hal_srng.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "hal_api.h"
  20. #include "target_type.h"
  21. #include "wcss_version.h"
  22. #include "qdf_module.h"
  23. #ifdef QCA_WIFI_QCA8074
  24. void hal_qca6290_attach(struct hal_soc *hal);
  25. #endif
  26. #ifdef QCA_WIFI_QCA8074
  27. void hal_qca8074_attach(struct hal_soc *hal);
  28. #endif
  29. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018)
  30. void hal_qca8074v2_attach(struct hal_soc *hal);
  31. #endif
  32. #ifdef QCA_WIFI_QCA6390
  33. void hal_qca6390_attach(struct hal_soc *hal);
  34. #endif
  35. #ifdef QCA_WIFI_QCA6490
  36. void hal_qca6490_attach(struct hal_soc *hal);
  37. #endif
  38. #ifdef QCA_WIFI_QCN9000
  39. void hal_qcn9000_attach(struct hal_soc *hal);
  40. #endif
  41. #ifdef QCA_WIFI_QCN9100
  42. void hal_qcn9100_attach(struct hal_soc *hal);
  43. #endif
  44. #ifdef QCA_WIFI_QCA6750
  45. void hal_qca6750_attach(struct hal_soc *hal);
  46. #endif
  47. #ifdef QCA_WIFI_QCA5018
  48. void hal_qca5018_attach(struct hal_soc *hal);
  49. #endif
  50. #ifdef ENABLE_VERBOSE_DEBUG
  51. bool is_hal_verbose_debug_enabled;
  52. #endif
  53. #ifdef ENABLE_HAL_REG_WR_HISTORY
  54. struct hal_reg_write_fail_history hal_reg_wr_hist;
  55. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  56. uint32_t offset,
  57. uint32_t wr_val, uint32_t rd_val)
  58. {
  59. struct hal_reg_write_fail_entry *record;
  60. int idx;
  61. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  62. HAL_REG_WRITE_HIST_SIZE);
  63. record = &hal_soc->reg_wr_fail_hist->record[idx];
  64. record->timestamp = qdf_get_log_timestamp();
  65. record->reg_offset = offset;
  66. record->write_val = wr_val;
  67. record->read_val = rd_val;
  68. }
  69. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  70. {
  71. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  72. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  73. }
  74. #else
  75. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  76. {
  77. }
  78. #endif
  79. /**
  80. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  81. * @hal: hal_soc data structure
  82. * @ring_type: type enum describing the ring
  83. * @ring_num: which ring of the ring type
  84. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  85. *
  86. * Return: the ring id or -EINVAL if the ring does not exist.
  87. */
  88. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  89. int ring_num, int mac_id)
  90. {
  91. struct hal_hw_srng_config *ring_config =
  92. HAL_SRNG_CONFIG(hal, ring_type);
  93. int ring_id;
  94. if (ring_num >= ring_config->max_rings) {
  95. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  96. "%s: ring_num exceeded maximum no. of supported rings",
  97. __func__);
  98. /* TODO: This is a programming error. Assert if this happens */
  99. return -EINVAL;
  100. }
  101. if (ring_config->lmac_ring) {
  102. ring_id = ring_config->start_ring_id + ring_num +
  103. (mac_id * HAL_MAX_RINGS_PER_LMAC);
  104. } else {
  105. ring_id = ring_config->start_ring_id + ring_num;
  106. }
  107. return ring_id;
  108. }
  109. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  110. {
  111. /* TODO: Should we allocate srng structures dynamically? */
  112. return &(hal->srng_list[ring_id]);
  113. }
  114. #define HP_OFFSET_IN_REG_START 1
  115. #define OFFSET_FROM_HP_TO_TP 4
  116. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  117. int shadow_config_index,
  118. int ring_type,
  119. int ring_num)
  120. {
  121. struct hal_srng *srng;
  122. int ring_id;
  123. struct hal_hw_srng_config *ring_config =
  124. HAL_SRNG_CONFIG(hal_soc, ring_type);
  125. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  126. if (ring_id < 0)
  127. return;
  128. srng = hal_get_srng(hal_soc, ring_id);
  129. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  130. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  131. + hal_soc->dev_base_addr;
  132. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  133. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  134. shadow_config_index);
  135. } else {
  136. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  137. + hal_soc->dev_base_addr;
  138. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  139. srng->u.src_ring.hp_addr,
  140. hal_soc->dev_base_addr, shadow_config_index);
  141. }
  142. }
  143. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  144. void hal_set_one_target_reg_config(struct hal_soc *hal,
