dp_rx_defrag.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772
  1. /*
  2. * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_api.h"
  23. #include "qdf_trace.h"
  24. #include "qdf_nbuf.h"
  25. #include "dp_rx_defrag.h"
  26. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  27. #include "dp_rx_defrag.h"
  28. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  29. "AES-CCM",
  30. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  31. IEEE80211_WEP_MICLEN,
  32. 0,
  33. };
  34. const struct dp_rx_defrag_cipher dp_f_tkip = {
  35. "TKIP",
  36. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  37. IEEE80211_WEP_CRCLEN,
  38. IEEE80211_WEP_MICLEN,
  39. };
  40. const struct dp_rx_defrag_cipher dp_f_wep = {
  41. "WEP",
  42. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  43. IEEE80211_WEP_CRCLEN,
  44. 0,
  45. };
  46. /*
  47. * dp_rx_defrag_frames_free(): Free fragment chain
  48. * @frames: Fragment chain
  49. *
  50. * Iterates through the fragment chain and frees them
  51. * Returns: None
  52. */
  53. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  54. {
  55. qdf_nbuf_t next, frag = frames;
  56. while (frag) {
  57. next = qdf_nbuf_next(frag);
  58. qdf_nbuf_free(frag);
  59. frag = next;
  60. }
  61. }
  62. /*
  63. * dp_rx_clear_saved_desc_info(): Clears descriptor info
  64. * @peer: Pointer to the peer data structure
  65. * @tid: Transmit ID (TID)
  66. *
  67. * Saves MPDU descriptor info and MSDU link pointer from REO
  68. * ring descriptor. The cache is created per peer, per TID
  69. *
  70. * Returns: None
  71. */
  72. static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
  73. {
  74. if (peer->rx_tid[tid].dst_ring_desc)
  75. qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
  76. peer->rx_tid[tid].dst_ring_desc = NULL;
  77. }
  78. static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
  79. unsigned int tid)
  80. {
  81. struct dp_soc *soc;
  82. struct dp_pdev *pdev;
  83. struct dp_srng *dp_rxdma_srng;
  84. struct rx_desc_pool *rx_desc_pool;
  85. union dp_rx_desc_list_elem_t *head = NULL;
  86. union dp_rx_desc_list_elem_t *tail = NULL;
  87. if (peer->rx_tid[tid].head_frag_desc) {
  88. pdev = peer->vdev->pdev;
  89. soc = pdev->soc;
  90. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  91. rx_desc_pool = &soc->rx_desc_buf[pdev->pdev_id];
  92. dp_rx_add_to_free_desc_list(&head, &tail,
  93. peer->rx_tid[tid].head_frag_desc);
  94. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  95. 1, &head, &tail);
  96. }
  97. }
  98. /*
  99. * dp_rx_reorder_flush_frag(): Flush the frag list
  100. * @peer: Pointer to the peer data structure
  101. * @tid: Transmit ID (TID)
  102. *
  103. * Flush the per-TID frag list
  104. *
  105. * Returns: None
  106. */
  107. void dp_rx_reorder_flush_frag(struct dp_peer *peer,
  108. unsigned int tid)
  109. {
  110. struct dp_soc *soc;
  111. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  112. FL("Flushing TID %d"), tid);
  113. if (!peer) {
  114. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  115. "%s: NULL peer\n", __func__);
  116. return;
  117. }
  118. soc = peer->vdev->pdev->soc;
  119. if (peer->rx_tid[tid].dst_ring_desc) {
  120. if (dp_rx_link_desc_return(soc,
  121. peer->rx_tid[tid].dst_ring_desc,
  122. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  123. QDF_STATUS_SUCCESS)
  124. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  125. "%s: Failed to return link desc\n",
  126. __func__);
  127. }
  128. dp_rx_return_head_frag_desc(peer, tid);
  129. dp_rx_defrag_cleanup(peer, tid);
  130. }
  131. /*
  132. * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
  133. * @soc: DP SOC
  134. *
  135. * Flush fragments of all waitlisted TID's
  136. *
  137. * Returns: None
  138. */
  139. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  140. {
  141. struct dp_rx_tid *rx_reorder;
  142. struct dp_rx_tid *tmp;
  143. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  144. TAILQ_HEAD(, dp_rx_tid) temp_list;
  145. TAILQ_INIT(&temp_list);
  146. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  147. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  148. defrag_waitlist_elem, tmp) {
  149. unsigned int tid;
  150. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  151. FL("Current time %u"), now_ms);
  152. if (rx_reorder->defrag_timeout_ms > now_ms)
  153. break;
  154. tid = rx_reorder->tid;
  155. if (tid >= DP_MAX_TIDS) {
  156. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  157. "%s: TID out of bounds: %d", __func__, tid);
  158. qdf_assert(0);
  159. continue;
  160. }
  161. TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
  162. defrag_waitlist_elem);
  163. /* Move to temp list and clean-up later */
  164. TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
  165. defrag_waitlist_elem);
  166. }
  167. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  168. TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
  169. defrag_waitlist_elem, tmp) {
  170. struct dp_peer *peer;
  171. /* get address of current peer */
  172. peer =
  173. container_of(rx_reorder, struct dp_peer,
  174. rx_tid[rx_reorder->tid]);
  175. dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
  176. }
  177. }
  178. /*
  179. * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
  180. * @peer: Pointer to the peer data structure
  181. * @tid: Transmit ID (TID)
  182. *
  183. * Appends per-tid fragments to global fragment wait list
  184. *
  185. * Returns: None
  186. */
  187. static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
  188. {
  189. struct dp_soc *psoc = peer->vdev->pdev->soc;
  190. struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
  191. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  192. FL("Adding TID %u to waitlist for peer %pK"),
  193. tid, peer);
  194. /* TODO: use LIST macros instead of TAIL macros */
  195. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  196. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
  197. defrag_waitlist_elem);
  198. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  199. }
  200. /*
  201. * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
  202. * @peer: Pointer to the peer data structure
  203. * @tid: Transmit ID (TID)
  204. *
  205. * Remove fragments from waitlist
  206. *
  207. * Returns: None
  208. */
  209. void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
  210. {
  211. struct dp_pdev *pdev = peer->vdev->pdev;
  212. struct dp_soc *soc = pdev->soc;
  213. struct dp_rx_tid *rx_reorder;
  214. if (tid > DP_MAX_TIDS) {
  215. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  216. "TID out of bounds: %d", tid);
  217. qdf_assert(0);
  218. return;
  219. }
  220. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  221. FL("Remove TID %u from waitlist for peer %pK"),
  222. tid, peer);
  223. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  224. TAILQ_FOREACH(rx_reorder, &soc->rx.defrag.waitlist,
  225. defrag_waitlist_elem) {
  226. struct dp_peer *peer_on_waitlist;
  227. /* get address of current peer */
  228. peer_on_waitlist =
  229. container_of(rx_reorder, struct dp_peer,
  230. rx_tid[rx_reorder->tid]);
  231. /* Ensure it is TID for same peer */
  232. if (peer_on_waitlist == peer && rx_reorder->tid == tid)
  233. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  234. rx_reorder, defrag_waitlist_elem);
  235. }
  236. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  237. }
  238. /*
  239. * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
  240. * @peer: Pointer to the peer data structure
  241. * @tid: Transmit ID (TID)
  242. * @head_addr: Pointer to head list
  243. * @tail_addr: Pointer to tail list
  244. * @frag: Incoming fragment
  245. * @all_frag_present: Flag to indicate whether all fragments are received
  246. *
  247. * Build a per-tid, per-sequence fragment list.
