_SHIFT;
  830. ppdu_info->rx_status.he_data6 |= value;
  831. ppdu_info->rx_status.beamformed = HAL_RX_GET(he_sig_a_su_info,
  832. HE_SIG_A_SU_INFO_1, TXBF);
  833. break;
  834. }
  835. case WIFIPHYRX_HE_SIG_A_MU_DL_E:
  836. {
  837. uint8_t *he_sig_a_mu_dl_info = (uint8_t *)rx_tlv +
  838. HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_0,
  839. HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS);
  840. ppdu_info->rx_status.he_mu_flags = 1;
  841. /* HE Flags */
  842. /*data1*/
  843. ppdu_info->rx_status.he_data1 =
  844. QDF_MON_STATUS_HE_MU_FORMAT_TYPE;
  845. ppdu_info->rx_status.he_data1 |=
  846. QDF_MON_STATUS_HE_BSS_COLOR_KNOWN |
  847. QDF_MON_STATUS_HE_DL_UL_KNOWN |
  848. QDF_MON_STATUS_HE_LDPC_EXTRA_SYMBOL_KNOWN |
  849. QDF_MON_STATUS_HE_STBC_KNOWN |
  850. QDF_MON_STATUS_HE_DATA_BW_RU_KNOWN |
  851. QDF_MON_STATUS_HE_DOPPLER_KNOWN;
  852. /* data2 */
  853. ppdu_info->rx_status.he_data2 =
  854. QDF_MON_STATUS_HE_GI_KNOWN;
  855. ppdu_info->rx_status.he_data2 |=
  856. QDF_MON_STATUS_LTF_SYMBOLS_KNOWN |
  857. QDF_MON_STATUS_PRE_FEC_PADDING_KNOWN |
  858. QDF_MON_STATUS_PE_DISAMBIGUITY_KNOWN |
  859. QDF_MON_STATUS_TXOP_KNOWN |
  860. QDF_MON_STATUS_MIDABLE_PERIODICITY_KNOWN;
  861. /*data3*/
  862. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  863. HE_SIG_A_MU_DL_INFO_0, BSS_COLOR_ID);
  864. ppdu_info->rx_status.he_data3 = value;
  865. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  866. HE_SIG_A_MU_DL_INFO_0, DL_UL_FLAG);
  867. value = value << QDF_MON_STATUS_DL_UL_SHIFT;
  868. ppdu_info->rx_status.he_data3 |= value;
  869. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  870. HE_SIG_A_MU_DL_INFO_1,
  871. LDPC_EXTRA_SYMBOL);
  872. value = value << QDF_MON_STATUS_LDPC_EXTRA_SYMBOL_SHIFT;
  873. ppdu_info->rx_status.he_data3 |= value;
  874. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  875. HE_SIG_A_MU_DL_INFO_1, STBC);
  876. he_stbc = value;
  877. value = value << QDF_MON_STATUS_STBC_SHIFT;
  878. ppdu_info->rx_status.he_data3 |= value;
  879. /*data4*/
  880. value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_0,
  881. SPATIAL_REUSE);
  882. ppdu_info->rx_status.he_data4 = value;
  883. /*data5*/
  884. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  885. HE_SIG_A_MU_DL_INFO_0, TRANSMIT_BW);
  886. ppdu_info->rx_status.he_data5 = value;
  887. ppdu_info->rx_status.bw = value;
  888. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  889. HE_SIG_A_MU_DL_INFO_0, CP_LTF_SIZE);
  890. switch (value) {
  891. case 0:
  892. he_gi = HE_GI_0_8;
  893. he_ltf = HE_LTF_4_X;
  894. break;
  895. case 1:
  896. he_gi = HE_GI_0_8;
  897. he_ltf = HE_LTF_2_X;
  898. break;
  899. case 2:
  900. he_gi = HE_GI_1_6;
  901. he_ltf = HE_LTF_2_X;
  902. break;
  903. case 3:
  904. he_gi = HE_GI_3_2;
  905. he_ltf = HE_LTF_4_X;
  906. break;
  907. }
  908. ppdu_info->rx_status.sgi = he_gi;
  909. value = he_gi << QDF_MON_STATUS_GI_SHIFT;
  910. ppdu_info->rx_status.he_data5 |= value;
  911. value = he_ltf << QDF_MON_STATUS_HE_LTF_SIZE_SHIFT;
  912. ppdu_info->rx_status.he_data5 |= value;
  913. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  914. HE_SIG_A_MU_DL_INFO_1, NUM_LTF_SYMBOLS);
  915. value = (value << QDF_MON_STATUS_HE_LTF_SYM_SHIFT);
