dp_peer.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553
  1. /*
  2. * Copyright (c) 2016-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include <qdf_types.h>
  19. #include <qdf_lock.h>
  20. #include <hal_hw_headers.h>
  21. #include "dp_htt.h"
  22. #include "dp_types.h"
  23. #include "dp_internal.h"
  24. #include "dp_peer.h"
  25. #include "dp_rx_defrag.h"
  26. #include <hal_api.h>
  27. #include <hal_reo.h>
  28. #ifdef CONFIG_MCL
  29. #include <cds_ieee80211_common.h>
  30. #include <cds_api.h>
  31. #endif
  32. #include <cdp_txrx_handle.h>
  33. #include <wlan_cfg.h>
  34. #ifdef DP_LFR
  35. static inline void
  36. dp_set_ssn_valid_flag(struct hal_reo_cmd_params *params,
  37. uint8_t valid)
  38. {
  39. params->u.upd_queue_params.update_svld = 1;
  40. params->u.upd_queue_params.svld = valid;
  41. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  42. "%s: Setting SSN valid bit to %d\n",
  43. __func__, valid);
  44. }
  45. #else
  46. static inline void
  47. dp_set_ssn_valid_flag(struct hal_reo_cmd_params *params,
  48. uint8_t valid) {};
  49. #endif
  50. static inline int dp_peer_find_mac_addr_cmp(
  51. union dp_align_mac_addr *mac_addr1,
  52. union dp_align_mac_addr *mac_addr2)
  53. {
  54. return !((mac_addr1->align4.bytes_abcd == mac_addr2->align4.bytes_abcd)
  55. /*
  56. * Intentionally use & rather than &&.
  57. * because the operands are binary rather than generic boolean,
  58. * the functionality is equivalent.
  59. * Using && has the advantage of short-circuited evaluation,
  60. * but using & has the advantage of no conditional branching,
  61. * which is a more significant benefit.
  62. */
  63. &
  64. (mac_addr1->align4.bytes_ef == mac_addr2->align4.bytes_ef));
  65. }
  66. static int dp_peer_find_map_attach(struct dp_soc *soc)
  67. {
  68. uint32_t max_peers, peer_map_size;
  69. max_peers = soc->max_peers;
  70. /* allocate the peer ID -> peer object map */
  71. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  72. "\n<=== cfg max peer id %d ====>\n", max_peers);
  73. peer_map_size = max_peers * sizeof(soc->peer_id_to_obj_map[0]);
  74. soc->peer_id_to_obj_map = qdf_mem_malloc(peer_map_size);
  75. if (!soc->peer_id_to_obj_map) {
  76. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  77. "%s: peer map memory allocation failed\n", __func__);
  78. return QDF_STATUS_E_NOMEM;
  79. }
  80. /*
  81. * The peer_id_to_obj_map doesn't really need to be initialized,
  82. * since elements are only used after they have been individually
  83. * initialized.
  84. * However, it is convenient for debugging to have all elements
  85. * that are not in use set to 0.
  86. */
  87. qdf_mem_zero(soc->peer_id_to_obj_map, peer_map_size);
  88. return 0; /* success */
  89. }
  90. static int dp_log2_ceil(unsigned value)
  91. {
  92. unsigned tmp = value;
  93. int log2 = -1;
  94. while (tmp) {
  95. log2++;
  96. tmp >>= 1;
  97. }
  98. if (1 << log2 != value)
  99. log2++;
  100. return log2;
  101. }
  102. static int dp_peer_find_add_id_to_obj(
  103. struct dp_peer *peer,
  104. uint16_t peer_id)
  105. {
  106. int i;
  107. for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++) {
  108. if (peer->peer_ids[i] == HTT_INVALID_PEER) {
  109. peer->peer_ids[i] = peer_id;
  110. return 0; /* success */
  111. }
  112. }
  113. return QDF_STATUS_E_FAILURE; /* failure */
  114. }
  115. #define DP_PEER_HASH_LOAD_MULT 2
  116. #define DP_PEER_HASH_LOAD_SHIFT 0
  117. #define DP_AST_HASH_LOAD_MULT 2
  118. #define DP_AST_HASH_LOAD_SHIFT 0
  119. static int dp_peer_find_hash_attach(struct dp_soc *soc)
  120. {
  121. int i, hash_elems, log2;
  122. /* allocate the peer MAC address -> peer object hash table */
  123. hash_elems = soc->max_peers;
  124. hash_elems *= DP_PEER_HASH_LOAD_MULT;
  125. hash_elems >>= DP_PEER_HASH_LOAD_SHIFT;
  126. log2 = dp_log2_ceil(hash_elems);
  127. hash_elems = 1 << log2;
  128. soc->peer_hash.mask = hash_elems - 1;
  129. soc->peer_hash.idx_bits = log2;
  130. /* allocate an array of TAILQ peer object lists */
  131. soc->peer_hash.bins = qdf_mem_malloc(
  132. hash_elems * sizeof(TAILQ_HEAD(anonymous_tail_q, dp_peer)));
  133. if (!soc->peer_hash.bins)
  134. return QDF_STATUS_E_NOMEM;
  135. for (i = 0; i < hash_elems; i++)
  136. TAILQ_INIT(&soc->peer_hash.bins[i]);
  137. return 0;
  138. }
  139. static void dp_peer_find_hash_detach(struct dp_soc *soc)
  140. {
  141. qdf_mem_free(soc->peer_hash.bins);
  142. }
  143. static inline unsigned dp_peer_find_hash_index(struct dp_soc *soc,
  144. union dp_align_mac_addr *mac_addr)
  145. {
  146. unsigned index;
  147. index =
  148. mac_addr->align2.bytes_ab ^
  149. mac_addr->align2.bytes_cd ^
  150. mac_addr->align2.bytes_ef;
  151. index ^= index >> soc->peer_hash.idx_bits;
  152. index &= soc->peer_hash.mask;
  153. return index;
  154. }
  155. void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer)
  156. {
  157. unsigned index;
  158. index = dp_peer_find_hash_index(soc, &peer->mac_addr);
  159. qdf_spin_lock_bh(&soc->peer_ref_mutex);
  160. /*
  161. * It is important to add the new peer at the tail of the peer list
  162. * with the bin index. Together with having the hash_find function
  163. * search from head to tail, this ensures that if two entries with
  164. * the same MAC address are stored, the one added first will be
  165. * found first.
  166. */
  167. TAILQ_INSERT_TAIL(&soc->peer_hash.bins[index], peer, hash_list_elem);
  168. qdf_spin_unlock_bh(&soc->peer_ref_mutex);
  169. }
  170. #ifdef FEATURE_AST
  171. /*
  172. * dp_peer_ast_hash_attach() - Allocate and initialize AST Hash Table
  173. * @soc: SoC handle
  174. *
  175. * Return: None
  176. */
  177. static int dp_peer_ast_hash_attach(struct dp_soc *soc)
  178. {
  179. int i, hash_elems, log2;
  180. hash_elems = ((soc->max_peers * DP_AST_HASH_LOAD_MULT) >>
  181. DP_AST_HASH_LOAD_SHIFT);
  182. log2 = dp_log2_ceil(hash_elems);
  183. hash_elems = 1 << log2;
  184. soc->ast_hash.mask = hash_elems - 1;
  185. soc->ast_hash.idx_bits = log2;
  186. /* allocate an array of TAILQ peer object lists */
  187. soc->ast_hash.bins = qdf_mem_malloc(
  188. hash_elems * sizeof(TAILQ_HEAD(anonymous_tail_q,
  189. dp_ast_entry)));
  190. if (!soc->ast_hash.bins)
  191. return QDF_STATUS_E_NOMEM;
  192. for (i = 0; i < hash_elems; i++)
  193. TAILQ_INIT(&soc->ast_hash.bins[i]);
  194. return 0;
  195. }
  196. /*
  197. * dp_peer_ast_hash_detach() - Free AST Hash table
  198. * @soc: SoC handle
  199. *
  200. * Return: None
  201. */
  202. static void dp_peer_ast_hash_detach(struct dp_soc *soc)
  203. {
  204. qdf_mem_free(soc->ast_hash.bins);
  205. }
  206. /*
  207. * dp_peer_ast_hash_index() - Compute the AST hash from MAC address
  208. * @soc: SoC handle
  209. *
  210. * Return: AST hash
  211. */
  212. static inline uint32_t dp_peer_ast_hash_index(struct dp_soc *soc,
  213. union dp_align_mac_addr *mac_addr)
  214. {
  215. uint32_t index;
  216. index =
  217. mac_addr->align2.bytes_ab ^
  218. mac_addr->align2.bytes_cd ^
  219. mac_addr->align2.bytes_ef;
  220. index ^= index >> soc->ast_hash.idx_bits;
  221. index &= soc->ast_hash.mask;
  222. return index;
  223. }
  224. /*
  225. * dp_peer_ast_hash_add() - Add AST entry into hash table
  226. * @soc: SoC handle
  227. *
  228. * This function adds the AST entry into SoC AST hash table
  229. * It assumes caller has taken the ast lock to protect the access to this table
  230. *
  231. * Return: None
  232. */
  233. static inline void dp_peer_ast_hash_add(struct dp_soc *soc,
  234. struct dp_ast_entry *ase)
  235. {
  236. uint32_t index;
  237. index = dp_peer_ast_hash_index(soc, &ase->mac_addr);
  238. TAILQ_INSERT_TAIL(&soc->ast_hash.bins[index], ase, hash_list_elem);
  239. }
  240. /*
  241. * dp_peer_ast_hash_remove() - Look up and remove AST entry from hash table
  242. * @soc: SoC handle
  243. *
  244. * This function removes the AST entry from soc AST hash table
  245. * It assumes caller has taken the ast lock to protect the access to this table
  246. *
  247. * Return: None
  248. */
  249. static inline void dp_peer_ast_hash_remove(struct dp_soc *soc,
  250. struct dp_ast_entry *ase)
  251. {
  252. unsigned index;
  253. struct dp_ast_entry *tmpase;
  254. int found = 0;
  255. index = dp_peer_ast_hash_index(soc, &ase->mac_addr);
  256. /* Check if tail is not empty before delete*/
  257. QDF_ASSERT(!TAILQ_EMPTY(&soc->ast_hash.bins[index]));
  258. TAILQ_FOREACH(tmpase, &soc->ast_hash.bins[index], hash_list_elem) {
  259. if (tmpase == ase) {
  260. found = 1;
  261. break;
  262. }
  263. }
  264. QDF_ASSERT(found);
  265. TAILQ_REMOVE(&soc->ast_hash.bins[index], ase, hash_list_elem);
  266. }
  267. /*
  268. * dp_peer_ast_hash_find() - Find AST entry by MAC address
  269. * @soc: SoC handle
  270. *
  271. * It assumes caller has taken the ast lock to protect the access to
  272. * AST hash table
  273. *
  274. * Return: AST entry
  275. */
  276. struct dp_ast_entry *dp_peer_ast_hash_find(struct dp_soc *soc,
  277. uint8_t *ast_mac_addr)
  278. {
  279. union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
  280. unsigned index;
  281. struct dp_ast_entry *ase;
  282. qdf_mem_copy(&local_mac_addr_aligned.raw[0],
  283. ast_mac_addr, DP_MAC_ADDR_LEN);
  284. mac_addr = &local_mac_addr_aligned;
  285. index = dp_peer_ast_hash_index(soc, mac_addr);
  286. TAILQ_FOREACH(ase, &soc->ast_hash.bins[index], hash_list_elem) {
  287. if (dp_peer_find_mac_addr_cmp(mac_addr, &ase->mac_addr) == 0) {
  288. return ase;
  289. }
  290. }
  291. return NULL;
  292. }
  293. /*
  294. * dp_peer_map_ast() - Map the ast entry with HW AST Index
  295. * @soc: SoC handle
  296. * @peer: peer to which ast node belongs
  297. * @mac_addr: MAC address of ast node
  298. * @hw_peer_id: HW AST Index returned by target in peer map event
  299. * @vdev_id: vdev id for VAP to which the peer belongs to
  300. *
  301. * Return: None
  302. */
  303. static inline void dp_peer_map_ast(struct dp_soc *soc,
  304. struct dp_peer *peer, uint8_t *mac_addr, uint16_t hw_peer_id,
  305. uint8_t vdev_id)
  306. {
  307. struct dp_ast_entry *ast_entry;
  308. enum cdp_txrx_ast_entry_type peer_type = CDP_TXRX_AST_TYPE_STATIC;
  309. bool ast_entry_found = FALSE;
  310. if (!peer) {
  311. return;
  312. }
  313. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  314. "%s: peer %pK ID %d vid %d mac %02x:%02x:%02x:%02x:%02x:%02x\n",