  248. *
  249. * Returns: Success, if inserted
  250. */
  251. static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
  252. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
  253. uint8_t *all_frag_present)
  254. {
  255. qdf_nbuf_t next;
  256. qdf_nbuf_t prev = NULL;
  257. qdf_nbuf_t cur;
  258. uint16_t head_fragno, cur_fragno, next_fragno;
  259. uint8_t last_morefrag = 1, count = 0;
  260. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  261. uint8_t *rx_desc_info;
  262. qdf_assert(frag);
  263. qdf_assert(head_addr);
  264. qdf_assert(tail_addr);
  265. *all_frag_present = 0;
  266. rx_desc_info = qdf_nbuf_data(frag);
  267. cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  268. /* If this is the first fragment */
  269. if (!(*head_addr)) {
  270. *head_addr = *tail_addr = frag;
  271. qdf_nbuf_set_next(*tail_addr, NULL);
  272. rx_tid->curr_frag_num = cur_fragno;
  273. goto insert_done;
  274. }
  275. /* In sequence fragment */
  276. if (cur_fragno > rx_tid->curr_frag_num) {
  277. qdf_nbuf_set_next(*tail_addr, frag);
  278. *tail_addr = frag;
  279. qdf_nbuf_set_next(*tail_addr, NULL);
  280. rx_tid->curr_frag_num = cur_fragno;
  281. } else {
  282. /* Out of sequence fragment */
  283. cur = *head_addr;
  284. rx_desc_info = qdf_nbuf_data(cur);
  285. head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  286. if (cur_fragno == head_fragno) {
  287. qdf_nbuf_free(frag);
  288. goto insert_fail;
  289. } else if (head_fragno > cur_fragno) {
  290. qdf_nbuf_set_next(frag, cur);
  291. cur = frag;
  292. *head_addr = frag; /* head pointer to be updated */
  293. } else {
  294. while ((cur_fragno > head_fragno) && cur != NULL) {
  295. prev = cur;
  296. cur = qdf_nbuf_next(cur);
  297. rx_desc_info = qdf_nbuf_data(cur);
  298. head_fragno =
  299. dp_rx_frag_get_mpdu_frag_number(
  300. rx_desc_info);
  301. }
  302. if (cur_fragno == head_fragno) {
  303. qdf_nbuf_free(frag);
  304. goto insert_fail;
  305. }
  306. qdf_nbuf_set_next(prev, frag);
  307. qdf_nbuf_set_next(frag, cur);
  308. }
  309. }
  310. next = qdf_nbuf_next(*head_addr);
  311. rx_desc_info = qdf_nbuf_data(*tail_addr);
  312. last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
  313. /* TODO: optimize the loop */
  314. if (!last_morefrag) {
  315. /* Check if all fragments are present */
  316. do {
  317. rx_desc_info = qdf_nbuf_data(next);
  318. next_fragno =
  319. dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  320. count++;
  321. if (next_fragno != count)
  322. break;
  323. next = qdf_nbuf_next(next);
  324. } while (next);
  325. if (!next) {
  326. *all_frag_present = 1;
  327. return QDF_STATUS_SUCCESS;
  328. }
  329. }
  330. insert_done:
  331. return QDF_STATUS_SUCCESS;
  332. insert_fail:
  333. return QDF_STATUS_E_FAILURE;
  334. }
  335. /*
  336. * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
  337. * @msdu: Pointer to the fragment
  338. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  339. *
  340. * decap tkip encrypted fragment
  341. *
  342. * Returns: QDF_STATUS
  343. */
  344. static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  345. {
  346. uint8_t *ivp, *orig_hdr;
  347. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  348. /* start of 802.11 header info */
  349. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  350. /* TKIP header is located post 802.11 header */
  351. ivp = orig_hdr + hdrlen;
  352. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  353. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  354. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  355. return QDF_STATUS_E_DEFRAG_ERROR;
  356. }
  357. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  358. return QDF_STATUS_SUCCESS;
  359. }
  360. /*
  361. * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
  362. * @nbuf: Pointer to the fragment buffer
  363. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  364. *
  365. * Remove MIC information from CCMP fragment
  366. *
  367. * Returns: QDF_STATUS
  368. */
  369. static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
  370. {
  371. uint8_t *ivp, *orig_hdr;
  372. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  373. /* start of the 802.11 header */
  374. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  375. /* CCMP header is located after 802.11 header */
  376. ivp = orig_hdr + hdrlen;
  377. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  378. return QDF_STATUS_E_DEFRAG_ERROR;
  379. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  380. return QDF_STATUS_SUCCESS;
  381. }
  382. /*
  383. * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
  384. * @nbuf: Pointer to the fragment
  385. * @hdrlen: length of the header information
  386. *
  387. * decap CCMP encrypted fragment
  388. *
  389. * Returns: QDF_STATUS
  390. */
  391. static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
  392. {
  393. uint8_t *ivp, *origHdr;
  394. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  395. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  396. ivp = origHdr + hdrlen;
  397. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  398. return QDF_STATUS_E_DEFRAG_ERROR;
  399. /* Let's pull the header later */
  400. return QDF_STATUS_SUCCESS;
  401. }
  402. /*
  403. * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
  404. * @msdu: Pointer to the fragment
  405. * @hdrlen: length of the header information
  406. *
  407. * decap WEP encrypted fragment
  408. *
  409. * Returns: QDF_STATUS
  410. */
  411. static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  412. {
  413. uint8_t *origHdr;
  414. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  415. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  416. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  417. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  418. return QDF_STATUS_SUCCESS;
  419. }
  420. /*
  421. * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
  422. * @nbuf: Pointer to the fragment
  423. *
  424. * Calculate the header size of the received fragment
  425. *
  426. * Returns: header size (uint16_t)
  427. */
  428. static uint16_t dp_rx_defrag_hdrsize(qdf_nbuf_t nbuf)
  429. {
  430. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  431. uint16_t size = sizeof(struct ieee80211_frame);
  432. uint16_t fc = 0;
  433. uint32_t to_ds, fr_ds;
  434. uint8_t frm_ctrl_valid;
  435. uint16_t frm_ctrl_field;
  436. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  437. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  438. frm_ctrl_valid = hal_rx_get_mpdu_frame_control_valid(rx_tlv_hdr);
  439. frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
  440. if (to_ds && fr_ds)
  441. size += IEEE80211_ADDR_LEN;
  442. if (frm_ctrl_valid) {
  443. fc = frm_ctrl_field;
  444. /* use 1-st byte for validation */
  445. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  446. size += sizeof(uint16_t);
  447. /* use 2-nd byte for validation */
  448. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  449. size += sizeof(struct ieee80211_htc);
  450. }
  451. }
  452. return size;
  453. }
  454. /*
  455. * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
  456. * @wh0: Pointer to the wireless header of the fragment
  457. * @hdr: Array to hold the pseudo header
  458. *
  459. * Calculate a pseudo MIC header
  460. *
  461. * Returns: None
  462. */
  463. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  464. uint8_t hdr[])
  465. {
  466. const struct ieee80211_frame_addr4 *wh =
  467. (const struct ieee80211_frame_addr4 *)wh0;
  468. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  469. case IEEE80211_FC1_DIR_NODS:
  470. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  471. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  472. wh->i_addr2);
  473. break;
  474. case IEEE80211_FC1_DIR_TODS:
  475. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  476. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  477. wh->i_addr2);
  478. break;
  479. case IEEE80211_FC1_DIR_FROMDS:
  480. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  481. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  482. wh->i_addr3);
  483. break;
  484. case IEEE80211_FC1_DIR_DSTODS:
  485. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  486. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  487. wh->i_addr4);
  488. break;
  489. }
  490. /*
  491. * Bit 7 is IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  492. * it could also be set for deauth, disassoc, action, etc. for
  493. * a mgt type frame. It comes into picture for MFP.
