hal_srng.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "hal_api.h"
  21. #include "hal_reo.h"
  22. #include "target_type.h"
  23. #include "qdf_module.h"
  24. #include "wcss_version.h"
  25. #include <qdf_tracepoint.h>
  26. #ifdef QCA_WIFI_QCA8074
  27. void hal_qca6290_attach(struct hal_soc *hal);
  28. #endif
  29. #ifdef QCA_WIFI_QCA8074
  30. void hal_qca8074_attach(struct hal_soc *hal);
  31. #endif
  32. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
  33. defined(QCA_WIFI_QCA9574)
  34. void hal_qca8074v2_attach(struct hal_soc *hal);
  35. #endif
  36. #ifdef QCA_WIFI_QCA6390
  37. void hal_qca6390_attach(struct hal_soc *hal);
  38. #endif
  39. #ifdef QCA_WIFI_QCA6490
  40. void hal_qca6490_attach(struct hal_soc *hal);
  41. #endif
  42. #ifdef QCA_WIFI_QCN9000
  43. void hal_qcn9000_attach(struct hal_soc *hal);
  44. #endif
  45. #ifdef QCA_WIFI_QCN9224
  46. void hal_qcn9224_attach(struct hal_soc *hal);
  47. #endif
  48. #ifdef QCA_WIFI_QCN6122
  49. void hal_qcn6122_attach(struct hal_soc *hal);
  50. #endif
  51. #ifdef QCA_WIFI_QCA6750
  52. void hal_qca6750_attach(struct hal_soc *hal);
  53. #endif
  54. #ifdef QCA_WIFI_QCA5018
  55. void hal_qca5018_attach(struct hal_soc *hal);
  56. #endif
  57. #ifdef QCA_WIFI_KIWI
  58. void hal_kiwi_attach(struct hal_soc *hal);
  59. #endif
  60. #ifdef ENABLE_VERBOSE_DEBUG
  61. bool is_hal_verbose_debug_enabled;
  62. #endif
  63. #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x) ((x) + 0x4)
  64. #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x) ((x) + 0x8)
  65. #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x) ((x) + 0xc)
  66. #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x) ((x) + 0x10)
  67. #ifdef ENABLE_HAL_REG_WR_HISTORY
  68. struct hal_reg_write_fail_history hal_reg_wr_hist;
  69. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  70. uint32_t offset,
  71. uint32_t wr_val, uint32_t rd_val)
  72. {
  73. struct hal_reg_write_fail_entry *record;
  74. int idx;
  75. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  76. HAL_REG_WRITE_HIST_SIZE);
  77. record = &hal_soc->reg_wr_fail_hist->record[idx];
  78. record->timestamp = qdf_get_log_timestamp();
  79. record->reg_offset = offset;
  80. record->write_val = wr_val;
  81. record->read_val = rd_val;
  82. }
  83. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  84. {
  85. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  86. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  87. }
  88. #else
  89. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  90. {
  91. }
  92. #endif
  93. /**
  94. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  95. * @hal: hal_soc data structure
  96. * @ring_type: type enum describing the ring
  97. * @ring_num: which ring of the ring type
  98. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  99. *
  100. * Return: the ring id or -EINVAL if the ring does not exist.
  101. */
  102. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  103. int ring_num, int mac_id)
  104. {
  105. struct hal_hw_srng_config *ring_config =
  106. HAL_SRNG_CONFIG(hal, ring_type);
  107. int ring_id;
  108. if (ring_num >= ring_config->max_rings) {
  109. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  110. "%s: ring_num exceeded maximum no. of supported rings",
  111. __func__);
  112. /* TODO: This is a programming error. Assert if this happens */
  113. return -EINVAL;
  114. }
  115. /*
  116. * For BE, dmac_cmn_src_rxbuf_ring is set. If this is set
  117. * and ring is dst and also lmac ring then provide ring id per lmac
  118. */
  119. if (ring_config->lmac_ring &&
  120. (!hal->dmac_cmn_src_rxbuf_ring ||
  121. ring_config->ring_dir == HAL_SRNG_DST_RING)) {
  122. ring_id = (ring_config->start_ring_id + ring_num +
  123. (mac_id * HAL_MAX_RINGS_PER_LMAC));
  124. } else {
  125. ring_id = ring_config->start_ring_id + ring_num;
  126. }
  127. return ring_id;
  128. }
  129. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  130. {
  131. /* TODO: Should we allocate srng structures dynamically? */
  132. return &(hal->srng_list[ring_id]);
  133. }
  134. #ifndef SHADOW_REG_CONFIG_DISABLED
  135. #define HP_OFFSET_IN_REG_START 1
  136. #define OFFSET_FROM_HP_TO_TP 4
  137. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  138. int shadow_config_index,
  139. int ring_type,
  140. int ring_num)
  141. {
  142. struct hal_srng *srng;
  143. int ring_id;
  144. struct hal_hw_srng_config *ring_config =
  145. HAL_SRNG_CONFIG(hal_soc, ring_type);
  146. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  147. if (ring_id < 0)
  148. return;
  149. srng = hal_get_srng(hal_soc, ring_id);
  150. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  151. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  152. + hal_soc->dev_base_addr;
  153. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  154. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  155. shadow_config_index);
  156. } else {
  157. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  158. + hal_soc->dev_base_addr;
  159. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  160. srng->u.src_ring.hp_addr,
  161. hal_soc->dev_base_addr, shadow_config_index);
  162. }
  163. }
  164. #endif
  165. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  166. void hal_set_one_target_reg_config(struct hal_soc *hal,
  167. uint32_t target_reg_offset,
  168. int list_index)
  169. {
  170. int i = list_index;
  171. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  172. hal->list_shadow_reg_config[i].target_register =
  173. target_reg_offset;
  174. hal->num_generic_shadow_regs_configured++;
  175. }
  176. qdf_export_symbol(hal_set_one_target_reg_config);
  177. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  178. #define MAX_REO_REMAP_SHADOW_REGS 4
  179. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  180. {
  181. uint32_t target_reg_offset;
  182. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  183. int i;
  184. struct hal_hw_srng_config *srng_config =
  185. &hal->hw_srng_table[WBM2SW_RELEASE];
  186. uint32_t reo_reg_base;
  187. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
  188. target_reg_offset =
  189. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
  190. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  191. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  192. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  193. }
  194. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  195. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  196. * HAL_IPA_TX_COMP_RING_IDX);
  197. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  198. return QDF_STATUS_SUCCESS;
  199. }
  200. qdf_export_symbol(hal_set_shadow_regs);
  201. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  202. {