  916. ppdu_info->rx_status.he_data5 |= value;
  917. value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_1,
  918. PACKET_EXTENSION_A_FACTOR);
  919. value = value << QDF_MON_STATUS_PRE_FEC_PAD_SHIFT;
  920. ppdu_info->rx_status.he_data5 |= value;
  921. value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_1,
  922. PACKET_EXTENSION_PE_DISAMBIGUITY);
  923. value = value << QDF_MON_STATUS_PE_DISAMBIGUITY_SHIFT;
  924. ppdu_info->rx_status.he_data5 |= value;
  925. /*data6*/
  926. value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_0,
  927. DOPPLER_INDICATION);
  928. value = value << QDF_MON_STATUS_DOPPLER_SHIFT;
  929. ppdu_info->rx_status.he_data6 |= value;
  930. value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_1,
  931. TXOP_DURATION);
  932. value = value << QDF_MON_STATUS_TXOP_SHIFT;
  933. ppdu_info->rx_status.he_data6 |= value;
  934. /* HE-MU Flags */
  935. /* HE-MU-flags1 */
  936. ppdu_info->rx_status.he_flags1 =
  937. QDF_MON_STATUS_SIG_B_MCS_KNOWN |
  938. QDF_MON_STATUS_SIG_B_DCM_KNOWN |
  939. QDF_MON_STATUS_SIG_B_COMPRESSION_FLAG_1_KNOWN |
  940. QDF_MON_STATUS_SIG_B_SYM_NUM_KNOWN |
  941. QDF_MON_STATUS_RU_0_KNOWN;
  942. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  943. HE_SIG_A_MU_DL_INFO_0, MCS_OF_SIG_B);
  944. ppdu_info->rx_status.he_flags1 |= value;
  945. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  946. HE_SIG_A_MU_DL_INFO_0, DCM_OF_SIG_B);
  947. value = value << QDF_MON_STATUS_DCM_FLAG_1_SHIFT;
  948. ppdu_info->rx_status.he_flags1 |= value;
  949. /* HE-MU-flags2 */
  950. ppdu_info->rx_status.he_flags2 =
  951. QDF_MON_STATUS_BW_KNOWN;
  952. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  953. HE_SIG_A_MU_DL_INFO_0, TRANSMIT_BW);
  954. ppdu_info->rx_status.he_flags2 |= value;
  955. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  956. HE_SIG_A_MU_DL_INFO_0, COMP_MODE_SIG_B);
  957. value = value << QDF_MON_STATUS_SIG_B_COMPRESSION_FLAG_2_SHIFT;
  958. ppdu_info->rx_status.he_flags2 |= value;
  959. value = HAL_RX_GET(he_sig_a_mu_dl_info,
  960. HE_SIG_A_MU_DL_INFO_0, NUM_SIG_B_SYMBOLS);
  961. value = value - 1;
  962. value = value << QDF_MON_STATUS_NUM_SIG_B_SYMBOLS_SHIFT;
  963. ppdu_info->rx_status.he_flags2 |= value;
  964. break;
  965. }
  966. case WIFIPHYRX_HE_SIG_B1_MU_E:
  967. {
  968. uint8_t *he_sig_b1_mu_info = (uint8_t *)rx_tlv +
  969. HAL_RX_OFFSET(PHYRX_HE_SIG_B1_MU_0,
  970. HE_SIG_B1_MU_INFO_PHYRX_HE_SIG_B1_MU_INFO_DETAILS);
  971. ppdu_info->rx_status.he_sig_b_common_known |=
  972. QDF_MON_STATUS_HE_SIG_B_COMMON_KNOWN_RU0;
  973. /* TODO: Check on the availability of other fields in
  974. * sig_b_common
  975. */
  976. value = HAL_RX_GET(he_sig_b1_mu_info,
  977. HE_SIG_B1_MU_INFO_0, RU_ALLOCATION);
  978. ppdu_info->rx_status.he_RU[0] = value;
  979. break;
  980. }
  981. case WIFIPHYRX_HE_SIG_B2_MU_E:
  982. {
  983. uint8_t *he_sig_b2_mu_info = (uint8_t *)rx_tlv +
  984. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_MU_0,
  985. HE_SIG_B2_MU_INFO_PHYRX_HE_SIG_B2_MU_INFO_DETAILS);
  986. /*
  987. * Not all "HE" fields can be updated from
  988. * WIFIPHYRX_HE_SIG_A_MU_DL_E TLV. Use WIFIPHYRX_HE_SIG_B2_MU_E
  989. * to populate rest of the "HE" fields for MU scenarios.