  494. */
  495. if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
  496. const struct ieee80211_qosframe *qwh =
  497. (const struct ieee80211_qosframe *)wh;
  498. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  499. } else {
  500. hdr[12] = 0;
  501. }
  502. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  503. }
  504. /*
  505. * dp_rx_defrag_mic(): Calculate MIC header
  506. * @key: Pointer to the key
  507. * @wbuf: fragment buffer
  508. * @off: Offset
  509. * @data_len: Data length
  510. * @mic: Array to hold MIC
  511. *
  512. * Calculate a pseudo MIC header
  513. *
  514. * Returns: QDF_STATUS
  515. */
  516. static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
  517. uint16_t off, uint16_t data_len, uint8_t mic[])
  518. {
  519. uint8_t hdr[16] = { 0, };
  520. uint32_t l, r;
  521. const uint8_t *data;
  522. uint32_t space;
  523. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  524. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  525. + rx_desc_len), hdr);
  526. l = dp_rx_get_le32(key);
  527. r = dp_rx_get_le32(key + 4);
  528. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  529. l ^= dp_rx_get_le32(hdr);
  530. dp_rx_michael_block(l, r);
  531. l ^= dp_rx_get_le32(&hdr[4]);
  532. dp_rx_michael_block(l, r);
  533. l ^= dp_rx_get_le32(&hdr[8]);
  534. dp_rx_michael_block(l, r);
  535. l ^= dp_rx_get_le32(&hdr[12]);
  536. dp_rx_michael_block(l, r);
  537. /* first buffer has special handling */
  538. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  539. space = qdf_nbuf_len(wbuf) - off;
  540. for (;; ) {
  541. if (space > data_len)
  542. space = data_len;
  543. /* collect 32-bit blocks from current buffer */
  544. while (space >= sizeof(uint32_t)) {
  545. l ^= dp_rx_get_le32(data);
  546. dp_rx_michael_block(l, r);
  547. data += sizeof(uint32_t);
  548. space -= sizeof(uint32_t);
  549. data_len -= sizeof(uint32_t);
  550. }
  551. if (data_len < sizeof(uint32_t))
  552. break;
  553. wbuf = qdf_nbuf_next(wbuf);
  554. if (wbuf == NULL)
  555. return QDF_STATUS_E_DEFRAG_ERROR;
  556. if (space != 0) {
  557. const uint8_t *data_next;
  558. /*
  559. * Block straddles buffers, split references.
  560. */
  561. data_next =
  562. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  563. if ((qdf_nbuf_len(wbuf)) <
  564. sizeof(uint32_t) - space) {
  565. return QDF_STATUS_E_DEFRAG_ERROR;
  566. }
  567. switch (space) {
  568. case 1:
  569. l ^= dp_rx_get_le32_split(data[0],
  570. data_next[0], data_next[1],
  571. data_next[2]);
  572. data = data_next + 3;
  573. space = (qdf_nbuf_len(wbuf) - off) - 3;
  574. break;
  575. case 2:
  576. l ^= dp_rx_get_le32_split(data[0], data[1],
  577. data_next[0], data_next[1]);
  578. data = data_next + 2;
  579. space = (qdf_nbuf_len(wbuf) - off) - 2;
  580. break;
  581. case 3:
  582. l ^= dp_rx_get_le32_split(data[0], data[1],
  583. data[2], data_next[0]);
  584. data = data_next + 1;
  585. space = (qdf_nbuf_len(wbuf) - off) - 1;
  586. break;
  587. }
  588. dp_rx_michael_block(l, r);
  589. data_len -= sizeof(uint32_t);
  590. } else {
  591. /*
  592. * Setup for next buffer.
