msm_cvp_dsp.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/module.h>
  6. #include <linux/rpmsg.h>
  7. #include <linux/of_platform.h>
  8. #include <linux/of_fdt.h>
  9. #include <soc/qcom/secure_buffer.h>
  10. #include "msm_cvp_core.h"
  11. #include "msm_cvp.h"
  12. #include "cvp_hfi.h"
  13. #include "cvp_dump.h"
  14. static atomic_t nr_maps;
  15. struct cvp_dsp_apps gfa_cv;
  16. static int hlosVM[HLOS_VM_NUM] = {VMID_HLOS};
  17. static int dspVM[DSP_VM_NUM] = {VMID_HLOS, VMID_CDSP_Q6};
  18. static int dspVMperm[DSP_VM_NUM] = { PERM_READ | PERM_WRITE | PERM_EXEC,
  19. PERM_READ | PERM_WRITE | PERM_EXEC };
  20. static int hlosVMperm[HLOS_VM_NUM] = { PERM_READ | PERM_WRITE | PERM_EXEC };
  21. static int cvp_reinit_dsp(void);
  22. static void cvp_remove_dsp_sessions(void);
  23. static int __fastrpc_driver_register(struct fastrpc_driver *driver)
  24. {
  25. #ifdef CVP_FASTRPC_ENABLED
  26. return fastrpc_driver_register(driver);
  27. #else
  28. return -ENODEV;
  29. #endif
  30. }
  31. static void __fastrpc_driver_unregister(struct fastrpc_driver *driver)
  32. {
  33. #ifdef CVP_FASTRPC_ENABLED
  34. return fastrpc_driver_unregister(driver);
  35. #endif
  36. }
  37. #ifdef CVP_FASTRPC_ENABLED
  38. static int __fastrpc_driver_invoke(struct fastrpc_device *dev,
  39. enum fastrpc_driver_invoke_nums invoke_num,
  40. unsigned long invoke_param)
  41. {
  42. return fastrpc_driver_invoke(dev, invoke_num, invoke_param);
  43. }
  44. #endif /* End of CVP_FASTRPC_ENABLED */
  45. static int cvp_dsp_send_cmd(struct cvp_dsp_cmd_msg *cmd, uint32_t len)
  46. {
  47. int rc = 0;
  48. struct cvp_dsp_apps *me = &gfa_cv;
  49. dprintk(CVP_DSP, "%s: cmd = %d\n", __func__, cmd->type);
  50. if (IS_ERR_OR_NULL(me->chan)) {
  51. dprintk(CVP_ERR, "%s: DSP GLink is not ready\n", __func__);
  52. rc = -EINVAL;
  53. goto exit;
  54. }
  55. rc = rpmsg_send(me->chan->ept, cmd, len);
  56. if (rc) {
  57. dprintk(CVP_ERR, "%s: DSP rpmsg_send failed rc=%d\n",
  58. __func__, rc);
  59. goto exit;
  60. }
  61. exit:
  62. return rc;
  63. }
  64. static int cvp_dsp_send_cmd_sync(struct cvp_dsp_cmd_msg *cmd,
  65. uint32_t len, struct cvp_dsp_rsp_msg *rsp)
  66. {
  67. int rc = 0;
  68. struct cvp_dsp_apps *me = &gfa_cv;
  69. dprintk(CVP_DSP, "%s: cmd = %d\n", __func__, cmd->type);
  70. me->pending_dsp2cpu_rsp.type = cmd->type;
  71. rc = cvp_dsp_send_cmd(cmd, len);
  72. if (rc) {
  73. dprintk(CVP_ERR, "%s: cvp_dsp_send_cmd failed rc=%d\n",
  74. __func__, rc);
  75. goto exit;
  76. }
  77. if (!wait_for_completion_timeout(&me->completions[cmd->type],
  78. msecs_to_jiffies(CVP_DSP_RESPONSE_TIMEOUT))) {
  79. dprintk(CVP_ERR, "%s cmd %d timeout\n", __func__, cmd->type);
  80. rc = -ETIMEDOUT;
  81. goto exit;
  82. }
  83. exit:
  84. rsp->ret = me->pending_dsp2cpu_rsp.ret;
  85. rsp->dsp_state = me->pending_dsp2cpu_rsp.dsp_state;
  86. me->pending_dsp2cpu_rsp.type = CVP_INVALID_RPMSG_TYPE;
  87. return rc;
  88. }
  89. static int cvp_dsp_send_cmd_hfi_queue(phys_addr_t *phys_addr,
  90. uint32_t size_in_bytes,
  91. struct cvp_dsp_rsp_msg *rsp)
  92. {
  93. int rc = 0;
  94. struct cvp_dsp_cmd_msg cmd;
  95. cmd.type = CPU2DSP_SEND_HFI_QUEUE;
  96. cmd.msg_ptr = (uint64_t)phys_addr;
  97. cmd.msg_ptr_len = size_in_bytes;
  98. cmd.ddr_type = cvp_of_fdt_get_ddrtype();
  99. if (cmd.ddr_type < 0) {
  100. dprintk(CVP_WARN,
  101. "%s: Incorrect DDR type value %d, use default %d\n",
  102. __func__, cmd.ddr_type, DDR_TYPE_LPDDR5);
  103. /*return -EINVAL;*/
  104. cmd.ddr_type = DDR_TYPE_LPDDR5;
  105. }
  106. dprintk(CVP_DSP,
  107. "%s: address of buffer, PA=0x%pK size_buff=%d ddr_type=%d\n",
  108. __func__, phys_addr, size_in_bytes, cmd.ddr_type);
  109. rc = cvp_dsp_send_cmd_sync(&cmd, sizeof(struct cvp_dsp_cmd_msg), rsp);
  110. if (rc) {
  111. dprintk(CVP_ERR,
  112. "%s: cvp_dsp_send_cmd failed rc = %d\n",
  113. __func__, rc);
  114. goto exit;
  115. }
  116. exit:
  117. return rc;
  118. }
  119. static int cvp_hyp_assign_to_dsp(uint64_t addr, uint32_t size)
  120. {
  121. int rc = 0;
  122. struct cvp_dsp_apps *me = &gfa_cv;
  123. if (!me->hyp_assigned) {
  124. rc = hyp_assign_phys(addr, size, hlosVM, HLOS_VM_NUM, dspVM,
  125. dspVMperm, DSP_VM_NUM);
  126. if (rc) {
  127. dprintk(CVP_ERR, "%s failed. rc=%d\n", __func__, rc);
  128. return rc;
  129. }
  130. me->addr = addr;
  131. me->size = size;
  132. me->hyp_assigned = true;
  133. }
  134. return rc;
  135. }
  136. static int cvp_hyp_assign_from_dsp(void)
  137. {
  138. int rc = 0;
  139. struct cvp_dsp_apps *me = &gfa_cv;
  140. if (me->hyp_assigned) {
  141. rc = hyp_assign_phys(me->addr, me->size, dspVM, DSP_VM_NUM,
  142. hlosVM, hlosVMperm, HLOS_VM_NUM);
  143. if (rc) {
  144. dprintk(CVP_ERR, "%s failed. rc=%d\n", __func__, rc);
  145. return rc;
  146. }
  147. me->addr = 0;
  148. me->size = 0;
  149. me->hyp_assigned = false;
  150. }
  151. return rc;
  152. }
  153. static int cvp_dsp_rpmsg_probe(struct rpmsg_device *rpdev)
  154. {
  155. struct cvp_dsp_apps *me = &gfa_cv;
  156. const char *edge_name = NULL;
  157. int ret = 0;
  158. ret = of_property_read_string(rpdev->dev.parent->of_node,
  159. "label", &edge_name);
  160. if (ret) {
  161. dprintk(CVP_ERR, "glink edge 'label' not found in node\n");
  162. return ret;
  163. }
  164. if (strcmp(edge_name, "cdsp")) {
  165. dprintk(CVP_ERR,
  166. "%s: Failed to probe rpmsg device.Node name:%s\n",
  167. __func__, edge_name);
  168. return -EINVAL;
  169. }
  170. mutex_lock(&me->tx_lock);
  171. me->chan = rpdev;
  172. me->state = DSP_PROBED;
  173. mutex_unlock(&me->tx_lock);
  174. complete(&me->completions[CPU2DSP_MAX_CMD]);
  175. return ret;
  176. }
  177. static int eva_fastrpc_dev_unmap_dma(
  178. struct fastrpc_device *frpc_device,
  179. struct cvp_internal_buf *buf);
  180. static int delete_dsp_session(struct msm_cvp_inst *inst,
  181. struct cvp_dsp_fastrpc_driver_entry *frpc_node)
  182. {
  183. struct msm_cvp_list *buf_list = NULL;
  184. struct list_head *ptr_dsp_buf = NULL, *next_dsp_buf = NULL;
  185. struct cvp_internal_buf *buf = NULL;
  186. struct task_struct *task = NULL;
  187. struct cvp_hfi_device *hdev;
  188. int rc;
  189. if (!inst)
  190. return -EINVAL;
  191. buf_list = &inst->cvpdspbufs;
  192. mutex_lock(&buf_list->lock);
  193. ptr_dsp_buf = &buf_list->list;
  194. list_for_each_safe(ptr_dsp_buf, next_dsp_buf, &buf_list->list) {
  195. buf = list_entry(ptr_dsp_buf, struct cvp_internal_buf, list);
  196. if (buf) {
  197. dprintk(CVP_DSP, "fd in list 0x%x\n", buf->fd);
  198. if (!buf->smem) {
  199. dprintk(CVP_DSP, "Empyt smem\n");
  200. continue;
  201. }
  202. dprintk(CVP_DSP, "%s find device addr 0x%x\n",
  203. __func__, buf->smem->device_addr);
  204. rc = eva_fastrpc_dev_unmap_dma(
  205. frpc_node->cvp_fastrpc_device,
  206. buf);
  207. if (rc)
  208. dprintk(CVP_WARN,
  209. "%s Failed to unmap buffer 0x%x\n",
  210. __func__, rc);
  211. rc = cvp_release_dsp_buffers(inst, buf);
  212. if (rc)
  213. dprintk(CVP_ERR,
  214. "%s Failed to free buffer 0x%x\n",
  215. __func__, rc);
  216. list_del(&buf->list);
  217. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  218. }
  219. }
  220. mutex_unlock(&buf_list->lock);
  221. task = inst->task;
  222. spin_lock(&inst->core->resources.pm_qos.lock);
  223. if (inst->core->resources.pm_qos.off_vote_cnt > 0)
  224. inst->core->resources.pm_qos.off_vote_cnt--;
  225. else
  226. dprintk(CVP_WARN, "%s Unexpected pm_qos off vote %d\n",
  227. __func__,
  228. inst->core->resources.pm_qos.off_vote_cnt);
  229. spin_unlock(&inst->core->resources.pm_qos.lock);
  230. hdev = inst->core->device;
  231. call_hfi_op(hdev, pm_qos_update, hdev->hfi_device_data);
  232. rc = msm_cvp_close(inst);
  233. if (rc)
  234. dprintk(CVP_ERR, "Warning: Failed to close cvp instance\n");
  235. if (task)
  236. put_task_struct(task);
  237. dprintk(CVP_DSP, "%s DSP2CPU_DETELE_SESSION Done\n", __func__);
  238. return rc;
  239. }
  240. static int eva_fastrpc_driver_get_name(
  241. struct cvp_dsp_fastrpc_driver_entry *frpc_node)
  242. {
  243. int i = 0;
  244. struct cvp_dsp_apps *me = &gfa_cv;