  315. __func__, peer, hw_peer_id, vdev_id, mac_addr[0],
  316. mac_addr[1], mac_addr[2], mac_addr[3],
  317. mac_addr[4], mac_addr[5]);
  318. qdf_spin_lock_bh(&soc->ast_lock);
  319. TAILQ_FOREACH(ast_entry, &peer->ast_entry_list, ase_list_elem) {
  320. if (!(qdf_mem_cmp(mac_addr, ast_entry->mac_addr.raw,
  321. DP_MAC_ADDR_LEN))) {
  322. ast_entry->ast_idx = hw_peer_id;
  323. soc->ast_table[hw_peer_id] = ast_entry;
  324. ast_entry->is_active = TRUE;
  325. peer_type = ast_entry->type;
  326. ast_entry_found = TRUE;
  327. }
  328. }
  329. if (ast_entry_found || (peer->vdev && peer->vdev->proxysta_vdev)) {
  330. if (soc->cdp_soc.ol_ops->peer_map_event) {
  331. soc->cdp_soc.ol_ops->peer_map_event(
  332. soc->ctrl_psoc, peer->peer_ids[0],
  333. hw_peer_id, vdev_id,
  334. mac_addr, peer_type);
  335. }
  336. } else {
  337. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  338. "AST entry not found\n");
  339. }
  340. qdf_spin_unlock_bh(&soc->ast_lock);
  341. return;
  342. }
  343. /*
  344. * dp_peer_add_ast() - Allocate and add AST entry into peer list
  345. * @soc: SoC handle
  346. * @peer: peer to which ast node belongs
  347. * @mac_addr: MAC address of ast node
  348. * @is_self: Is this base AST entry with peer mac address
  349. *
  350. * This API is used by WDS source port learning function to
  351. * add a new AST entry into peer AST list
  352. *
  353. * Return: 0 if new entry is allocated,
  354. * -1 if entry add failed
  355. */
  356. int dp_peer_add_ast(struct dp_soc *soc,
  357. struct dp_peer *peer,
  358. uint8_t *mac_addr,
  359. enum cdp_txrx_ast_entry_type type,
  360. uint32_t flags)
  361. {
  362. struct dp_ast_entry *ast_entry;
  363. struct dp_vdev *vdev = peer->vdev;
  364. uint8_t next_node_mac[6];
  365. int ret = -1;
  366. if (!vdev) {
  367. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  368. FL("Peers vdev is NULL"));
  369. QDF_ASSERT(0);
  370. return ret;
  371. }
  372. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  373. "%s: peer %pK mac %02x:%02x:%02x:%02x:%02x:%02x\n",
  374. __func__, peer, mac_addr[0], mac_addr[1], mac_addr[2],
  375. mac_addr[3], mac_addr[4], mac_addr[5]);
  376. qdf_spin_lock_bh(&soc->ast_lock);
  377. /* If AST entry already exists , just return from here */
  378. ast_entry = dp_peer_ast_hash_find(soc, mac_addr);
  379. if (ast_entry) {
  380. if (ast_entry->type == CDP_TXRX_AST_TYPE_MEC)
  381. ast_entry->is_active = TRUE;
  382. qdf_spin_unlock_bh(&soc->ast_lock);
  383. return 0;
  384. }
  385. ast_entry = (struct dp_ast_entry *)
  386. qdf_mem_malloc(sizeof(struct dp_ast_entry));
  387. if (!ast_entry) {
  388. qdf_spin_unlock_bh(&soc->ast_lock);
  389. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  390. FL("fail to allocate ast_entry"));
  391. QDF_ASSERT(0);
  392. return ret;
  393. }
  394. qdf_mem_copy(&ast_entry->mac_addr.raw[0], mac_addr, DP_MAC_ADDR_LEN);
  395. ast_entry->peer = peer;
  396. ast_entry->pdev_id = vdev->pdev->pdev_id;
  397. ast_entry->vdev_id = vdev->vdev_id;
  398. switch (type) {
  399. case CDP_TXRX_AST_TYPE_STATIC:
  400. peer->self_ast_entry = ast_entry;
  401. ast_entry->type = CDP_TXRX_AST_TYPE_STATIC;
  402. break;
  403. case CDP_TXRX_AST_TYPE_SELF:
  404. peer->self_ast_entry = ast_entry;
  405. ast_entry->type = CDP_TXRX_AST_TYPE_SELF;
  406. break;
  407. case CDP_TXRX_AST_TYPE_WDS:
  408. ast_entry->next_hop = 1;
  409. ast_entry->type = CDP_TXRX_AST_TYPE_WDS;
  410. break;
  411. case CDP_TXRX_AST_TYPE_WDS_HM:
  412. ast_entry->next_hop = 1;
  413. ast_entry->type = CDP_TXRX_AST_TYPE_WDS_HM;
  414. break;
  415. case CDP_TXRX_AST_TYPE_MEC:
  416. ast_entry->next_hop = 1;
  417. ast_entry->type = CDP_TXRX_AST_TYPE_MEC;
  418. break;
  419. default:
  420. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  421. FL("Incorrect AST entry type"));
  422. }
  423. ast_entry->is_active = TRUE;
  424. TAILQ_INSERT_TAIL(&peer->ast_entry_list, ast_entry, ase_list_elem);
  425. DP_STATS_INC(soc, ast.added, 1);
  426. dp_peer_ast_hash_add(soc, ast_entry);
  427. qdf_spin_unlock_bh(&soc->ast_lock);
  428. if (ast_entry->type == CDP_TXRX_AST_TYPE_MEC)
  429. qdf_mem_copy(next_node_mac, peer->vdev->mac_addr.raw, 6);
  430. else
  431. qdf_mem_copy(next_node_mac, peer->mac_addr.raw, 6);
  432. if ((ast_entry->type != CDP_TXRX_AST_TYPE_STATIC) &&
  433. (ast_entry->type != CDP_TXRX_AST_TYPE_SELF)) {
  434. if (QDF_STATUS_SUCCESS ==
  435. soc->cdp_soc.ol_ops->peer_add_wds_entry(
  436. peer->vdev->osif_vdev,
  437. mac_addr,
  438. next_node_mac,
  439. flags))
  440. return 0;
  441. }
  442. return ret;
  443. }
  444. /*
  445. * dp_peer_del_ast() - Delete and free AST entry
  446. * @soc: SoC handle
  447. * @ast_entry: AST entry of the node
  448. *
  449. * This function removes the AST entry from peer and soc tables
  450. * It assumes caller has taken the ast lock to protect the access to these
  451. * tables
  452. *
  453. * Return: None
  454. */
  455. void dp_peer_del_ast(struct dp_soc *soc, struct dp_ast_entry *ast_entry)
  456. {
  457. struct dp_peer *peer = ast_entry->peer;
  458. if (ast_entry->next_hop)
  459. soc->cdp_soc.ol_ops->peer_del_wds_entry(peer->vdev->osif_vdev,
  460. ast_entry->mac_addr.raw);
  461. soc->ast_table[ast_entry->ast_idx] = NULL;
  462. TAILQ_REMOVE(&peer->ast_entry_list, ast_entry, ase_list_elem);
  463. DP_STATS_INC(soc, ast.deleted, 1);
  464. dp_peer_ast_hash_remove(soc, ast_entry);
  465. qdf_mem_free(ast_entry);
  466. }
  467. /*
  468. * dp_peer_update_ast() - Delete and free AST entry
  469. * @soc: SoC handle
  470. * @peer: peer to which ast node belongs
  471. * @ast_entry: AST entry of the node
  472. * @flags: wds or hmwds
  473. *
  474. * This function update the AST entry to the roamed peer and soc tables
  475. * It assumes caller has taken the ast lock to protect the access to these
  476. * tables
  477. *
  478. * Return: 0 if ast entry is updated successfully
  479. * -1 failure
  480. */
  481. int dp_peer_update_ast(struct dp_soc *soc, struct dp_peer *peer,
  482. struct dp_ast_entry *ast_entry, uint32_t flags)
  483. {
  484. int ret = -1;
  485. struct dp_peer *old_peer;
  486. if ((ast_entry->type == CDP_TXRX_AST_TYPE_STATIC) ||
  487. (ast_entry->type == CDP_TXRX_AST_TYPE_SELF))
  488. return 0;
  489. old_peer = ast_entry->peer;
  490. TAILQ_REMOVE(&old_peer->ast_entry_list, ast_entry, ase_list_elem);
  491. ast_entry->peer = peer;
  492. ast_entry->type = CDP_TXRX_AST_TYPE_WDS;
  493. ast_entry->pdev_id = peer->vdev->pdev->pdev_id;
  494. ast_entry->vdev_id = peer->vdev->vdev_id;
  495. ast_entry->is_active = TRUE;
  496. TAILQ_INSERT_TAIL(&peer->ast_entry_list, ast_entry, ase_list_elem);
  497. ret = soc->cdp_soc.ol_ops->peer_update_wds_entry(
  498. peer->vdev->osif_vdev,
  499. ast_entry->mac_addr.raw,
  500. peer->mac_addr.raw,
  501. flags);
  502. return ret;
  503. }
  504. /*
  505. * dp_peer_ast_get_pdev_id() - get pdev_id from the ast entry
  506. * @soc: SoC handle
  507. * @ast_entry: AST entry of the node
  508. *
  509. * This function gets the pdev_id from the ast entry.
  510. *
  511. * Return: (uint8_t) pdev_id
  512. */
  513. uint8_t dp_peer_ast_get_pdev_id(struct dp_soc *soc,
  514. struct dp_ast_entry *ast_entry)
  515. {
  516. return ast_entry->pdev_id;
  517. }
  518. /*
  519. * dp_peer_ast_get_next_hop() - get next_hop from the ast entry
  520. * @soc: SoC handle
  521. * @ast_entry: AST entry of the node
  522. *
  523. * This function gets the next hop from the ast entry.
  524. *
  525. * Return: (uint8_t) next_hop
  526. */
  527. uint8_t dp_peer_ast_get_next_hop(struct dp_soc *soc,
  528. struct dp_ast_entry *ast_entry)
  529. {
  530. return ast_entry->next_hop;
  531. }
  532. /*
  533. * dp_peer_ast_set_type() - set type from the ast entry
  534. * @soc: SoC handle
  535. * @ast_entry: AST entry of the node
  536. *
  537. * This function sets the type in the ast entry.
  538. *
  539. * Return:
  540. */
  541. void dp_peer_ast_set_type(struct dp_soc *soc,
  542. struct dp_ast_entry *ast_entry,
  543. enum cdp_txrx_ast_entry_type type)
  544. {
  545. ast_entry->type = type;
  546. }
  547. #else
  548. int dp_peer_add_ast(struct dp_soc *soc, struct dp_peer *peer,
  549. uint8_t *mac_addr, enum cdp_txrx_ast_entry_type type,
  550. uint32_t flags)
  551. {
  552. return 1;
  553. }
  554. void dp_peer_del_ast(struct dp_soc *soc, struct dp_ast_entry *ast_entry)
  555. {
  556. }
  557. int dp_peer_update_ast(struct dp_soc *soc, struct dp_peer *peer,
  558. struct dp_ast_entry *ast_entry, uint32_t flags)
  559. {
  560. return 1;
  561. }
  562. struct dp_ast_entry *dp_peer_ast_hash_find(struct dp_soc *soc,
  563. uint8_t *ast_mac_addr)
  564. {
  565. return NULL;
  566. }
  567. static int dp_peer_ast_hash_attach(struct dp_soc *soc)
  568. {
  569. return 0;
  570. }
  571. static inline void dp_peer_map_ast(struct dp_soc *soc,
  572. struct dp_peer *peer, uint8_t *mac_addr, uint16_t hw_peer_id,
  573. uint8_t vdev_id)
  574. {
  575. return;
  576. }
  577. static void dp_peer_ast_hash_detach(struct dp_soc *soc)
  578. {
  579. }
  580. void dp_peer_ast_set_type(struct dp_soc *soc,
  581. struct dp_ast_entry *ast_entry,
  582. enum cdp_txrx_ast_entry_type type)
  583. {
  584. }
  585. uint8_t dp_peer_ast_get_pdev_id(struct dp_soc *soc,
  586. struct dp_ast_entry *ast_entry)
  587. {
  588. return 0xff;
  589. }
  590. uint8_t dp_peer_ast_get_next_hop(struct dp_soc *soc,
  591. struct dp_ast_entry *ast_entry)
  592. {
  593. return 0xff;
  594. }
  595. #endif
  596. struct dp_peer *dp_peer_find_hash_find(struct dp_soc *soc,
  597. uint8_t *peer_mac_addr, int mac_addr_is_aligned, uint8_t vdev_id)
  598. {
  599. union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
  600. unsigned index;
  601. struct dp_peer *peer;
  602. if (mac_addr_is_aligned) {
  603. mac_addr = (union dp_align_mac_addr *) peer_mac_addr;
  604. } else {
  605. qdf_mem_copy(
  606. &local_mac_addr_aligned.raw[0],
  607. peer_mac_addr, DP_MAC_ADDR_LEN);
  608. mac_addr = &local_mac_addr_aligned;
  609. }
  610. index = dp_peer_find_hash_index(soc, mac_addr);
  611. qdf_spin_lock_bh(&soc->peer_ref_mutex);
  612. TAILQ_FOREACH(peer, &soc->peer_hash.bins[index], hash_list_elem) {
  613. #if ATH_SUPPORT_WRAP
  614. /* ProxySTA may have multiple BSS peer with same MAC address,
  615. * modified find will take care of finding the correct BSS peer.