  593. */
  594. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  595. space = qdf_nbuf_len(wbuf) - off;
  596. }
  597. }
  598. /* Last block and padding (0x5a, 4..7 x 0) */
  599. switch (data_len) {
  600. case 0:
  601. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  602. break;
  603. case 1:
  604. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  605. break;
  606. case 2:
  607. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  608. break;
  609. case 3:
  610. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  611. break;
  612. }
  613. dp_rx_michael_block(l, r);
  614. dp_rx_michael_block(l, r);
  615. dp_rx_put_le32(mic, l);
  616. dp_rx_put_le32(mic + 4, r);
  617. return QDF_STATUS_SUCCESS;
  618. }
  619. /*
  620. * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
  621. * @key: Pointer to the key
  622. * @msdu: fragment buffer
  623. * @hdrlen: Length of the header information
  624. *
  625. * Remove MIC information from the TKIP frame
  626. *
  627. * Returns: QDF_STATUS
  628. */
  629. static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
  630. qdf_nbuf_t msdu, uint16_t hdrlen)
  631. {
  632. QDF_STATUS status;
  633. uint32_t pktlen = 0;
  634. uint8_t mic[IEEE80211_WEP_MICLEN];
  635. uint8_t mic0[IEEE80211_WEP_MICLEN];
  636. qdf_nbuf_t prev = NULL, next;
  637. next = msdu;
  638. while (next) {
  639. pktlen += (qdf_nbuf_len(next) - hdrlen);
  640. prev = next;
  641. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  642. "%s pktlen %ld\n", __func__,
  643. qdf_nbuf_len(next) - hdrlen);
  644. next = qdf_nbuf_next(next);
  645. }
  646. if (!prev) {
  647. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  648. "%s Defrag chaining failed !\n", __func__);
  649. return QDF_STATUS_E_DEFRAG_ERROR;
  650. }
  651. qdf_nbuf_copy_bits(prev, qdf_nbuf_len(prev) - dp_f_tkip.ic_miclen,
  652. dp_f_tkip.ic_miclen, (caddr_t)mic0);
  653. qdf_nbuf_trim_tail(prev, dp_f_tkip.ic_miclen);
  654. pktlen -= dp_f_tkip.ic_miclen;
  655. status = dp_rx_defrag_mic(key, msdu, hdrlen,
  656. pktlen, mic);
  657. if (QDF_IS_STATUS_ERROR(status))
  658. return status;
  659. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  660. return QDF_STATUS_E_DEFRAG_ERROR;
  661. return QDF_STATUS_SUCCESS;
  662. }
  663. /*
  664. * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
  665. * @nbuf: buffer pointer
  666. * @hdrsize: size of the header to be pulled
  667. *
  668. * Pull the RXTLV & the 802.11 headers
  669. *
  670. * Returns: None
  671. */
  672. static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
  673. {
  674. qdf_nbuf_pull_head(nbuf,
  675. RX_PKT_TLVS_LEN + hdrsize);
  676. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  677. "%s: final pktlen %d .11len %d\n",
  678. __func__,
  679. (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  680. }
  681. /*
  682. * dp_rx_construct_fraglist(): Construct a nbuf fraglist
  683. * @peer: Pointer to the peer
  684. * @head: Pointer to list of fragments
  685. * @hdrsize: Size of the header to be pulled
  686. *
  687. * Construct a nbuf fraglist
  688. *
  689. * Returns: None
  690. */
  691. static void
  692. dp_rx_construct_fraglist(struct dp_peer *peer,
  693. qdf_nbuf_t head, uint16_t hdrsize)
  694. {
  695. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  696. qdf_nbuf_t rx_nbuf = msdu;
  697. uint32_t len = 0;
  698. while (msdu) {
  699. dp_rx_frag_pull_hdr(msdu, hdrsize);
  700. len += qdf_nbuf_len(msdu);
  701. msdu = qdf_nbuf_next(msdu);
  702. }
  703. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  704. qdf_nbuf_set_next(head, NULL);
  705. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  706. "%s: head len %d ext len %d data len %d \n",
  707. __func__,
  708. (uint32_t)qdf_nbuf_len(head),
  709. (uint32_t)qdf_nbuf_len(rx_nbuf),
  710. (uint32_t)(head->data_len));
  711. }
  712. /**
  713. * dp_rx_defrag_err() - rx err handler
  714. * @pdev: handle to pdev object
  715. * @vdev_id: vdev id
  716. * @peer_mac_addr: peer mac address
  717. * @tid: TID
  718. * @tsf32: TSF
  719. * @err_type: error type
  720. * @rx_frame: rx frame
  721. * @pn: PN Number
  722. * @key_id: key id
  723. *
  724. * This function handles rx error and send MIC error notification
  725. *
  726. * Return: None
  727. */
  728. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  729. {
  730. struct ol_if_ops *tops = NULL;
  731. struct dp_pdev *pdev = vdev->pdev;
  732. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  733. uint8_t *orig_hdr;
  734. struct ieee80211_frame *wh;
  735. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  736. wh = (struct ieee80211_frame *)orig_hdr;
  737. tops = pdev->soc->cdp_soc.ol_ops;
  738. if (tops->rx_mic_error)
  739. tops->rx_mic_error(pdev->ctrl_pdev, vdev->vdev_id, wh);
  740. }
  741. /*
  742. * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
  743. * @nbuf: Pointer to the fragment buffer
  744. * @hdrsize: Size of headers
  745. *
  746. * Transcap the fragment from 802.11 to 802.3
  747. *
  748. * Returns: None
  749. */
  750. static void
  751. dp_rx_defrag_nwifi_to_8023(qdf_nbuf_t nbuf, uint16_t hdrsize)
  752. {
  753. struct llc_snap_hdr_t *llchdr;
  754. struct ethernet_hdr_t *eth_hdr;
  755. uint8_t ether_type[2];
  756. uint16_t fc = 0;
  757. union dp_align_mac_addr mac_addr;
  758. uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
  759. if (rx_desc_info == NULL) {
  760. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  761. "%s: Memory alloc failed ! \n", __func__);
  762. QDF_ASSERT(0);
  763. return;
  764. }
  765. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
  766. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  767. RX_PKT_TLVS_LEN + hdrsize);
  768. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  769. qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
  770. sizeof(struct llc_snap_hdr_t) -
  771. sizeof(struct ethernet_hdr_t)));
  772. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  773. if (hal_rx_get_mpdu_frame_control_valid(rx_desc_info))
  774. fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
  775. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  776. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  777. "%s: frame control type: 0x%x", __func__, fc);
  778. case IEEE80211_FC1_DIR_NODS:
  779. hal_rx_mpdu_get_addr1(rx_desc_info,
  780. &mac_addr.raw[0]);
  781. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  782. IEEE80211_ADDR_LEN);
  783. hal_rx_mpdu_get_addr2(rx_desc_info,
  784. &mac_addr.raw[0]);
  785. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  786. IEEE80211_ADDR_LEN);
  787. break;
  788. case IEEE80211_FC1_DIR_TODS:
  789. hal_rx_mpdu_get_addr3(rx_desc_info,
  790. &mac_addr.raw[0]);
  791. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  792. IEEE80211_ADDR_LEN);
  793. hal_rx_mpdu_get_addr2(rx_desc_info,
  794. &mac_addr.raw[0]);
  795. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  796. IEEE80211_ADDR_LEN);
  797. break;
  798. case IEEE80211_FC1_DIR_FROMDS:
  799. hal_rx_mpdu_get_addr1(rx_desc_info,
  800. &mac_addr.raw[0]);
  801. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  802. IEEE80211_ADDR_LEN);
  803. hal_rx_mpdu_get_addr3(rx_desc_info,
  804. &mac_addr.raw[0]);