  145. uint32_t target_reg_offset,
  146. int list_index)
  147. {
  148. int i = list_index;
  149. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  150. hal->list_shadow_reg_config[i].target_register =
  151. target_reg_offset;
  152. hal->num_generic_shadow_regs_configured++;
  153. }
  154. qdf_export_symbol(hal_set_one_target_reg_config);
  155. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  156. #define MAX_REO_REMAP_SHADOW_REGS 4
  157. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  158. {
  159. uint32_t target_reg_offset;
  160. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  161. int i;
  162. struct hal_hw_srng_config *srng_config =
  163. &hal->hw_srng_table[WBM2SW_RELEASE];
  164. target_reg_offset =
  165. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  166. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  167. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  168. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  169. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  170. }
  171. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  172. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  173. * HAL_IPA_TX_COMP_RING_IDX);
  174. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  175. return QDF_STATUS_SUCCESS;
  176. }
  177. qdf_export_symbol(hal_set_shadow_regs);
  178. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  179. {
  180. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  181. int shadow_config_index = hal->num_shadow_registers_configured;
  182. int i;
  183. int num_regs = hal->num_generic_shadow_regs_configured;
  184. for (i = 0; i < num_regs; i++) {
  185. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  186. hal->shadow_config[shadow_config_index].addr =
  187. hal->list_shadow_reg_config[i].target_register;
  188. hal->list_shadow_reg_config[i].shadow_config_index =
  189. shadow_config_index;
  190. hal->list_shadow_reg_config[i].va =
  191. SHADOW_REGISTER(shadow_config_index) +
  192. (uintptr_t)hal->dev_base_addr;
  193. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  194. hal->shadow_config[shadow_config_index].addr,
  195. SHADOW_REGISTER(shadow_config_index),
  196. shadow_config_index);
  197. shadow_config_index++;
  198. hal->num_shadow_registers_configured++;
  199. }
  200. return QDF_STATUS_SUCCESS;
  201. }
  202. qdf_export_symbol(hal_construct_shadow_regs);
  203. #endif
  204. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  205. int ring_type,
  206. int ring_num)
  207. {
  208. uint32_t target_register;
  209. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  210. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  211. int shadow_config_index = hal->num_shadow_registers_configured;
  212. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  213. QDF_ASSERT(0);
  214. return QDF_STATUS_E_RESOURCES;
  215. }
  216. hal->num_shadow_registers_configured++;
  217. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  218. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  219. *ring_num);
  220. /* if the ring is a dst ring, we need to shadow the tail pointer */
  221. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  222. target_register += OFFSET_FROM_HP_TO_TP;
  223. hal->shadow_config[shadow_config_index].addr = target_register;
  224. /* update hp/tp addr in the hal_soc structure*/
  225. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  226. ring_num);
  227. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  228. target_register,
  229. SHADOW_REGISTER(shadow_config_index),
  230. shadow_config_index,
  231. ring_type, ring_num);
  232. return QDF_STATUS_SUCCESS;
  233. }
  234. qdf_export_symbol(hal_set_one_shadow_config);
  235. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  236. {
  237. int ring_type, ring_num;
  238. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  239. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  240. struct hal_hw_srng_config *srng_config =
  241. &hal->hw_srng_table[ring_type];
  242. if (ring_type == CE_SRC ||
  243. ring_type == CE_DST ||
  244. ring_type == CE_DST_STATUS)
  245. continue;
  246. if (srng_config->lmac_ring)
  247. continue;
  248. for (ring_num = 0; ring_num < srng_config->max_rings;
  249. ring_num++)
  250. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  251. }
  252. return QDF_STATUS_SUCCESS;