  203. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  204. int shadow_config_index = hal->num_shadow_registers_configured;
  205. int i;
  206. int num_regs = hal->num_generic_shadow_regs_configured;
  207. for (i = 0; i < num_regs; i++) {
  208. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  209. hal->shadow_config[shadow_config_index].addr =
  210. hal->list_shadow_reg_config[i].target_register;
  211. hal->list_shadow_reg_config[i].shadow_config_index =
  212. shadow_config_index;
  213. hal->list_shadow_reg_config[i].va =
  214. SHADOW_REGISTER(shadow_config_index) +
  215. (uintptr_t)hal->dev_base_addr;
  216. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  217. hal->shadow_config[shadow_config_index].addr,
  218. SHADOW_REGISTER(shadow_config_index),
  219. shadow_config_index);
  220. shadow_config_index++;
  221. hal->num_shadow_registers_configured++;
  222. }
  223. return QDF_STATUS_SUCCESS;
  224. }
  225. qdf_export_symbol(hal_construct_shadow_regs);
  226. #endif
  227. #ifndef SHADOW_REG_CONFIG_DISABLED
  228. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  229. int ring_type,
  230. int ring_num)
  231. {
  232. uint32_t target_register;
  233. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  234. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  235. int shadow_config_index = hal->num_shadow_registers_configured;
  236. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  237. QDF_ASSERT(0);
  238. return QDF_STATUS_E_RESOURCES;
  239. }
  240. hal->num_shadow_registers_configured++;
  241. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  242. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  243. *ring_num);
  244. /* if the ring is a dst ring, we need to shadow the tail pointer */
  245. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  246. target_register += OFFSET_FROM_HP_TO_TP;
  247. hal->shadow_config[shadow_config_index].addr = target_register;
  248. /* update hp/tp addr in the hal_soc structure*/
  249. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  250. ring_num);
  251. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  252. target_register,
  253. SHADOW_REGISTER(shadow_config_index),
  254. shadow_config_index,
  255. ring_type, ring_num);
  256. return QDF_STATUS_SUCCESS;
  257. }
  258. qdf_export_symbol(hal_set_one_shadow_config);
  259. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  260. {
  261. int ring_type, ring_num;
  262. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  263. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  264. struct hal_hw_srng_config *srng_config =
  265. &hal->hw_srng_table[ring_type];
  266. if (ring_type == CE_SRC ||
  267. ring_type == CE_DST ||
  268. ring_type == CE_DST_STATUS)
  269. continue;
  270. if (srng_config->lmac_ring)
  271. continue;
  272. for (ring_num = 0; ring_num < srng_config->max_rings;
  273. ring_num++)
  274. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  275. }
  276. return QDF_STATUS_SUCCESS;
  277. }
  278. qdf_export_symbol(hal_construct_srng_shadow_regs);
  279. #else
  280. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  281. {
  282. return QDF_STATUS_SUCCESS;
  283. }
  284. qdf_export_symbol(hal_construct_srng_shadow_regs);
  285. QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
  286. int ring_num)
  287. {
  288. return QDF_STATUS_SUCCESS;
  289. }
  290. qdf_export_symbol(hal_set_one_shadow_config);
  291. #endif
  292. void hal_get_shadow_config(void *hal_soc,
  293. struct pld_shadow_reg_v2_cfg **shadow_config,
  294. int *num_shadow_registers_configured)
  295. {
  296. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  297. *shadow_config = hal->shadow_config;
  298. *num_shadow_registers_configured =
  299. hal->num_shadow_registers_configured;
  300. }
  301. qdf_export_symbol(hal_get_shadow_config);
  302. static bool hal_validate_shadow_register(struct hal_soc *hal,
  303. uint32_t *destination,
  304. uint32_t *shadow_address)
  305. {
  306. unsigned int index;
  307. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  308. int destination_ba_offset =
  309. ((char *)destination) - (char *)hal->dev_base_addr;
  310. index = shadow_address - shadow_0_offset;
  311. if (index >= MAX_SHADOW_REGISTERS) {
  312. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  313. "%s: index %x out of bounds", __func__, index);
  314. goto error;
  315. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  316. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  317. "%s: sanity check failure, expected %x, found %x",
  318. __func__, destination_ba_offset,
  319. hal->shadow_config[index].addr);
  320. goto error;
  321. }
  322. return true;
  323. error:
  324. qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  325. hal->dev_base_addr, destination, shadow_address,
  326. shadow_0_offset, index);
  327. QDF_BUG(0);
  328. return false;
  329. }
  330. static void hal_target_based_configure(struct hal_soc *hal)
  331. {
  332. /**
  333. * Indicate Initialization of srngs to avoid force wake
  334. * as umac power collapse is not enabled yet
  335. */
  336. hal->init_phase = true;
  337. switch (hal->target_type) {
  338. #ifdef QCA_WIFI_QCA6290
  339. case TARGET_TYPE_QCA6290:
  340. hal->use_register_windowing = true;
  341. hal_qca6290_attach(hal);
  342. break;
  343. #endif
  344. #ifdef QCA_WIFI_QCA6390
  345. case TARGET_TYPE_QCA6390:
  346. hal->use_register_windowing = true;
  347. hal_qca6390_attach(hal);
  348. break;
  349. #endif
  350. #ifdef QCA_WIFI_QCA6490
  351. case TARGET_TYPE_QCA6490:
  352. hal->use_register_windowing = true;
  353. hal_qca6490_attach(hal);
  354. break;
  355. #endif
  356. #ifdef QCA_WIFI_QCA6750
  357. case TARGET_TYPE_QCA6750:
  358. hal->use_register_windowing = true;
  359. hal->static_window_map = true;
  360. hal_qca6750_attach(hal);
  361. break;
  362. #endif
  363. #ifdef QCA_WIFI_KIWI
  364. case TARGET_TYPE_KIWI:
  365. hal->use_register_windowing = true;
  366. hal_kiwi_attach(hal);
  367. break;
  368. #endif
  369. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  370. case TARGET_TYPE_QCA8074:
  371. hal_qca8074_attach(hal);
  372. break;
  373. #endif
  374. #if defined(QCA_WIFI_QCA8074V2)
  375. case TARGET_TYPE_QCA8074V2:
  376. hal_qca8074v2_attach(hal);
  377. break;
  378. #endif
  379. #if defined(QCA_WIFI_QCA6018)
  380. case TARGET_TYPE_QCA6018:
  381. hal_qca8074v2_attach(hal);
  382. break;
  383. #endif
  384. #if defined(QCA_WIFI_QCA9574)
  385. case TARGET_TYPE_QCA9574:
  386. hal_qca8074v2_attach(hal);
  387. break;
  388. #endif
  389. #if defined(QCA_WIFI_QCN6122)
  390. case TARGET_TYPE_QCN6122:
  391. hal->use_register_windowing = true;
  392. /*
  393. * Static window map is enabled for qcn9000 to use 2mb bar
  394. * size and use multiple windows to write into registers.