  245. for (i = 0; i < MAX_FASTRPC_DRIVER_NUM; i++) {
  246. if (me->cvp_fastrpc_name[i].status == DRIVER_NAME_AVAILABLE) {
  247. frpc_node->driver_name_idx = i;
  248. frpc_node->cvp_fastrpc_driver.driver.name =
  249. me->cvp_fastrpc_name[i].name;
  250. me->cvp_fastrpc_name[i].status = DRIVER_NAME_USED;
  251. dprintk(CVP_DSP, "%s -> handle 0x%x get name %s\n",
  252. __func__, frpc_node->cvp_fastrpc_driver.handle,
  253. frpc_node->cvp_fastrpc_driver.driver.name);
  254. return 0;
  255. }
  256. }
  257. return -1;
  258. }
  259. static void eva_fastrpc_driver_release_name(
  260. struct cvp_dsp_fastrpc_driver_entry *frpc_node)
  261. {
  262. struct cvp_dsp_apps *me = &gfa_cv;
  263. me->cvp_fastrpc_name[frpc_node->driver_name_idx].status =
  264. DRIVER_NAME_AVAILABLE;
  265. }
  266. /* The function may not return for up to 50ms */
  267. static bool dequeue_frpc_node(struct cvp_dsp_fastrpc_driver_entry *node)
  268. {
  269. struct cvp_dsp_apps *me = &gfa_cv;
  270. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  271. struct list_head *ptr = NULL, *next = NULL;
  272. u32 refcount, max_count = 10;
  273. bool rc = false;
  274. if (!node)
  275. return rc;
  276. search_again:
  277. ptr = &me->fastrpc_driver_list.list;
  278. mutex_lock(&me->fastrpc_driver_list.lock);
  279. list_for_each_safe(ptr, next, &me->fastrpc_driver_list.list) {
  280. frpc_node = list_entry(ptr,
  281. struct cvp_dsp_fastrpc_driver_entry, list);
  282. if (frpc_node == node) {
  283. refcount = atomic_read(&frpc_node->refcount);
  284. if (refcount > 0) {
  285. mutex_unlock(&me->fastrpc_driver_list.lock);
  286. usleep_range(5000, 10000);
  287. if (max_count-- == 0) {
  288. dprintk(CVP_ERR, "%s timeout\n",
  289. __func__);
  290. goto exit;
  291. }
  292. goto search_again;
  293. }
  294. list_del(&frpc_node->list);
  295. rc = true;
  296. break;
  297. }
  298. }
  299. mutex_unlock(&me->fastrpc_driver_list.lock);
  300. exit:
  301. return rc;
  302. }
  303. /* The function may not return for up to 50ms */
  304. static struct cvp_dsp_fastrpc_driver_entry *pop_frpc_node(void)
  305. {
  306. struct cvp_dsp_apps *me = &gfa_cv;
  307. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  308. struct list_head *ptr = NULL, *next = NULL;
  309. u32 refcount, max_count = 10;
  310. search_again:
  311. ptr = &me->fastrpc_driver_list.list;
  312. if (!ptr) {
  313. frpc_node = NULL;
  314. goto exit;
  315. }
  316. mutex_lock(&me->fastrpc_driver_list.lock);
  317. list_for_each_safe(ptr, next, &me->fastrpc_driver_list.list) {
  318. frpc_node = list_entry(ptr,
  319. struct cvp_dsp_fastrpc_driver_entry, list);
  320. if (frpc_node) {
  321. refcount = atomic_read(&frpc_node->refcount);
  322. if (refcount > 0) {
  323. mutex_unlock(&me->fastrpc_driver_list.lock);
  324. usleep_range(5000, 10000);
  325. if (max_count-- == 0) {
  326. dprintk(CVP_ERR, "%s timeout\n",
  327. __func__);
  328. frpc_node = NULL;
  329. goto exit;
  330. }
  331. goto search_again;
  332. }
  333. list_del(&frpc_node->list);
  334. break;
  335. }
  336. }
  337. mutex_unlock(&me->fastrpc_driver_list.lock);
  338. exit:
  339. return frpc_node;
  340. }
  341. static void cvp_dsp_rpmsg_remove(struct rpmsg_device *rpdev)
  342. {
  343. struct cvp_dsp_apps *me = &gfa_cv;
  344. u32 max_num_retries = 100;
  345. dprintk(CVP_WARN, "%s: CDSP SSR triggered\n", __func__);
  346. mutex_lock(&me->rx_lock);
  347. while (max_num_retries > 0) {
  348. if (me->pending_dsp2cpu_cmd.type !=
  349. CVP_INVALID_RPMSG_TYPE) {
  350. mutex_unlock(&me->rx_lock);
  351. usleep_range(1000, 5000);
  352. mutex_lock(&me->rx_lock);
  353. } else {
  354. break;
  355. }
  356. max_num_retries--;
  357. }
  358. if (!max_num_retries)
  359. dprintk(CVP_ERR, "stuck processing pending DSP cmds\n");
  360. mutex_lock(&me->tx_lock);
  361. cvp_hyp_assign_from_dsp();
  362. me->chan = NULL;
  363. me->state = DSP_UNINIT;
  364. mutex_unlock(&me->tx_lock);
  365. mutex_unlock(&me->rx_lock);
  366. cvp_remove_dsp_sessions();
  367. dprintk(CVP_WARN, "%s: CDSP SSR handled nr_maps %d\n", __func__,
  368. atomic_read(&nr_maps));
  369. }
  370. static int cvp_dsp_rpmsg_callback(struct rpmsg_device *rpdev,
  371. void *data, int len, void *priv, u32 addr)
  372. {
  373. struct cvp_dsp_rsp_msg *rsp = (struct cvp_dsp_rsp_msg *)data;
  374. struct cvp_dsp_apps *me = &gfa_cv;
  375. dprintk(CVP_DSP, "%s: type = 0x%x ret = 0x%x len = 0x%x\n",
  376. __func__, rsp->type, rsp->ret, len);
  377. if (rsp->type < CPU2DSP_MAX_CMD && len == sizeof(*rsp)) {
  378. if (me->pending_dsp2cpu_rsp.type == rsp->type) {
  379. memcpy(&me->pending_dsp2cpu_rsp, rsp,
  380. sizeof(struct cvp_dsp_rsp_msg));
  381. complete(&me->completions[rsp->type]);
  382. } else {
  383. dprintk(CVP_ERR, "%s: CPU2DSP resp %d, pending %d\n",
  384. __func__, rsp->type,
  385. me->pending_dsp2cpu_rsp.type);
  386. goto exit;
  387. }
  388. } else if (rsp->type < CVP_DSP_MAX_CMD &&
  389. len == sizeof(struct cvp_dsp2cpu_cmd_msg)) {
  390. if (me->pending_dsp2cpu_cmd.type != CVP_INVALID_RPMSG_TYPE) {
  391. dprintk(CVP_ERR,
  392. "%s: DSP2CPU cmd:%d pending %d %d expect %d\n",
  393. __func__, rsp->type,
  394. me->pending_dsp2cpu_cmd.type, len,
  395. sizeof(struct cvp_dsp2cpu_cmd_msg));
  396. goto exit;
  397. }
  398. memcpy(&me->pending_dsp2cpu_cmd, rsp,
  399. sizeof(struct cvp_dsp2cpu_cmd_msg));
  400. complete(&me->completions[CPU2DSP_MAX_CMD]);
  401. } else {
  402. dprintk(CVP_ERR, "%s: Invalid type: %d\n", __func__, rsp->type);
  403. return 0;
  404. }
  405. return 0;
  406. exit:
  407. dprintk(CVP_ERR, "concurrent dsp cmd type = %d, rsp type = %d\n",
  408. me->pending_dsp2cpu_cmd.type,
  409. me->pending_dsp2cpu_rsp.type);
  410. return 0;
  411. }
  412. int cvp_dsp_suspend(uint32_t session_flag)
  413. {
  414. int rc = 0;
  415. struct cvp_dsp_cmd_msg cmd;
  416. struct cvp_dsp_apps *me = &gfa_cv;
  417. struct cvp_dsp_rsp_msg rsp;
  418. bool retried = false;
  419. cmd.type = CPU2DSP_SUSPEND;
  420. mutex_lock(&me->tx_lock);
  421. if (me->state != DSP_READY)
  422. goto exit;
  423. retry:
  424. /* Use cvp_dsp_send_cmd_sync after dsp driver is ready */
  425. rc = cvp_dsp_send_cmd_sync(&cmd,
  426. sizeof(struct cvp_dsp_cmd_msg),
  427. &rsp);
  428. if (rc) {
  429. dprintk(CVP_ERR,
  430. "%s: cvp_dsp_send_cmd failed rc = %d\n",
  431. __func__, rc);
  432. goto exit;
  433. }
  434. if (rsp.ret == CPU2DSP_EUNAVAILABLE)
  435. goto fatal_exit;
  436. if (rsp.ret == CPU2DSP_EFATAL) {
  437. dprintk(CVP_ERR, "%s: suspend dsp got EFATAL error\n",
  438. __func__);
  439. if (!retried) {
  440. mutex_unlock(&me->tx_lock);
  441. retried = true;
  442. rc = cvp_reinit_dsp();
  443. mutex_lock(&me->tx_lock);
  444. if (rc)
  445. goto fatal_exit;
  446. else
  447. goto retry;
  448. } else {
  449. goto fatal_exit;
  450. }
  451. }
  452. me->state = DSP_SUSPEND;
  453. dprintk(CVP_DSP, "DSP suspended, nr_map: %d\n", atomic_read(&nr_maps));
  454. goto exit;
  455. fatal_exit:
  456. me->state = DSP_INVALID;
  457. cvp_hyp_assign_from_dsp();
  458. rc = -ENOTSUPP;
  459. exit:
  460. mutex_unlock(&me->tx_lock);
  461. return rc;
  462. }
  463. int cvp_dsp_resume(uint32_t session_flag)
  464. {
  465. int rc = 0;
  466. struct cvp_dsp_cmd_msg cmd;
  467. struct cvp_dsp_apps *me = &gfa_cv;
  468. cmd.type = CPU2DSP_RESUME;
  469. /*
  470. * Deadlock against DSP2CPU_CREATE_SESSION in dsp_thread
  471. * Probably get rid of this entirely as discussed before
  472. */
  473. if (me->state != DSP_SUSPEND)
  474. dprintk(CVP_WARN, "%s DSP not in SUSPEND state\n", __func__);
  475. return rc;
  476. }
  477. static void cvp_remove_dsp_sessions(void)
  478. {
  479. struct cvp_dsp_apps *me = &gfa_cv;
  480. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  481. struct msm_cvp_inst *inst = NULL;
  482. struct list_head *s = NULL, *next_s = NULL;
  483. while ((frpc_node = pop_frpc_node())) {
  484. s = &frpc_node->dsp_sessions.list;
  485. if (!s)
  486. return;
  487. list_for_each_safe(s, next_s,
  488. &frpc_node->dsp_sessions.list) {
  489. if (!s)
  490. return;
  491. inst = list_entry(s, struct msm_cvp_inst,
  492. dsp_list);