  805. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  806. IEEE80211_ADDR_LEN);
  807. break;
  808. case IEEE80211_FC1_DIR_DSTODS:
  809. hal_rx_mpdu_get_addr3(rx_desc_info,
  810. &mac_addr.raw[0]);
  811. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  812. IEEE80211_ADDR_LEN);
  813. hal_rx_mpdu_get_addr4(rx_desc_info,
  814. &mac_addr.raw[0]);
  815. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  816. IEEE80211_ADDR_LEN);
  817. break;
  818. default:
  819. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  820. "%s: Unknown frame control type: 0x%x", __func__, fc);
  821. }
  822. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  823. sizeof(ether_type));
  824. qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
  825. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
  826. qdf_mem_free(rx_desc_info);
  827. }
  828. /*
  829. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  830. * @peer: Pointer to the peer
  831. * @tid: Transmit Identifier
  832. * @head: Buffer to be reinjected back
  833. *
  834. * Reinject the fragment chain back into REO
  835. *
  836. * Returns: QDF_STATUS
  837. */
  838. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  839. unsigned tid, qdf_nbuf_t head)
  840. {
  841. struct dp_pdev *pdev = peer->vdev->pdev;
  842. struct dp_soc *soc = pdev->soc;
  843. struct hal_buf_info buf_info;
  844. void *link_desc_va;
  845. void *msdu0, *msdu_desc_info;
  846. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  847. void *dst_mpdu_desc_info, *dst_qdesc_addr;
  848. qdf_dma_addr_t paddr;
  849. uint32_t nbuf_len, seq_no, dst_ind;
  850. uint32_t *mpdu_wrd;
  851. uint32_t ret, cookie;
  852. void *dst_ring_desc =
  853. peer->rx_tid[tid].dst_ring_desc;
  854. void *hal_srng = soc->reo_reinject_ring.hal_srng;
  855. hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
  856. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  857. qdf_assert(link_desc_va);
  858. msdu0 = (uint8_t *)link_desc_va +
  859. RX_MSDU_LINK_8_RX_MSDU_DETAILS_MSDU_0_OFFSET;
  860. nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
  861. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  862. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  863. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  864. /* msdu reconfig */
  865. msdu_desc_info = (uint8_t *)msdu0 +
  866. RX_MSDU_DETAILS_2_RX_MSDU_DESC_INFO_RX_MSDU_DESC_INFO_DETAILS_OFFSET;
  867. dst_ind = hal_rx_msdu_reo_dst_ind_get(link_desc_va);
  868. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  869. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  870. FIRST_MSDU_IN_MPDU_FLAG, 1);
  871. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  872. LAST_MSDU_IN_MPDU_FLAG, 1);
  873. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  874. MSDU_CONTINUATION, 0x0);
  875. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  876. REO_DESTINATION_INDICATION, dst_ind);
  877. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  878. MSDU_LENGTH, nbuf_len);
  879. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  880. SA_IS_VALID, 1);
  881. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  882. DA_IS_VALID, 1);
  883. /* change RX TLV's */
  884. hal_rx_msdu_start_msdu_len_set(
  885. qdf_nbuf_data(head), nbuf_len);
  886. cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
  887. /* map the nbuf before reinject it into HW */
  888. ret = qdf_nbuf_map_single(soc->osdev, head,
  889. QDF_DMA_BIDIRECTIONAL);
  890. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  891. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  892. "%s: nbuf map failed !\n", __func__);
  893. qdf_nbuf_free(head);
  894. return QDF_STATUS_E_FAILURE;
  895. }
  896. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  897. ret = check_x86_paddr(soc, &head, &paddr, pdev);
  898. if (ret == QDF_STATUS_E_FAILURE) {
  899. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  900. "%s: x86 check failed !\n", __func__);
  901. return QDF_STATUS_E_FAILURE;
  902. }
  903. hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_WBM2SW_RBM);
  904. /* Lets fill entrance ring now !!! */
  905. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  906. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  907. "HAL RING Access For REO entrance SRNG Failed: %pK",
  908. hal_srng);
  909. return QDF_STATUS_E_FAILURE;
  910. }
  911. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  912. qdf_assert(ent_ring_desc);
  913. paddr = (uint64_t)buf_info.paddr;
  914. /* buf addr */
  915. hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
  916. buf_info.sw_cookie,
  917. HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
  918. /* mpdu desc info */
  919. ent_mpdu_desc_info = (uint8_t *)ent_ring_desc +
  920. RX_MPDU_DETAILS_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
  921. dst_mpdu_desc_info = (uint8_t *)dst_ring_desc +
  922. REO_DESTINATION_RING_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
  923. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  924. sizeof(struct rx_mpdu_desc_info));
  925. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  926. mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
  927. seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
  928. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  929. MSDU_COUNT, 0x1);
  930. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  931. MPDU_SEQUENCE_NUMBER, seq_no);
  932. /* unset frag bit */
  933. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  934. FRAGMENT_FLAG, 0x0);
  935. /* set sa/da valid bits */
  936. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  937. SA_IS_VALID, 0x1);
  938. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  939. DA_IS_VALID, 0x1);
  940. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  941. RAW_MPDU, 0x0);
  942. /* qdesc addr */
  943. ent_qdesc_addr = (uint8_t *)ent_ring_desc +
  944. REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  945. dst_qdesc_addr = (uint8_t *)dst_ring_desc +
  946. REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  947. qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
  948. HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
  949. REO_DESTINATION_INDICATION, dst_ind);
  950. hal_srng_access_end(soc->hal_soc, hal_srng);
  951. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  952. "%s: reinjection done !\n", __func__);
  953. return QDF_STATUS_SUCCESS;
  954. }
  955. /*
  956. * dp_rx_defrag(): Defragment the fragment chain
  957. * @peer: Pointer to the peer
  958. * @tid: Transmit Identifier
  959. * @frag_list_head: Pointer to head list
  960. * @frag_list_tail: Pointer to tail list
  961. *
  962. * Defragment the fragment chain
  963. *
  964. * Returns: QDF_STATUS
  965. */
  966. static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
  967. qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
  968. {
  969. qdf_nbuf_t tmp_next, prev;
  970. qdf_nbuf_t cur = frag_list_head, msdu;
  971. uint32_t index, tkip_demic = 0;
  972. uint16_t hdr_space;
  973. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  974. struct dp_vdev *vdev = peer->vdev;
  975. struct dp_soc *soc = vdev->pdev->soc;
  976. uint8_t status = 0;
  977. hdr_space = dp_rx_defrag_hdrsize(cur);
  978. index = hal_rx_msdu_is_wlan_mcast(cur) ?
