Files
android_kernel_samsung_sm86…/msm/dsi/dsi_phy_hw_v4_0.c
Vara Reddy fcb3849c69 disp: msm: dsi: update DSI PHY configuration to support splitlink
Change updates DSI PHY programming sequence for splitlink configuration.

Change-Id: I708cf83717c6f640c918d41cc122794a10f979ba
Signed-off-by: Vara Reddy <varar@codeaurora.org>
2021-03-24 23:15:52 -07:00

909 sor
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
*/
#include <linux/math64.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include "dsi_hw.h"
#include "dsi_defs.h"
#include "dsi_phy_hw.h"
#include "dsi_catalog.h"
#define DSIPHY_CMN_REVISION_ID0 0x000
#define DSIPHY_CMN_REVISION_ID1 0x004
#define DSIPHY_CMN_REVISION_ID2 0x008
#define DSIPHY_CMN_REVISION_ID3 0x00C
#define DSIPHY_CMN_CLK_CFG0 0x010
#define DSIPHY_CMN_CLK_CFG1 0x014
#define DSIPHY_CMN_GLBL_CTRL 0x018
#define DSIPHY_CMN_RBUF_CTRL 0x01C
#define DSIPHY_CMN_VREG_CTRL_0 0x020
#define DSIPHY_CMN_CTRL_0 0x024
#define DSIPHY_CMN_CTRL_1 0x028
#define DSIPHY_CMN_CTRL_2 0x02C
#define DSIPHY_CMN_CTRL_3 0x030
#define DSIPHY_CMN_LANE_CFG0 0x034
#define DSIPHY_CMN_LANE_CFG1 0x038
#define DSIPHY_CMN_PLL_CNTRL 0x03C
#define DSIPHY_CMN_DPHY_SOT 0x040
#define DSIPHY_CMN_LANE_CTRL0 0x0A0
#define DSIPHY_CMN_LANE_CTRL1 0x0A4
#define DSIPHY_CMN_LANE_CTRL2 0x0A8
#define DSIPHY_CMN_LANE_CTRL3 0x0AC
#define DSIPHY_CMN_LANE_CTRL4 0x0B0
#define DSIPHY_CMN_TIMING_CTRL_0 0x0B4
#define DSIPHY_CMN_TIMING_CTRL_1 0x0B8
#define DSIPHY_CMN_TIMING_CTRL_2 0x0Bc
#define DSIPHY_CMN_TIMING_CTRL_3 0x0C0
#define DSIPHY_CMN_TIMING_CTRL_4 0x0C4
#define DSIPHY_CMN_TIMING_CTRL_5 0x0C8
#define DSIPHY_CMN_TIMING_CTRL_6 0x0CC
#define DSIPHY_CMN_TIMING_CTRL_7 0x0D0
#define DSIPHY_CMN_TIMING_CTRL_8 0x0D4
#define DSIPHY_CMN_TIMING_CTRL_9 0x0D8
#define DSIPHY_CMN_TIMING_CTRL_10 0x0DC
#define DSIPHY_CMN_TIMING_CTRL_11 0x0E0
#define DSIPHY_CMN_TIMING_CTRL_12 0x0E4
#define DSIPHY_CMN_TIMING_CTRL_13 0x0E8
#define DSIPHY_CMN_GLBL_HSTX_STR_CTRL_0 0x0EC
#define DSIPHY_CMN_GLBL_HSTX_STR_CTRL_1 0x0F0
#define DSIPHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL 0x0F4
#define DSIPHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL 0x0F8
#define DSIPHY_CMN_GLBL_RESCODE_OFFSET_MID_CTRL 0x0FC
#define DSIPHY_CMN_GLBL_LPTX_STR_CTRL 0x100
#define DSIPHY_CMN_GLBL_PEMPH_CTRL_0 0x104
#define DSIPHY_CMN_GLBL_PEMPH_CTRL_1 0x108
#define DSIPHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL 0x10C
#define DSIPHY_CMN_VREG_CTRL_1 0x110
#define DSIPHY_CMN_CTRL_4 0x114
#define DSIPHY_CMN_PHY_STATUS 0x140
#define DSIPHY_CMN_LANE_STATUS0 0x148
#define DSIPHY_CMN_LANE_STATUS1 0x14C
#define DSIPHY_CMN_GLBL_DIGTOP_SPARE10 0x1AC
#define DSIPHY_CMN_CMN_SL_DSI_LANE_CTRL1 0x1B4
/* n = 0..3 for data lanes and n = 4 for clock lane */
#define DSIPHY_LNX_CFG0(n) (0x200 + (0x80 * (n)))
#define DSIPHY_LNX_CFG1(n) (0x204 + (0x80 * (n)))
#define DSIPHY_LNX_CFG2(n) (0x208 + (0x80 * (n)))
#define DSIPHY_LNX_TEST_DATAPATH(n) (0x20C + (0x80 * (n)))