  253. }
  254. qdf_export_symbol(hal_construct_srng_shadow_regs);
  255. void hal_get_shadow_config(void *hal_soc,
  256. struct pld_shadow_reg_v2_cfg **shadow_config,
  257. int *num_shadow_registers_configured)
  258. {
  259. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  260. *shadow_config = hal->shadow_config;
  261. *num_shadow_registers_configured =
  262. hal->num_shadow_registers_configured;
  263. }
  264. qdf_export_symbol(hal_get_shadow_config);
  265. static void hal_validate_shadow_register(struct hal_soc *hal,
  266. uint32_t *destination,
  267. uint32_t *shadow_address)
  268. {
  269. unsigned int index;
  270. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  271. int destination_ba_offset =
  272. ((char *)destination) - (char *)hal->dev_base_addr;
  273. index = shadow_address - shadow_0_offset;
  274. if (index >= MAX_SHADOW_REGISTERS) {
  275. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  276. "%s: index %x out of bounds", __func__, index);
  277. goto error;
  278. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  279. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  280. "%s: sanity check failure, expected %x, found %x",
  281. __func__, destination_ba_offset,
  282. hal->shadow_config[index].addr);
  283. goto error;
  284. }
  285. return;
  286. error:
  287. qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  288. hal->dev_base_addr, destination, shadow_address,
  289. shadow_0_offset, index);
  290. QDF_BUG(0);
  291. return;
  292. }
  293. static void hal_target_based_configure(struct hal_soc *hal)
  294. {
  295. /**
  296. * Indicate Initialization of srngs to avoid force wake
  297. * as umac power collapse is not enabled yet
  298. */
  299. hal->init_phase = true;
  300. switch (hal->target_type) {
  301. #ifdef QCA_WIFI_QCA6290
  302. case TARGET_TYPE_QCA6290:
  303. hal->use_register_windowing = true;
  304. hal_qca6290_attach(hal);
  305. break;
  306. #endif
  307. #ifdef QCA_WIFI_QCA6390
  308. case TARGET_TYPE_QCA6390:
  309. hal->use_register_windowing = true;
  310. hal_qca6390_attach(hal);
  311. break;
  312. #endif
  313. #ifdef QCA_WIFI_QCA6490
  314. case TARGET_TYPE_QCA6490:
  315. hal->use_register_windowing = true;
  316. hal_qca6490_attach(hal);
  317. hal->init_phase = false;
  318. break;
  319. #endif
  320. #ifdef QCA_WIFI_QCA6750
  321. case TARGET_TYPE_QCA6750:
  322. hal->use_register_windowing = true;
  323. hal->static_window_map = true;
  324. hal_qca6750_attach(hal);
  325. break;
  326. #endif
  327. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  328. case TARGET_TYPE_QCA8074:
  329. hal_qca8074_attach(hal);
  330. break;
  331. #endif
  332. #if defined(QCA_WIFI_QCA8074V2)
  333. case TARGET_TYPE_QCA8074V2:
  334. hal_qca8074v2_attach(hal);
  335. break;
  336. #endif
  337. #if defined(QCA_WIFI_QCA6018)
  338. case TARGET_TYPE_QCA6018:
  339. hal_qca8074v2_attach(hal);
  340. break;
  341. #endif
  342. #if defined(QCA_WIFI_QCN9100)
  343. case TARGET_TYPE_QCN9100:
  344. hal->use_register_windowing = true;
  345. /*
  346. * Static window map is enabled for qcn9000 to use 2mb bar
  347. * size and use multiple windows to write into registers.
  348. */
  349. hal->static_window_map = true;
  350. hal_qcn9100_attach(hal);
  351. break;
  352. #endif
  353. #ifdef QCA_WIFI_QCN9000
  354. case TARGET_TYPE_QCN9000:
  355. hal->use_register_windowing = true;
  356. /*
  357. * Static window map is enabled for qcn9000 to use 2mb bar
  358. * size and use multiple windows to write into registers.
  359. */
  360. hal->static_window_map = true;
  361. hal_qcn9000_attach(hal);
  362. break;
  363. #endif
  364. #ifdef QCA_WIFI_QCA5018
  365. case TARGET_TYPE_QCA5018:
  366. hal->use_register_windowing = true;
  367. hal->static_window_map = true;
  368. hal_qca5018_attach(hal);
  369. break;
  370. #endif
  371. default:
  372. break;
  373. }
  374. }
  375. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  376. {
  377. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  378. struct hif_target_info *tgt_info =
  379. hif_get_target_info_handle(hal_soc->hif_handle);
  380. return tgt_info->target_type;
  381. }
  382. qdf_export_symbol(hal_get_target_type);
  383. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  384. #ifdef MEMORY_DEBUG
  385. /*
  386. * Length of the queue(array) used to hold delayed register writes.
  387. * Must be a multiple of 2.