  395. */
  396. hal->static_window_map = true;
  397. hal_qcn6122_attach(hal);
  398. break;
  399. #endif
  400. #ifdef QCA_WIFI_QCN9000
  401. case TARGET_TYPE_QCN9000:
  402. hal->use_register_windowing = true;
  403. /*
  404. * Static window map is enabled for qcn9000 to use 2mb bar
  405. * size and use multiple windows to write into registers.
  406. */
  407. hal->static_window_map = true;
  408. hal_qcn9000_attach(hal);
  409. break;
  410. #endif
  411. #ifdef QCA_WIFI_QCA5018
  412. case TARGET_TYPE_QCA5018:
  413. hal->use_register_windowing = true;
  414. hal->static_window_map = true;
  415. hal_qca5018_attach(hal);
  416. break;
  417. #endif
  418. #ifdef QCA_WIFI_QCN9224
  419. case TARGET_TYPE_QCN9224:
  420. hal->use_register_windowing = true;
  421. hal->static_window_map = true;
  422. hal_qcn9224_attach(hal);
  423. break;
  424. #endif
  425. default:
  426. break;
  427. }
  428. }
  429. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  430. {
  431. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  432. struct hif_target_info *tgt_info =
  433. hif_get_target_info_handle(hal_soc->hif_handle);
  434. return tgt_info->target_type;
  435. }
  436. qdf_export_symbol(hal_get_target_type);
  437. #if defined(FEATURE_HAL_DELAYED_REG_WRITE)
  438. /**
  439. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  440. * @hal: hal_soc pointer
  441. *
  442. * Return: true if throughput is high, else false.
  443. */
  444. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  445. {
  446. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  447. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  448. }
  449. static inline
  450. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  451. char *buf, qdf_size_t size)
  452. {
  453. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  454. srng->wstats.enqueues, srng->wstats.dequeues,
  455. srng->wstats.coalesces, srng->wstats.direct);
  456. return buf;
  457. }
  458. /* bytes for local buffer */
  459. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  460. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  461. {
  462. struct hal_srng *srng;
  463. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  464. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  465. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  466. hal_debug("SW2TCL1: %s",
  467. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  468. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  469. hal_debug("WBM2SW0: %s",
  470. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  471. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  472. hal_debug("REO2SW1: %s",
  473. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  474. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  475. hal_debug("REO2SW2: %s",
  476. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  477. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  478. hal_debug("REO2SW3: %s",
  479. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  480. }
  481. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  482. {
  483. uint32_t *hist;
  484. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  485. hist = hal->stats.wstats.sched_delay;
  486. hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  487. qdf_atomic_read(&hal->stats.wstats.enqueues),
  488. hal->stats.wstats.dequeues,
  489. qdf_atomic_read(&hal->stats.wstats.coalesces),
  490. qdf_atomic_read(&hal->stats.wstats.direct),
  491. qdf_atomic_read(&hal->stats.wstats.q_depth),
  492. hal->stats.wstats.max_q_depth,
  493. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  494. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  495. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  496. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  497. }
  498. int hal_get_reg_write_pending_work(void *hal_soc)
  499. {
  500. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  501. return qdf_atomic_read(&hal->active_work_cnt);
  502. }
  503. #endif
  504. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  505. #ifdef MEMORY_DEBUG
  506. /*
  507. * Length of the queue(array) used to hold delayed register writes.
  508. * Must be a multiple of 2.
  509. */
  510. #define HAL_REG_WRITE_QUEUE_LEN 128
  511. #else
  512. #define HAL_REG_WRITE_QUEUE_LEN 32
  513. #endif
  514. /**
  515. * hal_process_reg_write_q_elem() - process a regiter write queue element
  516. * @hal: hal_soc pointer
  517. * @q_elem: pointer to hal regiter write queue element
  518. *
  519. * Return: The value which was written to the address
  520. */
  521. static uint32_t
  522. hal_process_reg_write_q_elem(struct hal_soc *hal,
  523. struct hal_reg_write_q_elem *q_elem)
  524. {
  525. struct hal_srng *srng = q_elem->srng;
  526. uint32_t write_val;
  527. SRNG_LOCK(&srng->lock);
  528. srng->reg_write_in_progress = false;
  529. srng->wstats.dequeues++;
  530. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  531. q_elem->dequeue_val = srng->u.src_ring.hp;
  532. hal_write_address_32_mb(hal,
  533. srng->u.src_ring.hp_addr,
  534. srng->u.src_ring.hp, false);
  535. write_val = srng->u.src_ring.hp;
  536. } else {
  537. q_elem->dequeue_val = srng->u.dst_ring.tp;
  538. hal_write_address_32_mb(hal,
  539. srng->u.dst_ring.tp_addr,
  540. srng->u.dst_ring.tp, false);
  541. write_val = srng->u.dst_ring.tp;
  542. }
  543. q_elem->valid = 0;
  544. srng->last_dequeue_time = q_elem->dequeue_time;
  545. SRNG_UNLOCK(&srng->lock);
  546. return write_val;
  547. }
  548. /**
  549. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  550. * @hal: hal_soc pointer
  551. * @delay: delay in us
  552. *
  553. * Return: None
  554. */
  555. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  556. uint64_t delay_us)
  557. {
  558. uint32_t *hist;
  559. hist = hal->stats.wstats.sched_delay;
  560. if (delay_us < 100)
  561. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  562. else if (delay_us < 1000)
  563. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  564. else if (delay_us < 5000)
  565. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  566. else
  567. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  568. }
  569. #ifdef SHADOW_WRITE_DELAY
  570. #define SHADOW_WRITE_MIN_DELTA_US 5
  571. #define SHADOW_WRITE_DELAY_US 50
  572. /*
  573. * Never add those srngs which are performance relate.
  574. * The delay itself will hit performance heavily.