  616. */
  617. if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0 &&
  618. ((peer->vdev->vdev_id == vdev_id) ||
  619. (vdev_id == DP_VDEV_ALL))) {
  620. #else
  621. if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0) {
  622. #endif
  623. /* found it - increment the ref count before releasing
  624. * the lock
  625. */
  626. qdf_atomic_inc(&peer->ref_cnt);
  627. qdf_spin_unlock_bh(&soc->peer_ref_mutex);
  628. return peer;
  629. }
  630. }
  631. qdf_spin_unlock_bh(&soc->peer_ref_mutex);
  632. return NULL; /* failure */
  633. }
  634. void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer)
  635. {
  636. unsigned index;
  637. struct dp_peer *tmppeer = NULL;
  638. int found = 0;
  639. index = dp_peer_find_hash_index(soc, &peer->mac_addr);
  640. /* Check if tail is not empty before delete*/
  641. QDF_ASSERT(!TAILQ_EMPTY(&soc->peer_hash.bins[index]));
  642. /*
  643. * DO NOT take the peer_ref_mutex lock here - it needs to be taken
  644. * by the caller.
  645. * The caller needs to hold the lock from the time the peer object's
  646. * reference count is decremented and tested up through the time the
  647. * reference to the peer object is removed from the hash table, by
  648. * this function.
  649. * Holding the lock only while removing the peer object reference
  650. * from the hash table keeps the hash table consistent, but does not
  651. * protect against a new HL tx context starting to use the peer object
  652. * if it looks up the peer object from its MAC address just after the
  653. * peer ref count is decremented to zero, but just before the peer
  654. * object reference is removed from the hash table.
  655. */
  656. TAILQ_FOREACH(tmppeer, &soc->peer_hash.bins[index], hash_list_elem) {
  657. if (tmppeer == peer) {
  658. found = 1;
  659. break;
  660. }
  661. }
  662. QDF_ASSERT(found);
  663. TAILQ_REMOVE(&soc->peer_hash.bins[index], peer, hash_list_elem);
  664. }
  665. void dp_peer_find_hash_erase(struct dp_soc *soc)
  666. {
  667. int i;
  668. /*
  669. * Not really necessary to take peer_ref_mutex lock - by this point,
  670. * it's known that the soc is no longer in use.
  671. */
  672. for (i = 0; i <= soc->peer_hash.mask; i++) {
  673. if (!TAILQ_EMPTY(&soc->peer_hash.bins[i])) {
  674. struct dp_peer *peer, *peer_next;
  675. /*
  676. * TAILQ_FOREACH_SAFE must be used here to avoid any
  677. * memory access violation after peer is freed
  678. */
  679. TAILQ_FOREACH_SAFE(peer, &soc->peer_hash.bins[i],
  680. hash_list_elem, peer_next) {
  681. /*
  682. * Don't remove the peer from the hash table -
  683. * that would modify the list we are currently
  684. * traversing, and it's not necessary anyway.
  685. */
  686. /*
  687. * Artificially adjust the peer's ref count to
  688. * 1, so it will get deleted by
  689. * dp_peer_unref_delete.
  690. */
  691. /* set to zero */
  692. qdf_atomic_init(&peer->ref_cnt);
  693. /* incr to one */
  694. qdf_atomic_inc(&peer->ref_cnt);
  695. dp_peer_unref_delete(peer);
  696. }
  697. }
  698. }
  699. }
  700. static void dp_peer_find_map_detach(struct dp_soc *soc)
  701. {
  702. qdf_mem_free(soc->peer_id_to_obj_map);
  703. }
  704. int dp_peer_find_attach(struct dp_soc *soc)
  705. {
  706. if (dp_peer_find_map_attach(soc))
  707. return 1;
  708. if (dp_peer_find_hash_attach(soc)) {
  709. dp_peer_find_map_detach(soc);
  710. return 1;
  711. }
  712. if (dp_peer_ast_hash_attach(soc)) {
  713. dp_peer_find_hash_detach(soc);
  714. dp_peer_find_map_detach(soc);
  715. return 1;
  716. }
  717. return 0; /* success */
  718. }
  719. void dp_rx_tid_stats_cb(struct dp_soc *soc, void *cb_ctxt,
  720. union hal_reo_status *reo_status)
  721. {
  722. struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt;
  723. struct hal_reo_queue_status *queue_status = &(reo_status->queue_status);
  724. if (queue_status->header.status != HAL_REO_CMD_SUCCESS) {
  725. DP_TRACE_STATS(FATAL, "REO stats failure %d for TID %d\n",
  726. queue_status->header.status, rx_tid->tid);
  727. return;
  728. }
  729. DP_TRACE_STATS(FATAL, "REO queue stats (TID: %d): \n"
  730. "ssn: %d\n"
  731. "curr_idx : %d\n"
  732. "pn_31_0 : %08x\n"
  733. "pn_63_32 : %08x\n"
  734. "pn_95_64 : %08x\n"
  735. "pn_127_96 : %08x\n"
  736. "last_rx_enq_tstamp : %08x\n"
  737. "last_rx_deq_tstamp : %08x\n"
  738. "rx_bitmap_31_0 : %08x\n"
  739. "rx_bitmap_63_32 : %08x\n"
  740. "rx_bitmap_95_64 : %08x\n"
  741. "rx_bitmap_127_96 : %08x\n"
  742. "rx_bitmap_159_128 : %08x\n"
  743. "rx_bitmap_191_160 : %08x\n"
  744. "rx_bitmap_223_192 : %08x\n"
  745. "rx_bitmap_255_224 : %08x\n",
  746. rx_tid->tid,
  747. queue_status->ssn, queue_status->curr_idx,
  748. queue_status->pn_31_0, queue_status->pn_63_32,
  749. queue_status->pn_95_64, queue_status->pn_127_96,
  750. queue_status->last_rx_enq_tstamp,
  751. queue_status->last_rx_deq_tstamp,
  752. queue_status->rx_bitmap_31_0, queue_status->rx_bitmap_63_32,
  753. queue_status->rx_bitmap_95_64, queue_status->rx_bitmap_127_96,
  754. queue_status->rx_bitmap_159_128,
  755. queue_status->rx_bitmap_191_160,
  756. queue_status->rx_bitmap_223_192,
  757. queue_status->rx_bitmap_255_224);
  758. DP_TRACE_STATS(FATAL,
  759. "curr_mpdu_cnt : %d\n"
  760. "curr_msdu_cnt : %d\n"
  761. "fwd_timeout_cnt : %d\n"
  762. "fwd_bar_cnt : %d\n"
  763. "dup_cnt : %d\n"
  764. "frms_in_order_cnt : %d\n"
  765. "bar_rcvd_cnt : %d\n"
  766. "mpdu_frms_cnt : %d\n"
  767. "msdu_frms_cnt : %d\n"
  768. "total_byte_cnt : %d\n"
  769. "late_recv_mpdu_cnt : %d\n"
  770. "win_jump_2k : %d\n"
  771. "hole_cnt : %d\n",
  772. queue_status->curr_mpdu_cnt, queue_status->curr_msdu_cnt,
  773. queue_status->fwd_timeout_cnt, queue_status->fwd_bar_cnt,
  774. queue_status->dup_cnt, queue_status->frms_in_order_cnt,
  775. queue_status->bar_rcvd_cnt, queue_status->mpdu_frms_cnt,
  776. queue_status->msdu_frms_cnt, queue_status->total_cnt,
  777. queue_status->late_recv_mpdu_cnt, queue_status->win_jump_2k,
  778. queue_status->hole_cnt);
  779. DP_PRINT_STATS("Num of Addba Req = %d\n", rx_tid->num_of_addba_req);
  780. DP_PRINT_STATS("Num of Addba Resp = %d\n", rx_tid->num_of_addba_resp);
  781. DP_PRINT_STATS("Num of Addba Resp successful = %d\n",
  782. rx_tid->num_addba_rsp_success);
  783. DP_PRINT_STATS("Num of Addba Resp failed = %d\n",
  784. rx_tid->num_addba_rsp_failed);
  785. DP_PRINT_STATS("Num of Delba Req = %d\n", rx_tid->num_of_delba_req);
  786. DP_PRINT_STATS("BA window size = %d\n", rx_tid->ba_win_size);
  787. DP_PRINT_STATS("Pn size = %d\n", rx_tid->pn_size);
  788. }
  789. static inline struct dp_peer *dp_peer_find_add_id(struct dp_soc *soc,
  790. uint8_t *peer_mac_addr, uint16_t peer_id, uint16_t hw_peer_id,
  791. uint8_t vdev_id)
  792. {
  793. struct dp_peer *peer;
  794. QDF_ASSERT(peer_id <= soc->max_peers);
  795. /* check if there's already a peer object with this MAC address */
  796. peer = dp_peer_find_hash_find(soc, peer_mac_addr,
  797. 0 /* is aligned */, vdev_id);
  798. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  799. "%s: peer %pK ID %d vid %d mac %02x:%02x:%02x:%02x:%02x:%02x\n",
  800. __func__, peer, peer_id, vdev_id, peer_mac_addr[0],
  801. peer_mac_addr[1], peer_mac_addr[2], peer_mac_addr[3],
  802. peer_mac_addr[4], peer_mac_addr[5]);
  803. if (peer) {
  804. /* peer's ref count was already incremented by
  805. * peer_find_hash_find
  806. */
  807. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  808. "%s: ref_cnt: %d", __func__,
  809. qdf_atomic_read(&peer->ref_cnt));
  810. soc->peer_id_to_obj_map[peer_id] = peer;
  811. if (dp_peer_find_add_id_to_obj(peer, peer_id)) {
  812. /* TBDXXX: assert for now */
  813. QDF_ASSERT(0);
  814. }
  815. return peer;
  816. }
  817. return NULL;
  818. }
  819. /**
  820. * dp_rx_peer_map_handler() - handle peer map event from firmware
  821. * @soc_handle - genereic soc handle
  822. * @peeri_id - peer_id from firmware
  823. * @hw_peer_id - ast index for this peer
  824. * vdev_id - vdev ID
  825. * peer_mac_addr - macc assress of the peer
  826. *
  827. * associate the peer_id that firmware provided with peer entry
  828. * and update the ast table in the host with the hw_peer_id.
  829. *
  830. * Return: none
  831. */
  832. void
  833. dp_rx_peer_map_handler(void *soc_handle, uint16_t peer_id, uint16_t hw_peer_id,
  834. uint8_t vdev_id, uint8_t *peer_mac_addr)
  835. {
  836. struct dp_soc *soc = (struct dp_soc *)soc_handle;
  837. struct dp_peer *peer = NULL;
  838. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  839. "peer_map_event (soc:%pK): peer_id %di, hw_peer_id %d, peer_mac "
  840. "%02x:%02x:%02x:%02x:%02x:%02x, vdev_id %d\n", soc, peer_id,
  841. hw_peer_id, peer_mac_addr[0], peer_mac_addr[1],
  842. peer_mac_addr[2], peer_mac_addr[3], peer_mac_addr[4],
  843. peer_mac_addr[5], vdev_id);
  844. peer = soc->peer_id_to_obj_map[peer_id];
  845. if ((hw_peer_id < 0) || (hw_peer_id > (WLAN_UMAC_PSOC_MAX_PEERS * 2))) {
  846. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  847. "invalid hw_peer_id: %d", hw_peer_id);
  848. qdf_assert_always(0);
  849. }
  850. /*
  851. * check if peer already exists for this peer_id, if so
  852. * this peer map event is in response for a wds peer add
  853. * wmi command sent during wds source port learning.
  854. * in this case just add the ast entry to the existing
  855. * peer ast_list.