  388. */
  389. #define HAL_REG_WRITE_QUEUE_LEN 128
  390. #else
  391. #define HAL_REG_WRITE_QUEUE_LEN 32
  392. #endif
  393. /**
  394. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  395. * @hal: hal_soc pointer
  396. *
  397. * Return: true if throughput is high, else false.
  398. */
  399. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  400. {
  401. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  402. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  403. }
  404. /**
  405. * hal_process_reg_write_q_elem() - process a regiter write queue element
  406. * @hal: hal_soc pointer
  407. * @q_elem: pointer to hal regiter write queue element
  408. *
  409. * Return: The value which was written to the address
  410. */
  411. static uint32_t
  412. hal_process_reg_write_q_elem(struct hal_soc *hal,
  413. struct hal_reg_write_q_elem *q_elem)
  414. {
  415. struct hal_srng *srng = q_elem->srng;
  416. uint32_t write_val;
  417. SRNG_LOCK(&srng->lock);
  418. srng->reg_write_in_progress = false;
  419. srng->wstats.dequeues++;
  420. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  421. q_elem->dequeue_val = srng->u.src_ring.hp;
  422. hal_write_address_32_mb(hal,
  423. srng->u.src_ring.hp_addr,
  424. srng->u.src_ring.hp, false);
  425. write_val = srng->u.src_ring.hp;
  426. } else {
  427. q_elem->dequeue_val = srng->u.dst_ring.tp;
  428. hal_write_address_32_mb(hal,
  429. srng->u.dst_ring.tp_addr,
  430. srng->u.dst_ring.tp, false);
  431. write_val = srng->u.dst_ring.tp;
  432. }
  433. q_elem->valid = 0;
  434. SRNG_UNLOCK(&srng->lock);
  435. return write_val;
  436. }
  437. /**
  438. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  439. * @hal: hal_soc pointer
  440. * @delay: delay in us
  441. *
  442. * Return: None
  443. */
  444. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  445. uint64_t delay_us)
  446. {
  447. uint32_t *hist;
  448. hist = hal->stats.wstats.sched_delay;
  449. if (delay_us < 100)
  450. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  451. else if (delay_us < 1000)
  452. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  453. else if (delay_us < 5000)
  454. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  455. else
  456. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  457. }
  458. /**
  459. * hal_reg_write_work() - Worker to process delayed writes
  460. * @arg: hal_soc pointer
  461. *
  462. * Return: None
  463. */
  464. static void hal_reg_write_work(void *arg)
  465. {
  466. int32_t q_depth, write_val;
  467. struct hal_soc *hal = arg;
  468. struct hal_reg_write_q_elem *q_elem;
  469. uint64_t delta_us;
  470. uint8_t ring_id;
  471. uint32_t *addr;
  472. uint32_t num_processed = 0;
  473. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  474. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  475. /* Make sure q_elem consistent in the memory for multi-cores */
  476. qdf_rmb();
  477. if (!q_elem->valid)
  478. return;
  479. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  480. if (q_depth > hal->stats.wstats.max_q_depth)
  481. hal->stats.wstats.max_q_depth = q_depth;
  482. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  483. hal->stats.wstats.prevent_l1_fails++;
  484. return;
  485. }
  486. while (true) {
  487. qdf_rmb();
  488. if (!q_elem->valid)
  489. break;
  490. q_elem->dequeue_time = qdf_get_log_timestamp();
  491. ring_id = q_elem->srng->ring_id;
  492. addr = q_elem->addr;
  493. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  494. q_elem->enqueue_time);
  495. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  496. hal->stats.wstats.dequeues++;
  497. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  498. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  499. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  500. hal->read_idx, ring_id, addr, write_val, delta_us);
  501. num_processed++;
  502. hal->read_idx = (hal->read_idx + 1) &
  503. (HAL_REG_WRITE_QUEUE_LEN - 1);
  504. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  505. }
  506. hif_allow_link_low_power_states(hal->hif_handle);
  507. /*
  508. * Decrement active_work_cnt by the number of elements dequeued after
  509. * hif_allow_link_low_power_states.
  510. * This makes sure that hif_try_complete_tasks will wait till we make
  511. * the bus access in hif_allow_link_low_power_states. This will avoid
  512. * race condition between delayed register worker and bus suspend
  513. * (system suspend or runtime suspend).
  514. *
  515. * The following decrement should be done at the end!