#define DSIPHY_LNX_PIN_SWAP(n) (0x210 + (0x80 * (n)))
#define DSIPHY_LNX_LPRX_CTRL(n) (0x214 + (0x80 * (n)))
#define DSIPHY_LNX_TX_DCTRL(n) (0x218 + (0x80 * (n)))
/* dynamic refresh control registers */
#define DSI_DYN_REFRESH_CTRL (0x000)
#define DSI_DYN_REFRESH_PIPE_DELAY (0x004)
#define DSI_DYN_REFRESH_PIPE_DELAY2 (0x008)
#define DSI_DYN_REFRESH_PLL_DELAY (0x00C)
#define DSI_DYN_REFRESH_STATUS (0x010)
#define DSI_DYN_REFRESH_PLL_CTRL0 (0x014)
#define DSI_DYN_REFRESH_PLL_CTRL1 (0x018)
#define DSI_DYN_REFRESH_PLL_CTRL2 (0x01C)
#define DSI_DYN_REFRESH_PLL_CTRL3 (0x020)
#define DSI_DYN_REFRESH_PLL_CTRL4 (0x024)
#define DSI_DYN_REFRESH_PLL_CTRL5 (0x028)
#define DSI_DYN_REFRESH_PLL_CTRL6 (0x02C)
#define DSI_DYN_REFRESH_PLL_CTRL7 (0x030)
#define DSI_DYN_REFRESH_PLL_CTRL8 (0x034)
#define DSI_DYN_REFRESH_PLL_CTRL9 (0x038)
#define DSI_DYN_REFRESH_PLL_CTRL10 (0x03C)
#define DSI_DYN_REFRESH_PLL_CTRL11 (0x040)
#define DSI_DYN_REFRESH_PLL_CTRL12 (0x044)
#define DSI_DYN_REFRESH_PLL_CTRL13 (0x048)
#define DSI_DYN_REFRESH_PLL_CTRL14 (0x04C)
#define DSI_DYN_REFRESH_PLL_CTRL15 (0x050)
#define DSI_DYN_REFRESH_PLL_CTRL16 (0x054)
#define DSI_DYN_REFRESH_PLL_CTRL17 (0x058)
#define DSI_DYN_REFRESH_PLL_CTRL18 (0x05C)
#define DSI_DYN_REFRESH_PLL_CTRL19 (0x060)
#define DSI_DYN_REFRESH_PLL_CTRL20 (0x064)
#define DSI_DYN_REFRESH_PLL_CTRL21 (0x068)
#define DSI_DYN_REFRESH_PLL_CTRL22 (0x06C)
#define DSI_DYN_REFRESH_PLL_CTRL23 (0x070)
#define DSI_DYN_REFRESH_PLL_CTRL24 (0x074)
#define DSI_DYN_REFRESH_PLL_CTRL25 (0x078)
#define DSI_DYN_REFRESH_PLL_CTRL26 (0x07C)
#define DSI_DYN_REFRESH_PLL_CTRL27 (0x080)
#define DSI_DYN_REFRESH_PLL_CTRL28 (0x084)
#define DSI_DYN_REFRESH_PLL_CTRL29 (0x088)
#define DSI_DYN_REFRESH_PLL_CTRL30 (0x08C)
#define DSI_DYN_REFRESH_PLL_CTRL31 (0x090)
#define DSI_DYN_REFRESH_PLL_UPPER_ADDR (0x094)
#define DSI_DYN_REFRESH_PLL_UPPER_ADDR2 (0x098)
static int dsi_phy_hw_v4_0_is_pll_on(struct dsi_phy_hw *phy)
{
u32 data = 0;
data = DSI_R32(phy, DSIPHY_CMN_PLL_CNTRL);
mb(); /*make sure read happened */
return (data & BIT(0));
}
static void dsi_phy_hw_v4_0_config_lpcdrx(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg, bool enable)
{
int phy_lane_0 = dsi_phy_conv_logical_to_phy_lane(&cfg->lane_map,
DSI_LOGICAL_LANE_0);
/*
* LPRX and CDRX need to enabled only for physical data lane
* corresponding to the logical data lane 0
*/
if (enable)
DSI_W32(phy, DSIPHY_LNX_LPRX_CTRL(phy_lane_0),
cfg->strength.lane[phy_lane_0][1]);
else
DSI_W32(phy, DSIPHY_LNX_LPRX_CTRL(phy_lane_0), 0);
}
static void dsi_phy_hw_v4_0_lane_swap_config(struct dsi_phy_hw *phy,
struct dsi_lane_map *lane_map)
{
DSI_W32(phy, DSIPHY_CMN_LANE_CFG0,
(lane_map->lane_map_v2[DSI_LOGICAL_LANE_0] |
(lane_map->lane_map_v2[DSI_LOGICAL_LANE_1] << 4)));
DSI_W32(phy, DSIPHY_CMN_LANE_CFG1,
(lane_map->lane_map_v2[DSI_LOGICAL_LANE_2] |
(lane_map->lane_map_v2[DSI_LOGICAL_LANE_3] << 4)));
}
static void dsi_phy_hw_v4_0_lane_settings(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg)