  575. */
  576. #define IS_SRNG_MATCH(s) ((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
  577. (s)->ring_id == HAL_SRNG_CE_1_DST)
  578. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  579. {
  580. struct hal_srng *srng = elem->srng;
  581. struct hal_soc *hal;
  582. qdf_time_t now;
  583. qdf_iomem_t real_addr;
  584. if (qdf_unlikely(!srng))
  585. return false;
  586. hal = srng->hal_soc;
  587. if (qdf_unlikely(!hal))
  588. return false;
  589. /* Check if it is target srng, and valid shadow reg */
  590. if (qdf_likely(!IS_SRNG_MATCH(srng)))
  591. return false;
  592. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  593. real_addr = SRNG_SRC_ADDR(srng, HP);
  594. else
  595. real_addr = SRNG_DST_ADDR(srng, TP);
  596. if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
  597. return false;
  598. /* Check the time delta from last write of same srng */
  599. now = qdf_get_log_timestamp();
  600. if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
  601. SHADOW_WRITE_MIN_DELTA_US)
  602. return false;
  603. /* Delay dequeue, and record */
  604. qdf_udelay(SHADOW_WRITE_DELAY_US);
  605. srng->wstats.dequeue_delay++;
  606. hal->stats.wstats.dequeue_delay++;
  607. return true;
  608. }
  609. #else
  610. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  611. {
  612. return false;
  613. }
  614. #endif
  615. /**
  616. * hal_reg_write_work() - Worker to process delayed writes
  617. * @arg: hal_soc pointer
  618. *
  619. * Return: None
  620. */
  621. static void hal_reg_write_work(void *arg)
  622. {
  623. int32_t q_depth, write_val;
  624. struct hal_soc *hal = arg;
  625. struct hal_reg_write_q_elem *q_elem;
  626. uint64_t delta_us;
  627. uint8_t ring_id;
  628. uint32_t *addr;
  629. uint32_t num_processed = 0;
  630. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  631. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  632. q_elem->cpu_id = qdf_get_cpu();
  633. /* Make sure q_elem consistent in the memory for multi-cores */
  634. qdf_rmb();
  635. if (!q_elem->valid)
  636. return;
  637. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  638. if (q_depth > hal->stats.wstats.max_q_depth)
  639. hal->stats.wstats.max_q_depth = q_depth;
  640. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  641. hal->stats.wstats.prevent_l1_fails++;
  642. return;
  643. }
  644. while (true) {
  645. qdf_rmb();
  646. if (!q_elem->valid)
  647. break;
  648. q_elem->dequeue_time = qdf_get_log_timestamp();
  649. ring_id = q_elem->srng->ring_id;
  650. addr = q_elem->addr;
  651. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  652. q_elem->enqueue_time);
  653. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  654. hal->stats.wstats.dequeues++;
  655. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  656. if (hal_reg_write_need_delay(q_elem))
  657. hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
  658. q_elem->srng->ring_id, q_elem->addr);
  659. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  660. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  661. hal->read_idx, ring_id, addr, write_val, delta_us);
  662. qdf_trace_dp_del_reg_write(ring_id, q_elem->enqueue_val,
  663. q_elem->dequeue_val,
  664. q_elem->enqueue_time,
  665. q_elem->dequeue_time);
  666. num_processed++;
  667. hal->read_idx = (hal->read_idx + 1) &
  668. (HAL_REG_WRITE_QUEUE_LEN - 1);
  669. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  670. }
  671. hif_allow_link_low_power_states(hal->hif_handle);
  672. /*
  673. * Decrement active_work_cnt by the number of elements dequeued after
  674. * hif_allow_link_low_power_states.
  675. * This makes sure that hif_try_complete_tasks will wait till we make
  676. * the bus access in hif_allow_link_low_power_states. This will avoid
  677. * race condition between delayed register worker and bus suspend
  678. * (system suspend or runtime suspend).
  679. *
  680. * The following decrement should be done at the end!
  681. */
  682. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  683. }
  684. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  685. {
  686. qdf_flush_work(&hal->reg_write_work);
  687. qdf_disable_work(&hal->reg_write_work);
  688. }
  689. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  690. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  691. }
  692. /**
  693. * hal_reg_write_enqueue() - enqueue register writes into kworker
  694. * @hal_soc: hal_soc pointer
  695. * @srng: srng pointer
  696. * @addr: iomem address of regiter
  697. * @value: value to be written to iomem address
  698. *
  699. * This function executes from within the SRNG LOCK
  700. *
  701. * Return: None
  702. */
  703. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  704. struct hal_srng *srng,
  705. void __iomem *addr,
  706. uint32_t value)
  707. {
  708. struct hal_reg_write_q_elem *q_elem;
  709. uint32_t write_idx;
  710. if (srng->reg_write_in_progress) {
  711. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  712. srng->ring_id, addr, value);
  713. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  714. srng->wstats.coalesces++;
  715. return;
  716. }
  717. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  718. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  719. q_elem = &hal_soc->reg_write_queue[write_idx];
  720. if (q_elem->valid) {
  721. hal_err("queue full");
  722. QDF_BUG(0);
  723. return;
  724. }
  725. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  726. srng->wstats.enqueues++;
  727. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  728. q_elem->srng = srng;
  729. q_elem->addr = addr;
  730. q_elem->enqueue_val = value;
  731. q_elem->enqueue_time = qdf_get_log_timestamp();
  732. /*
  733. * Before the valid flag is set to true, all the other
  734. * fields in the q_elem needs to be updated in memory.
  735. * Else there is a chance that the dequeuing worker thread
  736. * might read stale entries and process incorrect srng.
  737. */
  738. qdf_wmb();
  739. q_elem->valid = true;
  740. /*
  741. * After all other fields in the q_elem has been updated
  742. * in memory successfully, the valid flag needs to be updated
  743. * in memory in time too.
  744. * Else there is a chance that the dequeuing worker thread
  745. * might read stale valid flag and the work will be bypassed
  746. * for this round. And if there is no other work scheduled
  747. * later, this hal register writing won't be updated any more.
  748. */
  749. qdf_wmb();
  750. srng->reg_write_in_progress = true;
  751. qdf_atomic_inc(&hal_soc->active_work_cnt);
  752. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  753. write_idx, srng->ring_id, addr, value);
  754. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  755. &hal_soc->reg_write_work);
  756. }
  757. /**
  758. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  759. * @hal_soc: hal_soc pointer
  760. *
  761. * Initialize main data structures to process register writes in a delayed
  762. * workqueue.