  990. */
  991. /* HE-data1 */
  992. ppdu_info->rx_status.he_data1 |=
  993. QDF_MON_STATUS_HE_MCS_KNOWN |
  994. QDF_MON_STATUS_HE_CODING_KNOWN;
  995. /* HE-data2 */
  996. /* HE-data3 */
  997. value = HAL_RX_GET(he_sig_b2_mu_info,
  998. HE_SIG_B2_MU_INFO_0, STA_MCS);
  999. ppdu_info->rx_status.mcs = value;
  1000. value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
  1001. ppdu_info->rx_status.he_data3 |= value;
  1002. value = HAL_RX_GET(he_sig_b2_mu_info,
  1003. HE_SIG_B2_MU_INFO_0, STA_CODING);
  1004. value = value << QDF_MON_STATUS_CODING_SHIFT;
  1005. ppdu_info->rx_status.he_data3 |= value;
  1006. /* HE-data4 */
  1007. value = HAL_RX_GET(he_sig_b2_mu_info,
  1008. HE_SIG_B2_MU_INFO_0, STA_ID);
  1009. value = value << QDF_MON_STATUS_STA_ID_SHIFT;
  1010. ppdu_info->rx_status.he_data4 |= value;
  1011. /* HE-data5 */
  1012. /* HE-data6 */
  1013. value = HAL_RX_GET(he_sig_b2_mu_info,
  1014. HE_SIG_B2_MU_INFO_0, NSTS);
  1015. /* value n indicates n+1 spatial streams */
  1016. value++;
  1017. ppdu_info->rx_status.nss = value;
  1018. ppdu_info->rx_status.he_data6 |= value;
  1019. break;
  1020. }
  1021. case WIFIPHYRX_HE_SIG_B2_OFDMA_E:
  1022. {
  1023. uint8_t *he_sig_b2_ofdma_info =
  1024. (uint8_t *)rx_tlv +
  1025. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_OFDMA_0,
  1026. HE_SIG_B2_OFDMA_INFO_PHYRX_HE_SIG_B2_OFDMA_INFO_DETAILS);
  1027. /*
  1028. * Not all "HE" fields can be updated from
  1029. * WIFIPHYRX_HE_SIG_A_MU_DL_E TLV. Use WIFIPHYRX_HE_SIG_B2_MU_E
  1030. * to populate rest of "HE" fields for MU OFDMA scenarios.
  1031. */
  1032. /* HE-data1 */
  1033. ppdu_info->rx_status.he_data1 |=
  1034. QDF_MON_STATUS_HE_MCS_KNOWN |
  1035. QDF_MON_STATUS_HE_DCM_KNOWN |
  1036. QDF_MON_STATUS_HE_CODING_KNOWN;
  1037. /* HE-data2 */
  1038. ppdu_info->rx_status.he_data2 |=
  1039. QDF_MON_STATUS_TXBF_KNOWN;
  1040. /* HE-data3 */
  1041. value = HAL_RX_GET(he_sig_b2_ofdma_info,
  1042. HE_SIG_B2_OFDMA_INFO_0, STA_MCS);
  1043. ppdu_info->rx_status.mcs = value;
  1044. value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
  1045. ppdu_info->rx_status.he_data3 |= value;
  1046. value = HAL_RX_GET(he_sig_b2_ofdma_info,
  1047. HE_SIG_B2_OFDMA_INFO_0, STA_DCM);
  1048. he_dcm = value;
  1049. value = value << QDF_MON_STATUS_DCM_SHIFT;
  1050. ppdu_info->rx_status.he_data3 |= value;
  1051. value = HAL_RX_GET(he_sig_b2_ofdma_info,
  1052. HE_SIG_B2_OFDMA_INFO_0, STA_CODING);
  1053. value = value << QDF_MON_STATUS_CODING_SHIFT;
  1054. ppdu_info->rx_status.he_data3 |= value;
  1055. /* HE-data4 */
  1056. value = HAL_RX_GET(he_sig_b2_ofdma_info,
  1057. HE_SIG_B2_OFDMA_INFO_0, STA_ID);
  1058. value = value << QDF_MON_STATUS_STA_ID_SHIFT;
  1059. ppdu_info->rx_status.he_data4 |= value;
  1060. /* HE-data5 */