  493. if (inst) {
  494. delete_dsp_session(inst, frpc_node);
  495. mutex_lock(&frpc_node->dsp_sessions.lock);
  496. list_del(&inst->dsp_list);
  497. frpc_node->session_cnt--;
  498. mutex_unlock(&frpc_node->dsp_sessions.lock);
  499. }
  500. }
  501. dprintk(CVP_DSP, "%s DEINIT_MSM_CVP_LIST 0x%x\n",
  502. __func__, frpc_node->dsp_sessions);
  503. DEINIT_MSM_CVP_LIST(&frpc_node->dsp_sessions);
  504. dprintk(CVP_DSP, "%s list_del fastrpc node 0x%x\n",
  505. __func__, frpc_node);
  506. __fastrpc_driver_unregister(
  507. &frpc_node->cvp_fastrpc_driver);
  508. dprintk(CVP_DSP,
  509. "%s Unregistered fastrpc handle 0x%x\n",
  510. __func__, frpc_node->handle);
  511. mutex_lock(&me->driver_name_lock);
  512. eva_fastrpc_driver_release_name(frpc_node);
  513. mutex_unlock(&me->driver_name_lock);
  514. kfree(frpc_node);
  515. frpc_node = NULL;
  516. }
  517. dprintk(CVP_WARN, "%s: EVA SSR handled for CDSP\n", __func__);
  518. }
  519. int cvp_dsp_shutdown(uint32_t session_flag)
  520. {
  521. struct cvp_dsp_apps *me = &gfa_cv;
  522. int rc = 0;
  523. struct cvp_dsp_cmd_msg cmd;
  524. struct cvp_dsp_rsp_msg rsp;
  525. cmd.type = CPU2DSP_SHUTDOWN;
  526. mutex_lock(&me->tx_lock);
  527. if (me->state == DSP_INVALID)
  528. goto exit;
  529. me->state = DSP_INACTIVE;
  530. rc = cvp_dsp_send_cmd_sync(&cmd, sizeof(struct cvp_dsp_cmd_msg), &rsp);
  531. if (rc) {
  532. dprintk(CVP_ERR,
  533. "%s: cvp_dsp_send_cmd failed with rc = %d\n",
  534. __func__, rc);
  535. cvp_hyp_assign_from_dsp();
  536. goto exit;
  537. }
  538. rc = cvp_hyp_assign_from_dsp();
  539. exit:
  540. mutex_unlock(&me->tx_lock);
  541. return rc;
  542. }
  543. int cvp_dsp_register_buffer(uint32_t session_id, uint32_t buff_fd,
  544. uint32_t buff_fd_size, uint32_t buff_size,
  545. uint32_t buff_offset, uint32_t buff_index,
  546. uint32_t buff_fd_iova)
  547. {
  548. struct cvp_dsp_cmd_msg cmd;
  549. int rc;
  550. struct cvp_dsp_apps *me = &gfa_cv;
  551. struct cvp_dsp_rsp_msg rsp;
  552. bool retried = false;
  553. cmd.type = CPU2DSP_REGISTER_BUFFER;
  554. cmd.session_id = session_id;
  555. cmd.buff_fd = buff_fd;
  556. cmd.buff_fd_size = buff_fd_size;
  557. cmd.buff_size = buff_size;
  558. cmd.buff_offset = buff_offset;
  559. cmd.buff_index = buff_index;
  560. cmd.buff_fd_iova = buff_fd_iova;
  561. dprintk(CVP_DSP,
  562. "%s: type=0x%x, buff_fd_iova=0x%x buff_index=0x%x\n",
  563. __func__, cmd.type, buff_fd_iova,
  564. cmd.buff_index);
  565. dprintk(CVP_DSP, "%s: buff_size=0x%x session_id=0x%x\n",
  566. __func__, cmd.buff_size, cmd.session_id);
  567. mutex_lock(&me->tx_lock);
  568. retry:
  569. rc = cvp_dsp_send_cmd_sync(&cmd, sizeof(struct cvp_dsp_cmd_msg), &rsp);
  570. if (rc) {
  571. dprintk(CVP_ERR, "%s send failed rc = %d\n", __func__, rc);
  572. goto exit;
  573. }
  574. if (rsp.ret == CPU2DSP_EFAIL || rsp.ret == CPU2DSP_EUNSUPPORTED) {
  575. dprintk(CVP_WARN, "%s, DSP return err %d\n", __func__, rsp.ret);
  576. rc = -EINVAL;
  577. goto exit;
  578. }
  579. if (rsp.ret == CPU2DSP_EUNAVAILABLE)
  580. goto fatal_exit;
  581. if (rsp.ret == CPU2DSP_EFATAL) {
  582. if (!retried) {
  583. mutex_unlock(&me->tx_lock);
  584. retried = true;
  585. rc = cvp_reinit_dsp();
  586. mutex_lock(&me->tx_lock);
  587. if (rc)
  588. goto fatal_exit;
  589. else
  590. goto retry;
  591. } else {
  592. goto fatal_exit;
  593. }
  594. }
  595. goto exit;
  596. fatal_exit:
  597. me->state = DSP_INVALID;
  598. cvp_hyp_assign_from_dsp();
  599. rc = -ENOTSUPP;
  600. exit:
  601. mutex_unlock(&me->tx_lock);
  602. return rc;
  603. }
  604. int cvp_dsp_deregister_buffer(uint32_t session_id, uint32_t buff_fd,
  605. uint32_t buff_fd_size, uint32_t buff_size,
  606. uint32_t buff_offset, uint32_t buff_index,
  607. uint32_t buff_fd_iova)
  608. {
  609. struct cvp_dsp_cmd_msg cmd;
  610. int rc;
  611. struct cvp_dsp_apps *me = &gfa_cv;
  612. struct cvp_dsp_rsp_msg rsp;
  613. bool retried = false;
  614. cmd.type = CPU2DSP_DEREGISTER_BUFFER;
  615. cmd.session_id = session_id;
  616. cmd.buff_fd = buff_fd;
  617. cmd.buff_fd_size = buff_fd_size;
  618. cmd.buff_size = buff_size;
  619. cmd.buff_offset = buff_offset;
  620. cmd.buff_index = buff_index;
  621. cmd.buff_fd_iova = buff_fd_iova;
  622. dprintk(CVP_DSP,
  623. "%s: type=0x%x, buff_fd_iova=0x%x buff_index=0x%x\n",
  624. __func__, cmd.type, buff_fd_iova,
  625. cmd.buff_index);
  626. dprintk(CVP_DSP, "%s: buff_size=0x%x session_id=0x%x\n",
  627. __func__, cmd.buff_size, cmd.session_id);
  628. mutex_lock(&me->tx_lock);
  629. retry:
  630. rc = cvp_dsp_send_cmd_sync(&cmd, sizeof(struct cvp_dsp_cmd_msg), &rsp);
  631. if (rc) {
  632. dprintk(CVP_ERR, "%s send failed rc = %d\n", __func__, rc);
  633. goto exit;
  634. }
  635. if (rsp.ret == CPU2DSP_EFAIL || rsp.ret == CPU2DSP_EUNSUPPORTED) {
  636. dprintk(CVP_WARN, "%s, DSP return err %d\n", __func__, rsp.ret);
  637. rc = -EINVAL;
  638. goto exit;
  639. }
  640. if (rsp.ret == CPU2DSP_EUNAVAILABLE)
  641. goto fatal_exit;
  642. if (rsp.ret == CPU2DSP_EFATAL) {
  643. if (!retried) {
  644. mutex_unlock(&me->tx_lock);
  645. retried = true;
  646. rc = cvp_reinit_dsp();
  647. mutex_lock(&me->tx_lock);
  648. if (rc)
  649. goto fatal_exit;
  650. else
  651. goto retry;
  652. } else {
  653. goto fatal_exit;
  654. }
  655. }
  656. goto exit;
  657. fatal_exit:
  658. me->state = DSP_INVALID;
  659. cvp_hyp_assign_from_dsp();
  660. rc = -ENOTSUPP;
  661. exit:
  662. mutex_unlock(&me->tx_lock);
  663. return rc;
  664. }
  665. static const struct rpmsg_device_id cvp_dsp_rpmsg_match[] = {
  666. { CVP_APPS_DSP_GLINK_GUID },
  667. { },
  668. };
  669. static struct rpmsg_driver cvp_dsp_rpmsg_client = {
  670. .id_table = cvp_dsp_rpmsg_match,
  671. .probe = cvp_dsp_rpmsg_probe,
  672. .remove = cvp_dsp_rpmsg_remove,
  673. .callback = cvp_dsp_rpmsg_callback,
  674. .drv = {
  675. .name = "qcom,msm_cvp_dsp_rpmsg",
  676. },
  677. };
  678. static void cvp_dsp_set_queue_hdr_defaults(struct cvp_hfi_queue_header *q_hdr)
  679. {
  680. q_hdr->qhdr_status = 0x1;
  681. q_hdr->qhdr_type = CVP_IFACEQ_DFLT_QHDR;
  682. q_hdr->qhdr_q_size = CVP_IFACEQ_QUEUE_SIZE / 4;
  683. q_hdr->qhdr_pkt_size = 0;
  684. q_hdr->qhdr_rx_wm = 0x1;
  685. q_hdr->qhdr_tx_wm = 0x1;
  686. q_hdr->qhdr_rx_req = 0x1;
  687. q_hdr->qhdr_tx_req = 0x0;
  688. q_hdr->qhdr_rx_irq_status = 0x0;
  689. q_hdr->qhdr_tx_irq_status = 0x0;
  690. q_hdr->qhdr_read_idx = 0x0;
  691. q_hdr->qhdr_write_idx = 0x0;
  692. }
  693. void cvp_dsp_init_hfi_queue_hdr(struct iris_hfi_device *device)
  694. {
  695. u32 i;
  696. struct cvp_hfi_queue_table_header *q_tbl_hdr;
  697. struct cvp_hfi_queue_header *q_hdr;
  698. struct cvp_iface_q_info *iface_q;
  699. for (i = 0; i < CVP_IFACEQ_NUMQ; i++) {
  700. iface_q = &device->dsp_iface_queues[i];
  701. iface_q->q_hdr = CVP_IFACEQ_GET_QHDR_START_ADDR(
  702. device->dsp_iface_q_table.align_virtual_addr, i);
  703. cvp_dsp_set_queue_hdr_defaults(iface_q->q_hdr);
  704. }
  705. q_tbl_hdr = (struct cvp_hfi_queue_table_header *)
  706. device->dsp_iface_q_table.align_virtual_addr;
  707. q_tbl_hdr->qtbl_version = 0;
  708. q_tbl_hdr->device_addr = (void *)device;
  709. strlcpy(q_tbl_hdr->name, "msm_cvp", sizeof(q_tbl_hdr->name));
  710. q_tbl_hdr->qtbl_size = CVP_IFACEQ_TABLE_SIZE;
  711. q_tbl_hdr->qtbl_qhdr0_offset =
  712. sizeof(struct cvp_hfi_queue_table_header);
  713. q_tbl_hdr->qtbl_qhdr_size = sizeof(struct cvp_hfi_queue_header);
  714. q_tbl_hdr->qtbl_num_q = CVP_IFACEQ_NUMQ;
  715. q_tbl_hdr->qtbl_num_active_q = CVP_IFACEQ_NUMQ;
  716. iface_q = &device->dsp_iface_queues[CVP_IFACEQ_CMDQ_IDX];
  717. q_hdr = iface_q->q_hdr;
  718. q_hdr->qhdr_start_addr = iface_q->q_array.align_device_addr;
  719. q_hdr->qhdr_type |= HFI_Q_ID_HOST_TO_CTRL_CMD_Q;
  720. iface_q = &device->dsp_iface_queues[CVP_IFACEQ_MSGQ_IDX];
  721. q_hdr = iface_q->q_hdr;
  722. q_hdr->qhdr_start_addr = iface_q->q_array.align_device_addr;
  723. q_hdr->qhdr_type |= HFI_Q_ID_CTRL_TO_HOST_MSG_Q;
  724. iface_q = &device->dsp_iface_queues[CVP_IFACEQ_DBGQ_IDX];
  725. q_hdr = iface_q->q_hdr;
  726. q_hdr->qhdr_start_addr = iface_q->q_array.align_device_addr;