  516. */
  517. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  518. }
  519. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  520. {
  521. qdf_cancel_work(&hal->reg_write_work);
  522. }
  523. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  524. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  525. }
  526. /**
  527. * hal_reg_write_enqueue() - enqueue register writes into kworker
  528. * @hal_soc: hal_soc pointer
  529. * @srng: srng pointer
  530. * @addr: iomem address of regiter
  531. * @value: value to be written to iomem address
  532. *
  533. * This function executes from within the SRNG LOCK
  534. *
  535. * Return: None
  536. */
  537. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  538. struct hal_srng *srng,
  539. void __iomem *addr,
  540. uint32_t value)
  541. {
  542. struct hal_reg_write_q_elem *q_elem;
  543. uint32_t write_idx;
  544. if (srng->reg_write_in_progress) {
  545. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  546. srng->ring_id, addr, value);
  547. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  548. srng->wstats.coalesces++;
  549. return;
  550. }
  551. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  552. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  553. q_elem = &hal_soc->reg_write_queue[write_idx];
  554. if (q_elem->valid) {
  555. hal_err("queue full");
  556. QDF_BUG(0);
  557. return;
  558. }
  559. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  560. srng->wstats.enqueues++;
  561. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  562. q_elem->srng = srng;
  563. q_elem->addr = addr;
  564. q_elem->enqueue_val = value;
  565. q_elem->enqueue_time = qdf_get_log_timestamp();
  566. /*
  567. * Before the valid flag is set to true, all the other
  568. * fields in the q_elem needs to be updated in memory.
  569. * Else there is a chance that the dequeuing worker thread
  570. * might read stale entries and process incorrect srng.
  571. */
  572. qdf_wmb();
  573. q_elem->valid = true;
  574. /*
  575. * After all other fields in the q_elem has been updated
  576. * in memory successfully, the valid flag needs to be updated
  577. * in memory in time too.
  578. * Else there is a chance that the dequeuing worker thread
  579. * might read stale valid flag and the work will be bypassed
  580. * for this round. And if there is no other work scheduled
  581. * later, this hal register writing won't be updated any more.
  582. */
  583. qdf_wmb();
  584. srng->reg_write_in_progress = true;
  585. qdf_atomic_inc(&hal_soc->active_work_cnt);
  586. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  587. write_idx, srng->ring_id, addr, value);
  588. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  589. &hal_soc->reg_write_work);
  590. }
  591. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  592. struct hal_srng *srng,
  593. void __iomem *addr,
  594. uint32_t value)
  595. {
  596. if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
  597. hal_is_reg_write_tput_level_high(hal_soc)) {
  598. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  599. srng->wstats.direct++;
  600. hal_write_address_32_mb(hal_soc, addr, value, false);
  601. } else {
  602. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  603. }
  604. }
  605. /**
  606. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  607. * @hal_soc: hal_soc pointer
  608. *
  609. * Initialize main data structures to process register writes in a delayed
  610. * workqueue.
  611. *
  612. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  613. */
  614. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  615. {
  616. hal->reg_write_wq =
  617. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  618. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  619. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  620. sizeof(*hal->reg_write_queue));
  621. if (!hal->reg_write_queue) {
  622. hal_err("unable to allocate memory");
  623. QDF_BUG(0);
  624. return QDF_STATUS_E_NOMEM;
  625. }
  626. /* Initial value of indices */
  627. hal->read_idx = 0;
  628. qdf_atomic_set(&hal->write_idx, -1);
  629. return QDF_STATUS_SUCCESS;
  630. }
  631. /**
  632. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  633. * @hal_soc: hal_soc pointer
  634. *
  635. * De-initialize main data structures to process register writes in a delayed
  636. * workqueue.