{
int i;
u8 tx_dctrl_v4[] = {0x00, 0x00, 0x00, 0x04, 0x01};
u8 tx_dctrl_v4_1[] = {0x40, 0x40, 0x40, 0x46, 0x41};
u8 *tx_dctrl;
bool split_link_enabled;
u32 lanes_per_sublink;
if (phy->version >= DSI_PHY_VERSION_4_1)
tx_dctrl = &tx_dctrl_v4_1[0];
else
tx_dctrl = &tx_dctrl_v4[0];
split_link_enabled = cfg->split_link.enabled;
lanes_per_sublink = cfg->split_link.lanes_per_sublink;
/* Strength ctrl settings */
for (i = DSI_LOGICAL_LANE_0; i < DSI_LANE_MAX; i++) {
/*
* Disable LPRX and CDRX for all lanes. And later on, it will
* be only enabled for the physical data lane corresponding
* to the logical data lane 0
*/
DSI_W32(phy, DSIPHY_LNX_LPRX_CTRL(i), 0);
DSI_W32(phy, DSIPHY_LNX_PIN_SWAP(i), 0x0);
}
dsi_phy_hw_v4_0_config_lpcdrx(phy, cfg, true);
/* other settings */
for (i = DSI_LOGICAL_LANE_0; i < DSI_LANE_MAX; i++) {
DSI_W32(phy, DSIPHY_LNX_CFG0(i), cfg->lanecfg.lane[i][0]);
DSI_W32(phy, DSIPHY_LNX_CFG1(i), cfg->lanecfg.lane[i][1]);
DSI_W32(phy, DSIPHY_LNX_CFG2(i), cfg->lanecfg.lane[i][2]);
DSI_W32(phy, DSIPHY_LNX_TX_DCTRL(i), tx_dctrl[i]);
}
/* remove below check if cphy splitlink is enabled */
if (split_link_enabled && (cfg->phy_type == DSI_PHY_TYPE_CPHY))
return;
/* Configure the splitlink clock lane with clk lane settings */
if (split_link_enabled) {
DSI_W32(phy, DSIPHY_LNX_LPRX_CTRL(5), 0x0);
DSI_W32(phy, DSIPHY_LNX_PIN_SWAP(5), 0x0);
DSI_W32(phy, DSIPHY_LNX_CFG0(5), cfg->lanecfg.lane[4][0]);
DSI_W32(phy, DSIPHY_LNX_CFG1(5), cfg->lanecfg.lane[4][1]);
DSI_W32(phy, DSIPHY_LNX_CFG2(5), cfg->lanecfg.lane[4][2]);
DSI_W32(phy, DSIPHY_LNX_TX_DCTRL(5), tx_dctrl[4]);
}
}
void dsi_phy_hw_v4_0_commit_phy_timing(struct dsi_phy_hw *phy,
struct dsi_phy_per_lane_cfgs *timing)
{
/* Commit DSI PHY timings */
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_0, timing->lane_v4[0]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_1, timing->lane_v4[1]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_2, timing->lane_v4[2]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_3, timing->lane_v4[3]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_4, timing->lane_v4[4]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_5, timing->lane_v4[5]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_6, timing->lane_v4[6]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_7, timing->lane_v4[7]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_8, timing->lane_v4[8]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_9, timing->lane_v4[9]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_10, timing->lane_v4[10]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_11, timing->lane_v4[11]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_12, timing->lane_v4[12]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_13, timing->lane_v4[13]);
}
/**
* cphy_enable() - Enable CPHY hardware
* @phy: Pointer to DSI PHY hardware object.
* @cfg: Per lane configurations for timing, strength and lane
* configurations.