  856. */
  857. if (!peer)
  858. peer = dp_peer_find_add_id(soc, peer_mac_addr, peer_id,
  859. hw_peer_id, vdev_id);
  860. if (peer) {
  861. qdf_assert_always(peer->vdev);
  862. /*
  863. * For every peer MAp message search and set if bss_peer
  864. */
  865. if (!(qdf_mem_cmp(peer->mac_addr.raw, peer->vdev->mac_addr.raw,
  866. DP_MAC_ADDR_LEN))) {
  867. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
  868. "vdev bss_peer!!!!");
  869. peer->bss_peer = 1;
  870. peer->vdev->vap_bss_peer = peer;
  871. }
  872. }
  873. dp_peer_map_ast(soc, peer, peer_mac_addr,
  874. hw_peer_id, vdev_id);
  875. }
  876. void
  877. dp_rx_peer_unmap_handler(void *soc_handle, uint16_t peer_id)
  878. {
  879. struct dp_peer *peer;
  880. struct dp_soc *soc = (struct dp_soc *)soc_handle;
  881. uint8_t i;
  882. peer = __dp_peer_find_by_id(soc, peer_id);
  883. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  884. "peer_unmap_event (soc:%pK) peer_id %d peer %pK\n",
  885. soc, peer_id, peer);
  886. /*
  887. * Currently peer IDs are assigned for vdevs as well as peers.
  888. * If the peer ID is for a vdev, then the peer pointer stored
  889. * in peer_id_to_obj_map will be NULL.
  890. */
  891. if (!peer) {
  892. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  893. "%s: Received unmap event for invalid peer_id"
  894. " %u\n", __func__, peer_id);
  895. return;
  896. }
  897. soc->peer_id_to_obj_map[peer_id] = NULL;
  898. for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++) {
  899. if (peer->peer_ids[i] == peer_id) {
  900. peer->peer_ids[i] = HTT_INVALID_PEER;
  901. break;
  902. }
  903. }
  904. if (soc->cdp_soc.ol_ops->peer_unmap_event) {
  905. soc->cdp_soc.ol_ops->peer_unmap_event(soc->ctrl_psoc,
  906. peer_id);
  907. }
  908. /*
  909. * Remove a reference to the peer.
  910. * If there are no more references, delete the peer object.
  911. */
  912. dp_peer_unref_delete(peer);
  913. }
  914. void
  915. dp_peer_find_detach(struct dp_soc *soc)
  916. {
  917. dp_peer_find_map_detach(soc);
  918. dp_peer_find_hash_detach(soc);
  919. dp_peer_ast_hash_detach(soc);
  920. }
  921. static void dp_rx_tid_update_cb(struct dp_soc *soc, void *cb_ctxt,
  922. union hal_reo_status *reo_status)
  923. {
  924. struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt;
  925. if ((reo_status->rx_queue_status.header.status !=
  926. HAL_REO_CMD_SUCCESS) &&
  927. (reo_status->rx_queue_status.header.status !=
  928. HAL_REO_CMD_DRAIN)) {
  929. /* Should not happen normally. Just print error for now */
  930. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  931. "%s: Rx tid HW desc update failed(%d): tid %d\n",
  932. __func__,
  933. reo_status->rx_queue_status.header.status,
  934. rx_tid->tid);
  935. }
  936. }
  937. /*
  938. * dp_find_peer_by_addr - find peer instance by mac address
  939. * @dev: physical device instance
  940. * @peer_mac_addr: peer mac address
  941. * @local_id: local id for the peer
  942. *
  943. * Return: peer instance pointer
  944. */
  945. void *dp_find_peer_by_addr(struct cdp_pdev *dev, uint8_t *peer_mac_addr,
  946. uint8_t *local_id)
  947. {
  948. struct dp_pdev *pdev = (struct dp_pdev *)dev;
  949. struct dp_peer *peer;
  950. peer = dp_peer_find_hash_find(pdev->soc, peer_mac_addr, 0, DP_VDEV_ALL);
  951. if (!peer)
  952. return NULL;
  953. /* Multiple peer ids? How can know peer id? */
  954. *local_id = peer->local_id;
  955. DP_TRACE(INFO, "%s: peer %pK id %d", __func__, peer, *local_id);
  956. /* ref_cnt is incremented inside dp_peer_find_hash_find().
  957. * Decrement it here.
  958. */
  959. qdf_atomic_dec(&peer->ref_cnt);
  960. return peer;
  961. }
  962. /*
  963. * dp_rx_tid_update_wifi3() – Update receive TID state
  964. * @peer: Datapath peer handle
  965. * @tid: TID
  966. * @ba_window_size: BlockAck window size
  967. * @start_seq: Starting sequence number
  968. *
  969. * Return: 0 on success, error code on failure
  970. */
  971. static int dp_rx_tid_update_wifi3(struct dp_peer *peer, int tid, uint32_t
  972. ba_window_size, uint32_t start_seq)
  973. {
  974. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  975. struct dp_soc *soc = peer->vdev->pdev->soc;
  976. struct hal_reo_cmd_params params;
  977. qdf_mem_zero(&params, sizeof(params));
  978. params.std.need_status = 1;
  979. params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff;
  980. params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
  981. params.u.upd_queue_params.update_ba_window_size = 1;
  982. params.u.upd_queue_params.ba_window_size = ba_window_size;
  983. if (start_seq < IEEE80211_SEQ_MAX) {
  984. params.u.upd_queue_params.update_ssn = 1;
  985. params.u.upd_queue_params.ssn = start_seq;
  986. }
  987. dp_set_ssn_valid_flag(&params, 0);
  988. dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, &params, dp_rx_tid_update_cb, rx_tid);
  989. rx_tid->ba_win_size = ba_window_size;
  990. if (soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup) {
  991. soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup(
  992. peer->vdev->pdev->ctrl_pdev,
  993. peer->vdev->vdev_id, peer->mac_addr.raw,
  994. rx_tid->hw_qdesc_paddr, tid, tid, 1, ba_window_size);
  995. }
  996. return 0;
  997. }
  998. /*
  999. * dp_reo_desc_free() - Callback free reo descriptor memory after
  1000. * HW cache flush
  1001. *
  1002. * @soc: DP SOC handle
  1003. * @cb_ctxt: Callback context
  1004. * @reo_status: REO command status
  1005. */
  1006. static void dp_reo_desc_free(struct dp_soc *soc, void *cb_ctxt,
  1007. union hal_reo_status *reo_status)
  1008. {
  1009. struct reo_desc_list_node *freedesc =
  1010. (struct reo_desc_list_node *)cb_ctxt;
  1011. struct dp_rx_tid *rx_tid = &freedesc->rx_tid;
  1012. if ((reo_status->fl_cache_status.header.status !=
  1013. HAL_REO_CMD_SUCCESS) &&
  1014. (reo_status->fl_cache_status.header.status !=
  1015. HAL_REO_CMD_DRAIN)) {
  1016. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1017. "%s: Rx tid HW desc flush failed(%d): tid %d\n",
  1018. __func__,
  1019. reo_status->rx_queue_status.header.status,
  1020. freedesc->rx_tid.tid);
  1021. }
  1022. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  1023. "%s: hw_qdesc_paddr: %pK, tid:%d\n", __func__,
  1024. (void *)(rx_tid->hw_qdesc_paddr), rx_tid->tid);
  1025. qdf_mem_unmap_nbytes_single(soc->osdev,
  1026. rx_tid->hw_qdesc_paddr,
  1027. QDF_DMA_BIDIRECTIONAL,
  1028. rx_tid->hw_qdesc_alloc_size);
  1029. qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
  1030. qdf_mem_free(freedesc);
  1031. }
  1032. #if defined(QCA_WIFI_QCA8074) && defined(BUILD_X86)
  1033. /* Hawkeye emulation requires bus address to be >= 0x50000000 */
  1034. static inline int dp_reo_desc_addr_chk(qdf_dma_addr_t dma_addr)
  1035. {
  1036. if (dma_addr < 0x50000000)
  1037. return QDF_STATUS_E_FAILURE;
  1038. else
  1039. return QDF_STATUS_SUCCESS;
  1040. }
  1041. #else
  1042. static inline int dp_reo_desc_addr_chk(qdf_dma_addr_t dma_addr)
  1043. {
  1044. return QDF_STATUS_SUCCESS;
  1045. }
  1046. #endif
  1047. /*
  1048. * dp_rx_tid_setup_wifi3() – Setup receive TID state
  1049. * @peer: Datapath peer handle
  1050. * @tid: TID
  1051. * @ba_window_size: BlockAck window size
  1052. * @start_seq: Starting sequence number
  1053. *
  1054. * Return: 0 on success, error code on failure
  1055. */
  1056. int dp_rx_tid_setup_wifi3(struct dp_peer *peer, int tid,
  1057. uint32_t ba_window_size, uint32_t start_seq)
  1058. {
  1059. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1060. struct dp_vdev *vdev = peer->vdev;
  1061. struct dp_soc *soc = vdev->pdev->soc;
  1062. uint32_t hw_qdesc_size;
  1063. uint32_t hw_qdesc_align;
  1064. int hal_pn_type;
  1065. void *hw_qdesc_vaddr;
  1066. uint32_t alloc_tries = 0;
  1067. if (peer->delete_in_progress)
  1068. return QDF_STATUS_E_FAILURE;
  1069. rx_tid->ba_win_size = ba_window_size;
  1070. if (rx_tid->hw_qdesc_vaddr_unaligned != NULL)
  1071. return dp_rx_tid_update_wifi3(peer, tid, ba_window_size,
  1072. start_seq);
  1073. rx_tid->num_of_addba_req = 0;
  1074. rx_tid->num_of_delba_req = 0;
  1075. rx_tid->num_of_addba_resp = 0;
  1076. rx_tid->num_addba_rsp_failed = 0;
  1077. rx_tid->num_addba_rsp_success = 0;
  1078. #ifdef notyet
  1079. hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc, ba_window_size);
  1080. #else
  1081. /* TODO: Allocating HW queue descriptors based on max BA window size
  1082. * for all QOS TIDs so that same descriptor can be used later when
  1083. * ADDBA request is recevied. This should be changed to allocate HW
  1084. * queue descriptors based on BA window size being negotiated (0 for
  1085. * non BA cases), and reallocate when BA window size changes and also
  1086. * send WMI message to FW to change the REO queue descriptor in Rx
  1087. * peer entry as part of dp_rx_tid_update.
  1088. */
  1089. if (tid != DP_NON_QOS_TID)
  1090. hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc,
  1091. HAL_RX_MAX_BA_WINDOW);
  1092. else
  1093. hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc,
  1094. ba_window_size);
  1095. #endif
  1096. hw_qdesc_align = hal_get_reo_qdesc_align(soc->hal_soc);
  1097. /* To avoid unnecessary extra allocation for alignment, try allocating
  1098. * exact size and see if we already have aligned address.
  1099. */
  1100. rx_tid->hw_qdesc_alloc_size = hw_qdesc_size;
  1101. try_desc_alloc:
  1102. rx_tid->hw_qdesc_vaddr_unaligned =
  1103. qdf_mem_malloc(rx_tid->hw_qdesc_alloc_size);
  1104. if (!rx_tid->hw_qdesc_vaddr_unaligned) {
  1105. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1106. "%s: Rx tid HW desc alloc failed: tid %d\n",
  1107. __func__, tid);
  1108. return QDF_STATUS_E_NOMEM;
  1109. }
  1110. if ((unsigned long)(rx_tid->hw_qdesc_vaddr_unaligned) %
  1111. hw_qdesc_align) {
  1112. /* Address allocated above is not alinged. Allocate extra
  1113. * memory for alignment
  1114. */
  1115. qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
  1116. rx_tid->hw_qdesc_vaddr_unaligned =
  1117. qdf_mem_malloc(rx_tid->hw_qdesc_alloc_size +
  1118. hw_qdesc_align - 1);
  1119. if (!rx_tid->hw_qdesc_vaddr_unaligned) {
  1120. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1121. "%s: Rx tid HW desc alloc failed: tid %d\n",
  1122. __func__, tid);
  1123. return QDF_STATUS_E_NOMEM;
  1124. }
  1125. hw_qdesc_vaddr = (void *)qdf_align((unsigned long)
  1126. rx_tid->hw_qdesc_vaddr_unaligned,
  1127. hw_qdesc_align);
  1128. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1129. "%s: Total Size %d Aligned Addr %pK\n",
  1130. __func__, rx_tid->hw_qdesc_alloc_size,
  1131. hw_qdesc_vaddr);
  1132. } else {
  1133. hw_qdesc_vaddr = rx_tid->hw_qdesc_vaddr_unaligned;
  1134. }
  1135. /* TODO: Ensure that sec_type is set before ADDBA is received.