  637. *
  638. * Return: None
  639. */
  640. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  641. {
  642. __hal_flush_reg_write_work(hal);
  643. qdf_flush_workqueue(0, hal->reg_write_wq);
  644. qdf_destroy_workqueue(0, hal->reg_write_wq);
  645. qdf_mem_free(hal->reg_write_queue);
  646. }
  647. static inline
  648. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  649. char *buf, qdf_size_t size)
  650. {
  651. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  652. srng->wstats.enqueues, srng->wstats.dequeues,
  653. srng->wstats.coalesces, srng->wstats.direct);
  654. return buf;
  655. }
  656. /* bytes for local buffer */
  657. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  658. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  659. {
  660. struct hal_srng *srng;
  661. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  662. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  663. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  664. hal_debug("SW2TCL1: %s",
  665. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  666. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  667. hal_debug("WBM2SW0: %s",
  668. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  669. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  670. hal_debug("REO2SW1: %s",
  671. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  672. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  673. hal_debug("REO2SW2: %s",
  674. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  675. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  676. hal_debug("REO2SW3: %s",
  677. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  678. }
  679. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  680. {
  681. uint32_t *hist;
  682. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  683. hist = hal->stats.wstats.sched_delay;
  684. hal_debug("enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  685. qdf_atomic_read(&hal->stats.wstats.enqueues),
  686. hal->stats.wstats.dequeues,
  687. qdf_atomic_read(&hal->stats.wstats.coalesces),
  688. qdf_atomic_read(&hal->stats.wstats.direct),
  689. qdf_atomic_read(&hal->stats.wstats.q_depth),
  690. hal->stats.wstats.max_q_depth,
  691. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  692. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  693. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  694. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  695. }
  696. int hal_get_reg_write_pending_work(void *hal_soc)
  697. {
  698. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  699. return qdf_atomic_read(&hal->active_work_cnt);
  700. }
  701. #else
  702. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  703. {
  704. return QDF_STATUS_SUCCESS;
  705. }
  706. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  707. {
  708. }
  709. #endif
  710. /**
  711. * hal_attach - Initialize HAL layer
  712. * @hif_handle: Opaque HIF handle
  713. * @qdf_dev: QDF device
  714. *
  715. * Return: Opaque HAL SOC handle
  716. * NULL on failure (if given ring is not available)
  717. *
  718. * This function should be called as part of HIF initialization (for accessing
  719. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  720. *
  721. */
  722. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  723. {
  724. struct hal_soc *hal;
  725. int i;
  726. hal = qdf_mem_malloc(sizeof(*hal));
  727. if (!hal) {
  728. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  729. "%s: hal_soc allocation failed", __func__);
  730. goto fail0;
  731. }
  732. hal->hif_handle = hif_handle;
  733. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  734. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  735. hal->qdf_dev = qdf_dev;
  736. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  737. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  738. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  739. if (!hal->shadow_rdptr_mem_paddr) {
  740. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  741. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  742. __func__);
  743. goto fail1;
  744. }
  745. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  746. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  747. hal->shadow_wrptr_mem_vaddr =
  748. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  749. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  750. &(hal->shadow_wrptr_mem_paddr));
  751. if (!hal->shadow_wrptr_mem_vaddr) {
  752. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  753. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  754. __func__);
  755. goto fail2;
  756. }
  757. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  758. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  759. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  760. hal->srng_list[i].initialized = 0;
  761. hal->srng_list[i].ring_id = i;
  762. }
  763. qdf_spinlock_create(&hal->register_access_lock);
  764. hal->register_window = 0;
  765. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  766. hal_target_based_configure(hal);
  767. hal_reg_write_fail_history_init(hal);
  768. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  769. qdf_atomic_init(&hal->active_work_cnt);
  770. hal_delayed_reg_write_init(hal);
  771. return (void *)hal;
  772. fail2:
  773. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  774. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  775. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  776. fail1:
  777. qdf_mem_free(hal);