  727. q_hdr->qhdr_type |= HFI_Q_ID_CTRL_TO_HOST_DEBUG_Q;
  728. /*
  729. * Set receive request to zero on debug queue as there is no
  730. * need of interrupt from cvp hardware for debug messages
  731. */
  732. q_hdr->qhdr_rx_req = 0;
  733. }
  734. static int __reinit_dsp(void)
  735. {
  736. int rc;
  737. uint32_t flag = 0;
  738. uint64_t addr;
  739. uint32_t size;
  740. struct cvp_dsp_apps *me = &gfa_cv;
  741. struct cvp_dsp_rsp_msg rsp;
  742. struct msm_cvp_core *core;
  743. struct iris_hfi_device *device;
  744. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  745. if (core && core->device)
  746. device = core->device->hfi_device_data;
  747. else
  748. return -EINVAL;
  749. if (!device) {
  750. dprintk(CVP_ERR, "%s: NULL device\n", __func__);
  751. return -EINVAL;
  752. }
  753. /* Force shutdown DSP */
  754. rc = cvp_dsp_shutdown(flag);
  755. if (rc)
  756. return rc;
  757. /*
  758. * Workaround to force delete DSP session resources
  759. * To be removed after DSP optimization ready
  760. */
  761. cvp_remove_dsp_sessions();
  762. dprintk(CVP_WARN, "Reinit EVA DSP interface: nr_map %d\n",
  763. atomic_read(&nr_maps));
  764. /* Resend HFI queue */
  765. mutex_lock(&me->tx_lock);
  766. if (!device->dsp_iface_q_table.align_virtual_addr) {
  767. dprintk(CVP_ERR, "%s: DSP HFI queue released\n", __func__);
  768. rc = -EINVAL;
  769. goto exit;
  770. }
  771. addr = (uint64_t)device->dsp_iface_q_table.mem_data.dma_handle;
  772. size = device->dsp_iface_q_table.mem_data.size;
  773. if (!addr || !size) {
  774. dprintk(CVP_DSP, "%s: HFI queue is not ready\n", __func__);
  775. goto exit;
  776. }
  777. rc = cvp_hyp_assign_to_dsp(addr, size);
  778. if (rc) {
  779. dprintk(CVP_ERR, "%s: cvp_hyp_assign_to_dsp. rc=%d\n",
  780. __func__, rc);
  781. goto exit;
  782. }
  783. rc = cvp_dsp_send_cmd_hfi_queue((phys_addr_t *)addr, size, &rsp);
  784. if (rc) {
  785. dprintk(CVP_WARN, "%s: Send HFI Queue failed rc = %d\n",
  786. __func__, rc);
  787. goto exit;
  788. }
  789. if (rsp.ret) {
  790. dprintk(CVP_ERR, "%s: DSP error %d %d\n", __func__,
  791. rsp.ret, rsp.dsp_state);
  792. rc = -ENODEV;
  793. }
  794. exit:
  795. mutex_unlock(&me->tx_lock);
  796. return rc;
  797. }
  798. static int cvp_reinit_dsp(void)
  799. {
  800. int rc;
  801. struct cvp_dsp_apps *me = &gfa_cv;
  802. rc = __reinit_dsp();
  803. if (rc) {
  804. mutex_lock(&me->tx_lock);
  805. me->state = DSP_INVALID;
  806. cvp_hyp_assign_from_dsp();
  807. mutex_unlock(&me->tx_lock);
  808. }
  809. return rc;
  810. }
  811. static void cvp_put_fastrpc_node(struct cvp_dsp_fastrpc_driver_entry *node)
  812. {
  813. if (node && (atomic_read(&node->refcount) > 0))
  814. atomic_dec(&node->refcount);
  815. }
  816. static struct cvp_dsp_fastrpc_driver_entry *cvp_get_fastrpc_node_with_handle(
  817. uint32_t handle)
  818. {
  819. struct cvp_dsp_apps *me = &gfa_cv;
  820. struct list_head *ptr = NULL, *next = NULL;
  821. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL, *tmp_node = NULL;
  822. mutex_lock(&me->fastrpc_driver_list.lock);
  823. list_for_each_safe(ptr, next, &me->fastrpc_driver_list.list) {
  824. tmp_node = list_entry(ptr,
  825. struct cvp_dsp_fastrpc_driver_entry, list);
  826. if (handle == tmp_node->handle) {
  827. frpc_node = tmp_node;
  828. atomic_inc(&frpc_node->refcount);
  829. dprintk(CVP_DSP, "Find tmp_node with handle 0x%x\n",
  830. handle);
  831. break;
  832. }
  833. }
  834. mutex_unlock(&me->fastrpc_driver_list.lock);
  835. dprintk(CVP_DSP, "%s found fastrpc probe handle %pK pid 0x%x\n",
  836. __func__, frpc_node, handle);
  837. return frpc_node;
  838. }
  839. static void eva_fastrpc_driver_unregister(uint32_t handle, bool force_exit);
  840. static int cvp_fastrpc_probe(struct fastrpc_device *rpc_dev)
  841. {
  842. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  843. dprintk(CVP_DSP, "%s fastrpc probe handle 0x%x\n",
  844. __func__, rpc_dev->handle);
  845. frpc_node = cvp_get_fastrpc_node_with_handle(rpc_dev->handle);
  846. if (frpc_node) {
  847. frpc_node->cvp_fastrpc_device = rpc_dev;
  848. // static structure with signal and pid
  849. complete(&frpc_node->fastrpc_probe_completion);
  850. cvp_put_fastrpc_node(frpc_node);
  851. }
  852. return 0;
  853. }
  854. static int cvp_fastrpc_callback(struct fastrpc_device *rpc_dev,
  855. enum fastrpc_driver_status fastrpc_proc_num)
  856. {
  857. dprintk(CVP_DSP, "%s handle 0x%x, proc %d\n", __func__,
  858. rpc_dev->handle, fastrpc_proc_num);
  859. /* fastrpc drive down when process gone
  860. * any handling can happen here, such as
  861. * eva_fastrpc_driver_unregister(rpc_dev->handle, true);
  862. */
  863. eva_fastrpc_driver_unregister(rpc_dev->handle, true);
  864. return 0;
  865. }
  866. static struct fastrpc_driver cvp_fastrpc_client = {
  867. .probe = cvp_fastrpc_probe,
  868. .callback = cvp_fastrpc_callback,
  869. };
  870. static int eva_fastrpc_dev_map_dma(struct fastrpc_device *frpc_device,
  871. struct cvp_internal_buf *buf,
  872. uint32_t dsp_remote_map,
  873. uint64_t *v_dsp_addr)
  874. {
  875. #ifdef CVP_FASTRPC_ENABLED
  876. struct fastrpc_dev_map_dma frpc_map_buf = {0};
  877. int rc = 0;
  878. if (dsp_remote_map == 1) {
  879. frpc_map_buf.buf = buf->smem->dma_buf;
  880. frpc_map_buf.size = buf->smem->size;
  881. frpc_map_buf.attrs = 0;
  882. dprintk(CVP_DSP,
  883. "%s frpc_map_buf size %d, dma_buf %pK, map %pK, 0x%x\n",
  884. __func__, frpc_map_buf.size, frpc_map_buf.buf,
  885. &frpc_map_buf, (unsigned long)&frpc_map_buf);
  886. rc = __fastrpc_driver_invoke(frpc_device, FASTRPC_DEV_MAP_DMA,
  887. (unsigned long)(&frpc_map_buf));
  888. if (rc) {
  889. dprintk(CVP_ERR,
  890. "%s Failed to map buffer 0x%x\n", __func__, rc);
  891. return rc;
  892. }
  893. buf->fd = (s32)frpc_map_buf.v_dsp_addr;
  894. *v_dsp_addr = frpc_map_buf.v_dsp_addr;
  895. atomic_inc(&nr_maps);
  896. } else {
  897. dprintk(CVP_DSP, "%s Buffer not mapped to dsp\n", __func__);
  898. buf->fd = 0;
  899. }
  900. return rc;
  901. #else
  902. return -ENODEV;
  903. #endif /* End of CVP_FASTRPC_ENABLED */
  904. }
  905. static int eva_fastrpc_dev_unmap_dma(struct fastrpc_device *frpc_device,
  906. struct cvp_internal_buf *buf)
  907. {
  908. #ifdef CVP_FASTRPC_ENABLED
  909. struct fastrpc_dev_unmap_dma frpc_unmap_buf = {0};
  910. int rc = 0;
  911. /* Only if buffer is mapped to dsp */
  912. if (buf->fd != 0) {
  913. frpc_unmap_buf.buf = buf->smem->dma_buf;
  914. rc = __fastrpc_driver_invoke(frpc_device, FASTRPC_DEV_UNMAP_DMA,
  915. (unsigned long)(&frpc_unmap_buf));
  916. if (rc) {
  917. dprintk(CVP_ERR, "%s Failed to unmap buffer 0x%x\n",
  918. __func__, rc);
  919. return rc;
  920. }
  921. if (atomic_read(&nr_maps) > 0)
  922. atomic_dec(&nr_maps);
  923. } else {
  924. dprintk(CVP_DSP, "%s buffer not mapped to dsp\n", __func__);
  925. }
  926. return rc;
  927. #else
  928. return -ENODEV;
  929. #endif /* End of CVP_FASTRPC_ENABLED */
  930. }
  931. static void eva_fastrpc_driver_add_sess(
  932. struct cvp_dsp_fastrpc_driver_entry *frpc,
  933. struct msm_cvp_inst *inst)
  934. {
  935. mutex_lock(&frpc->dsp_sessions.lock);
  936. if (inst)
  937. list_add_tail(&inst->dsp_list, &frpc->dsp_sessions.list);
  938. else
  939. dprintk(CVP_ERR, "%s incorrect input %pK\n", __func__, inst);
  940. frpc->session_cnt++;
  941. mutex_unlock(&frpc->dsp_sessions.lock);
  942. dprintk(CVP_DSP, "add dsp sess %pK fastrpc_driver %pK\n", inst, frpc);
  943. }
  944. int cvp_dsp_fastrpc_unmap(uint32_t process_id, struct cvp_internal_buf *buf)
  945. {
  946. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  947. struct fastrpc_device *frpc_device = NULL;
  948. int rc = 0;
  949. frpc_node = cvp_get_fastrpc_node_with_handle(process_id);
  950. if (!frpc_node) {
  951. dprintk(CVP_ERR, "%s no frpc node for process id %d\n",
  952. __func__, process_id);
  953. return -EINVAL;
  954. }
  955. frpc_device = frpc_node->cvp_fastrpc_device;
  956. rc = eva_fastrpc_dev_unmap_dma(frpc_device, buf);
  957. if (rc)
  958. dprintk(CVP_ERR, "%s Fail to unmap buffer 0x%x\n",
  959. __func__, rc);