  1136. * Currently this is set based on htt indication
  1137. * HTT_T2H_MSG_TYPE_SEC_IND from target
  1138. */
  1139. switch (peer->security[dp_sec_ucast].sec_type) {
  1140. case cdp_sec_type_tkip_nomic:
  1141. case cdp_sec_type_aes_ccmp:
  1142. case cdp_sec_type_aes_ccmp_256:
  1143. case cdp_sec_type_aes_gcmp:
  1144. case cdp_sec_type_aes_gcmp_256:
  1145. hal_pn_type = HAL_PN_WPA;
  1146. break;
  1147. case cdp_sec_type_wapi:
  1148. if (vdev->opmode == wlan_op_mode_ap)
  1149. hal_pn_type = HAL_PN_WAPI_EVEN;
  1150. else
  1151. hal_pn_type = HAL_PN_WAPI_UNEVEN;
  1152. break;
  1153. default:
  1154. hal_pn_type = HAL_PN_NONE;
  1155. break;
  1156. }
  1157. hal_reo_qdesc_setup(soc->hal_soc, tid, ba_window_size, start_seq,
  1158. hw_qdesc_vaddr, rx_tid->hw_qdesc_paddr, hal_pn_type);
  1159. qdf_mem_map_nbytes_single(soc->osdev, hw_qdesc_vaddr,
  1160. QDF_DMA_BIDIRECTIONAL, rx_tid->hw_qdesc_alloc_size,
  1161. &(rx_tid->hw_qdesc_paddr));
  1162. if (dp_reo_desc_addr_chk(rx_tid->hw_qdesc_paddr) !=
  1163. QDF_STATUS_SUCCESS) {
  1164. if (alloc_tries++ < 10)
  1165. goto try_desc_alloc;
  1166. else {
  1167. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1168. "%s: Rx tid HW desc alloc failed (lowmem): tid %d\n",
  1169. __func__, tid);
  1170. return QDF_STATUS_E_NOMEM;
  1171. }
  1172. }
  1173. if (soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup) {
  1174. soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup(
  1175. vdev->pdev->ctrl_pdev,
  1176. peer->vdev->vdev_id, peer->mac_addr.raw,
  1177. rx_tid->hw_qdesc_paddr, tid, tid, 1, ba_window_size);
  1178. }
  1179. return 0;
  1180. }
  1181. /*
  1182. * dp_rx_tid_delete_cb() - Callback to flush reo descriptor HW cache
  1183. * after deleting the entries (ie., setting valid=0)
  1184. *
  1185. * @soc: DP SOC handle
  1186. * @cb_ctxt: Callback context
  1187. * @reo_status: REO command status
  1188. */
  1189. static void dp_rx_tid_delete_cb(struct dp_soc *soc, void *cb_ctxt,
  1190. union hal_reo_status *reo_status)
  1191. {
  1192. struct reo_desc_list_node *freedesc =
  1193. (struct reo_desc_list_node *)cb_ctxt;
  1194. uint32_t list_size;
  1195. struct reo_desc_list_node *desc;
  1196. unsigned long curr_ts = qdf_get_system_timestamp();
  1197. uint32_t desc_size, tot_desc_size;
  1198. struct hal_reo_cmd_params params;
  1199. if (reo_status->rx_queue_status.header.status == HAL_REO_CMD_DRAIN) {
  1200. qdf_mem_zero(reo_status, sizeof(*reo_status));
  1201. reo_status->fl_cache_status.header.status = HAL_REO_CMD_DRAIN;
  1202. dp_reo_desc_free(soc, (void *)freedesc, reo_status);
  1203. return;
  1204. } else if (reo_status->rx_queue_status.header.status !=
  1205. HAL_REO_CMD_SUCCESS) {
  1206. /* Should not happen normally. Just print error for now */
  1207. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1208. "%s: Rx tid HW desc deletion failed(%d): tid %d\n",
  1209. __func__,
  1210. reo_status->rx_queue_status.header.status,
  1211. freedesc->rx_tid.tid);
  1212. }
  1213. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW,
  1214. "%s: rx_tid: %d status: %d\n", __func__,
  1215. freedesc->rx_tid.tid,
  1216. reo_status->rx_queue_status.header.status);
  1217. qdf_spin_lock_bh(&soc->reo_desc_freelist_lock);
  1218. freedesc->free_ts = curr_ts;
  1219. qdf_list_insert_back_size(&soc->reo_desc_freelist,
  1220. (qdf_list_node_t *)freedesc, &list_size);
  1221. while ((qdf_list_peek_front(&soc->reo_desc_freelist,
  1222. (qdf_list_node_t **)&desc) == QDF_STATUS_SUCCESS) &&
  1223. ((list_size >= REO_DESC_FREELIST_SIZE) ||
  1224. ((curr_ts - desc->free_ts) > REO_DESC_FREE_DEFER_MS))) {
  1225. struct dp_rx_tid *rx_tid;
  1226. qdf_list_remove_front(&soc->reo_desc_freelist,
  1227. (qdf_list_node_t **)&desc);
  1228. list_size--;
  1229. rx_tid = &desc->rx_tid;
  1230. /* Flush and invalidate REO descriptor from HW cache: Base and
  1231. * extension descriptors should be flushed separately */
  1232. tot_desc_size = hal_get_reo_qdesc_size(soc->hal_soc,
  1233. rx_tid->ba_win_size);
  1234. desc_size = hal_get_reo_qdesc_size(soc->hal_soc, 0);
  1235. /* Flush reo extension descriptors */
  1236. while ((tot_desc_size -= desc_size) > 0) {
  1237. qdf_mem_zero(&params, sizeof(params));
  1238. params.std.addr_lo =
  1239. ((uint64_t)(rx_tid->hw_qdesc_paddr) +
  1240. tot_desc_size) & 0xffffffff;
  1241. params.std.addr_hi =
  1242. (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
  1243. if (QDF_STATUS_SUCCESS != dp_reo_send_cmd(soc,
  1244. CMD_FLUSH_CACHE,
  1245. &params,
  1246. NULL,
  1247. NULL)) {
  1248. QDF_TRACE(QDF_MODULE_ID_DP,
  1249. QDF_TRACE_LEVEL_ERROR,
  1250. "%s: fail to send CMD_CACHE_FLUSH:"
  1251. "tid %d desc %pK\n", __func__,
  1252. rx_tid->tid,
  1253. (void *)(rx_tid->hw_qdesc_paddr));
  1254. }
  1255. }
  1256. /* Flush base descriptor */
  1257. qdf_mem_zero(&params, sizeof(params));
  1258. params.std.need_status = 1;
  1259. params.std.addr_lo =
  1260. (uint64_t)(rx_tid->hw_qdesc_paddr) & 0xffffffff;
  1261. params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
  1262. if (QDF_STATUS_SUCCESS != dp_reo_send_cmd(soc,
  1263. CMD_FLUSH_CACHE,
  1264. &params,
  1265. dp_reo_desc_free,
  1266. (void *)desc)) {
  1267. union hal_reo_status reo_status;
  1268. /*
  1269. * If dp_reo_send_cmd return failure, related TID queue desc
  1270. * should be unmapped. Also locally reo_desc, together with
  1271. * TID queue desc also need to be freed accordingly.
  1272. *
  1273. * Here invoke desc_free function directly to do clean up.
  1274. */
  1275. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1276. "%s: fail to send REO cmd to flush cache: tid %d\n",
  1277. __func__, rx_tid->tid);
  1278. qdf_mem_zero(&reo_status, sizeof(reo_status));
  1279. reo_status.fl_cache_status.header.status = 0;
  1280. dp_reo_desc_free(soc, (void *)desc, &reo_status);
  1281. }
  1282. }
  1283. qdf_spin_unlock_bh(&soc->reo_desc_freelist_lock);
  1284. }
  1285. /*
  1286. * dp_rx_tid_delete_wifi3() – Delete receive TID queue
  1287. * @peer: Datapath peer handle
  1288. * @tid: TID
  1289. *
  1290. * Return: 0 on success, error code on failure
  1291. */
  1292. static int dp_rx_tid_delete_wifi3(struct dp_peer *peer, int tid)
  1293. {
  1294. struct dp_rx_tid *rx_tid = &(peer->rx_tid[tid]);
  1295. struct dp_soc *soc = peer->vdev->pdev->soc;
  1296. struct hal_reo_cmd_params params;
  1297. struct reo_desc_list_node *freedesc =
  1298. qdf_mem_malloc(sizeof(*freedesc));
  1299. if (!freedesc) {
  1300. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1301. "%s: malloc failed for freedesc: tid %d\n",
  1302. __func__, tid);
  1303. return -ENOMEM;
  1304. }
  1305. freedesc->rx_tid = *rx_tid;
  1306. qdf_mem_zero(&params, sizeof(params));
  1307. params.std.need_status = 0;
  1308. params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff;
  1309. params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
  1310. params.u.upd_queue_params.update_vld = 1;
  1311. params.u.upd_queue_params.vld = 0;
  1312. dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, &params,
  1313. dp_rx_tid_delete_cb, (void *)freedesc);
  1314. rx_tid->hw_qdesc_vaddr_unaligned = NULL;
  1315. rx_tid->hw_qdesc_alloc_size = 0;
  1316. rx_tid->hw_qdesc_paddr = 0;
  1317. return 0;
  1318. }
  1319. #ifdef DP_LFR
  1320. static void dp_peer_setup_remaining_tids(struct dp_peer *peer)
  1321. {
  1322. int tid;
  1323. for (tid = 1; tid < DP_MAX_TIDS-1; tid++) {
  1324. dp_rx_tid_setup_wifi3(peer, tid, 1, 0);
  1325. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1326. "Setting up TID %d for peer %pK peer->local_id %d\n",
  1327. tid, peer, peer->local_id);
  1328. }
  1329. }
  1330. #else
  1331. static void dp_peer_setup_remaining_tids(struct dp_peer *peer) {};
  1332. #endif
  1333. /*
  1334. * dp_peer_rx_init() – Initialize receive TID state
  1335. * @pdev: Datapath pdev
  1336. * @peer: Datapath peer
  1337. *
  1338. */
  1339. void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer)
  1340. {
  1341. int tid;
  1342. struct dp_rx_tid *rx_tid;
  1343. for (tid = 0; tid < DP_MAX_TIDS; tid++) {
  1344. rx_tid = &peer->rx_tid[tid];
  1345. rx_tid->array = &rx_tid->base;
  1346. rx_tid->base.head = rx_tid->base.tail = NULL;
  1347. rx_tid->tid = tid;
  1348. rx_tid->defrag_timeout_ms = 0;
  1349. rx_tid->ba_win_size = 0;
  1350. rx_tid->ba_status = DP_RX_BA_INACTIVE;
  1351. rx_tid->defrag_waitlist_elem.tqe_next = NULL;
  1352. rx_tid->defrag_waitlist_elem.tqe_prev = NULL;
  1353. #ifdef notyet /* TODO: See if this is required for exception handling */
  1354. /* invalid sequence number */
  1355. peer->tids_last_seq[tid] = 0xffff;
  1356. #endif
  1357. }
  1358. /* Setup default (non-qos) rx tid queue */
  1359. dp_rx_tid_setup_wifi3(peer, DP_NON_QOS_TID, 1, 0);
  1360. /* Setup rx tid queue for TID 0.
  1361. * Other queues will be setup on receiving first packet, which will cause
  1362. * NULL REO queue error
  1363. */
  1364. dp_rx_tid_setup_wifi3(peer, 0, 1, 0);
  1365. /*
  1366. * Setup the rest of TID's to handle LFR
  1367. */
  1368. dp_peer_setup_remaining_tids(peer);
  1369. /*
  1370. * Set security defaults: no PN check, no security. The target may
  1371. * send a HTT SEC_IND message to overwrite these defaults.