  778. fail0:
  779. return NULL;
  780. }
  781. qdf_export_symbol(hal_attach);
  782. /**
  783. * hal_mem_info - Retrieve hal memory base address
  784. *
  785. * @hal_soc: Opaque HAL SOC handle
  786. * @mem: pointer to structure to be updated with hal mem info
  787. */
  788. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  789. {
  790. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  791. mem->dev_base_addr = (void *)hal->dev_base_addr;
  792. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  793. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  794. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  795. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  796. hif_read_phy_mem_base((void *)hal->hif_handle,
  797. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  798. return;
  799. }
  800. qdf_export_symbol(hal_get_meminfo);
  801. /**
  802. * hal_detach - Detach HAL layer
  803. * @hal_soc: HAL SOC handle
  804. *
  805. * Return: Opaque HAL SOC handle
  806. * NULL on failure (if given ring is not available)
  807. *
  808. * This function should be called as part of HIF initialization (for accessing
  809. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  810. *
  811. */
  812. extern void hal_detach(void *hal_soc)
  813. {
  814. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  815. hal_delayed_reg_write_deinit(hal);
  816. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  817. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  818. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  819. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  820. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  821. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  822. qdf_minidump_remove(hal);
  823. qdf_mem_free(hal);
  824. return;
  825. }
  826. qdf_export_symbol(hal_detach);
  827. /**
  828. * hal_ce_dst_setup - Initialize CE destination ring registers
  829. * @hal_soc: HAL SOC handle
  830. * @srng: SRNG ring pointer
  831. */
  832. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  833. int ring_num)
  834. {
  835. uint32_t reg_val = 0;
  836. uint32_t reg_addr;
  837. struct hal_hw_srng_config *ring_config =
  838. HAL_SRNG_CONFIG(hal, CE_DST);
  839. /* set DEST_MAX_LENGTH according to ce assignment */
  840. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_ADDR(
  841. ring_config->reg_start[R0_INDEX] +
  842. (ring_num * ring_config->reg_size[R0_INDEX]));
  843. reg_val = HAL_REG_READ(hal, reg_addr);
  844. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  845. reg_val |= srng->u.dst_ring.max_buffer_length &
  846. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  847. HAL_REG_WRITE(hal, reg_addr, reg_val);
  848. if (srng->prefetch_timer) {
  849. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  850. ring_config->reg_start[R0_INDEX] +
  851. (ring_num * ring_config->reg_size[R0_INDEX]));
  852. reg_val = HAL_REG_READ(hal, reg_addr);
  853. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  854. reg_val |= srng->prefetch_timer;
  855. HAL_REG_WRITE(hal, reg_addr, reg_val);
  856. reg_val = HAL_REG_READ(hal, reg_addr);
  857. }
  858. }
  859. /**
  860. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  861. * @hal: HAL SOC handle
  862. * @read: boolean value to indicate if read or write
  863. * @ix0: pointer to store IX0 reg value
  864. * @ix1: pointer to store IX1 reg value
  865. * @ix2: pointer to store IX2 reg value
  866. * @ix3: pointer to store IX3 reg value
  867. */
  868. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  869. uint32_t *ix0, uint32_t *ix1,
  870. uint32_t *ix2, uint32_t *ix3)
  871. {
  872. uint32_t reg_offset;
  873. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  874. if (read) {
  875. if (ix0) {
  876. reg_offset =
  877. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  878. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  879. *ix0 = HAL_REG_READ(hal, reg_offset);
  880. }
  881. if (ix1) {
  882. reg_offset =
  883. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  884. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  885. *ix1 = HAL_REG_READ(hal, reg_offset);
  886. }
  887. if (ix2) {
  888. reg_offset =
  889. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  890. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  891. *ix2 = HAL_REG_READ(hal, reg_offset);
  892. }
  893. if (ix3) {
  894. reg_offset =
  895. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  896. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  897. *ix3 = HAL_REG_READ(hal, reg_offset);
  898. }
  899. } else {
  900. if (ix0) {
  901. reg_offset =
  902. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  903. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  904. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  905. *ix0, true);
  906. }
  907. if (ix1) {
  908. reg_offset =
  909. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  910. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  911. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  912. *ix1, true);
  913. }
  914. if (ix2) {
  915. reg_offset =
  916. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  917. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  918. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  919. *ix2, true);
  920. }
  921. if (ix3) {
  922. reg_offset =
  923. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  924. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  925. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  926. *ix3, true);