  1061. value = HAL_RX_GET(he_sig_b2_ofdma_info,
  1062. HE_SIG_B2_OFDMA_INFO_0, TXBF);
  1063. value = value << QDF_MON_STATUS_TXBF_SHIFT;
  1064. ppdu_info->rx_status.he_data5 |= value;
  1065. /* HE-data6 */
  1066. value = HAL_RX_GET(he_sig_b2_ofdma_info,
  1067. HE_SIG_B2_OFDMA_INFO_0, NSTS);
  1068. /* value n indicates n+1 spatial streams */
  1069. value++;
  1070. ppdu_info->rx_status.nss = value;
  1071. ppdu_info->rx_status.he_data6 |= value;
  1072. break;
  1073. }
  1074. case WIFIPHYRX_RSSI_LEGACY_E:
  1075. {
  1076. uint8_t *rssi_info_tlv = (uint8_t *)rx_tlv +
  1077. HAL_RX_OFFSET(PHYRX_RSSI_LEGACY_3,
  1078. RECEIVE_RSSI_INFO_PRE_RSSI_INFO_DETAILS);
  1079. ppdu_info->rx_status.rssi_comb = HAL_RX_GET(rx_tlv,
  1080. PHYRX_RSSI_LEGACY_35, RSSI_COMB);
  1081. ppdu_info->rx_status.bw = hal->ops->hal_rx_get_tlv(rx_tlv);
  1082. ppdu_info->rx_status.he_re = 0;
  1083. ppdu_info->rx_status.reception_type = HAL_RX_GET(rx_tlv,
  1084. PHYRX_RSSI_LEGACY_0, RECEPTION_TYPE);
  1085. value = HAL_RX_GET(rssi_info_tlv,
  1086. RECEIVE_RSSI_INFO_0, RSSI_PRI20_CHAIN0);
  1087. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1088. "RSSI_PRI20_CHAIN0: %d", value);
  1089. value = HAL_RX_GET(rssi_info_tlv,
  1090. RECEIVE_RSSI_INFO_0, RSSI_EXT20_CHAIN0);
  1091. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1092. "RSSI_EXT20_CHAIN0: %d", value);
  1093. value = HAL_RX_GET(rssi_info_tlv,
  1094. RECEIVE_RSSI_INFO_0, RSSI_EXT40_LOW20_CHAIN0);
  1095. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1096. "RSSI_EXT40_LOW20_CHAIN0: %d", value);
  1097. value = HAL_RX_GET(rssi_info_tlv,
  1098. RECEIVE_RSSI_INFO_0, RSSI_EXT40_HIGH20_CHAIN0);
  1099. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1100. "RSSI_EXT40_HIGH20_CHAIN0: %d", value);
  1101. value = HAL_RX_GET(rssi_info_tlv,
  1102. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW20_CHAIN0);
  1103. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1104. "RSSI_EXT80_LOW20_CHAIN0: %d", value);
  1105. value = HAL_RX_GET(rssi_info_tlv,
  1106. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW_HIGH20_CHAIN0);
  1107. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1108. "RSSI_EXT80_LOW_HIGH20_CHAIN0: %d", value);
  1109. value = HAL_RX_GET(rssi_info_tlv,
  1110. RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH_LOW20_CHAIN0);
  1111. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1112. "RSSI_EXT80_HIGH_LOW20_CHAIN0: %d", value);
  1113. value = HAL_RX_GET(rssi_info_tlv,
  1114. RECEIVE_RSSI_INFO_1,
  1115. RSSI_EXT80_HIGH20_CHAIN0);
  1116. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1117. "RSSI_EXT80_HIGH20_CHAIN0: %d", value);
  1118. break;
  1119. }
  1120. case WIFIPHYRX_OTHER_RECEIVE_INFO_E:
  1121. hal_rx_proc_phyrx_other_receive_info_tlv(hal, rx_tlv_hdr,