  960. cvp_put_fastrpc_node(frpc_node);
  961. return rc;
  962. }
  963. int cvp_dsp_del_sess(uint32_t process_id, struct msm_cvp_inst *inst)
  964. {
  965. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  966. struct list_head *ptr = NULL, *next = NULL;
  967. struct msm_cvp_inst *sess;
  968. bool found = false;
  969. frpc_node = cvp_get_fastrpc_node_with_handle(process_id);
  970. if (!frpc_node) {
  971. dprintk(CVP_ERR, "%s no frpc node for process id %d\n",
  972. __func__, process_id);
  973. return -EINVAL;
  974. }
  975. mutex_lock(&frpc_node->dsp_sessions.lock);
  976. list_for_each_safe(ptr, next, &frpc_node->dsp_sessions.list) {
  977. sess = list_entry(ptr, struct msm_cvp_inst, dsp_list);
  978. if (sess == inst) {
  979. dprintk(CVP_DSP, "%s Find sess %pK to be deleted\n",
  980. __func__, inst);
  981. found = true;
  982. break;
  983. }
  984. }
  985. if (found) {
  986. list_del(&inst->dsp_list);
  987. frpc_node->session_cnt--;
  988. }
  989. mutex_unlock(&frpc_node->dsp_sessions.lock);
  990. cvp_put_fastrpc_node(frpc_node);
  991. return 0;
  992. }
  993. static int eva_fastrpc_driver_register(uint32_t handle)
  994. {
  995. struct cvp_dsp_apps *me = &gfa_cv;
  996. int rc = 0;
  997. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  998. bool skip_deregister = true;
  999. dprintk(CVP_DSP, "%s -> cvp_get_fastrpc_node_with_handle pid 0x%x\n",
  1000. __func__, handle);
  1001. frpc_node = cvp_get_fastrpc_node_with_handle(handle);
  1002. if (frpc_node == NULL) {
  1003. dprintk(CVP_DSP, "%s new fastrpc node pid 0x%x\n",
  1004. __func__, handle);
  1005. frpc_node = kzalloc(sizeof(*frpc_node), GFP_KERNEL);
  1006. if (!frpc_node) {
  1007. dprintk(CVP_DSP, "%s allocate frpc node fail\n",
  1008. __func__);
  1009. return -EINVAL;
  1010. }
  1011. memset(frpc_node, 0, sizeof(*frpc_node));
  1012. /* Setup fastrpc_node */
  1013. frpc_node->handle = handle;
  1014. frpc_node->cvp_fastrpc_driver = cvp_fastrpc_client;
  1015. frpc_node->cvp_fastrpc_driver.handle = handle;
  1016. mutex_lock(&me->driver_name_lock);
  1017. rc = eva_fastrpc_driver_get_name(frpc_node);
  1018. mutex_unlock(&me->driver_name_lock);
  1019. if (rc) {
  1020. dprintk(CVP_ERR, "%s fastrpc get name fail err %d\n",
  1021. __func__, rc);
  1022. goto fail_fastrpc_driver_get_name;
  1023. }
  1024. /* Init completion */
  1025. init_completion(&frpc_node->fastrpc_probe_completion);
  1026. mutex_lock(&me->fastrpc_driver_list.lock);
  1027. list_add_tail(&frpc_node->list, &me->fastrpc_driver_list.list);
  1028. INIT_MSM_CVP_LIST(&frpc_node->dsp_sessions);
  1029. mutex_unlock(&me->fastrpc_driver_list.lock);
  1030. dprintk(CVP_DSP, "Add frpc node 0x%x to list\n", frpc_node);
  1031. /* register fastrpc device to this session */
  1032. rc = __fastrpc_driver_register(&frpc_node->cvp_fastrpc_driver);
  1033. if (rc) {
  1034. dprintk(CVP_ERR, "%s fastrpc driver reg fail err %d\n",
  1035. __func__, rc);
  1036. skip_deregister = true;
  1037. goto fail_fastrpc_driver_register;
  1038. }
  1039. /* signal wait reuse dsp timeout setup for now */
  1040. if (!wait_for_completion_timeout(
  1041. &frpc_node->fastrpc_probe_completion,
  1042. msecs_to_jiffies(CVP_DSP_RESPONSE_TIMEOUT))) {
  1043. dprintk(CVP_ERR, "%s fastrpc driver_register timeout %#x\n",
  1044. __func__, frpc_node->handle);
  1045. skip_deregister = false;
  1046. goto fail_fastrpc_driver_register;
  1047. }
  1048. } else {
  1049. dprintk(CVP_DSP, "%s fastrpc probe hndl %pK pid 0x%x\n",
  1050. __func__, frpc_node, handle);
  1051. cvp_put_fastrpc_node(frpc_node);
  1052. }
  1053. return rc;
  1054. fail_fastrpc_driver_register:
  1055. dequeue_frpc_node(frpc_node);
  1056. if (!skip_deregister)
  1057. __fastrpc_driver_unregister(&frpc_node->cvp_fastrpc_driver);
  1058. mutex_lock(&me->driver_name_lock);
  1059. eva_fastrpc_driver_release_name(frpc_node);
  1060. mutex_unlock(&me->driver_name_lock);
  1061. fail_fastrpc_driver_get_name:
  1062. kfree(frpc_node);
  1063. return -EINVAL;
  1064. }
  1065. static void eva_fastrpc_driver_unregister(uint32_t handle, bool force_exit)
  1066. {
  1067. struct cvp_dsp_apps *me = &gfa_cv;
  1068. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  1069. struct cvp_dsp2cpu_cmd_msg *dsp2cpu_cmd = &me->pending_dsp2cpu_cmd;
  1070. dprintk(CVP_DSP, "%s Unregister fastrpc driver hdl %#x pid %#x, f %d\n",
  1071. __func__, handle, dsp2cpu_cmd->pid, (uint32_t)force_exit);
  1072. if (handle != dsp2cpu_cmd->pid)
  1073. dprintk(CVP_ERR, "Unregister pid != hndl %#x %#x\n",
  1074. handle, dsp2cpu_cmd->pid);
  1075. /* Foundd fastrpc node */
  1076. frpc_node = cvp_get_fastrpc_node_with_handle(handle);
  1077. if (frpc_node == NULL) {
  1078. dprintk(CVP_DSP, "%s fastrpc handle 0x%x unregistered\n",
  1079. __func__, handle);
  1080. return;
  1081. }
  1082. if ((frpc_node->session_cnt == 0) || force_exit) {
  1083. dprintk(CVP_DSP, "%s session cnt %d, force %d\n",
  1084. __func__, frpc_node->session_cnt, (uint32_t)force_exit);
  1085. DEINIT_MSM_CVP_LIST(&frpc_node->dsp_sessions);
  1086. cvp_put_fastrpc_node(frpc_node);
  1087. if (!dequeue_frpc_node(frpc_node))
  1088. /* Don't find the node */
  1089. return;
  1090. __fastrpc_driver_unregister(&frpc_node->cvp_fastrpc_driver);
  1091. mutex_lock(&me->driver_name_lock);
  1092. eva_fastrpc_driver_release_name(frpc_node);
  1093. mutex_unlock(&me->driver_name_lock);
  1094. kfree(frpc_node);
  1095. } else {
  1096. cvp_put_fastrpc_node(frpc_node);
  1097. }
  1098. }
  1099. void cvp_dsp_send_debug_mask(void)
  1100. {
  1101. struct cvp_dsp_cmd_msg cmd;
  1102. struct cvp_dsp_apps *me = &gfa_cv;
  1103. struct cvp_dsp_rsp_msg rsp;
  1104. int rc;
  1105. cmd.type = CPU2DSP_SET_DEBUG_LEVEL;
  1106. cmd.eva_dsp_debug_mask = me->debug_mask;
  1107. dprintk(CVP_DSP,
  1108. "%s: debug mask 0x%x\n",
  1109. __func__, cmd.eva_dsp_debug_mask);
  1110. rc = cvp_dsp_send_cmd_sync(&cmd, sizeof(struct cvp_dsp_cmd_msg), &rsp);
  1111. if (rc)
  1112. dprintk(CVP_ERR,
  1113. "%s: cvp_dsp_send_cmd failed rc = %d\n",
  1114. __func__, rc);
  1115. }
  1116. void cvp_dsp_send_hfi_queue(void)
  1117. {
  1118. struct msm_cvp_core *core;
  1119. struct iris_hfi_device *device;
  1120. struct cvp_dsp_apps *me = &gfa_cv;
  1121. struct cvp_dsp_rsp_msg rsp = {0};
  1122. uint64_t addr;
  1123. uint32_t size;
  1124. int rc;
  1125. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  1126. if (core && core->device)
  1127. device = core->device->hfi_device_data;
  1128. else
  1129. return;
  1130. if (!device) {
  1131. dprintk(CVP_ERR, "%s: NULL device\n", __func__);
  1132. return;
  1133. }
  1134. dprintk(CVP_DSP, "Entering %s\n", __func__);
  1135. mutex_lock(&device->lock);
  1136. mutex_lock(&me->tx_lock);
  1137. if (!device->dsp_iface_q_table.align_virtual_addr) {
  1138. dprintk(CVP_ERR, "%s: DSP HFI queue released\n", __func__);
  1139. goto exit;
  1140. }
  1141. addr = (uint64_t)device->dsp_iface_q_table.mem_data.dma_handle;
  1142. size = device->dsp_iface_q_table.mem_data.size;
  1143. if (!addr || !size) {
  1144. dprintk(CVP_DSP, "%s: HFI queue is not ready\n", __func__);
  1145. goto exit;
  1146. }
  1147. if (me->state != DSP_PROBED && me->state != DSP_INACTIVE)
  1148. goto exit;
  1149. rc = cvp_hyp_assign_to_dsp(addr, size);
  1150. if (rc) {
  1151. dprintk(CVP_ERR, "%s: cvp_hyp_assign_to_dsp. rc=%d\n",
  1152. __func__, rc);
  1153. goto exit;
  1154. }
  1155. if (me->state == DSP_PROBED) {
  1156. cvp_dsp_init_hfi_queue_hdr(device);
  1157. dprintk(CVP_WARN,
  1158. "%s: Done init of HFI queue headers\n", __func__);
  1159. }
  1160. rc = cvp_dsp_send_cmd_hfi_queue((phys_addr_t *)addr, size, &rsp);
  1161. if (rc) {
  1162. dprintk(CVP_WARN, "%s: Send HFI Queue failed rc = %d\n",
  1163. __func__, rc);
  1164. goto exit;
  1165. }
  1166. if (rsp.ret == CPU2DSP_EUNSUPPORTED) {
  1167. dprintk(CVP_WARN, "%s unsupported cmd %d\n",
  1168. __func__, rsp.type);
  1169. goto exit;
  1170. }
  1171. if (rsp.ret == CPU2DSP_EFATAL || rsp.ret == CPU2DSP_EUNAVAILABLE) {
  1172. dprintk(CVP_ERR, "%s fatal error returned %d\n",
  1173. __func__, rsp.dsp_state);
  1174. me->state = DSP_INVALID;