*/
static void dsi_phy_hw_cphy_enable(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg)
{
struct dsi_phy_per_lane_cfgs *timing = &cfg->timing;
u32 data;
u32 minor_ver = 0;
/* For C-PHY, no low power settings for lower clk rate */
u32 vreg_ctrl_0 = 0x51;
u32 glbl_str_swi_cal_sel_ctrl = 0;
u32 glbl_hstx_str_ctrl_0 = 0;
u32 glbl_rescode_top_ctrl = 0;
u32 glbl_rescode_bot_ctrl = 0;
bool less_than_1500_mhz = false;
/* Alter PHY configurations if data rate less than 1.5GHZ*/
if (cfg->bit_clk_rate_hz <= 1500000000)
less_than_1500_mhz = true;
if (phy->version >= DSI_PHY_VERSION_4_2) {
glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x01;
glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x3b;
} else if (phy->version == DSI_PHY_VERSION_4_1) {
glbl_rescode_top_ctrl = 0x00;
glbl_rescode_bot_ctrl = 0x3C;
glbl_str_swi_cal_sel_ctrl = 0x00;
glbl_hstx_str_ctrl_0 = 0x88;
} else {
glbl_str_swi_cal_sel_ctrl = 0x03;
glbl_hstx_str_ctrl_0 = 0x66;
glbl_rescode_top_ctrl = 0x03;
glbl_rescode_bot_ctrl = 0x3c;
}
/* de-assert digital and pll power down */
data = BIT(6) | BIT(5);
DSI_W32(phy, DSIPHY_CMN_CTRL_0, data);
/* Assert PLL core reset */
DSI_W32(phy, DSIPHY_CMN_PLL_CNTRL, 0x00);
/* turn off resync FIFO */
DSI_W32(phy, DSIPHY_CMN_RBUF_CTRL, 0x00);
/* program CMN_CTRL_4 for minor_ver 2 chipsets*/
minor_ver = DSI_R32(phy, DSIPHY_CMN_REVISION_ID0);
minor_ver = minor_ver & (0xf0);
if (minor_ver == 0x20)
DSI_W32(phy, DSIPHY_CMN_CTRL_4, 0x04);
/* Configure PHY lane swap */
dsi_phy_hw_v4_0_lane_swap_config(phy, &cfg->lane_map);
DSI_W32(phy, DSIPHY_CMN_GLBL_CTRL, BIT(6));
/* Enable LDO */
DSI_W32(phy, DSIPHY_CMN_VREG_CTRL_0, vreg_ctrl_0);
DSI_W32(phy, DSIPHY_CMN_VREG_CTRL_1, 0x55);
DSI_W32(phy, DSIPHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL,
glbl_str_swi_cal_sel_ctrl);
DSI_W32(phy, DSIPHY_CMN_GLBL_HSTX_STR_CTRL_0, glbl_hstx_str_ctrl_0);
DSI_W32(phy, DSIPHY_CMN_GLBL_PEMPH_CTRL_0, 0x11);
DSI_W32(phy, DSIPHY_CMN_GLBL_PEMPH_CTRL_1, 0x01);
DSI_W32(phy, DSIPHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL,
glbl_rescode_top_ctrl);
DSI_W32(phy, DSIPHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL,
glbl_rescode_bot_ctrl);
DSI_W32(phy, DSIPHY_CMN_GLBL_LPTX_STR_CTRL, 0x55);
/* Remove power down from all blocks */
DSI_W32(phy, DSIPHY_CMN_CTRL_0, 0x7f);
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL0, 0x17);
switch (cfg->pll_source) {
case DSI_PLL_SOURCE_STANDALONE:
case DSI_PLL_SOURCE_NATIVE:
data = 0x0; /* internal PLL */
break;
case DSI_PLL_SOURCE_NON_NATIVE:
data = 0x1; /* external PLL */
break;
default:
break;
}
DSI_W32(phy, DSIPHY_CMN_CLK_CFG1, (data << 2)); /* set PLL src */
/* DSI PHY timings */
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_0, timing->lane_v4[0]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_4, timing->lane_v4[4]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_5, timing->lane_v4[5]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_6, timing->lane_v4[6]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_7, timing->lane_v4[7]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_8, timing->lane_v4[8]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_9, timing->lane_v4[9]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_10, timing->lane_v4[10]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_11, timing->lane_v4[11]);
/* DSI lane settings */
dsi_phy_hw_v4_0_lane_settings(phy, cfg);
DSI_PHY_DBG(phy, "C-Phy enabled\n");
}
/**
* dphy_enable() - Enable DPHY hardware
* @phy: Pointer to DSI PHY hardware object.
* @cfg: Per lane configurations for timing, strength and lane
* configurations.