  979. dp_sec_mcast : dp_sec_ucast;
  980. /* Remove FCS from all fragments */
  981. while (cur) {
  982. tmp_next = qdf_nbuf_next(cur);
  983. qdf_nbuf_set_next(cur, NULL);
  984. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  985. prev = cur;
  986. qdf_nbuf_set_next(cur, tmp_next);
  987. cur = tmp_next;
  988. }
  989. cur = frag_list_head;
  990. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  991. "%s: index %d Security type: %d\n", __func__,
  992. index, peer->security[index].sec_type);
  993. switch (peer->security[index].sec_type) {
  994. case htt_sec_type_tkip:
  995. tkip_demic = 1;
  996. case htt_sec_type_tkip_nomic:
  997. while (cur) {
  998. tmp_next = qdf_nbuf_next(cur);
  999. if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
  1000. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1001. QDF_TRACE_LEVEL_ERROR,
  1002. "dp_rx_defrag: TKIP decap failed");
  1003. return QDF_STATUS_E_DEFRAG_ERROR;
  1004. }
  1005. cur = tmp_next;
  1006. }
  1007. /* If success, increment header to be stripped later */
  1008. hdr_space += dp_f_tkip.ic_header;
  1009. break;
  1010. case htt_sec_type_aes_ccmp:
  1011. while (cur) {
  1012. tmp_next = qdf_nbuf_next(cur);
  1013. if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
  1014. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1015. QDF_TRACE_LEVEL_ERROR,
  1016. "dp_rx_defrag: CCMP demic failed");
  1017. return QDF_STATUS_E_DEFRAG_ERROR;
  1018. }
  1019. if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
  1020. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1021. QDF_TRACE_LEVEL_ERROR,
  1022. "dp_rx_defrag: CCMP decap failed");
  1023. return QDF_STATUS_E_DEFRAG_ERROR;
  1024. }
  1025. cur = tmp_next;
  1026. }
  1027. /* If success, increment header to be stripped later */
  1028. hdr_space += dp_f_ccmp.ic_header;
  1029. break;
  1030. case htt_sec_type_wep40:
  1031. case htt_sec_type_wep104:
  1032. case htt_sec_type_wep128:
  1033. while (cur) {
  1034. tmp_next = qdf_nbuf_next(cur);
  1035. if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
  1036. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1037. QDF_TRACE_LEVEL_ERROR,
  1038. "dp_rx_defrag: WEP decap failed");
  1039. return QDF_STATUS_E_DEFRAG_ERROR;
  1040. }
  1041. cur = tmp_next;
  1042. }
  1043. /* If success, increment header to be stripped later */
  1044. hdr_space += dp_f_wep.ic_header;
  1045. break;
  1046. default:
  1047. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1048. QDF_TRACE_LEVEL_ERROR,
  1049. "dp_rx_defrag: Did not match any security type");
  1050. break;
  1051. }
  1052. if (tkip_demic) {
  1053. msdu = frag_list_head;
  1054. if (soc->cdp_soc.ol_ops->rx_frag_tkip_demic) {
  1055. status = soc->cdp_soc.ol_ops->rx_frag_tkip_demic(
  1056. (void *)peer->ctrl_peer, msdu, hdr_space);
  1057. } else {
  1058. qdf_mem_copy(key,
  1059. &peer->security[index].michael_key[0],
  1060. IEEE80211_WEP_MICLEN);
  1061. status = dp_rx_defrag_tkip_demic(key, msdu,
  1062. RX_PKT_TLVS_LEN +
  1063. hdr_space);
  1064. if (status) {
  1065. dp_rx_defrag_err(vdev, frag_list_head);
  1066. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1067. QDF_TRACE_LEVEL_ERROR,
  1068. "%s: TKIP demic failed status %d\n",
  1069. __func__, status);
  1070. return QDF_STATUS_E_DEFRAG_ERROR;
  1071. }
  1072. }
  1073. }
  1074. /* Convert the header to 802.3 header */
  1075. dp_rx_defrag_nwifi_to_8023(frag_list_head, hdr_space);
  1076. dp_rx_construct_fraglist(peer, frag_list_head, hdr_space);
  1077. return QDF_STATUS_SUCCESS;
  1078. }
  1079. /*
  1080. * dp_rx_defrag_cleanup(): Clean up activities
  1081. * @peer: Pointer to the peer
  1082. * @tid: Transmit Identifier
  1083. *
  1084. * Returns: None
  1085. */
  1086. void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
  1087. {
  1088. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1089. peer->rx_tid[tid].array;
  1090. if (!rx_reorder_array_elem) {
  1091. /*
  1092. * if this condition is hit then somebody
  1093. * must have reset this pointer to NULL.
  1094. * array pointer usually points to base variable
  1095. * of TID queue structure: "struct dp_rx_tid"
  1096. */
  1097. QDF_ASSERT(0);
  1098. return;
  1099. }
  1100. /* Free up nbufs */
  1101. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1102. /* Free up saved ring descriptors */
  1103. dp_rx_clear_saved_desc_info(peer, tid);
  1104. rx_reorder_array_elem->head = NULL;
  1105. rx_reorder_array_elem->tail = NULL;
  1106. peer->rx_tid[tid].defrag_timeout_ms = 0;
  1107. peer->rx_tid[tid].curr_frag_num = 0;
  1108. peer->rx_tid[tid].curr_seq_num = 0;
  1109. peer->rx_tid[tid].head_frag_desc = NULL;
  1110. }
  1111. /*
  1112. * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
  1113. * @ring_desc: Pointer to the dst ring descriptor
  1114. * @peer: Pointer to the peer
  1115. * @tid: Transmit Identifier
  1116. *
  1117. * Returns: None
  1118. */
  1119. static QDF_STATUS dp_rx_defrag_save_info_from_ring_desc(void *ring_desc,
  1120. struct dp_rx_desc *rx_desc, struct dp_peer *peer, unsigned tid)
  1121. {
  1122. void *dst_ring_desc = qdf_mem_malloc(
  1123. sizeof(struct reo_destination_ring));
  1124. if (dst_ring_desc == NULL) {
  1125. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1126. "%s: Memory alloc failed !\n", __func__);
  1127. QDF_ASSERT(0);
  1128. return QDF_STATUS_E_NOMEM;
  1129. }
  1130. qdf_mem_copy(dst_ring_desc, ring_desc,
  1131. sizeof(struct reo_destination_ring));
  1132. peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1133. peer->rx_tid[tid].head_frag_desc = rx_desc;
  1134. return QDF_STATUS_SUCCESS;
  1135. }
  1136. /*
  1137. * dp_rx_defrag_store_fragment(): Store incoming fragments
  1138. * @soc: Pointer to the SOC data structure
  1139. * @ring_desc: Pointer to the ring descriptor
  1140. * @mpdu_desc_info: MPDU descriptor info
  1141. * @tid: Traffic Identifier
  1142. * @rx_desc: Pointer to rx descriptor
  1143. * @rx_bfs: Number of bfs consumed
  1144. *
  1145. * Returns: QDF_STATUS
  1146. */
  1147. static QDF_STATUS dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1148. void *ring_desc,
  1149. union dp_rx_desc_list_elem_t **head,
  1150. union dp_rx_desc_list_elem_t **tail,
  1151. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1152. unsigned tid, struct dp_rx_desc *rx_desc,
  1153. uint32_t *rx_bfs)
  1154. {
  1155. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1156. struct dp_pdev *pdev;
  1157. struct dp_peer *peer;
  1158. uint16_t peer_id;
  1159. uint8_t fragno, more_frag, all_frag_present = 0;
  1160. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1161. QDF_STATUS status;
  1162. struct dp_rx_tid *rx_tid;
  1163. uint8_t mpdu_sequence_control_valid;
  1164. uint8_t mpdu_frame_control_valid;
  1165. qdf_nbuf_t frag = rx_desc->nbuf;
  1166. /* Check if the packet is from a valid peer */
  1167. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1168. mpdu_desc_info->peer_meta_data);
  1169. peer = dp_peer_find_by_id(soc, peer_id);
  1170. if (!peer) {
  1171. /* We should not receive anything from unknown peer
  1172. * however, that might happen while we are in the monitor mode.