  1175. cvp_hyp_assign_from_dsp();
  1176. goto exit;
  1177. } else if (rsp.ret == CPU2DSP_EINVALSTATE) {
  1178. dprintk(CVP_ERR, "%s dsp invalid state %d\n",
  1179. __func__, rsp.dsp_state);
  1180. mutex_unlock(&me->tx_lock);
  1181. if (cvp_reinit_dsp()) {
  1182. dprintk(CVP_ERR, "%s reinit dsp fail\n", __func__);
  1183. mutex_unlock(&device->lock);
  1184. return;
  1185. }
  1186. mutex_lock(&me->tx_lock);
  1187. }
  1188. dprintk(CVP_DSP, "%s: dsp initialized\n", __func__);
  1189. me->state = DSP_READY;
  1190. exit:
  1191. mutex_unlock(&me->tx_lock);
  1192. mutex_unlock(&device->lock);
  1193. }
  1194. /* 32 or 64 bit CPU Side Ptr <-> 2 32 bit DSP Pointers. Dirty Fix. */
  1195. static void *ptr_dsp2cpu(uint32_t session_cpu_high, uint32_t session_cpu_low)
  1196. {
  1197. void *inst;
  1198. if ((session_cpu_high == 0) && (sizeof(void *) == BITPTRSIZE32)) {
  1199. inst = (void *)((uintptr_t)session_cpu_low);
  1200. } else if ((session_cpu_high != 0) && (sizeof(void *) == BITPTRSIZE64)) {
  1201. inst = (void *)((uintptr_t)(((uint64_t)session_cpu_high) << 32
  1202. | session_cpu_low));
  1203. } else {
  1204. dprintk(CVP_ERR,
  1205. "%s Invalid _cpu_high = 0x%x _cpu_low = 0x%x\n",
  1206. __func__, session_cpu_high, session_cpu_low);
  1207. inst = NULL;
  1208. }
  1209. return inst;
  1210. }
  1211. static void print_power(const struct eva_power_req *pwr_req)
  1212. {
  1213. if (pwr_req) {
  1214. dprintk(CVP_DSP, "Clock: Fdu %d Ica %d Od %d Mpu %d Fw %d",
  1215. pwr_req->clock_fdu, pwr_req->clock_ica,
  1216. pwr_req->clock_od, pwr_req->clock_mpu,
  1217. pwr_req->clock_fw);
  1218. dprintk(CVP_DSP, "OpClock: Fdu %d Ica %d Od %d Mpu %d Fw %d",
  1219. pwr_req->op_clock_fdu, pwr_req->op_clock_ica,
  1220. pwr_req->op_clock_od, pwr_req->op_clock_mpu,
  1221. pwr_req->op_clock_fw);
  1222. dprintk(CVP_DSP, "Actual Bw: Ddr %d, SysCache %d",
  1223. pwr_req->bw_ddr, pwr_req->bw_sys_cache);
  1224. dprintk(CVP_DSP, "OpBw: Ddr %d, SysCache %d",
  1225. pwr_req->op_bw_ddr, pwr_req->op_bw_sys_cache);
  1226. }
  1227. }
  1228. static void __dsp_cvp_sess_create(struct cvp_dsp_cmd_msg *cmd)
  1229. {
  1230. struct cvp_dsp_apps *me = &gfa_cv;
  1231. struct msm_cvp_inst *inst = NULL;
  1232. uint64_t inst_handle = 0;
  1233. int rc = 0;
  1234. struct cvp_dsp2cpu_cmd_msg *dsp2cpu_cmd = &me->pending_dsp2cpu_cmd;
  1235. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  1236. struct pid *pid_s = NULL;
  1237. struct task_struct *task = NULL;
  1238. struct cvp_hfi_device *hdev;
  1239. cmd->ret = 0;
  1240. dprintk(CVP_DSP,
  1241. "%s sess Type %d Mask %d Prio %d Sec %d pid 0x%x\n",
  1242. __func__, dsp2cpu_cmd->session_type,
  1243. dsp2cpu_cmd->kernel_mask,
  1244. dsp2cpu_cmd->session_prio,
  1245. dsp2cpu_cmd->is_secure,
  1246. dsp2cpu_cmd->pid);
  1247. pid_s = find_get_pid(dsp2cpu_cmd->pid);
  1248. if (pid_s == NULL) {
  1249. dprintk(CVP_WARN, "%s incorrect pid\n", __func__);
  1250. cmd->ret = -1;
  1251. return;
  1252. }
  1253. dprintk(CVP_DSP, "%s get pid_s 0x%x from pidA 0x%x\n", __func__,
  1254. pid_s, dsp2cpu_cmd->pid);
  1255. task = get_pid_task(pid_s, PIDTYPE_TGID);
  1256. if (!task) {
  1257. dprintk(CVP_WARN, "%s task doesn't exist\n", __func__);
  1258. cmd->ret = -1;
  1259. return;
  1260. }
  1261. rc = eva_fastrpc_driver_register(dsp2cpu_cmd->pid);
  1262. if (rc) {
  1263. dprintk(CVP_ERR, "%s Register fastrpc driver fail\n", __func__);
  1264. put_task_struct(task);
  1265. cmd->ret = -1;
  1266. return;
  1267. }
  1268. inst = msm_cvp_open(MSM_CORE_CVP, MSM_CVP_DSP, task);
  1269. if (!inst) {
  1270. dprintk(CVP_ERR, "%s Failed create instance\n", __func__);
  1271. goto fail_msm_cvp_open;
  1272. }
  1273. inst->process_id = dsp2cpu_cmd->pid;
  1274. inst->prop.kernel_mask = dsp2cpu_cmd->kernel_mask;
  1275. inst->prop.type = dsp2cpu_cmd->session_type;
  1276. inst->prop.priority = dsp2cpu_cmd->session_prio;
  1277. inst->prop.is_secure = dsp2cpu_cmd->is_secure;
  1278. inst->prop.dsp_mask = dsp2cpu_cmd->dsp_access_mask;
  1279. rc = msm_cvp_session_create(inst);
  1280. if (rc) {
  1281. dprintk(CVP_ERR, "Warning: send Session Create failed\n");
  1282. goto fail_session_create;
  1283. } else {
  1284. dprintk(CVP_DSP, "%s DSP Session Create done\n", __func__);
  1285. }
  1286. /* Get session id */
  1287. rc = msm_cvp_get_session_info(inst, &cmd->session_id);
  1288. if (rc) {
  1289. dprintk(CVP_ERR, "Warning: get session index failed %d\n", rc);
  1290. goto fail_get_session_info;
  1291. }
  1292. inst_handle = (uint64_t)inst;
  1293. cmd->session_cpu_high = (uint32_t)((inst_handle & HIGH32) >> 32);
  1294. cmd->session_cpu_low = (uint32_t)(inst_handle & LOW32);
  1295. frpc_node = cvp_get_fastrpc_node_with_handle(dsp2cpu_cmd->pid);
  1296. if (frpc_node) {
  1297. eva_fastrpc_driver_add_sess(frpc_node, inst);
  1298. cvp_put_fastrpc_node(frpc_node);
  1299. }
  1300. inst->task = task;
  1301. dprintk(CVP_DSP,
  1302. "%s CREATE_SESS id 0x%x, cpu_low 0x%x, cpu_high 0x%x\n",
  1303. __func__, cmd->session_id, cmd->session_cpu_low,
  1304. cmd->session_cpu_high);
  1305. spin_lock(&inst->core->resources.pm_qos.lock);
  1306. inst->core->resources.pm_qos.off_vote_cnt++;
  1307. spin_unlock(&inst->core->resources.pm_qos.lock);
  1308. hdev = inst->core->device;
  1309. call_hfi_op(hdev, pm_qos_update, hdev->hfi_device_data);
  1310. return;
  1311. fail_get_session_info:
  1312. fail_session_create:
  1313. msm_cvp_close(inst);
  1314. fail_msm_cvp_open:
  1315. /* unregister fastrpc driver */
  1316. eva_fastrpc_driver_unregister(dsp2cpu_cmd->pid, false);
  1317. put_task_struct(task);
  1318. cmd->ret = -1;
  1319. }
  1320. static void __dsp_cvp_sess_delete(struct cvp_dsp_cmd_msg *cmd)
  1321. {
  1322. struct cvp_dsp_apps *me = &gfa_cv;
  1323. struct msm_cvp_inst *inst;
  1324. int rc;
  1325. struct cvp_dsp2cpu_cmd_msg *dsp2cpu_cmd = &me->pending_dsp2cpu_cmd;
  1326. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  1327. struct task_struct *task = NULL;
  1328. struct cvp_hfi_device *hdev;
  1329. cmd->ret = 0;
  1330. dprintk(CVP_DSP,
  1331. "%s sess id 0x%x low 0x%x high 0x%x, pid 0x%x\n",
  1332. __func__, dsp2cpu_cmd->session_id,
  1333. dsp2cpu_cmd->session_cpu_low,
  1334. dsp2cpu_cmd->session_cpu_high,
  1335. dsp2cpu_cmd->pid);
  1336. frpc_node = cvp_get_fastrpc_node_with_handle(dsp2cpu_cmd->pid);
  1337. if (!frpc_node) {
  1338. dprintk(CVP_ERR, "%s pid 0x%x not registered with fastrpc\n",
  1339. __func__, dsp2cpu_cmd->pid);
  1340. cmd->ret = -1;
  1341. return;
  1342. }
  1343. cvp_put_fastrpc_node(frpc_node);
  1344. inst = (struct msm_cvp_inst *)ptr_dsp2cpu(
  1345. dsp2cpu_cmd->session_cpu_high,
  1346. dsp2cpu_cmd->session_cpu_low);
  1347. if (!inst || !is_cvp_inst_valid(inst)) {
  1348. dprintk(CVP_ERR, "%s incorrect session ID\n", __func__);
  1349. cmd->ret = -1;
  1350. goto dsp_fail_delete;
  1351. }
  1352. task = inst->task;
  1353. spin_lock(&inst->core->resources.pm_qos.lock);
  1354. if (inst->core->resources.pm_qos.off_vote_cnt > 0)
  1355. inst->core->resources.pm_qos.off_vote_cnt--;
  1356. else
  1357. dprintk(CVP_WARN, "%s Unexpected pm_qos off vote %d\n",
  1358. __func__,
  1359. inst->core->resources.pm_qos.off_vote_cnt);
  1360. spin_unlock(&inst->core->resources.pm_qos.lock);
  1361. hdev = inst->core->device;
  1362. call_hfi_op(hdev, pm_qos_update, hdev->hfi_device_data);
  1363. rc = msm_cvp_close(inst);
  1364. if (rc) {
  1365. dprintk(CVP_ERR, "Warning: Failed to close cvp instance\n");
  1366. cmd->ret = -1;
  1367. goto dsp_fail_delete;
  1368. }
  1369. /* unregister fastrpc driver */
  1370. eva_fastrpc_driver_unregister(dsp2cpu_cmd->pid, false);
  1371. if (task)
  1372. put_task_struct(task);
  1373. dprintk(CVP_DSP, "%s DSP2CPU_DETELE_SESSION Done, nr_maps %d\n",
  1374. __func__, atomic_read(&nr_maps));
  1375. dsp_fail_delete:
  1376. return;
  1377. }
  1378. static void __dsp_cvp_power_req(struct cvp_dsp_cmd_msg *cmd)
  1379. {
  1380. struct cvp_dsp_apps *me = &gfa_cv;
  1381. struct msm_cvp_inst *inst;
  1382. int rc;
  1383. struct cvp_dsp2cpu_cmd_msg *dsp2cpu_cmd = &me->pending_dsp2cpu_cmd;
  1384. cmd->ret = 0;