*/
static void dsi_phy_hw_dphy_enable(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg)
{
struct dsi_phy_per_lane_cfgs *timing = &cfg->timing;
u32 data;
u32 minor_ver = 0;
bool less_than_1500_mhz = false;
u32 vreg_ctrl_0 = 0;
u32 glbl_str_swi_cal_sel_ctrl = 0;
u32 glbl_hstx_str_ctrl_0 = 0;
u32 glbl_rescode_top_ctrl = 0;
u32 glbl_rescode_bot_ctrl = 0;
bool split_link_enabled;
u32 lanes_per_sublink;
/* Alter PHY configurations if data rate less than 1.5GHZ*/
if (cfg->bit_clk_rate_hz <= 1500000000)
less_than_1500_mhz = true;
if (phy->version >= DSI_PHY_VERSION_4_2) {
vreg_ctrl_0 = less_than_1500_mhz ? 0x53 : 0x52;
glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3c : 0x00;
glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x39;
glbl_str_swi_cal_sel_ctrl = 0x00;
glbl_hstx_str_ctrl_0 = 0x88;
} else if (phy->version == DSI_PHY_VERSION_4_1) {
vreg_ctrl_0 = less_than_1500_mhz ? 0x53 : 0x52;
glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x00;
glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x39 : 0x3c;
glbl_str_swi_cal_sel_ctrl = 0x00;
glbl_hstx_str_ctrl_0 = 0x88;
} else {
vreg_ctrl_0 = less_than_1500_mhz ? 0x5B : 0x59;
glbl_str_swi_cal_sel_ctrl = less_than_1500_mhz ? 0x03 : 0x00;
glbl_hstx_str_ctrl_0 = less_than_1500_mhz ? 0x66 : 0x88;
glbl_rescode_top_ctrl = 0x03;
glbl_rescode_bot_ctrl = 0x3c;
}
split_link_enabled = cfg->split_link.enabled;
lanes_per_sublink = cfg->split_link.lanes_per_sublink;
/* de-assert digital and pll power down */
data = BIT(6) | BIT(5);
DSI_W32(phy, DSIPHY_CMN_CTRL_0, data);
if (split_link_enabled) {
data = DSI_R32(phy, DSIPHY_CMN_GLBL_CTRL);
/* set SPLIT_LINK_ENABLE in global control */
DSI_W32(phy, DSIPHY_CMN_GLBL_CTRL, (data | BIT(5)));
}
/* Assert PLL core reset */
DSI_W32(phy, DSIPHY_CMN_PLL_CNTRL, 0x00);
/* turn off resync FIFO */
DSI_W32(phy, DSIPHY_CMN_RBUF_CTRL, 0x00);
/* program CMN_CTRL_4 for minor_ver 2 chipsets*/
minor_ver = DSI_R32(phy, DSIPHY_CMN_REVISION_ID0);
minor_ver = minor_ver & (0xf0);
if (minor_ver == 0x20)
DSI_W32(phy, DSIPHY_CMN_CTRL_4, 0x04);
/* Configure PHY lane swap */
dsi_phy_hw_v4_0_lane_swap_config(phy, &cfg->lane_map);
/* Enable LDO */
DSI_W32(phy, DSIPHY_CMN_VREG_CTRL_0, vreg_ctrl_0);
DSI_W32(phy, DSIPHY_CMN_VREG_CTRL_1, 0x5c);
DSI_W32(phy, DSIPHY_CMN_CTRL_3, 0x00);
DSI_W32(phy, DSIPHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL,
glbl_str_swi_cal_sel_ctrl);
DSI_W32(phy, DSIPHY_CMN_GLBL_HSTX_STR_CTRL_0, glbl_hstx_str_ctrl_0);
DSI_W32(phy, DSIPHY_CMN_GLBL_PEMPH_CTRL_0, 0x00);
DSI_W32(phy, DSIPHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL,
glbl_rescode_top_ctrl);
DSI_W32(phy, DSIPHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL,
glbl_rescode_bot_ctrl);
DSI_W32(phy, DSIPHY_CMN_GLBL_LPTX_STR_CTRL, 0x55);
if (split_link_enabled) {
if (lanes_per_sublink == 1) {
/* remove Lane1 and Lane3 configs */
DSI_W32(phy, DSIPHY_CMN_CTRL_0, 0xed);
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL0, 0x35);
} else {
/* enable all together with sublink clock */
DSI_W32(phy, DSIPHY_CMN_CTRL_0, 0xff);
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL0, 0x3F);
}
DSI_W32(phy, DSIPHY_CMN_CMN_SL_DSI_LANE_CTRL1, 0x03);
} else {
/* Remove power down from all blocks */
DSI_W32(phy, DSIPHY_CMN_CTRL_0, 0x7f);
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL0, 0x1F);
}
/* Select full-rate mode */
DSI_W32(phy, DSIPHY_CMN_CTRL_2, 0x40);
switch (cfg->pll_source) {
case DSI_PLL_SOURCE_STANDALONE:
case DSI_PLL_SOURCE_NATIVE:
data = 0x0; /* internal PLL */
break;
case DSI_PLL_SOURCE_NON_NATIVE:
data = 0x1; /* external PLL */
break;
default:
break;
}
DSI_W32(phy, DSIPHY_CMN_CLK_CFG1, (data << 2)); /* set PLL src */
/* DSI PHY timings */
dsi_phy_hw_v4_0_commit_phy_timing(phy, timing);
/* DSI lane settings */
dsi_phy_hw_v4_0_lane_settings(phy, cfg);
DSI_PHY_DBG(phy, "D-Phy enabled\n");
}
/**
* enable() - Enable PHY hardware
* @phy: Pointer to DSI PHY hardware object.
* @cfg: Per lane configurations for timing, strength and lane
* configurations.