  763. *
  764. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  765. */
  766. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  767. {
  768. hal->reg_write_wq =
  769. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  770. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  771. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  772. sizeof(*hal->reg_write_queue));
  773. if (!hal->reg_write_queue) {
  774. hal_err("unable to allocate memory");
  775. QDF_BUG(0);
  776. return QDF_STATUS_E_NOMEM;
  777. }
  778. /* Initial value of indices */
  779. hal->read_idx = 0;
  780. qdf_atomic_set(&hal->write_idx, -1);
  781. return QDF_STATUS_SUCCESS;
  782. }
  783. /**
  784. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  785. * @hal_soc: hal_soc pointer
  786. *
  787. * De-initialize main data structures to process register writes in a delayed
  788. * workqueue.
  789. *
  790. * Return: None
  791. */
  792. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  793. {
  794. __hal_flush_reg_write_work(hal);
  795. qdf_flush_workqueue(0, hal->reg_write_wq);
  796. qdf_destroy_workqueue(0, hal->reg_write_wq);
  797. qdf_mem_free(hal->reg_write_queue);
  798. }
  799. #else
  800. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  801. {
  802. return QDF_STATUS_SUCCESS;
  803. }
  804. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  805. {
  806. }
  807. #endif
  808. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  809. #ifdef QCA_WIFI_QCA6750
  810. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  811. struct hal_srng *srng,
  812. void __iomem *addr,
  813. uint32_t value)
  814. {
  815. uint8_t vote_access;
  816. switch (srng->ring_type) {
  817. case CE_SRC:
  818. case CE_DST:
  819. case CE_DST_STATUS:
  820. vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
  821. HIF_EP_VOTE_NONDP_ACCESS);
  822. if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
  823. (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
  824. PLD_MHI_STATE_L0 ==
  825. pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
  826. hal_write_address_32_mb(hal_soc, addr, value, false);
  827. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  828. srng->wstats.direct++;
  829. } else {
  830. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  831. }
  832. break;
  833. default:
  834. if (hif_get_ep_vote_access(hal_soc->hif_handle,
  835. HIF_EP_VOTE_DP_ACCESS) ==
  836. HIF_EP_VOTE_ACCESS_DISABLE ||
  837. hal_is_reg_write_tput_level_high(hal_soc) ||
  838. PLD_MHI_STATE_L0 ==
  839. pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
  840. hal_write_address_32_mb(hal_soc, addr, value, false);
  841. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  842. srng->wstats.direct++;
  843. } else {
  844. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  845. }
  846. break;
  847. }
  848. }
  849. #else
  850. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  851. struct hal_srng *srng,
  852. void __iomem *addr,
  853. uint32_t value)
  854. {
  855. if (hal_is_reg_write_tput_level_high(hal_soc) ||
  856. pld_is_device_awake(hal_soc->qdf_dev->dev)) {
  857. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  858. srng->wstats.direct++;
  859. hal_write_address_32_mb(hal_soc, addr, value, false);
  860. } else {
  861. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  862. }
  863. }
  864. #endif
  865. #endif
  866. /**
  867. * hal_attach - Initialize HAL layer
  868. * @hif_handle: Opaque HIF handle
  869. * @qdf_dev: QDF device
  870. *
  871. * Return: Opaque HAL SOC handle
  872. * NULL on failure (if given ring is not available)
  873. *
  874. * This function should be called as part of HIF initialization (for accessing
  875. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  876. *
  877. */
  878. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  879. {
  880. struct hal_soc *hal;
  881. int i;
  882. hal = qdf_mem_malloc(sizeof(*hal));
  883. if (!hal) {
  884. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  885. "%s: hal_soc allocation failed", __func__);
  886. goto fail0;
  887. }
  888. hal->hif_handle = hif_handle;
  889. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  890. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  891. hal->qdf_dev = qdf_dev;
  892. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  893. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  894. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  895. if (!hal->shadow_rdptr_mem_paddr) {
  896. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  897. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  898. __func__);
  899. goto fail1;
  900. }
  901. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  902. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  903. hal->shadow_wrptr_mem_vaddr =
  904. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  905. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  906. &(hal->shadow_wrptr_mem_paddr));
  907. if (!hal->shadow_wrptr_mem_vaddr) {
  908. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  909. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  910. __func__);
  911. goto fail2;
  912. }
  913. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  914. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  915. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  916. hal->srng_list[i].initialized = 0;
  917. hal->srng_list[i].ring_id = i;
  918. }
  919. qdf_spinlock_create(&hal->register_access_lock);
  920. hal->register_window = 0;
  921. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  922. hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
  923. if (!hal->ops) {
  924. hal_err("unable to allocable memory for HAL ops");
  925. goto fail3;
  926. }
  927. hal_target_based_configure(hal);
  928. hal_reg_write_fail_history_init(hal);
  929. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  930. qdf_atomic_init(&hal->active_work_cnt);
  931. hal_delayed_reg_write_init(hal);
  932. return (void *)hal;
  933. fail3:
  934. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  935. sizeof(*hal->shadow_wrptr_mem_vaddr) *
  936. HAL_MAX_LMAC_RINGS,
  937. hal->shadow_wrptr_mem_vaddr,
  938. hal->shadow_wrptr_mem_paddr, 0);
  939. fail2:
  940. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  941. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  942. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  943. fail1:
  944. qdf_mem_free(hal);
  945. fail0:
  946. return NULL;
  947. }
  948. qdf_export_symbol(hal_attach);
  949. /**
  950. * hal_mem_info - Retrieve hal memory base address
  951. *
  952. * @hal_soc: Opaque HAL SOC handle
  953. * @mem: pointer to structure to be updated with hal mem info
  954. */
  955. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  956. {
  957. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  958. mem->dev_base_addr = (void *)hal->dev_base_addr;
  959. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  960. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  961. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  962. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  963. hif_read_phy_mem_base((void *)hal->hif_handle,
  964. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  965. mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
  966. return;
  967. }
  968. qdf_export_symbol(hal_get_meminfo);
  969. /**
  970. * hal_detach - Detach HAL layer
  971. * @hal_soc: HAL SOC handle
  972. *
  973. * Return: Opaque HAL SOC handle
  974. * NULL on failure (if given ring is not available)