  1385. dprintk(CVP_DSP,
  1386. "%s sess id 0x%x, low 0x%x, high 0x%x\n",
  1387. __func__, dsp2cpu_cmd->session_id,
  1388. dsp2cpu_cmd->session_cpu_low,
  1389. dsp2cpu_cmd->session_cpu_high);
  1390. inst = (struct msm_cvp_inst *)ptr_dsp2cpu(
  1391. dsp2cpu_cmd->session_cpu_high,
  1392. dsp2cpu_cmd->session_cpu_low);
  1393. if (!inst) {
  1394. cmd->ret = -1;
  1395. goto dsp_fail_power_req;
  1396. }
  1397. print_power(&dsp2cpu_cmd->power_req);
  1398. inst->prop.cycles[HFI_HW_FDU] = dsp2cpu_cmd->power_req.clock_fdu;
  1399. inst->prop.cycles[HFI_HW_ICA] = dsp2cpu_cmd->power_req.clock_ica;
  1400. inst->prop.cycles[HFI_HW_OD] = dsp2cpu_cmd->power_req.clock_od;
  1401. inst->prop.cycles[HFI_HW_MPU] = dsp2cpu_cmd->power_req.clock_mpu;
  1402. inst->prop.fw_cycles = dsp2cpu_cmd->power_req.clock_fw;
  1403. inst->prop.ddr_bw = dsp2cpu_cmd->power_req.bw_ddr;
  1404. inst->prop.ddr_cache = dsp2cpu_cmd->power_req.bw_sys_cache;
  1405. inst->prop.op_cycles[HFI_HW_FDU] = dsp2cpu_cmd->power_req.op_clock_fdu;
  1406. inst->prop.op_cycles[HFI_HW_ICA] = dsp2cpu_cmd->power_req.op_clock_ica;
  1407. inst->prop.op_cycles[HFI_HW_OD] = dsp2cpu_cmd->power_req.op_clock_od;
  1408. inst->prop.op_cycles[HFI_HW_MPU] = dsp2cpu_cmd->power_req.op_clock_mpu;
  1409. inst->prop.fw_op_cycles = dsp2cpu_cmd->power_req.op_clock_fw;
  1410. inst->prop.ddr_op_bw = dsp2cpu_cmd->power_req.op_bw_ddr;
  1411. inst->prop.ddr_op_cache = dsp2cpu_cmd->power_req.op_bw_sys_cache;
  1412. rc = msm_cvp_update_power(inst);
  1413. if (rc) {
  1414. /*
  1415. *May need to define more error types
  1416. * Check UMD implementation
  1417. */
  1418. dprintk(CVP_ERR, "%s Failed update power\n", __func__);
  1419. cmd->ret = -1;
  1420. goto dsp_fail_power_req;
  1421. }
  1422. dprintk(CVP_DSP, "%s DSP2CPU_POWER_REQUEST Done\n", __func__);
  1423. dsp_fail_power_req:
  1424. return;
  1425. }
  1426. static void __dsp_cvp_buf_register(struct cvp_dsp_cmd_msg *cmd)
  1427. {
  1428. struct cvp_dsp_apps *me = &gfa_cv;
  1429. struct msm_cvp_inst *inst;
  1430. struct eva_kmd_arg *kmd;
  1431. struct eva_kmd_buffer *kmd_buf;
  1432. int rc;
  1433. struct cvp_dsp2cpu_cmd_msg *dsp2cpu_cmd = &me->pending_dsp2cpu_cmd;
  1434. cmd->ret = 0;
  1435. dprintk(CVP_DSP,
  1436. "%s sess id 0x%x, low 0x%x, high 0x%x, pid 0x%x\n",
  1437. __func__, dsp2cpu_cmd->session_id,
  1438. dsp2cpu_cmd->session_cpu_low,
  1439. dsp2cpu_cmd->session_cpu_high,
  1440. dsp2cpu_cmd->pid);
  1441. kmd = kzalloc(sizeof(*kmd), GFP_KERNEL);
  1442. if (!kmd) {
  1443. dprintk(CVP_ERR, "%s kzalloc failure\n", __func__);
  1444. cmd->ret = -1;
  1445. return;
  1446. }
  1447. inst = (struct msm_cvp_inst *)ptr_dsp2cpu(
  1448. dsp2cpu_cmd->session_cpu_high,
  1449. dsp2cpu_cmd->session_cpu_low);
  1450. kmd->type = EVA_KMD_REGISTER_BUFFER;
  1451. kmd_buf = (struct eva_kmd_buffer *)&(kmd->data.regbuf);
  1452. kmd_buf->type = EVA_KMD_BUFTYPE_INPUT;
  1453. kmd_buf->index = dsp2cpu_cmd->sbuf.index;
  1454. kmd_buf->fd = dsp2cpu_cmd->sbuf.fd;
  1455. kmd_buf->size = dsp2cpu_cmd->sbuf.size;
  1456. kmd_buf->offset = dsp2cpu_cmd->sbuf.offset;
  1457. kmd_buf->pixelformat = 0;
  1458. kmd_buf->flags = EVA_KMD_FLAG_UNSECURE;
  1459. rc = msm_cvp_register_buffer(inst, kmd_buf);
  1460. if (rc) {
  1461. dprintk(CVP_ERR, "%s Failed to register buffer\n", __func__);
  1462. cmd->ret = -1;
  1463. goto dsp_fail_buf_reg;
  1464. }
  1465. dprintk(CVP_DSP, "%s register buffer done\n", __func__);
  1466. cmd->sbuf.iova = kmd_buf->reserved[0];
  1467. cmd->sbuf.size = kmd_buf->size;
  1468. cmd->sbuf.fd = kmd_buf->fd;
  1469. cmd->sbuf.index = kmd_buf->index;
  1470. cmd->sbuf.offset = kmd_buf->offset;
  1471. dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__,
  1472. cmd->sbuf.fd, cmd->sbuf.iova);
  1473. dsp_fail_buf_reg:
  1474. kfree(kmd);
  1475. }
  1476. static void __dsp_cvp_buf_deregister(struct cvp_dsp_cmd_msg *cmd)
  1477. {
  1478. struct cvp_dsp_apps *me = &gfa_cv;
  1479. struct msm_cvp_inst *inst;
  1480. struct eva_kmd_arg *kmd;
  1481. struct eva_kmd_buffer *kmd_buf;
  1482. int rc;
  1483. struct cvp_dsp2cpu_cmd_msg *dsp2cpu_cmd = &me->pending_dsp2cpu_cmd;
  1484. cmd->ret = 0;
  1485. dprintk(CVP_DSP,
  1486. "%s : sess id 0x%x, low 0x%x, high 0x%x, pid 0x%x\n",
  1487. __func__, dsp2cpu_cmd->session_id,
  1488. dsp2cpu_cmd->session_cpu_low,
  1489. dsp2cpu_cmd->session_cpu_high,
  1490. dsp2cpu_cmd->pid);
  1491. kmd = kzalloc(sizeof(*kmd), GFP_KERNEL);
  1492. if (!kmd) {
  1493. dprintk(CVP_ERR, "%s kzalloc failure\n", __func__);
  1494. cmd->ret = -1;
  1495. return;
  1496. }
  1497. inst = (struct msm_cvp_inst *)ptr_dsp2cpu(
  1498. dsp2cpu_cmd->session_cpu_high,
  1499. dsp2cpu_cmd->session_cpu_low);
  1500. kmd->type = EVA_KMD_UNREGISTER_BUFFER;
  1501. kmd_buf = (struct eva_kmd_buffer *)&(kmd->data.regbuf);
  1502. kmd_buf->type = EVA_KMD_UNREGISTER_BUFFER;
  1503. kmd_buf->type = EVA_KMD_BUFTYPE_INPUT;
  1504. kmd_buf->index = dsp2cpu_cmd->sbuf.index;
  1505. kmd_buf->fd = dsp2cpu_cmd->sbuf.fd;
  1506. kmd_buf->size = dsp2cpu_cmd->sbuf.size;
  1507. kmd_buf->offset = dsp2cpu_cmd->sbuf.offset;
  1508. kmd_buf->pixelformat = 0;
  1509. kmd_buf->flags = EVA_KMD_FLAG_UNSECURE;
  1510. rc = msm_cvp_unregister_buffer(inst, kmd_buf);
  1511. if (rc) {
  1512. dprintk(CVP_ERR, "%s Failed to deregister buffer\n", __func__);
  1513. cmd->ret = -1;
  1514. goto fail_dsp_buf_dereg;
  1515. }
  1516. dprintk(CVP_DSP, "%s deregister buffer done\n", __func__);
  1517. fail_dsp_buf_dereg:
  1518. kfree(kmd);
  1519. }
  1520. static void __dsp_cvp_mem_alloc(struct cvp_dsp_cmd_msg *cmd)
  1521. {
  1522. struct cvp_dsp_apps *me = &gfa_cv;
  1523. struct msm_cvp_inst *inst;
  1524. int rc;
  1525. struct cvp_internal_buf *buf = NULL;
  1526. struct cvp_dsp2cpu_cmd_msg *dsp2cpu_cmd = &me->pending_dsp2cpu_cmd;
  1527. uint64_t v_dsp_addr = 0;
  1528. struct fastrpc_device *frpc_device = NULL;
  1529. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  1530. cmd->ret = 0;
  1531. dprintk(CVP_DSP,
  1532. "%s sess id 0x%x, low 0x%x, high 0x%x, pid 0x%x\n",
  1533. __func__, dsp2cpu_cmd->session_id,
  1534. dsp2cpu_cmd->session_cpu_low,
  1535. dsp2cpu_cmd->session_cpu_high,
  1536. dsp2cpu_cmd->pid);
  1537. frpc_node = cvp_get_fastrpc_node_with_handle(dsp2cpu_cmd->pid);
  1538. if (!frpc_node) {
  1539. dprintk(CVP_ERR, "%s Failed to find fastrpc node 0x%x\n",
  1540. __func__, dsp2cpu_cmd->pid);
  1541. goto fail_fastrpc_node;
  1542. }
  1543. frpc_device = frpc_node->cvp_fastrpc_device;
  1544. inst = (struct msm_cvp_inst *)ptr_dsp2cpu(
  1545. dsp2cpu_cmd->session_cpu_high,
  1546. dsp2cpu_cmd->session_cpu_low);
  1547. buf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  1548. if (!buf)
  1549. goto fail_kzalloc_buf;
  1550. rc = cvp_allocate_dsp_bufs(inst, buf,
  1551. dsp2cpu_cmd->sbuf.size,
  1552. dsp2cpu_cmd->sbuf.type);
  1553. if (rc)
  1554. goto fail_allocate_dsp_buf;
  1555. rc = eva_fastrpc_dev_map_dma(frpc_device, buf,
  1556. dsp2cpu_cmd->sbuf.dsp_remote_map,
  1557. &v_dsp_addr);
  1558. if (rc) {
  1559. dprintk(CVP_ERR, "%s Failed to map buffer 0x%x\n", __func__,
  1560. rc);
  1561. goto fail_fastrpc_dev_map_dma;
  1562. }
  1563. mutex_lock(&inst->cvpdspbufs.lock);
  1564. list_add_tail(&buf->list, &inst->cvpdspbufs.list);
  1565. mutex_unlock(&inst->cvpdspbufs.lock);
  1566. dprintk(CVP_DSP, "%s allocate buffer done, addr 0x%llx\n",
  1567. __func__, v_dsp_addr);
  1568. cmd->sbuf.size = buf->smem->size;
  1569. cmd->sbuf.fd = buf->fd;
  1570. cmd->sbuf.offset = 0;
  1571. cmd->sbuf.iova = buf->smem->device_addr;
  1572. cmd->sbuf.v_dsp_addr = v_dsp_addr;
  1573. dprintk(CVP_DSP, "%s: size %d, iova 0x%x, v_dsp_addr 0x%llx\n",
  1574. __func__, cmd->sbuf.size, cmd->sbuf.iova,
  1575. cmd->sbuf.v_dsp_addr);
  1576. cvp_put_fastrpc_node(frpc_node);
  1577. return;
  1578. fail_fastrpc_dev_map_dma:
  1579. cvp_release_dsp_buffers(inst, buf);
  1580. fail_allocate_dsp_buf:
  1581. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1582. fail_kzalloc_buf:
  1583. fail_fastrpc_node:
  1584. cmd->ret = -1;
  1585. cvp_put_fastrpc_node(frpc_node);
  1586. return;
  1587. }