*/
void dsi_phy_hw_v4_0_enable(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg)
{
int rc = 0;
u32 status;
u32 const delay_us = 5;
u32 const timeout_us = 1000;
if (dsi_phy_hw_v4_0_is_pll_on(phy))
pr_warn("PLL turned on before configuring PHY\n");
/* Request for REFGEN ready */
if (phy->version == DSI_PHY_VERSION_4_3) {
DSI_W32(phy, DSIPHY_CMN_GLBL_DIGTOP_SPARE10, 0x1);
udelay(500);
}
/* wait for REFGEN READY */
rc = readl_poll_timeout_atomic(phy->base + DSIPHY_CMN_PHY_STATUS,
status, (status & BIT(0)), delay_us, timeout_us);
if (rc) {
DSI_PHY_ERR(phy, "Ref gen not ready. Aborting\n");
return;
}
if (cfg->phy_type == DSI_PHY_TYPE_CPHY)
dsi_phy_hw_cphy_enable(phy, cfg);
else /* Default PHY type is DPHY */
dsi_phy_hw_dphy_enable(phy, cfg);
}
/**
* disable() - Disable PHY hardware
* @phy: Pointer to DSI PHY hardware object.
*/
void dsi_phy_hw_v4_0_disable(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg)
{
u32 data = 0;
if (dsi_phy_hw_v4_0_is_pll_on(phy))
DSI_PHY_WARN(phy, "Turning OFF PHY while PLL is on\n");
dsi_phy_hw_v4_0_config_lpcdrx(phy, cfg, false);
data = DSI_R32(phy, DSIPHY_CMN_CTRL_0);
/* disable all lanes and splitlink clk lane*/
data &= ~0x9F;
DSI_W32(phy, DSIPHY_CMN_CTRL_0, data);
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL0, 0);
/* Turn off all PHY blocks */
DSI_W32(phy, DSIPHY_CMN_CTRL_0, 0x00);
/* make sure phy is turned off */
wmb();
DSI_PHY_DBG(phy, "Phy disabled\n");
}
void dsi_phy_hw_v4_0_toggle_resync_fifo(struct dsi_phy_hw *phy)
{
DSI_W32(phy, DSIPHY_CMN_RBUF_CTRL, 0x00);
/* ensure that the FIFO is off */
wmb();
DSI_W32(phy, DSIPHY_CMN_RBUF_CTRL, 0x1);
/* ensure that the FIFO is toggled back on */
wmb();
}
void dsi_phy_hw_v4_0_reset_clk_en_sel(struct dsi_phy_hw *phy)
{
u32 data = 0;
/*Turning off CLK_EN_SEL after retime buffer sync */
data = DSI_R32(phy, DSIPHY_CMN_CLK_CFG1);
data &= ~BIT(4);
DSI_W32(phy, DSIPHY_CMN_CLK_CFG1, data);
/* ensure that clk_en_sel bit is turned off */
wmb();
}
int dsi_phy_hw_v4_0_wait_for_lane_idle(
struct dsi_phy_hw *phy, u32 lanes)
{
int rc = 0, val = 0;
u32 stop_state_mask = 0;
u32 const sleep_us = 10;
u32 const timeout_us = 100;
stop_state_mask = BIT(4); /* clock lane */
if (lanes & DSI_DATA_LANE_0)
stop_state_mask |= BIT(0);
if (lanes & DSI_DATA_LANE_1)
stop_state_mask |= BIT(1);
if (lanes & DSI_DATA_LANE_2)
stop_state_mask |= BIT(2);
if (lanes & DSI_DATA_LANE_3)
stop_state_mask |= BIT(3);
DSI_PHY_DBG(phy, "polling for lanes to be in stop state, mask=0x%08x\n",
stop_state_mask);
rc = readl_poll_timeout(phy->base + DSIPHY_CMN_LANE_STATUS1, val,
((val & stop_state_mask) == stop_state_mask),
sleep_us, timeout_us);
if (rc) {
DSI_PHY_ERR(phy, "lanes not in stop state, LANE_STATUS=0x%08x\n",
val);
return rc;
}
return 0;
}
void dsi_phy_hw_v4_0_ulps_request(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg, u32 lanes)
{
u32 reg = 0;
if (lanes & DSI_CLOCK_LANE)
reg = BIT(4);
if (lanes & DSI_DATA_LANE_0)
reg |= BIT(0);
if (lanes & DSI_DATA_LANE_1)
reg |= BIT(1);
if (lanes & DSI_DATA_LANE_2)
reg |= BIT(2);
if (lanes & DSI_DATA_LANE_3)
reg |= BIT(3);
if (cfg->force_clk_lane_hs)
reg |= BIT(5) | BIT(6);
/*
* ULPS entry request. Wait for short time to make sure
* that the lanes enter ULPS. Recommended as per HPG.