  1372. */
  1373. peer->security[dp_sec_ucast].sec_type =
  1374. peer->security[dp_sec_mcast].sec_type = cdp_sec_type_none;
  1375. }
  1376. /*
  1377. * dp_peer_rx_cleanup() – Cleanup receive TID state
  1378. * @vdev: Datapath vdev
  1379. * @peer: Datapath peer
  1380. *
  1381. */
  1382. void dp_peer_rx_cleanup(struct dp_vdev *vdev, struct dp_peer *peer)
  1383. {
  1384. int tid;
  1385. uint32_t tid_delete_mask = 0;
  1386. for (tid = 0; tid < DP_MAX_TIDS; tid++) {
  1387. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1388. qdf_spin_lock_bh(&rx_tid->tid_lock);
  1389. if (peer->rx_tid[tid].hw_qdesc_vaddr_unaligned != NULL) {
  1390. dp_rx_tid_delete_wifi3(peer, tid);
  1391. /* Cleanup defrag related resource */
  1392. dp_rx_defrag_waitlist_remove(peer, tid);
  1393. dp_rx_reorder_flush_frag(peer, tid);
  1394. tid_delete_mask |= (1 << tid);
  1395. }
  1396. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  1397. }
  1398. #ifdef notyet /* See if FW can remove queues as part of peer cleanup */
  1399. if (soc->ol_ops->peer_rx_reorder_queue_remove) {
  1400. soc->ol_ops->peer_rx_reorder_queue_remove(vdev->pdev->ctrl_pdev,
  1401. peer->vdev->vdev_id, peer->mac_addr.raw,
  1402. tid_delete_mask);
  1403. }
  1404. #endif
  1405. for (tid = 0; tid < DP_MAX_TIDS; tid++)
  1406. qdf_spinlock_destroy(&peer->rx_tid[tid].tid_lock);
  1407. }
  1408. /*
  1409. * dp_peer_cleanup() – Cleanup peer information
  1410. * @vdev: Datapath vdev
  1411. * @peer: Datapath peer
  1412. *
  1413. */
  1414. void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer)
  1415. {
  1416. peer->last_assoc_rcvd = 0;
  1417. peer->last_disassoc_rcvd = 0;
  1418. peer->last_deauth_rcvd = 0;
  1419. /* cleanup the Rx reorder queues for this peer */
  1420. dp_peer_rx_cleanup(vdev, peer);
  1421. }
  1422. /*
  1423. * dp_rx_addba_resp_tx_completion_wifi3() – Update Rx Tid State
  1424. *
  1425. * @peer: Datapath peer handle
  1426. * @tid: TID number
  1427. * @status: tx completion status
  1428. * Return: 0 on success, error code on failure
  1429. */
  1430. int dp_addba_resp_tx_completion_wifi3(void *peer_handle,
  1431. uint8_t tid, int status)
  1432. {
  1433. struct dp_peer *peer = (struct dp_peer *)peer_handle;
  1434. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1435. qdf_spin_lock_bh(&rx_tid->tid_lock);
  1436. if (status) {
  1437. rx_tid->num_addba_rsp_failed++;
  1438. dp_rx_tid_update_wifi3(peer, tid, 1, 0);
  1439. rx_tid->ba_status = DP_RX_BA_INACTIVE;
  1440. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  1441. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1442. "%s: Rx Tid- %d addba rsp tx completion failed!",
  1443. __func__, tid);
  1444. return 0;
  1445. }
  1446. rx_tid->num_addba_rsp_success++;
  1447. if (rx_tid->ba_status == DP_RX_BA_INACTIVE) {
  1448. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  1449. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1450. "%s: Rx Tid- %d hw qdesc is not in IN_PROGRESS",
  1451. __func__, tid);
  1452. return QDF_STATUS_E_FAILURE;
  1453. }
  1454. if (dp_rx_tid_update_wifi3(peer, tid, rx_tid->ba_win_size,
  1455. rx_tid->startseqnum)) {
  1456. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  1457. return QDF_STATUS_E_FAILURE;
  1458. }
  1459. if (rx_tid->userstatuscode != IEEE80211_STATUS_SUCCESS)
  1460. rx_tid->statuscode = rx_tid->userstatuscode;
  1461. else
  1462. rx_tid->statuscode = IEEE80211_STATUS_SUCCESS;
  1463. rx_tid->ba_status = DP_RX_BA_ACTIVE;
  1464. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  1465. return 0;
  1466. }
  1467. /*
  1468. * dp_rx_addba_responsesetup_wifi3() – Process ADDBA request from peer
  1469. *
  1470. * @peer: Datapath peer handle
  1471. * @tid: TID number
  1472. * @dialogtoken: output dialogtoken
  1473. * @statuscode: output dialogtoken
  1474. * @buffersize: Output BA window size
  1475. * @batimeout: Output BA timeout
  1476. */
  1477. void dp_addba_responsesetup_wifi3(void *peer_handle, uint8_t tid,
  1478. uint8_t *dialogtoken, uint16_t *statuscode,
  1479. uint16_t *buffersize, uint16_t *batimeout)
  1480. {
  1481. struct dp_peer *peer = (struct dp_peer *)peer_handle;
  1482. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1483. qdf_spin_lock_bh(&rx_tid->tid_lock);
  1484. rx_tid->num_of_addba_resp++;
  1485. /* setup ADDBA response parameters */
  1486. *dialogtoken = rx_tid->dialogtoken;
  1487. *statuscode = rx_tid->statuscode;
  1488. *buffersize = rx_tid->ba_win_size;
  1489. *batimeout = 0;
  1490. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  1491. }
  1492. /*
  1493. * dp_addba_requestprocess_wifi3() - Process ADDBA request from peer
  1494. *
  1495. * @peer: Datapath peer handle
  1496. * @dialogtoken: dialogtoken from ADDBA frame
  1497. * @tid: TID number
  1498. * @batimeout: BA timeout
  1499. * @buffersize: BA window size
  1500. * @startseqnum: Start seq. number received in BA sequence control
  1501. *
  1502. * Return: 0 on success, error code on failure
  1503. */
  1504. int dp_addba_requestprocess_wifi3(void *peer_handle,
  1505. uint8_t dialogtoken,
  1506. uint16_t tid, uint16_t batimeout,
  1507. uint16_t buffersize,
  1508. uint16_t startseqnum)
  1509. {
  1510. struct dp_peer *peer = (struct dp_peer *)peer_handle;
  1511. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1512. qdf_spin_lock_bh(&rx_tid->tid_lock);
  1513. rx_tid->num_of_addba_req++;
  1514. if ((rx_tid->ba_status == DP_RX_BA_ACTIVE &&
  1515. rx_tid->hw_qdesc_vaddr_unaligned != NULL) ||
  1516. (rx_tid->ba_status == DP_RX_BA_IN_PROGRESS)) {
  1517. dp_rx_tid_update_wifi3(peer, tid, 1, 0);
  1518. rx_tid->ba_status = DP_RX_BA_INACTIVE;
  1519. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  1520. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1521. "%s: Rx Tid- %d hw qdesc is already setup",
  1522. __func__, tid);
  1523. return QDF_STATUS_E_FAILURE;
  1524. }
  1525. if (dp_rx_tid_setup_wifi3(peer, tid, 1, 0)) {
  1526. rx_tid->ba_status = DP_RX_BA_INACTIVE;
  1527. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  1528. return QDF_STATUS_E_FAILURE;
  1529. }
  1530. rx_tid->ba_status = DP_RX_BA_IN_PROGRESS;
  1531. rx_tid->ba_win_size = buffersize;
  1532. rx_tid->dialogtoken = dialogtoken;
  1533. rx_tid->startseqnum = startseqnum;
  1534. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  1535. return 0;
  1536. }
  1537. /*
  1538. * dp_set_addba_response() – Set a user defined ADDBA response status code
  1539. *
  1540. * @peer: Datapath peer handle
  1541. * @tid: TID number
  1542. * @statuscode: response status code to be set
  1543. */
  1544. void dp_set_addba_response(void *peer_handle, uint8_t tid,
  1545. uint16_t statuscode)
  1546. {
  1547. struct dp_peer *peer = (struct dp_peer *)peer_handle;
  1548. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1549. qdf_spin_lock_bh(&rx_tid->tid_lock);
  1550. rx_tid->userstatuscode = statuscode;
  1551. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  1552. }
  1553. /*
  1554. * dp_rx_delba_process_wifi3() – Process DELBA from peer
  1555. * @peer: Datapath peer handle
  1556. * @tid: TID number
  1557. * @reasoncode: Reason code received in DELBA frame
  1558. *
  1559. * Return: 0 on success, error code on failure
  1560. */
  1561. int dp_delba_process_wifi3(void *peer_handle,
  1562. int tid, uint16_t reasoncode)
  1563. {
  1564. struct dp_peer *peer = (struct dp_peer *)peer_handle;
  1565. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1566. qdf_spin_lock_bh(&rx_tid->tid_lock);
  1567. if (rx_tid->ba_status == DP_RX_BA_INACTIVE) {
  1568. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  1569. return QDF_STATUS_E_FAILURE;
  1570. }
  1571. /* TODO: See if we can delete the existing REO queue descriptor and
  1572. * replace with a new one without queue extenstion descript to save
  1573. * memory
  1574. */
  1575. rx_tid->num_of_delba_req++;
  1576. dp_rx_tid_update_wifi3(peer, tid, 1, 0);
  1577. rx_tid->ba_status = DP_RX_BA_INACTIVE;
  1578. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  1579. return 0;
  1580. }
  1581. void dp_rx_discard(struct dp_vdev *vdev, struct dp_peer *peer, unsigned tid,
  1582. qdf_nbuf_t msdu_list)
  1583. {
  1584. while (msdu_list) {
  1585. qdf_nbuf_t msdu = msdu_list;
  1586. msdu_list = qdf_nbuf_next(msdu_list);
  1587. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  1588. "discard rx %pK from partly-deleted peer %pK "
  1589. "(%02x:%02x:%02x:%02x:%02x:%02x)\n",
  1590. msdu, peer,
  1591. peer->mac_addr.raw[0], peer->mac_addr.raw[1],
  1592. peer->mac_addr.raw[2], peer->mac_addr.raw[3],
  1593. peer->mac_addr.raw[4], peer->mac_addr.raw[5]);
  1594. qdf_nbuf_free(msdu);
  1595. }
  1596. }
  1597. /**
  1598. * dp_set_pn_check_wifi3() - enable PN check in REO for security
  1599. * @peer: Datapath peer handle
  1600. * @vdev: Datapath vdev
  1601. * @pdev - data path device instance
  1602. * @sec_type - security type
  1603. * @rx_pn - Receive pn starting number
  1604. *
  1605. */
  1606. void
  1607. dp_set_pn_check_wifi3(struct cdp_vdev *vdev_handle, struct cdp_peer *peer_handle, enum cdp_sec_type sec_type, uint32_t *rx_pn)
  1608. {
  1609. struct dp_peer *peer = (struct dp_peer *)peer_handle;
  1610. struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
  1611. struct dp_pdev *pdev;
  1612. struct dp_soc *soc;
  1613. int i;
  1614. uint8_t pn_size;
  1615. struct hal_reo_cmd_params params;
  1616. /* preconditions */
  1617. qdf_assert(vdev);
  1618. pdev = vdev->pdev;
  1619. soc = pdev->soc;
  1620. qdf_mem_zero(&params, sizeof(params));
  1621. params.std.need_status = 1;
  1622. params.u.upd_queue_params.update_pn_valid = 1;
  1623. params.u.upd_queue_params.update_pn_size = 1;
  1624. params.u.upd_queue_params.update_pn = 1;
  1625. params.u.upd_queue_params.update_pn_check_needed = 1;
  1626. params.u.upd_queue_params.update_svld = 1;
  1627. params.u.upd_queue_params.svld = 0;
  1628. peer->security[dp_sec_ucast].sec_type = sec_type;
  1629. switch (sec_type) {
  1630. case cdp_sec_type_tkip_nomic:
  1631. case cdp_sec_type_aes_ccmp:
  1632. case cdp_sec_type_aes_ccmp_256:
  1633. case cdp_sec_type_aes_gcmp:
  1634. case cdp_sec_type_aes_gcmp_256:
  1635. params.u.upd_queue_params.pn_check_needed = 1;
  1636. params.u.upd_queue_params.pn_size = 48;
  1637. pn_size = 48;
  1638. break;
  1639. case cdp_sec_type_wapi:
  1640. params.u.upd_queue_params.pn_check_needed = 1;
  1641. params.u.upd_queue_params.pn_size = 128;
  1642. pn_size = 128;
  1643. if (vdev->opmode == wlan_op_mode_ap) {
  1644. params.u.upd_queue_params.pn_even = 1;
  1645. params.u.upd_queue_params.update_pn_even = 1;
  1646. } else {
  1647. params.u.upd_queue_params.pn_uneven = 1;
  1648. params.u.upd_queue_params.update_pn_uneven = 1;
  1649. }
  1650. break;
  1651. default:
  1652. params.u.upd_queue_params.pn_check_needed = 0;
  1653. pn_size = 0;
  1654. break;
  1655. }
  1656. for (i = 0; i < DP_MAX_TIDS; i++) {
  1657. struct dp_rx_tid *rx_tid = &peer->rx_tid[i];
  1658. qdf_spin_lock_bh(&rx_tid->tid_lock);
  1659. if (rx_tid->hw_qdesc_vaddr_unaligned != NULL) {
  1660. params.std.addr_lo =
  1661. rx_tid->hw_qdesc_paddr & 0xffffffff;
  1662. params.std.addr_hi =
  1663. (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
  1664. if (sec_type != cdp_sec_type_wapi) {
  1665. params.u.upd_queue_params.update_pn_valid = 0;
  1666. } else {
  1667. /*
  1668. * Setting PN valid bit for WAPI sec_type,
  1669. * since WAPI PN has to be started with
  1670. * predefined value
  1671. */
  1672. params.u.upd_queue_params.update_pn_valid = 1;
  1673. params.u.upd_queue_params.pn_31_0 = rx_pn[0];
  1674. params.u.upd_queue_params.pn_63_32 = rx_pn[1];
  1675. params.u.upd_queue_params.pn_95_64 = rx_pn[2];
  1676. params.u.upd_queue_params.pn_127_96 = rx_pn[3];
  1677. }
  1678. rx_tid->pn_size = pn_size;
  1679. dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, &params,
  1680. dp_rx_tid_update_cb, rx_tid);
  1681. } else {
  1682. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  1683. "PN Check not setup for TID :%d \n", i);
  1684. }
  1685. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  1686. }
  1687. }
  1688. void
  1689. dp_rx_sec_ind_handler(void *soc_handle, uint16_t peer_id,