  1588. static void __dsp_cvp_mem_free(struct cvp_dsp_cmd_msg *cmd)
  1589. {
  1590. struct cvp_dsp_apps *me = &gfa_cv;
  1591. struct msm_cvp_inst *inst;
  1592. int rc;
  1593. struct cvp_internal_buf *buf = NULL;
  1594. struct list_head *ptr = NULL, *next = NULL;
  1595. struct msm_cvp_list *buf_list = NULL;
  1596. struct cvp_dsp2cpu_cmd_msg *dsp2cpu_cmd = &me->pending_dsp2cpu_cmd;
  1597. struct fastrpc_device *frpc_device = NULL;
  1598. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  1599. cmd->ret = 0;
  1600. dprintk(CVP_DSP,
  1601. "%s sess id 0x%x, low 0x%x, high 0x%x, pid 0x%x\n",
  1602. __func__, dsp2cpu_cmd->session_id,
  1603. dsp2cpu_cmd->session_cpu_low,
  1604. dsp2cpu_cmd->session_cpu_high,
  1605. dsp2cpu_cmd->pid);
  1606. inst = (struct msm_cvp_inst *)ptr_dsp2cpu(
  1607. dsp2cpu_cmd->session_cpu_high,
  1608. dsp2cpu_cmd->session_cpu_low);
  1609. if (!inst) {
  1610. dprintk(CVP_ERR, "%s Failed to get inst\n",
  1611. __func__);
  1612. cmd->ret = -1;
  1613. return;
  1614. }
  1615. frpc_node = cvp_get_fastrpc_node_with_handle(dsp2cpu_cmd->pid);
  1616. if (!frpc_node) {
  1617. dprintk(CVP_ERR, "%s Failed to find fastrpc node 0x%x\n",
  1618. __func__, dsp2cpu_cmd->pid);
  1619. cmd->ret = -1;
  1620. return;
  1621. }
  1622. frpc_device = frpc_node->cvp_fastrpc_device;
  1623. buf_list = &inst->cvpdspbufs;
  1624. mutex_lock(&buf_list->lock);
  1625. list_for_each_safe(ptr, next, &buf_list->list) {
  1626. buf = list_entry(ptr, struct cvp_internal_buf, list);
  1627. if (!buf->smem) {
  1628. dprintk(CVP_DSP, "Empyt smem\n");
  1629. continue;
  1630. }
  1631. /* Verify with device addr */
  1632. if (buf->smem->device_addr == dsp2cpu_cmd->sbuf.iova) {
  1633. dprintk(CVP_DSP, "%s find device addr 0x%x\n",
  1634. __func__, buf->smem->device_addr);
  1635. dprintk(CVP_DSP, "fd in list 0x%x, fd from dsp 0x%x\n",
  1636. buf->fd, dsp2cpu_cmd->sbuf.fd);
  1637. rc = eva_fastrpc_dev_unmap_dma(frpc_device, buf);
  1638. if (rc) {
  1639. dprintk(CVP_ERR,
  1640. "%s Failed to unmap buffer 0x%x\n",
  1641. __func__, rc);
  1642. cmd->ret = -1;
  1643. goto fail_fastrpc_dev_unmap_dma;
  1644. }
  1645. rc = cvp_release_dsp_buffers(inst, buf);
  1646. if (rc) {
  1647. dprintk(CVP_ERR,
  1648. "%s Failed to free buffer 0x%x\n",
  1649. __func__, rc);
  1650. cmd->ret = -1;
  1651. goto fail_release_buf;
  1652. }
  1653. list_del(&buf->list);
  1654. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1655. break;
  1656. }
  1657. }
  1658. fail_release_buf:
  1659. fail_fastrpc_dev_unmap_dma:
  1660. mutex_unlock(&buf_list->lock);
  1661. cvp_put_fastrpc_node(frpc_node);
  1662. }
  1663. static int cvp_dsp_thread(void *data)
  1664. {
  1665. int rc = 0, old_state;
  1666. struct cvp_dsp_apps *me = &gfa_cv;
  1667. struct cvp_dsp_cmd_msg cmd;
  1668. struct cvp_hfi_device *hdev;
  1669. struct msm_cvp_core *core;
  1670. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  1671. if (!core) {
  1672. dprintk(CVP_ERR, "%s: Failed to find core\n", __func__);
  1673. rc = -EINVAL;
  1674. goto exit;
  1675. }
  1676. hdev = (struct cvp_hfi_device *)core->device;
  1677. if (!hdev) {
  1678. dprintk(CVP_ERR, "%s Invalid device handle\n", __func__);
  1679. rc = -EINVAL;
  1680. goto exit;
  1681. }
  1682. wait_dsp:
  1683. rc = wait_for_completion_interruptible(
  1684. &me->completions[CPU2DSP_MAX_CMD]);
  1685. if (me->state == DSP_INVALID)
  1686. goto exit;
  1687. if (me->state == DSP_UNINIT)
  1688. goto wait_dsp;
  1689. if (me->state == DSP_PROBED) {
  1690. cvp_dsp_send_hfi_queue();
  1691. goto wait_dsp;
  1692. }
  1693. cmd.type = me->pending_dsp2cpu_cmd.type;
  1694. if (rc == -ERESTARTSYS) {
  1695. dprintk(CVP_WARN, "%s received interrupt signal\n", __func__);
  1696. } else {
  1697. mutex_lock(&me->rx_lock);
  1698. if (me->state == DSP_UNINIT) {
  1699. /* DSP SSR may have happened */
  1700. mutex_unlock(&me->rx_lock);
  1701. goto wait_dsp;
  1702. }
  1703. switch (me->pending_dsp2cpu_cmd.type) {
  1704. case DSP2CPU_POWERON:
  1705. {
  1706. if (me->state == DSP_READY) {
  1707. cmd.ret = 0;
  1708. break;
  1709. }
  1710. mutex_lock(&me->tx_lock);
  1711. old_state = me->state;
  1712. me->state = DSP_READY;
  1713. rc = call_hfi_op(hdev, resume, hdev->hfi_device_data);
  1714. if (rc) {
  1715. dprintk(CVP_WARN, "%s Failed to resume cvp\n",
  1716. __func__);
  1717. me->state = old_state;
  1718. mutex_unlock(&me->tx_lock);
  1719. cmd.ret = 1;
  1720. break;
  1721. }
  1722. mutex_unlock(&me->tx_lock);
  1723. cmd.ret = 0;
  1724. break;
  1725. }
  1726. case DSP2CPU_POWEROFF:
  1727. {
  1728. me->state = DSP_SUSPEND;
  1729. cmd.ret = 0;
  1730. break;
  1731. }
  1732. case DSP2CPU_CREATE_SESSION:
  1733. {
  1734. __dsp_cvp_sess_create(&cmd);
  1735. break;
  1736. }
  1737. case DSP2CPU_DETELE_SESSION:
  1738. {
  1739. __dsp_cvp_sess_delete(&cmd);
  1740. break;
  1741. }
  1742. case DSP2CPU_POWER_REQUEST:
  1743. {
  1744. __dsp_cvp_power_req(&cmd);
  1745. break;
  1746. }
  1747. case DSP2CPU_REGISTER_BUFFER:
  1748. {
  1749. __dsp_cvp_buf_register(&cmd);
  1750. break;
  1751. }
  1752. case DSP2CPU_DEREGISTER_BUFFER:
  1753. {
  1754. __dsp_cvp_buf_deregister(&cmd);
  1755. break;
  1756. }
  1757. case DSP2CPU_MEM_ALLOC:
  1758. {
  1759. __dsp_cvp_mem_alloc(&cmd);
  1760. break;
  1761. }
  1762. case DSP2CPU_MEM_FREE:
  1763. {
  1764. __dsp_cvp_mem_free(&cmd);
  1765. break;
  1766. }
  1767. default:
  1768. dprintk(CVP_ERR, "unrecognaized dsp cmds: %d\n",
  1769. me->pending_dsp2cpu_cmd.type);
  1770. break;
  1771. }
  1772. me->pending_dsp2cpu_cmd.type = CVP_INVALID_RPMSG_TYPE;
  1773. mutex_unlock(&me->rx_lock);
  1774. }
  1775. /* Responds to DSP */
  1776. rc = cvp_dsp_send_cmd(&cmd, sizeof(struct cvp_dsp_cmd_msg));
  1777. if (rc)
  1778. dprintk(CVP_ERR,
  1779. "%s: cvp_dsp_send_cmd failed rc = %d cmd type=%d\n",
  1780. __func__, rc, cmd.type);
  1781. goto wait_dsp;
  1782. exit:
  1783. dprintk(CVP_DBG, "dsp thread exit\n");
  1784. return rc;
  1785. }
  1786. int cvp_dsp_device_init(void)
  1787. {
  1788. struct cvp_dsp_apps *me = &gfa_cv;
  1789. char tname[16];
  1790. int rc;
  1791. int i;
  1792. char name[CVP_FASTRPC_DRIVER_NAME_SIZE] = "qcom,fastcv0\0";
  1793. add_va_node_to_list(CVP_DBG_DUMP, &gfa_cv, sizeof(struct cvp_dsp_apps),
  1794. "cvp_dsp_apps-gfa_cv", false);
  1795. mutex_init(&me->tx_lock);
  1796. mutex_init(&me->rx_lock);
  1797. me->state = DSP_INVALID;
  1798. me->hyp_assigned = false;
  1799. for (i = 0; i <= CPU2DSP_MAX_CMD; i++)
  1800. init_completion(&me->completions[i]);
  1801. me->pending_dsp2cpu_cmd.type = CVP_INVALID_RPMSG_TYPE;
  1802. me->pending_dsp2cpu_rsp.type = CVP_INVALID_RPMSG_TYPE;
  1803. INIT_MSM_CVP_LIST(&me->fastrpc_driver_list);
  1804. mutex_init(&me->driver_name_lock);
  1805. for (i = 0; i < MAX_FASTRPC_DRIVER_NUM; i++) {
  1806. me->cvp_fastrpc_name[i].status = DRIVER_NAME_AVAILABLE;
  1807. snprintf(me->cvp_fastrpc_name[i].name, sizeof(name), name);
  1808. name[11]++;
  1809. }
  1810. rc = register_rpmsg_driver(&cvp_dsp_rpmsg_client);
  1811. if (rc) {
  1812. dprintk(CVP_ERR,
  1813. "%s : register_rpmsg_driver failed rc = %d\n",
  1814. __func__, rc);
  1815. goto register_bail;
  1816. }
  1817. snprintf(tname, sizeof(tname), "cvp-dsp-thread");
  1818. me->state = DSP_UNINIT;
  1819. me->dsp_thread = kthread_run(cvp_dsp_thread, me, tname);
  1820. if (!me->dsp_thread) {
  1821. dprintk(CVP_ERR, "%s create %s fail", __func__, tname);
  1822. rc = -ECHILD;
  1823. me->state = DSP_INVALID;
  1824. goto register_bail;
  1825. }
  1826. return 0;
  1827. register_bail:
  1828. return rc;
  1829. }
  1830. void cvp_dsp_device_exit(void)
  1831. {
  1832. struct cvp_dsp_apps *me = &gfa_cv;
  1833. int i;
  1834. mutex_lock(&me->tx_lock);
  1835. me->state = DSP_INVALID;
  1836. mutex_unlock(&me->tx_lock);
  1837. DEINIT_MSM_CVP_LIST(&me->fastrpc_driver_list);
  1838. for (i = 0; i <= CPU2DSP_MAX_CMD; i++)
  1839. complete_all(&me->completions[i]);
  1840. mutex_destroy(&me->tx_lock);
  1841. mutex_destroy(&me->rx_lock);
  1842. mutex_destroy(&me->driver_name_lock);
  1843. unregister_rpmsg_driver(&cvp_dsp_rpmsg_client);
  1844. }