*/
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL1, reg);
usleep_range(100, 110);
/* disable LPRX and CDRX */
dsi_phy_hw_v4_0_config_lpcdrx(phy, cfg, false);
DSI_PHY_DBG(phy, "ULPS requested for lanes 0x%x\n", lanes);
}
int dsi_phy_hw_v4_0_lane_reset(struct dsi_phy_hw *phy)
{
int ret = 0, loop = 10, u_dly = 200;
u32 ln_status = 0;
while ((ln_status != 0x1f) && loop) {
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL3, 0x1f);
wmb(); /* ensure register is committed */
loop--;
udelay(u_dly);
ln_status = DSI_R32(phy, DSIPHY_CMN_LANE_STATUS1);
DSI_PHY_DBG(phy, "trial no: %d\n", loop);
}
if (!loop)
DSI_PHY_DBG(phy, "could not reset phy lanes\n");
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL3, 0x0);
wmb(); /* ensure register is committed */
return ret;
}
void dsi_phy_hw_v4_0_ulps_exit(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg, u32 lanes)
{
u32 reg = 0;
if (lanes & DSI_CLOCK_LANE)
reg = BIT(4);
if (lanes & DSI_DATA_LANE_0)
reg |= BIT(0);
if (lanes & DSI_DATA_LANE_1)
reg |= BIT(1);
if (lanes & DSI_DATA_LANE_2)
reg |= BIT(2);
if (lanes & DSI_DATA_LANE_3)
reg |= BIT(3);
/* enable LPRX and CDRX */
dsi_phy_hw_v4_0_config_lpcdrx(phy, cfg, true);
/* ULPS exit request */
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL2, reg);
usleep_range(1000, 1010);
/* Clear ULPS request flags on all lanes */
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL1, 0);
/* Clear ULPS exit flags on all lanes */
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL2, 0);
/*
* Sometimes when exiting ULPS, it is possible that some DSI
* lanes are not in the stop state which could lead to DSI
* commands not going through. To avoid this, force the lanes
* to be in stop state.
*/
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL3, reg);
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL3, 0);
usleep_range(100, 110);
if (cfg->force_clk_lane_hs) {
reg = BIT(5) | BIT(6);
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL1, reg);
}
}
u32 dsi_phy_hw_v4_0_get_lanes_in_ulps(struct dsi_phy_hw *phy)
{
u32 lanes = 0;
lanes = DSI_R32(phy, DSIPHY_CMN_LANE_STATUS0);
DSI_PHY_DBG(phy, "lanes in ulps = 0x%x\n", lanes);
return lanes;
}
bool dsi_phy_hw_v4_0_is_lanes_in_ulps(u32 lanes, u32 ulps_lanes)
{
if (lanes & ulps_lanes)
return false;
return true;
}
int dsi_phy_hw_timing_val_v4_0(struct dsi_phy_per_lane_cfgs *timing_cfg,
u32 *timing_val, u32 size)
{
int i = 0;
if (size != DSI_PHY_TIMING_V4_SIZE) {
DSI_ERR("Unexpected timing array size %d\n", size);
return -EINVAL;
}
for (i = 0; i < size; i++)
timing_cfg->lane_v4[i] = timing_val[i];
return 0;
}
void dsi_phy_hw_v4_0_dyn_refresh_config(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg, bool is_master)
{
u32 reg;
bool is_cphy = (cfg->phy_type == DSI_PHY_TYPE_CPHY) ?
true : false;
if (is_master) {
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL19,
DSIPHY_CMN_TIMING_CTRL_0, DSIPHY_CMN_TIMING_CTRL_1,
cfg->timing.lane_v4[0], cfg->timing.lane_v4[1]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL20,
DSIPHY_CMN_TIMING_CTRL_2, DSIPHY_CMN_TIMING_CTRL_3,
cfg->timing.lane_v4[2], cfg->timing.lane_v4[3]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL21,
DSIPHY_CMN_TIMING_CTRL_4, DSIPHY_CMN_TIMING_CTRL_5,
cfg->timing.lane_v4[4], cfg->timing.lane_v4[5]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL22,
DSIPHY_CMN_TIMING_CTRL_6, DSIPHY_CMN_TIMING_CTRL_7,
cfg->timing.lane_v4[6], cfg->timing.lane_v4[7]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL23,
DSIPHY_CMN_TIMING_CTRL_8, DSIPHY_CMN_TIMING_CTRL_9,
cfg->timing.lane_v4[8], cfg->timing.lane_v4[9]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL24,
DSIPHY_CMN_TIMING_CTRL_10, DSIPHY_CMN_TIMING_CTRL_11,
cfg->timing.lane_v4[10], cfg->timing.lane_v4[11]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL25,
DSIPHY_CMN_TIMING_CTRL_12, DSIPHY_CMN_TIMING_CTRL_13,
cfg->timing.lane_v4[12], cfg->timing.lane_v4[13]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL26,
DSIPHY_CMN_CTRL_0, DSIPHY_CMN_LANE_CTRL0,
0x7f, is_cphy ? 0x17 : 0x1f);
} else {
reg = DSI_R32(phy, DSIPHY_CMN_CLK_CFG1);
reg &= ~BIT(5);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL0,
DSIPHY_CMN_CLK_CFG1, DSIPHY_CMN_PLL_CNTRL,
reg, 0x0);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL1,
DSIPHY_CMN_RBUF_CTRL, DSIPHY_CMN_TIMING_CTRL_0,