  1173. * We don't need to handle that here
  1174. */
  1175. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1176. "Unknown peer, dropping the fragment");
  1177. qdf_nbuf_free(frag);
  1178. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1179. *rx_bfs = 1;
  1180. return QDF_STATUS_E_DEFRAG_ERROR;
  1181. }
  1182. pdev = peer->vdev->pdev;
  1183. rx_tid = &peer->rx_tid[tid];
  1184. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1185. mpdu_sequence_control_valid =
  1186. hal_rx_get_mpdu_sequence_control_valid(rx_desc->rx_buf_start);
  1187. /* Invalid MPDU sequence control field, MPDU is of no use */
  1188. if (!mpdu_sequence_control_valid) {
  1189. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1190. "Invalid MPDU seq control field, dropping MPDU");
  1191. qdf_nbuf_free(frag);
  1192. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1193. *rx_bfs = 1;
  1194. qdf_assert(0);
  1195. goto end;
  1196. }
  1197. mpdu_frame_control_valid =
  1198. hal_rx_get_mpdu_frame_control_valid(rx_desc->rx_buf_start);
  1199. /* Invalid frame control field */
  1200. if (!mpdu_frame_control_valid) {
  1201. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1202. "Invalid frame control field, dropping MPDU");
  1203. qdf_nbuf_free(frag);
  1204. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1205. *rx_bfs = 1;
  1206. qdf_assert(0);
  1207. goto end;
  1208. }
  1209. /* Current mpdu sequence */
  1210. more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
  1211. /* HW does not populate the fragment number as of now
  1212. * need to get from the 802.11 header
  1213. */
  1214. fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
  1215. /*
  1216. * !more_frag: no more fragments to be delivered
  1217. * !frag_no: packet is not fragmented
  1218. * !rx_reorder_array_elem->head: no saved fragments so far
  1219. */
  1220. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1221. /* We should not get into this situation here.
  1222. * It means an unfragmented packet with fragment flag
  1223. * is delivered over the REO exception ring.
  1224. * Typically it follows normal rx path.
  1225. */
  1226. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1227. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1228. qdf_nbuf_free(frag);
  1229. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1230. *rx_bfs = 1;
  1231. qdf_assert(0);
  1232. goto end;
  1233. }
  1234. /* Check if the fragment is for the same sequence or a different one */
  1235. if (rx_reorder_array_elem->head) {
  1236. if (rxseq != rx_tid->curr_seq_num) {
  1237. /* Drop stored fragments if out of sequence
  1238. * fragment is received
  1239. */
  1240. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1241. rx_reorder_array_elem->head = NULL;
  1242. rx_reorder_array_elem->tail = NULL;
  1243. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1244. "%s mismatch, dropping earlier sequence ",
  1245. (rxseq == rx_tid->curr_seq_num)
  1246. ? "address"
  1247. : "seq number");
  1248. /*
  1249. * The sequence number for this fragment becomes the
  1250. * new sequence number to be processed
  1251. */
  1252. rx_tid->curr_seq_num = rxseq;
  1253. }
  1254. } else {
  1255. /* Start of a new sequence */
  1256. dp_rx_defrag_cleanup(peer, tid);
  1257. rx_tid->curr_seq_num = rxseq;
  1258. }
  1259. /*
  1260. * If the earlier sequence was dropped, this will be the fresh start.
  1261. * Else, continue with next fragment in a given sequence
  1262. */
  1263. status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
  1264. &rx_reorder_array_elem->tail, frag,
  1265. &all_frag_present);
  1266. /*
  1267. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1268. * packet sequence has more than 6 MSDUs for some reason, we will
  1269. * have to use the next MSDU link descriptor and chain them together
  1270. * before reinjection
  1271. */
  1272. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1273. (rx_reorder_array_elem->head == frag)) {
  1274. status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
  1275. rx_desc, peer, tid);
  1276. if (status != QDF_STATUS_SUCCESS) {
  1277. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1278. "%s: Unable to store ring desc !\n", __func__);
  1279. goto end;
  1280. }
  1281. } else {
  1282. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1283. *rx_bfs = 1;
  1284. /* Return the non-head link desc */
  1285. if (dp_rx_link_desc_return(soc, ring_desc,
  1286. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1287. QDF_STATUS_SUCCESS)
  1288. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1289. "%s: Failed to return link desc\n",
  1290. __func__);
  1291. }
  1292. if (pdev->soc->rx.flags.defrag_timeout_check)
  1293. dp_rx_defrag_waitlist_remove(peer, tid);
  1294. /* Yet to receive more fragments for this sequence number */
  1295. if (!all_frag_present) {
  1296. uint32_t now_ms =
  1297. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1298. peer->rx_tid[tid].defrag_timeout_ms =
  1299. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1300. dp_rx_defrag_waitlist_add(peer, tid);
  1301. return QDF_STATUS_SUCCESS;
  1302. }
  1303. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1304. "All fragments received for sequence: %d", rxseq);
  1305. /* Process the fragments */
  1306. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1307. rx_reorder_array_elem->tail);
  1308. if (QDF_IS_STATUS_ERROR(status)) {
  1309. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1310. "Fragment processing failed");
  1311. dp_rx_add_to_free_desc_list(head, tail,
  1312. peer->rx_tid[tid].head_frag_desc);
  1313. *rx_bfs = 1;
  1314. if (dp_rx_link_desc_return(soc,
  1315. peer->rx_tid[tid].dst_ring_desc,
  1316. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1317. QDF_STATUS_SUCCESS)
  1318. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1319. "%s: Failed to return link desc\n",
  1320. __func__);
  1321. dp_rx_defrag_cleanup(peer, tid);
  1322. goto end;
  1323. }
  1324. /* Re-inject the fragments back to REO for further processing */
  1325. status = dp_rx_defrag_reo_reinject(peer, tid,
  1326. rx_reorder_array_elem->head);
  1327. if (QDF_IS_STATUS_SUCCESS(status)) {
  1328. rx_reorder_array_elem->head = NULL;
  1329. rx_reorder_array_elem->tail = NULL;
  1330. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1331. "Fragmented sequence successfully reinjected");
  1332. } else {
  1333. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1334. "Fragmented sequence reinjection failed");
  1335. dp_rx_return_head_frag_desc(peer, tid);
  1336. }
  1337. dp_rx_defrag_cleanup(peer, tid);
  1338. return QDF_STATUS_SUCCESS;
  1339. end:
  1340. return QDF_STATUS_E_DEFRAG_ERROR;
  1341. }
  1342. /**
  1343. * dp_rx_frag_handle() - Handles fragmented Rx frames
  1344. *
  1345. * @soc: core txrx main context
  1346. * @ring_desc: opaque pointer to the REO error ring descriptor
  1347. * @mpdu_desc_info: MPDU descriptor information from ring descriptor
  1348. * @head: head of the local descriptor free-list
  1349. * @tail: tail of the local descriptor free-list
  1350. * @quota: No. of units (packets) that can be serviced in one shot.