  975. *
  976. * This function should be called as part of HIF initialization (for accessing
  977. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  978. *
  979. */
  980. extern void hal_detach(void *hal_soc)
  981. {
  982. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  983. hal_delayed_reg_write_deinit(hal);
  984. qdf_mem_free(hal->ops);
  985. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  986. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  987. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  988. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  989. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  990. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  991. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  992. qdf_mem_free(hal);
  993. return;
  994. }
  995. qdf_export_symbol(hal_detach);
  996. #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x) ((x) + 0x000000b0)
  997. #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK 0x0000ffff
  998. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x) ((x) + 0x00000040)
  999. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK 0x00000007
  1000. /**
  1001. * hal_ce_dst_setup - Initialize CE destination ring registers
  1002. * @hal_soc: HAL SOC handle
  1003. * @srng: SRNG ring pointer
  1004. */
  1005. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  1006. int ring_num)
  1007. {
  1008. uint32_t reg_val = 0;
  1009. uint32_t reg_addr;
  1010. struct hal_hw_srng_config *ring_config =
  1011. HAL_SRNG_CONFIG(hal, CE_DST);
  1012. /* set DEST_MAX_LENGTH according to ce assignment */
  1013. reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
  1014. ring_config->reg_start[R0_INDEX] +
  1015. (ring_num * ring_config->reg_size[R0_INDEX]));
  1016. reg_val = HAL_REG_READ(hal, reg_addr);
  1017. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1018. reg_val |= srng->u.dst_ring.max_buffer_length &
  1019. HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1020. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1021. if (srng->prefetch_timer) {
  1022. reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  1023. ring_config->reg_start[R0_INDEX] +
  1024. (ring_num * ring_config->reg_size[R0_INDEX]));
  1025. reg_val = HAL_REG_READ(hal, reg_addr);
  1026. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  1027. reg_val |= srng->prefetch_timer;
  1028. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1029. reg_val = HAL_REG_READ(hal, reg_addr);
  1030. }
  1031. }
  1032. /**
  1033. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  1034. * @hal: HAL SOC handle
  1035. * @read: boolean value to indicate if read or write
  1036. * @ix0: pointer to store IX0 reg value
  1037. * @ix1: pointer to store IX1 reg value
  1038. * @ix2: pointer to store IX2 reg value
  1039. * @ix3: pointer to store IX3 reg value
  1040. */
  1041. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1042. uint32_t *ix0, uint32_t *ix1,
  1043. uint32_t *ix2, uint32_t *ix3)
  1044. {
  1045. uint32_t reg_offset;
  1046. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1047. uint32_t reo_reg_base;
  1048. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
  1049. if (read) {
  1050. if (ix0) {
  1051. reg_offset =
  1052. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1053. reo_reg_base);
  1054. *ix0 = HAL_REG_READ(hal, reg_offset);
  1055. }
  1056. if (ix1) {
  1057. reg_offset =
  1058. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1059. reo_reg_base);
  1060. *ix1 = HAL_REG_READ(hal, reg_offset);
  1061. }
  1062. if (ix2) {
  1063. reg_offset =
  1064. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1065. reo_reg_base);
  1066. *ix2 = HAL_REG_READ(hal, reg_offset);
  1067. }
  1068. if (ix3) {
  1069. reg_offset =
  1070. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1071. reo_reg_base);
  1072. *ix3 = HAL_REG_READ(hal, reg_offset);
  1073. }
  1074. } else {
  1075. if (ix0) {
  1076. reg_offset =
  1077. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1078. reo_reg_base);
  1079. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1080. *ix0, true);
  1081. }
  1082. if (ix1) {
  1083. reg_offset =
  1084. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1085. reo_reg_base);
  1086. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1087. *ix1, true);
  1088. }
  1089. if (ix2) {
  1090. reg_offset =
  1091. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1092. reo_reg_base);
  1093. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1094. *ix2, true);
  1095. }
  1096. if (ix3) {
  1097. reg_offset =
  1098. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1099. reo_reg_base);
  1100. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1101. *ix3, true);
  1102. }
  1103. }
  1104. }
  1105. qdf_export_symbol(hal_reo_read_write_ctrl_ix);
  1106. /**
  1107. * hal_srng_dst_set_hp_paddr_confirm() - Set physical address to dest ring head
  1108. * pointer and confirm that write went through by reading back the value
  1109. * @srng: sring pointer
  1110. * @paddr: physical address
  1111. *
  1112. * Return: None
  1113. */
  1114. void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
  1115. {
  1116. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
  1117. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
  1118. }
  1119. qdf_export_symbol(hal_srng_dst_set_hp_paddr_confirm);
  1120. /**
  1121. * hal_srng_dst_init_hp() - Initialize destination ring head
  1122. * pointer
  1123. * @hal_soc: hal_soc handle
  1124. * @srng: sring pointer
  1125. * @vaddr: virtual address
  1126. */
  1127. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1128. struct hal_srng *srng,
  1129. uint32_t *vaddr)
  1130. {
  1131. uint32_t reg_offset;
  1132. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1133. if (!srng)
  1134. return;
  1135. srng->u.dst_ring.hp_addr = vaddr;
  1136. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  1137. HAL_REG_WRITE_CONFIRM_RETRY(
  1138. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  1139. if (vaddr) {
  1140. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  1141. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1142. "hp_addr=%pK, cached_hp=%d, hp=%d",
  1143. (void *)srng->u.dst_ring.hp_addr,
  1144. srng->u.dst_ring.cached_hp,
  1145. *srng->u.dst_ring.hp_addr);
  1146. }
  1147. }
  1148. qdf_export_symbol(hal_srng_dst_init_hp);
  1149. /**
  1150. * hal_srng_hw_init - Private function to initialize SRNG HW
  1151. * @hal_soc: HAL SOC handle
  1152. * @srng: SRNG ring pointer
  1153. */
  1154. static inline void hal_srng_hw_init(struct hal_soc *hal,
  1155. struct hal_srng *srng)
  1156. {
  1157. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1158. hal_srng_src_hw_init(hal, srng);
  1159. else
  1160. hal_srng_dst_hw_init(hal, srng);
  1161. }
  1162. #ifdef CONFIG_SHADOW_V2
  1163. #define ignore_shadow false
  1164. #define CHECK_SHADOW_REGISTERS true
  1165. #else
  1166. #define ignore_shadow true
  1167. #define CHECK_SHADOW_REGISTERS false
  1168. #endif
  1169. #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
  1170. /**
  1171. * hal_srng_is_near_full_irq_supported() - Check if near full irq is
  1172. * supported on this SRNG
  1173. * @hal_soc: HAL SoC handle
  1174. * @ring_type: SRNG type
  1175. * @ring_num: ring number
  1176. *
  1177. * Return: true, if near full irq is supported for this SRNG
  1178. * false, if near full irq is not supported for this SRNG
  1179. */
  1180. bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