  1690. enum htt_sec_type sec_type, int is_unicast, u_int32_t *michael_key,
  1691. u_int32_t *rx_pn)
  1692. {
  1693. struct dp_soc *soc = (struct dp_soc *)soc_handle;
  1694. struct dp_peer *peer;
  1695. int sec_index;
  1696. peer = dp_peer_find_by_id(soc, peer_id);
  1697. if (!peer) {
  1698. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1699. "Couldn't find peer from ID %d - skipping security inits\n",
  1700. peer_id);
  1701. return;
  1702. }
  1703. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  1704. "sec spec for peer %pK (%02x:%02x:%02x:%02x:%02x:%02x): "
  1705. "%s key of type %d\n",
  1706. peer,
  1707. peer->mac_addr.raw[0], peer->mac_addr.raw[1],
  1708. peer->mac_addr.raw[2], peer->mac_addr.raw[3],
  1709. peer->mac_addr.raw[4], peer->mac_addr.raw[5],
  1710. is_unicast ? "ucast" : "mcast",
  1711. sec_type);
  1712. sec_index = is_unicast ? dp_sec_ucast : dp_sec_mcast;
  1713. peer->security[sec_index].sec_type = sec_type;
  1714. #ifdef notyet /* TODO: See if this is required for defrag support */
  1715. /* michael key only valid for TKIP, but for simplicity,
  1716. * copy it anyway
  1717. */
  1718. qdf_mem_copy(
  1719. &peer->security[sec_index].michael_key[0],
  1720. michael_key,
  1721. sizeof(peer->security[sec_index].michael_key));
  1722. #ifdef BIG_ENDIAN_HOST
  1723. OL_IF_SWAPBO(peer->security[sec_index].michael_key[0],
  1724. sizeof(peer->security[sec_index].michael_key));
  1725. #endif /* BIG_ENDIAN_HOST */
  1726. #endif
  1727. #ifdef notyet /* TODO: Check if this is required for wifi3.0 */
  1728. if (sec_type != htt_sec_type_wapi) {
  1729. qdf_mem_set(peer->tids_last_pn_valid, _EXT_TIDS, 0x00);
  1730. } else {
  1731. for (i = 0; i < DP_MAX_TIDS; i++) {
  1732. /*
  1733. * Setting PN valid bit for WAPI sec_type,
  1734. * since WAPI PN has to be started with predefined value
  1735. */
  1736. peer->tids_last_pn_valid[i] = 1;
  1737. qdf_mem_copy(
  1738. (u_int8_t *) &peer->tids_last_pn[i],
  1739. (u_int8_t *) rx_pn, sizeof(union htt_rx_pn_t));
  1740. peer->tids_last_pn[i].pn128[1] =
  1741. qdf_cpu_to_le64(peer->tids_last_pn[i].pn128[1]);
  1742. peer->tids_last_pn[i].pn128[0] =
  1743. qdf_cpu_to_le64(peer->tids_last_pn[i].pn128[0]);
  1744. }
  1745. }
  1746. #endif
  1747. /* TODO: Update HW TID queue with PN check parameters (pn type for
  1748. * all security types and last pn for WAPI) once REO command API
  1749. * is available
  1750. */
  1751. }
  1752. #ifndef CONFIG_WIN
  1753. /**
  1754. * dp_register_peer() - Register peer into physical device
  1755. * @pdev - data path device instance
  1756. * @sta_desc - peer description
  1757. *
  1758. * Register peer into physical device
  1759. *
  1760. * Return: QDF_STATUS_SUCCESS registration success
  1761. * QDF_STATUS_E_FAULT peer not found
  1762. */
  1763. QDF_STATUS dp_register_peer(struct cdp_pdev *pdev_handle,
  1764. struct ol_txrx_desc_type *sta_desc)
  1765. {
  1766. struct dp_peer *peer;
  1767. struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
  1768. peer = dp_peer_find_by_local_id((struct cdp_pdev *)pdev,
  1769. sta_desc->sta_id);
  1770. if (!peer)
  1771. return QDF_STATUS_E_FAULT;
  1772. qdf_spin_lock_bh(&peer->peer_info_lock);
  1773. peer->state = OL_TXRX_PEER_STATE_CONN;
  1774. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1775. return QDF_STATUS_SUCCESS;
  1776. }
  1777. /**
  1778. * dp_clear_peer() - remove peer from physical device
  1779. * @pdev - data path device instance
  1780. * @sta_id - local peer id
  1781. *
  1782. * remove peer from physical device
  1783. *
  1784. * Return: QDF_STATUS_SUCCESS registration success
  1785. * QDF_STATUS_E_FAULT peer not found
  1786. */
  1787. QDF_STATUS dp_clear_peer(struct cdp_pdev *pdev_handle, uint8_t local_id)
  1788. {
  1789. struct dp_peer *peer;
  1790. struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
  1791. peer = dp_peer_find_by_local_id((struct cdp_pdev *)pdev, local_id);
  1792. if (!peer)
  1793. return QDF_STATUS_E_FAULT;
  1794. qdf_spin_lock_bh(&peer->peer_info_lock);
  1795. peer->state = OL_TXRX_PEER_STATE_DISC;
  1796. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1797. return QDF_STATUS_SUCCESS;
  1798. }
  1799. /**
  1800. * dp_find_peer_by_addr_and_vdev() - Find peer by peer mac address within vdev
  1801. * @pdev - data path device instance
  1802. * @vdev - virtual interface instance
  1803. * @peer_addr - peer mac address
  1804. * @peer_id - local peer id with target mac address
  1805. *
  1806. * Find peer by peer mac address within vdev
  1807. *
  1808. * Return: peer instance void pointer
  1809. * NULL cannot find target peer
  1810. */
  1811. void *dp_find_peer_by_addr_and_vdev(struct cdp_pdev *pdev_handle,
  1812. struct cdp_vdev *vdev_handle,
  1813. uint8_t *peer_addr, uint8_t *local_id)
  1814. {
  1815. struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
  1816. struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
  1817. struct dp_peer *peer;
  1818. DP_TRACE(INFO, "vdev %pK peer_addr %pK", vdev, peer_addr);
  1819. peer = dp_peer_find_hash_find(pdev->soc, peer_addr, 0, 0);
  1820. DP_TRACE(INFO, "peer %pK vdev %pK", peer, vdev);
  1821. if (!peer)
  1822. return NULL;
  1823. if (peer->vdev != vdev) {
  1824. qdf_atomic_dec(&peer->ref_cnt);
  1825. return NULL;
  1826. }
  1827. *local_id = peer->local_id;
  1828. DP_TRACE(INFO, "peer %pK vdev %pK local id %d", peer, vdev, *local_id);
  1829. /* ref_cnt is incremented inside dp_peer_find_hash_find().
  1830. * Decrement it here.
  1831. */
  1832. qdf_atomic_dec(&peer->ref_cnt);
  1833. return peer;
  1834. }
  1835. /**
  1836. * dp_local_peer_id() - Find local peer id within peer instance
  1837. * @peer - peer instance
  1838. *
  1839. * Find local peer id within peer instance
  1840. *
  1841. * Return: local peer id
  1842. */
  1843. uint16_t dp_local_peer_id(void *peer)
  1844. {
  1845. return ((struct dp_peer *)peer)->local_id;
  1846. }
  1847. /**
  1848. * dp_peer_find_by_local_id() - Find peer by local peer id
  1849. * @pdev - data path device instance
  1850. * @local_peer_id - local peer id want to find
  1851. *
  1852. * Find peer by local peer id within physical device
  1853. *
  1854. * Return: peer instance void pointer
  1855. * NULL cannot find target peer
  1856. */
  1857. void *dp_peer_find_by_local_id(struct cdp_pdev *pdev_handle, uint8_t local_id)
  1858. {
  1859. struct dp_peer *peer;
  1860. struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
  1861. if (local_id >= OL_TXRX_NUM_LOCAL_PEER_IDS) {
  1862. QDF_TRACE_DEBUG_RL(QDF_MODULE_ID_DP,
  1863. "Incorrect local id %u", local_id);
  1864. return NULL;
  1865. }
  1866. qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
  1867. peer = pdev->local_peer_ids.map[local_id];
  1868. qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
  1869. DP_TRACE(DEBUG, "peer %pK local id %d", peer, local_id);
  1870. return peer;
  1871. }
  1872. /**
  1873. * dp_peer_state_update() - update peer local state
  1874. * @pdev - data path device instance
  1875. * @peer_addr - peer mac address
  1876. * @state - new peer local state
  1877. *
  1878. * update peer local state
  1879. *
  1880. * Return: QDF_STATUS_SUCCESS registration success
  1881. */
  1882. QDF_STATUS dp_peer_state_update(struct cdp_pdev *pdev_handle, uint8_t *peer_mac,
  1883. enum ol_txrx_peer_state state)
  1884. {
  1885. struct dp_peer *peer;
  1886. struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
  1887. peer = dp_peer_find_hash_find(pdev->soc, peer_mac, 0, DP_VDEV_ALL);
  1888. if (NULL == peer) {
  1889. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1890. "Failed to find peer for: [%pM]", peer_mac);
  1891. return QDF_STATUS_E_FAILURE;
  1892. }
  1893. peer->state = state;
  1894. DP_TRACE(INFO, "peer %pK state %d", peer, peer->state);
  1895. /* ref_cnt is incremented inside dp_peer_find_hash_find().
  1896. * Decrement it here.
  1897. */
  1898. qdf_atomic_dec(&peer->ref_cnt);
  1899. return QDF_STATUS_SUCCESS;
  1900. }
  1901. /**
  1902. * dp_get_vdevid() - Get virtual interface id which peer registered
  1903. * @peer - peer instance
  1904. * @vdev_id - virtual interface id which peer registered
  1905. *
  1906. * Get virtual interface id which peer registered
  1907. *
  1908. * Return: QDF_STATUS_SUCCESS registration success
  1909. */
  1910. QDF_STATUS dp_get_vdevid(void *peer_handle, uint8_t *vdev_id)
  1911. {
  1912. struct dp_peer *peer = peer_handle;
  1913. DP_TRACE(INFO, "peer %pK vdev %pK vdev id %d",
  1914. peer, peer->vdev, peer->vdev->vdev_id);
  1915. *vdev_id = peer->vdev->vdev_id;
  1916. return QDF_STATUS_SUCCESS;
  1917. }
  1918. struct cdp_vdev *dp_get_vdev_by_sta_id(struct cdp_pdev *pdev_handle,
  1919. uint8_t sta_id)
  1920. {
  1921. struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
  1922. struct dp_peer *peer = NULL;
  1923. if (sta_id >= WLAN_MAX_STA_COUNT) {
  1924. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  1925. "Invalid sta id passed");
  1926. return NULL;
  1927. }
  1928. if (!pdev) {
  1929. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  1930. "PDEV not found for sta_id [%d]", sta_id);
  1931. return NULL;
  1932. }
  1933. peer = dp_peer_find_by_local_id((struct cdp_pdev *)pdev, sta_id);
  1934. if (!peer) {
  1935. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  1936. "PEER [%d] not found", sta_id);
  1937. return NULL;
  1938. }
  1939. return (struct cdp_vdev *)peer->vdev;
  1940. }
  1941. /**
  1942. * dp_get_vdev_for_peer() - Get virtual interface instance which peer belongs
  1943. * @peer - peer instance
  1944. *
  1945. * Get virtual interface instance which peer belongs
  1946. *
  1947. * Return: virtual interface instance pointer
  1948. * NULL in case cannot find
  1949. */
  1950. struct cdp_vdev *dp_get_vdev_for_peer(void *peer_handle)
  1951. {
  1952. struct dp_peer *peer = peer_handle;
  1953. DP_TRACE(INFO, "peer %pK vdev %pK", peer, peer->vdev);
  1954. return (struct cdp_vdev *)peer->vdev;
  1955. }
  1956. /**
  1957. * dp_peer_get_peer_mac_addr() - Get peer mac address
  1958. * @peer - peer instance
  1959. *
  1960. * Get peer mac address
  1961. *
  1962. * Return: peer mac address pointer
  1963. * NULL in case cannot find
  1964. */
  1965. uint8_t *dp_peer_get_peer_mac_addr(void *peer_handle)
  1966. {
  1967. struct dp_peer *peer = peer_handle;
  1968. uint8_t *mac;
  1969. mac = peer->mac_addr.raw;
  1970. DP_TRACE(INFO, "peer %pK mac 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x",
  1971. peer, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
  1972. return peer->mac_addr.raw;
  1973. }
  1974. /**
  1975. * dp_get_peer_state() - Get local peer state
  1976. * @peer - peer instance
  1977. *
  1978. * Get local peer state
  1979. *
  1980. * Return: peer status
  1981. */
  1982. int dp_get_peer_state(void *peer_handle)
  1983. {
  1984. struct dp_peer *peer = peer_handle;
  1985. DP_TRACE(DEBUG, "peer %pK stats %d", peer, peer->state);
  1986. return peer->state;
  1987. }
  1988. /**
  1989. * dp_get_last_mgmt_timestamp() - get timestamp of last mgmt frame
  1990. * @pdev: pdev handle
  1991. * @ppeer_addr: peer mac addr
  1992. * @subtype: management frame type
  1993. * @timestamp: last timestamp
  1994. *
  1995. * Return: true if timestamp is retrieved for valid peer else false
  1996. */
  1997. bool dp_get_last_mgmt_timestamp(struct cdp_pdev *ppdev, u8 *peer_addr,
  1998. u8 subtype, qdf_time_t *timestamp)
  1999. {
  2000. union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
  2001. unsigned int index;
  2002. struct dp_peer *peer;
  2003. struct dp_soc *soc;
  2004. bool ret = false;
  2005. struct dp_pdev *pdev = (struct dp_pdev *)ppdev;
  2006. soc = pdev->soc;
  2007. qdf_mem_copy(
  2008. &local_mac_addr_aligned.raw[0],
  2009. peer_addr, DP_MAC_ADDR_LEN);
  2010. mac_addr = &local_mac_addr_aligned;
  2011. index = dp_peer_find_hash_index(soc, mac_addr);
  2012. qdf_spin_lock_bh(&soc->peer_ref_mutex);
  2013. TAILQ_FOREACH(peer, &soc->peer_hash.bins[index], hash_list_elem) {
  2014. #if ATH_SUPPORT_WRAP
  2015. /* ProxySTA may have multiple BSS peer with same MAC address,
  2016. * modified find will take care of finding the correct BSS peer.