  1122. ppdu_info);
  1123. break;
  1124. case WIFIPHYRX_GENERATED_CBF_DETAILS_E:
  1125. {
  1126. /* This is a NDP frame, set no payload flag to true */
  1127. is_no_payload_ppdu = true;
  1128. break;
  1129. }
  1130. case WIFIRX_HEADER_E:
  1131. ppdu_info->msdu_info.first_msdu_payload = rx_tlv;
  1132. ppdu_info->msdu_info.payload_len = tlv_len;
  1133. break;
  1134. case WIFIRX_MPDU_START_E:
  1135. {
  1136. uint8_t *rx_mpdu_start =
  1137. (uint8_t *)rx_tlv + HAL_RX_OFFSET(RX_MPDU_START_0,
  1138. RX_MPDU_INFO_RX_MPDU_INFO_DETAILS);
  1139. uint32_t ppdu_id = HAL_RX_GET(rx_mpdu_start, RX_MPDU_INFO_0,
  1140. PHY_PPDU_ID);
  1141. ppdu_info->nac_info.fc_valid =
  1142. HAL_RX_GET(rx_mpdu_start,
  1143. RX_MPDU_INFO_2,
  1144. MPDU_FRAME_CONTROL_VALID);
  1145. ppdu_info->nac_info.to_ds_flag =
  1146. HAL_RX_GET(rx_mpdu_start,
  1147. RX_MPDU_INFO_2,
  1148. TO_DS);
  1149. ppdu_info->nac_info.mac_addr2_valid =
  1150. HAL_RX_GET(rx_mpdu_start,
  1151. RX_MPDU_INFO_2,
  1152. MAC_ADDR_AD2_VALID);
  1153. *(uint16_t *)&ppdu_info->nac_info.mac_addr2[0] =
  1154. HAL_RX_GET(rx_mpdu_start,
  1155. RX_MPDU_INFO_16,
  1156. MAC_ADDR_AD2_15_0);
  1157. *(uint32_t *)&ppdu_info->nac_info.mac_addr2[2] =
  1158. HAL_RX_GET(rx_mpdu_start,
  1159. RX_MPDU_INFO_17,
  1160. MAC_ADDR_AD2_47_16);
  1161. if (ppdu_info->rx_status.prev_ppdu_id != ppdu_id) {
  1162. ppdu_info->rx_status.prev_ppdu_id = ppdu_id;
  1163. ppdu_info->rx_status.ppdu_len =
  1164. HAL_RX_GET(rx_mpdu_start, RX_MPDU_INFO_13,
  1165. MPDU_LENGTH);
  1166. } else {
  1167. ppdu_info->rx_status.ppdu_len +=
  1168. HAL_RX_GET(rx_mpdu_start, RX_MPDU_INFO_13,
  1169. MPDU_LENGTH);
  1170. }
  1171. break;
  1172. }
  1173. case 0:
  1174. return HAL_TLV_STATUS_PPDU_DONE;
  1175. default:
  1176. unhandled = true;
  1177. break;
  1178. }
  1179. if (!unhandled)
  1180. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1181. "%s TLV type: %d, TLV len:%d %s",
  1182. __func__, tlv_tag, tlv_len,
  1183. unhandled == true ? "unhandled" : "");
  1184. qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, rx_tlv, tlv_len);
  1185. return HAL_TLV_STATUS_PPDU_NOT_DONE;
  1186. }
  1187. static inline
  1188. uint32_t hal_get_rx_status_done_tlv_size(void *hal_soc)
  1189. {
  1190. return HAL_RX_TLV32_HDR_SIZE;
  1191. }
  1192. static inline QDF_STATUS
  1193. hal_get_rx_status_done(uint8_t *rx_tlv)
  1194. {
  1195. uint32_t tlv_tag;
  1196. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  1197. if (tlv_tag == WIFIRX_STATUS_BUFFER_DONE_E)
  1198. return QDF_STATUS_SUCCESS;
  1199. else
  1200. return QDF_STATUS_E_EMPTY;
  1201. }
  1202. static inline QDF_STATUS
  1203. hal_clear_rx_status_done(uint8_t *rx_tlv)
  1204. {
  1205. *(uint32_t *)rx_tlv = 0;
  1206. return QDF_STATUS_SUCCESS;
  1207. }
  1208. #endif