  1181. int ring_type, int ring_num)
  1182. {
  1183. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1184. struct hal_hw_srng_config *ring_config =
  1185. HAL_SRNG_CONFIG(hal, ring_type);
  1186. return ring_config->nf_irq_support;
  1187. }
  1188. /**
  1189. * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
  1190. * ring params
  1191. * @srng: SRNG handle
  1192. * @ring_params: ring params for this SRNG
  1193. *
  1194. * Return: None
  1195. */
  1196. static inline void
  1197. hal_srng_set_msi2_params(struct hal_srng *srng,
  1198. struct hal_srng_params *ring_params)
  1199. {
  1200. srng->msi2_addr = ring_params->msi2_addr;
  1201. srng->msi2_data = ring_params->msi2_data;
  1202. }
  1203. /**
  1204. * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
  1205. * @srng: SRNG handle
  1206. * @ring_params: ring params for this SRNG
  1207. *
  1208. * Return: None
  1209. */
  1210. static inline void
  1211. hal_srng_get_nf_params(struct hal_srng *srng,
  1212. struct hal_srng_params *ring_params)
  1213. {
  1214. ring_params->msi2_addr = srng->msi2_addr;
  1215. ring_params->msi2_data = srng->msi2_data;
  1216. }
  1217. /**
  1218. * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
  1219. * @srng: SRNG handle where the params are to be set
  1220. * @ring_params: ring params, from where threshold is to be fetched
  1221. *
  1222. * Return: None
  1223. */
  1224. static inline void
  1225. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1226. struct hal_srng_params *ring_params)
  1227. {
  1228. srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
  1229. srng->u.dst_ring.high_thresh = ring_params->high_thresh;
  1230. }
  1231. #else
  1232. static inline void
  1233. hal_srng_set_msi2_params(struct hal_srng *srng,
  1234. struct hal_srng_params *ring_params)
  1235. {
  1236. }
  1237. static inline void
  1238. hal_srng_get_nf_params(struct hal_srng *srng,
  1239. struct hal_srng_params *ring_params)
  1240. {
  1241. }
  1242. static inline void
  1243. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1244. struct hal_srng_params *ring_params)
  1245. {
  1246. }
  1247. #endif
  1248. #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
  1249. /**
  1250. * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
  1251. *
  1252. * @srng: Source ring pointer
  1253. *
  1254. * Return: None
  1255. */
  1256. static inline
  1257. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1258. {
  1259. srng->last_desc_cleared = srng->ring_size - srng->entry_size;
  1260. }
  1261. #else
  1262. static inline
  1263. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1264. {
  1265. }
  1266. #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
  1267. /**
  1268. * hal_srng_setup - Initialize HW SRNG ring.
  1269. * @hal_soc: Opaque HAL SOC handle
  1270. * @ring_type: one of the types from hal_ring_type
  1271. * @ring_num: Ring number if there are multiple rings of same type (staring
  1272. * from 0)
  1273. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1274. * @ring_params: SRNG ring params in hal_srng_params structure.
  1275. * Callers are expected to allocate contiguous ring memory of size
  1276. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1277. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1278. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1279. * and size of each ring entry should be queried using the API
  1280. * hal_srng_get_entrysize
  1281. *
  1282. * Return: Opaque pointer to ring on success
  1283. * NULL on failure (if given ring is not available)
  1284. */
  1285. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1286. int mac_id, struct hal_srng_params *ring_params)
  1287. {
  1288. int ring_id;
  1289. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1290. struct hal_srng *srng;
  1291. struct hal_hw_srng_config *ring_config =
  1292. HAL_SRNG_CONFIG(hal, ring_type);
  1293. void *dev_base_addr;
  1294. int i;
  1295. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1296. if (ring_id < 0)
  1297. return NULL;
  1298. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1299. srng = hal_get_srng(hal_soc, ring_id);
  1300. if (srng->initialized) {
  1301. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1302. return NULL;
  1303. }
  1304. dev_base_addr = hal->dev_base_addr;
  1305. srng->ring_id = ring_id;
  1306. srng->ring_type = ring_type;
  1307. srng->ring_dir = ring_config->ring_dir;
  1308. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1309. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1310. srng->entry_size = ring_config->entry_size;
  1311. srng->num_entries = ring_params->num_entries;
  1312. srng->ring_size = srng->num_entries * srng->entry_size;
  1313. srng->ring_size_mask = srng->ring_size - 1;
  1314. srng->ring_vaddr_end = srng->ring_base_vaddr + srng->ring_size;
  1315. srng->msi_addr = ring_params->msi_addr;
  1316. srng->msi_data = ring_params->msi_data;
  1317. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1318. srng->intr_batch_cntr_thres_entries =
  1319. ring_params->intr_batch_cntr_thres_entries;
  1320. srng->prefetch_timer = ring_params->prefetch_timer;
  1321. srng->hal_soc = hal_soc;
  1322. hal_srng_set_msi2_params(srng, ring_params);
  1323. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1324. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1325. + (ring_num * ring_config->reg_size[i]);
  1326. }
  1327. /* Zero out the entire ring memory */
  1328. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1329. srng->num_entries) << 2);
  1330. srng->flags = ring_params->flags;
  1331. #ifdef BIG_ENDIAN_HOST
  1332. /* TODO: See if we should we get these flags from caller */
  1333. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1334. srng->flags |= HAL_SRNG_MSI_SWAP;
  1335. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1336. #endif
  1337. hal_srng_last_desc_cleared_init(srng);
  1338. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1339. srng->u.src_ring.hp = 0;
  1340. srng->u.src_ring.reap_hp = srng->ring_size -
  1341. srng->entry_size;
  1342. srng->u.src_ring.tp_addr =
  1343. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1344. srng->u.src_ring.low_threshold =
  1345. ring_params->low_threshold * srng->entry_size;
  1346. if (ring_config->lmac_ring) {
  1347. /* For LMAC rings, head pointer updates will be done
  1348. * through FW by writing to a shared memory location
  1349. */
  1350. srng->u.src_ring.hp_addr =
  1351. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1352. HAL_SRNG_LMAC1_ID_START]);
  1353. srng->flags |= HAL_SRNG_LMAC_RING;
  1354. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1355. srng->u.src_ring.hp_addr =
  1356. hal_get_window_address(hal,
  1357. SRNG_SRC_ADDR(srng, HP));
  1358. if (CHECK_SHADOW_REGISTERS) {
  1359. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1360. QDF_TRACE_LEVEL_ERROR,
  1361. "%s: Ring (%d, %d) missing shadow config",
  1362. __func__, ring_type, ring_num);
  1363. }
  1364. } else {
  1365. hal_validate_shadow_register(hal,
  1366. SRNG_SRC_ADDR(srng, HP),
  1367. srng->u.src_ring.hp_addr);
  1368. }
  1369. } else {
  1370. /* During initialization loop count in all the descriptors
  1371. * will be set to zero, and HW will set it to 1 on completing
  1372. * descriptor update in first loop, and increments it by 1 on
  1373. * subsequent loops (loop count wraps around after reaching
  1374. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1375. * loop count in descriptors updated by HW (to be processed
  1376. * by SW).