0x0, cfg->timing.lane_v4[0]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL2,
DSIPHY_CMN_TIMING_CTRL_1, DSIPHY_CMN_TIMING_CTRL_2,
cfg->timing.lane_v4[1], cfg->timing.lane_v4[2]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL3,
DSIPHY_CMN_TIMING_CTRL_3, DSIPHY_CMN_TIMING_CTRL_4,
cfg->timing.lane_v4[3], cfg->timing.lane_v4[4]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL4,
DSIPHY_CMN_TIMING_CTRL_5, DSIPHY_CMN_TIMING_CTRL_6,
cfg->timing.lane_v4[5], cfg->timing.lane_v4[6]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL5,
DSIPHY_CMN_TIMING_CTRL_7, DSIPHY_CMN_TIMING_CTRL_8,
cfg->timing.lane_v4[7], cfg->timing.lane_v4[8]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL6,
DSIPHY_CMN_TIMING_CTRL_9, DSIPHY_CMN_TIMING_CTRL_10,
cfg->timing.lane_v4[9], cfg->timing.lane_v4[10]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL7,
DSIPHY_CMN_TIMING_CTRL_11, DSIPHY_CMN_TIMING_CTRL_12,
cfg->timing.lane_v4[11], cfg->timing.lane_v4[12]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL8,
DSIPHY_CMN_TIMING_CTRL_13, DSIPHY_CMN_CTRL_0,
cfg->timing.lane_v4[13], 0x7f);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL9,
DSIPHY_CMN_LANE_CTRL0, DSIPHY_CMN_CTRL_2,
is_cphy ? 0x17 : 0x1f, 0x40);
/*
* fill with dummy register writes since controller will blindly
* send these values to DSI PHY.
*/
reg = DSI_DYN_REFRESH_PLL_CTRL11;
while (reg <= DSI_DYN_REFRESH_PLL_CTRL29) {
DSI_DYN_REF_REG_W(phy->dyn_pll_base, reg,
DSIPHY_CMN_LANE_CTRL0, DSIPHY_CMN_CTRL_0,
is_cphy ? 0x17 : 0x1f, 0x7f);
reg += 0x4;
}
DSI_GEN_W32(phy->dyn_pll_base,
DSI_DYN_REFRESH_PLL_UPPER_ADDR, 0);
DSI_GEN_W32(phy->dyn_pll_base,
DSI_DYN_REFRESH_PLL_UPPER_ADDR2, 0);
}
wmb(); /* make sure all registers are updated */
}
void dsi_phy_hw_v4_0_dyn_refresh_pipe_delay(struct dsi_phy_hw *phy,
struct dsi_dyn_clk_delay *delay)
{
if (!delay)
return;
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_PIPE_DELAY,
delay->pipe_delay);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_PIPE_DELAY2,
delay->pipe_delay2);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_DELAY,
delay->pll_delay);
}
void dsi_phy_hw_v4_0_dyn_refresh_trigger_sel(struct dsi_phy_hw *phy,
bool is_master)
{
u32 reg;
/*
* Dynamic refresh will take effect at next mdp flush event.
* This makes sure that any update to frame timings together
* with dfps will take effect in one vsync at next mdp flush.
*/
if (is_master) {
reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
reg |= BIT(17);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
}
}
void dsi_phy_hw_v4_0_dyn_refresh_helper(struct dsi_phy_hw *phy, u32 offset)
{
u32 reg;
/*
* if no offset is mentioned then this means we want to clear
* the dynamic refresh ctrl register which is the last step
* of dynamic refresh sequence.
*/
if (!offset) {
reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
reg &= ~(BIT(0) | BIT(8) | BIT(13) | BIT(16) | BIT(17));
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
wmb(); /* ensure dynamic fps is cleared */
return;
}
if (offset & BIT(DYN_REFRESH_INTF_SEL)) {
reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
reg |= BIT(13);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
}
if (offset & BIT(DYN_REFRESH_SYNC_MODE)) {
reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
reg |= BIT(16);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
}
if (offset & BIT(DYN_REFRESH_SWI_CTRL)) {
reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
reg |= BIT(0);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
}
if (offset & BIT(DYN_REFRESH_SW_TRIGGER)) {
reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
reg |= BIT(8);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
wmb(); /* ensure dynamic fps is triggered */
}
}
int dsi_phy_hw_v4_0_cache_phy_timings(struct dsi_phy_per_lane_cfgs *timings,
u32 *dst, u32 size)
{
int i;
if (!timings || !dst || !size)
return -EINVAL;
if (size != DSI_PHY_TIMING_V4_SIZE) {
DSI_ERR("size mis-match\n");
return -EINVAL;
}
for (i = 0; i < size; i++)
dst[i] = timings->lane_v4[i];
return 0;
}
void dsi_phy_hw_v4_0_set_continuous_clk(struct dsi_phy_hw *phy, bool enable)
{
u32 reg = 0;
reg = DSI_R32(phy, DSIPHY_CMN_LANE_CTRL1);
if (enable)
reg |= BIT(5) | BIT(6);
else
reg &= ~(BIT(5) | BIT(6));
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL1, reg);
wmb(); /* make sure request is set */
}