  1351. *
  1352. * This function implements RX 802.11 fragmentation handling
  1353. * The handling is mostly same as legacy fragmentation handling.
  1354. * If required, this function can re-inject the frames back to
  1355. * REO ring (with proper setting to by-pass fragmentation check
  1356. * but use duplicate detection / re-ordering and routing these frames
  1357. * to a different core.
  1358. *
  1359. * Return: uint32_t: No. of elements processed
  1360. */
  1361. uint32_t dp_rx_frag_handle(struct dp_soc *soc, void *ring_desc,
  1362. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1363. union dp_rx_desc_list_elem_t **head,
  1364. union dp_rx_desc_list_elem_t **tail,
  1365. uint32_t quota)
  1366. {
  1367. uint32_t rx_bufs_used = 0;
  1368. void *link_desc_va;
  1369. struct hal_buf_info buf_info;
  1370. struct hal_rx_msdu_list msdu_list; /* per MPDU list of MSDUs */
  1371. qdf_nbuf_t msdu = NULL;
  1372. uint32_t tid, msdu_len;
  1373. int idx, rx_bfs = 0;
  1374. QDF_STATUS status;
  1375. qdf_assert(soc);
  1376. qdf_assert(mpdu_desc_info);
  1377. /* Fragment from a valid peer */
  1378. hal_rx_reo_buf_paddr_get(ring_desc, &buf_info);
  1379. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  1380. qdf_assert(link_desc_va);
  1381. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  1382. "Number of MSDUs to process, num_msdus: %d",
  1383. mpdu_desc_info->msdu_count);
  1384. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1385. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1386. "Not sufficient MSDUs to process");
  1387. return rx_bufs_used;
  1388. }
  1389. /* Get msdu_list for the given MPDU */
  1390. hal_rx_msdu_list_get(link_desc_va, &msdu_list,
  1391. &mpdu_desc_info->msdu_count);
  1392. /* Process all MSDUs in the current MPDU */
  1393. for (idx = 0; (idx < mpdu_desc_info->msdu_count) && quota--; idx++) {
  1394. struct dp_rx_desc *rx_desc =
  1395. dp_rx_cookie_2_va_rxdma_buf(soc,
  1396. msdu_list.sw_cookie[idx]);
  1397. qdf_assert(rx_desc);
  1398. msdu = rx_desc->nbuf;
  1399. qdf_nbuf_unmap_single(soc->osdev, msdu,
  1400. QDF_DMA_BIDIRECTIONAL);
  1401. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1402. msdu_len = hal_rx_msdu_start_msdu_len_get(
  1403. rx_desc->rx_buf_start);
  1404. qdf_nbuf_set_pktlen(msdu, (msdu_len + RX_PKT_TLVS_LEN));
  1405. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc,
  1406. rx_desc->rx_buf_start);
  1407. /* Process fragment-by-fragment */
  1408. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1409. head, tail, mpdu_desc_info,
  1410. tid, rx_desc, &rx_bfs);
  1411. if (rx_bfs)
  1412. rx_bufs_used++;
  1413. if (!QDF_IS_STATUS_SUCCESS(status)) {
  1414. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1415. "Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1416. mpdu_desc_info->mpdu_seq,
  1417. mpdu_desc_info->msdu_count,
  1418. mpdu_desc_info->mpdu_flags);
  1419. /* No point in processing rest of the fragments */
  1420. break;
  1421. }
  1422. }
  1423. return rx_bufs_used;
  1424. }
  1425. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1426. struct dp_peer *peer, uint16_t tid,
  1427. uint16_t rxseq, qdf_nbuf_t nbuf)
  1428. {
  1429. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1430. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1431. uint8_t all_frag_present;
  1432. uint32_t msdu_len;
  1433. QDF_STATUS status;
  1434. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1435. if (rx_reorder_array_elem->head &&
  1436. rxseq != rx_tid->curr_seq_num) {
  1437. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1438. "%s: No list found for TID %d Seq# %d\n",
  1439. __func__, tid, rxseq);
  1440. qdf_nbuf_free(nbuf);
  1441. goto fail;
  1442. }
  1443. msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
  1444. qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
  1445. status = dp_rx_defrag_fraglist_insert(peer, tid,
  1446. &rx_reorder_array_elem->head,
  1447. &rx_reorder_array_elem->tail, nbuf,
  1448. &all_frag_present);
  1449. if (QDF_IS_STATUS_ERROR(status)) {
  1450. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1451. "%s Fragment insert failed\n", __func__);
  1452. goto fail;
  1453. }
  1454. if (soc->rx.flags.defrag_timeout_check)
  1455. dp_rx_defrag_waitlist_remove(peer, tid);
  1456. if (!all_frag_present) {
  1457. uint32_t now_ms =
  1458. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1459. peer->rx_tid[tid].defrag_timeout_ms =
  1460. now_ms + soc->rx.defrag.timeout_ms;
  1461. dp_rx_defrag_waitlist_add(peer, tid);
  1462. return QDF_STATUS_SUCCESS;
  1463. }
  1464. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1465. rx_reorder_array_elem->tail);
  1466. if (QDF_IS_STATUS_ERROR(status)) {
  1467. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1468. "%s Fragment processing failed\n", __func__);
  1469. dp_rx_return_head_frag_desc(peer, tid);
  1470. dp_rx_defrag_cleanup(peer, tid);
  1471. goto fail;
  1472. }
  1473. /* Re-inject the fragments back to REO for further processing */
  1474. status = dp_rx_defrag_reo_reinject(peer, tid,
  1475. rx_reorder_array_elem->head);
  1476. if (QDF_IS_STATUS_SUCCESS(status)) {
  1477. rx_reorder_array_elem->head = NULL;
  1478. rx_reorder_array_elem->tail = NULL;
  1479. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1480. "%s: Frag seq successfully reinjected\n",
  1481. __func__);
  1482. } else {
  1483. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1484. "%s: Frag seq reinjection failed\n",
  1485. __func__);
  1486. dp_rx_return_head_frag_desc(peer, tid);
  1487. }
  1488. dp_rx_defrag_cleanup(peer, tid);
  1489. return QDF_STATUS_SUCCESS;
  1490. fail:
  1491. return QDF_STATUS_E_DEFRAG_ERROR;
  1492. }