  1377. */
  1378. hal_srng_set_nf_thresholds(srng, ring_params);
  1379. srng->u.dst_ring.loop_cnt = 1;
  1380. srng->u.dst_ring.tp = 0;
  1381. srng->u.dst_ring.hp_addr =
  1382. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1383. if (ring_config->lmac_ring) {
  1384. /* For LMAC rings, tail pointer updates will be done
  1385. * through FW by writing to a shared memory location
  1386. */
  1387. srng->u.dst_ring.tp_addr =
  1388. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1389. HAL_SRNG_LMAC1_ID_START]);
  1390. srng->flags |= HAL_SRNG_LMAC_RING;
  1391. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1392. srng->u.dst_ring.tp_addr =
  1393. hal_get_window_address(hal,
  1394. SRNG_DST_ADDR(srng, TP));
  1395. if (CHECK_SHADOW_REGISTERS) {
  1396. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1397. QDF_TRACE_LEVEL_ERROR,
  1398. "%s: Ring (%d, %d) missing shadow config",
  1399. __func__, ring_type, ring_num);
  1400. }
  1401. } else {
  1402. hal_validate_shadow_register(hal,
  1403. SRNG_DST_ADDR(srng, TP),
  1404. srng->u.dst_ring.tp_addr);
  1405. }
  1406. }
  1407. if (!(ring_config->lmac_ring)) {
  1408. hal_srng_hw_init(hal, srng);
  1409. if (ring_type == CE_DST) {
  1410. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1411. hal_ce_dst_setup(hal, srng, ring_num);
  1412. }
  1413. }
  1414. SRNG_LOCK_INIT(&srng->lock);
  1415. srng->srng_event = 0;
  1416. srng->initialized = true;
  1417. return (void *)srng;
  1418. }
  1419. qdf_export_symbol(hal_srng_setup);
  1420. /**
  1421. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1422. * @hal_soc: Opaque HAL SOC handle
  1423. * @hal_srng: Opaque HAL SRNG pointer
  1424. */
  1425. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1426. {
  1427. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1428. SRNG_LOCK_DESTROY(&srng->lock);
  1429. srng->initialized = 0;
  1430. }
  1431. qdf_export_symbol(hal_srng_cleanup);
  1432. /**
  1433. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1434. * @hal_soc: Opaque HAL SOC handle
  1435. * @ring_type: one of the types from hal_ring_type
  1436. *
  1437. */
  1438. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1439. {
  1440. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1441. struct hal_hw_srng_config *ring_config =
  1442. HAL_SRNG_CONFIG(hal, ring_type);
  1443. return ring_config->entry_size << 2;
  1444. }
  1445. qdf_export_symbol(hal_srng_get_entrysize);
  1446. /**
  1447. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1448. * @hal_soc: Opaque HAL SOC handle
  1449. * @ring_type: one of the types from hal_ring_type
  1450. *
  1451. * Return: Maximum number of entries for the given ring_type
  1452. */
  1453. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1454. {
  1455. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1456. struct hal_hw_srng_config *ring_config =
  1457. HAL_SRNG_CONFIG(hal, ring_type);
  1458. return ring_config->max_size / ring_config->entry_size;
  1459. }
  1460. qdf_export_symbol(hal_srng_max_entries);
  1461. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1462. {
  1463. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1464. struct hal_hw_srng_config *ring_config =
  1465. HAL_SRNG_CONFIG(hal, ring_type);
  1466. return ring_config->ring_dir;
  1467. }
  1468. /**
  1469. * hal_srng_dump - Dump ring status
  1470. * @srng: hal srng pointer
  1471. */
  1472. void hal_srng_dump(struct hal_srng *srng)
  1473. {
  1474. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1475. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1476. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1477. srng->u.src_ring.hp,
  1478. srng->u.src_ring.reap_hp,
  1479. *srng->u.src_ring.tp_addr,
  1480. srng->u.src_ring.cached_tp);
  1481. } else {
  1482. hal_debug("=== DST RING %d ===", srng->ring_id);
  1483. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1484. srng->u.dst_ring.tp,
  1485. *srng->u.dst_ring.hp_addr,
  1486. srng->u.dst_ring.cached_hp,
  1487. srng->u.dst_ring.loop_cnt);
  1488. }
  1489. }
  1490. /**
  1491. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1492. *
  1493. * @hal_soc: Opaque HAL SOC handle
  1494. * @hal_ring: Ring pointer (Source or Destination ring)
  1495. * @ring_params: SRNG parameters will be returned through this structure
  1496. */
  1497. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1498. hal_ring_handle_t hal_ring_hdl,
  1499. struct hal_srng_params *ring_params)
  1500. {
  1501. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1502. int i =0;
  1503. ring_params->ring_id = srng->ring_id;
  1504. ring_params->ring_dir = srng->ring_dir;
  1505. ring_params->entry_size = srng->entry_size;
  1506. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1507. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1508. ring_params->num_entries = srng->num_entries;
  1509. ring_params->msi_addr = srng->msi_addr;
  1510. ring_params->msi_data = srng->msi_data;
  1511. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1512. ring_params->intr_batch_cntr_thres_entries =
  1513. srng->intr_batch_cntr_thres_entries;
  1514. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1515. ring_params->flags = srng->flags;
  1516. ring_params->ring_id = srng->ring_id;
  1517. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1518. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1519. hal_srng_get_nf_params(srng, ring_params);
  1520. }
  1521. qdf_export_symbol(hal_get_srng_params);
  1522. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1523. uint32_t low_threshold)
  1524. {
  1525. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1526. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1527. }
  1528. qdf_export_symbol(hal_set_low_threshold);
  1529. #ifdef FORCE_WAKE
  1530. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1531. {
  1532. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1533. hal_soc->init_phase = init_phase;
  1534. }
  1535. #endif /* FORCE_WAKE */