  2017. */
  2018. if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0 &&
  2019. (peer->vdev->vdev_id == DP_VDEV_ALL)) {
  2020. #else
  2021. if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0) {
  2022. #endif
  2023. /* found it */
  2024. switch (subtype) {
  2025. case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
  2026. *timestamp = peer->last_assoc_rcvd;
  2027. ret = true;
  2028. break;
  2029. case IEEE80211_FC0_SUBTYPE_DISASSOC:
  2030. case IEEE80211_FC0_SUBTYPE_DEAUTH:
  2031. *timestamp = peer->last_disassoc_rcvd;
  2032. ret = true;
  2033. break;
  2034. default:
  2035. break;
  2036. }
  2037. qdf_spin_unlock_bh(&soc->peer_ref_mutex);
  2038. return ret;
  2039. }
  2040. }
  2041. qdf_spin_unlock_bh(&soc->peer_ref_mutex);
  2042. return false; /*failure*/
  2043. }
  2044. /**
  2045. * dp_update_last_mgmt_timestamp() - set timestamp of last mgmt frame
  2046. * @pdev: pdev handle
  2047. * @ppeer_addr: peer mac addr
  2048. * @timestamp: time to be set
  2049. * @subtype: management frame type
  2050. *
  2051. * Return: true if timestamp is updated for valid peer else false
  2052. */
  2053. bool dp_update_last_mgmt_timestamp(struct cdp_pdev *ppdev, u8 *peer_addr,
  2054. qdf_time_t timestamp, u8 subtype)
  2055. {
  2056. union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
  2057. unsigned int index;
  2058. struct dp_peer *peer;
  2059. struct dp_soc *soc;
  2060. bool ret = false;
  2061. struct dp_pdev *pdev = (struct dp_pdev *)ppdev;
  2062. soc = pdev->soc;
  2063. qdf_mem_copy(&local_mac_addr_aligned.raw[0],
  2064. peer_addr, DP_MAC_ADDR_LEN);
  2065. mac_addr = &local_mac_addr_aligned;
  2066. index = dp_peer_find_hash_index(soc, mac_addr);
  2067. qdf_spin_lock_bh(&soc->peer_ref_mutex);
  2068. TAILQ_FOREACH(peer, &soc->peer_hash.bins[index], hash_list_elem) {
  2069. #if ATH_SUPPORT_WRAP
  2070. /* ProxySTA may have multiple BSS peer with same MAC address,
  2071. * modified find will take care of finding the correct BSS peer.
  2072. */
  2073. if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0 &&
  2074. (peer->vdev->vdev_id == DP_VDEV_ALL)) {
  2075. #else
  2076. if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0) {
  2077. #endif
  2078. /* found it */
  2079. switch (subtype) {
  2080. case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
  2081. peer->last_assoc_rcvd = timestamp;
  2082. ret = true;
  2083. break;
  2084. case IEEE80211_FC0_SUBTYPE_DISASSOC:
  2085. case IEEE80211_FC0_SUBTYPE_DEAUTH:
  2086. peer->last_disassoc_rcvd = timestamp;
  2087. ret = true;
  2088. break;
  2089. default:
  2090. break;
  2091. }
  2092. qdf_spin_unlock_bh(&soc->peer_ref_mutex);
  2093. return ret;
  2094. }
  2095. }
  2096. qdf_spin_unlock_bh(&soc->peer_ref_mutex);
  2097. return false; /*failure*/
  2098. }
  2099. /**
  2100. * dp_local_peer_id_pool_init() - local peer id pool alloc for physical device
  2101. * @pdev - data path device instance
  2102. *
  2103. * local peer id pool alloc for physical device
  2104. *
  2105. * Return: none
  2106. */
  2107. void dp_local_peer_id_pool_init(struct dp_pdev *pdev)
  2108. {
  2109. int i;
  2110. /* point the freelist to the first ID */
  2111. pdev->local_peer_ids.freelist = 0;
  2112. /* link each ID to the next one */
  2113. for (i = 0; i < OL_TXRX_NUM_LOCAL_PEER_IDS; i++) {
  2114. pdev->local_peer_ids.pool[i] = i + 1;
  2115. pdev->local_peer_ids.map[i] = NULL;
  2116. }
  2117. /* link the last ID to itself, to mark the end of the list */
  2118. i = OL_TXRX_NUM_LOCAL_PEER_IDS;
  2119. pdev->local_peer_ids.pool[i] = i;
  2120. qdf_spinlock_create(&pdev->local_peer_ids.lock);
  2121. DP_TRACE(INFO, "Peer pool init");
  2122. }
  2123. /**
  2124. * dp_local_peer_id_alloc() - allocate local peer id
  2125. * @pdev - data path device instance
  2126. * @peer - new peer instance
  2127. *
  2128. * allocate local peer id
  2129. *
  2130. * Return: none
  2131. */
  2132. void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer)
  2133. {
  2134. int i;
  2135. qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
  2136. i = pdev->local_peer_ids.freelist;
  2137. if (pdev->local_peer_ids.pool[i] == i) {
  2138. /* the list is empty, except for the list-end marker */
  2139. peer->local_id = OL_TXRX_INVALID_LOCAL_PEER_ID;
  2140. } else {
  2141. /* take the head ID and advance the freelist */
  2142. peer->local_id = i;
  2143. pdev->local_peer_ids.freelist = pdev->local_peer_ids.pool[i];
  2144. pdev->local_peer_ids.map[i] = peer;
  2145. }
  2146. qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
  2147. DP_TRACE(INFO, "peer %pK, local id %d", peer, peer->local_id);
  2148. }
  2149. /**
  2150. * dp_local_peer_id_free() - remove local peer id
  2151. * @pdev - data path device instance
  2152. * @peer - peer instance should be removed
  2153. *
  2154. * remove local peer id
  2155. *
  2156. * Return: none
  2157. */
  2158. void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer)
  2159. {
  2160. int i = peer->local_id;
  2161. if ((i == OL_TXRX_INVALID_LOCAL_PEER_ID) ||
  2162. (i >= OL_TXRX_NUM_LOCAL_PEER_IDS)) {
  2163. return;
  2164. }
  2165. /* put this ID on the head of the freelist */
  2166. qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
  2167. pdev->local_peer_ids.pool[i] = pdev->local_peer_ids.freelist;
  2168. pdev->local_peer_ids.freelist = i;
  2169. pdev->local_peer_ids.map[i] = NULL;
  2170. qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
  2171. }
  2172. #endif
  2173. /**
  2174. * dp_get_peer_mac_addr_frm_id(): get mac address of the peer
  2175. * @soc_handle: DP SOC handle
  2176. * @peer_id:peer_id of the peer
  2177. *
  2178. * return: vdev_id of the vap
  2179. */
  2180. uint8_t dp_get_peer_mac_addr_frm_id(struct cdp_soc_t *soc_handle,
  2181. uint16_t peer_id, uint8_t *peer_mac)
  2182. {
  2183. struct dp_soc *soc = (struct dp_soc *)soc_handle;
  2184. struct dp_peer *peer;
  2185. peer = dp_peer_find_by_id(soc, peer_id);
  2186. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  2187. "soc %pK peer_id %d", soc, peer_id);
  2188. if (!peer) {
  2189. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  2190. "peer not found ");
  2191. return CDP_INVALID_VDEV_ID;
  2192. }
  2193. qdf_mem_copy(peer_mac, peer->mac_addr.raw, 6);
  2194. return peer->vdev->vdev_id;
  2195. }
  2196. /**
  2197. * dp_peer_rxtid_stats: Retried Rx TID (REO queue) stats from HW
  2198. * @peer: DP peer handle
  2199. * @dp_stats_cmd_cb: REO command callback function
  2200. * @cb_ctxt: Callback context
  2201. *
  2202. * Return: none
  2203. */
  2204. void dp_peer_rxtid_stats(struct dp_peer *peer, void (*dp_stats_cmd_cb),
  2205. void *cb_ctxt)
  2206. {
  2207. struct dp_soc *soc = peer->vdev->pdev->soc;
  2208. struct hal_reo_cmd_params params;
  2209. int i;
  2210. if (!dp_stats_cmd_cb)
  2211. return;
  2212. qdf_mem_zero(&params, sizeof(params));
  2213. for (i = 0; i < DP_MAX_TIDS; i++) {
  2214. struct dp_rx_tid *rx_tid = &peer->rx_tid[i];
  2215. if (rx_tid->hw_qdesc_vaddr_unaligned != NULL) {
  2216. params.std.need_status = 1;
  2217. params.std.addr_lo =
  2218. rx_tid->hw_qdesc_paddr & 0xffffffff;
  2219. params.std.addr_hi =
  2220. (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
  2221. if (cb_ctxt) {
  2222. dp_reo_send_cmd(soc, CMD_GET_QUEUE_STATS,
  2223. &params, dp_stats_cmd_cb, cb_ctxt);
  2224. } else {
  2225. dp_reo_send_cmd(soc, CMD_GET_QUEUE_STATS,
  2226. &params, dp_stats_cmd_cb, rx_tid);
  2227. }
  2228. /* Flush REO descriptor from HW cache to update stats
  2229. * in descriptor memory. This is to help debugging */
  2230. qdf_mem_zero(&params, sizeof(params));
  2231. params.std.need_status = 0;
  2232. params.std.addr_lo =
  2233. rx_tid->hw_qdesc_paddr & 0xffffffff;
  2234. params.std.addr_hi =
  2235. (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
  2236. params.u.fl_cache_params.flush_no_inval = 1;
  2237. dp_reo_send_cmd(soc, CMD_FLUSH_CACHE, &params, NULL,
  2238. NULL);
  2239. }
  2240. }
  2241. }
  2242. void dp_set_michael_key(struct cdp_peer *peer_handle,
  2243. bool is_unicast, uint32_t *key)
  2244. {
  2245. struct dp_peer *peer = (struct dp_peer *)peer_handle;
  2246. uint8_t sec_index = is_unicast ? 1 : 0;
  2247. if (!peer) {
  2248. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  2249. "peer not found ");
  2250. return;
  2251. }
  2252. qdf_mem_copy(&peer->security[sec_index].michael_key[0],
  2253. key, IEEE80211_WEP_MICLEN);
  2254. }