  927. }
  928. }
  929. }
  930. /**
  931. * hal_srng_dst_set_hp_paddr() - Set physical address to dest ring head pointer
  932. * @srng: sring pointer
  933. * @paddr: physical address
  934. */
  935. void hal_srng_dst_set_hp_paddr(struct hal_srng *srng,
  936. uint64_t paddr)
  937. {
  938. SRNG_DST_REG_WRITE(srng, HP_ADDR_LSB,
  939. paddr & 0xffffffff);
  940. SRNG_DST_REG_WRITE(srng, HP_ADDR_MSB,
  941. paddr >> 32);
  942. }
  943. /**
  944. * hal_srng_dst_init_hp() - Initialize destination ring head
  945. * pointer
  946. * @hal_soc: hal_soc handle
  947. * @srng: sring pointer
  948. * @vaddr: virtual address
  949. */
  950. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  951. struct hal_srng *srng,
  952. uint32_t *vaddr)
  953. {
  954. uint32_t reg_offset;
  955. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  956. if (!srng)
  957. return;
  958. srng->u.dst_ring.hp_addr = vaddr;
  959. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  960. HAL_REG_WRITE_CONFIRM_RETRY(
  961. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  962. if (vaddr) {
  963. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  964. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  965. "hp_addr=%pK, cached_hp=%d, hp=%d",
  966. (void *)srng->u.dst_ring.hp_addr,
  967. srng->u.dst_ring.cached_hp,
  968. *srng->u.dst_ring.hp_addr);
  969. }
  970. }
  971. /**
  972. * hal_srng_hw_init - Private function to initialize SRNG HW
  973. * @hal_soc: HAL SOC handle
  974. * @srng: SRNG ring pointer
  975. */
  976. static inline void hal_srng_hw_init(struct hal_soc *hal,
  977. struct hal_srng *srng)
  978. {
  979. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  980. hal_srng_src_hw_init(hal, srng);
  981. else
  982. hal_srng_dst_hw_init(hal, srng);
  983. }
  984. #ifdef CONFIG_SHADOW_V2
  985. #define ignore_shadow false
  986. #define CHECK_SHADOW_REGISTERS true
  987. #else
  988. #define ignore_shadow true
  989. #define CHECK_SHADOW_REGISTERS false
  990. #endif
  991. /**
  992. * hal_srng_setup - Initialize HW SRNG ring.
  993. * @hal_soc: Opaque HAL SOC handle
  994. * @ring_type: one of the types from hal_ring_type
  995. * @ring_num: Ring number if there are multiple rings of same type (staring
  996. * from 0)
  997. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  998. * @ring_params: SRNG ring params in hal_srng_params structure.
  999. * Callers are expected to allocate contiguous ring memory of size
  1000. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1001. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1002. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1003. * and size of each ring entry should be queried using the API
  1004. * hal_srng_get_entrysize
  1005. *
  1006. * Return: Opaque pointer to ring on success
  1007. * NULL on failure (if given ring is not available)
  1008. */
  1009. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1010. int mac_id, struct hal_srng_params *ring_params)
  1011. {
  1012. int ring_id;
  1013. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1014. struct hal_srng *srng;
  1015. struct hal_hw_srng_config *ring_config =
  1016. HAL_SRNG_CONFIG(hal, ring_type);
  1017. void *dev_base_addr;
  1018. int i;
  1019. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1020. if (ring_id < 0)
  1021. return NULL;
  1022. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1023. srng = hal_get_srng(hal_soc, ring_id);
  1024. if (srng->initialized) {
  1025. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1026. return NULL;
  1027. }
  1028. dev_base_addr = hal->dev_base_addr;
  1029. srng->ring_id = ring_id;
  1030. srng->ring_dir = ring_config->ring_dir;
  1031. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1032. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1033. srng->entry_size = ring_config->entry_size;
  1034. srng->num_entries = ring_params->num_entries;
  1035. srng->ring_size = srng->num_entries * srng->entry_size;
  1036. srng->ring_size_mask = srng->ring_size - 1;
  1037. srng->msi_addr = ring_params->msi_addr;
  1038. srng->msi_data = ring_params->msi_data;
  1039. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1040. srng->intr_batch_cntr_thres_entries =
  1041. ring_params->intr_batch_cntr_thres_entries;
  1042. srng->prefetch_timer = ring_params->prefetch_timer;
  1043. srng->hal_soc = hal_soc;
  1044. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1045. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1046. + (ring_num * ring_config->reg_size[i]);
  1047. }
  1048. /* Zero out the entire ring memory */
  1049. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1050. srng->num_entries) << 2);
  1051. srng->flags = ring_params->flags;
  1052. #ifdef BIG_ENDIAN_HOST
  1053. /* TODO: See if we should we get these flags from caller */
  1054. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1055. srng->flags |= HAL_SRNG_MSI_SWAP;
  1056. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1057. #endif
  1058. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1059. srng->u.src_ring.hp = 0;
  1060. srng->u.src_ring.reap_hp = srng->ring_size -
  1061. srng->entry_size;
  1062. srng->u.src_ring.tp_addr =
  1063. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1064. srng->u.src_ring.low_threshold =
  1065. ring_params->low_threshold * srng->entry_size;
  1066. if (ring_config->lmac_ring) {
  1067. /* For LMAC rings, head pointer updates will be done
  1068. * through FW by writing to a shared memory location
  1069. */
  1070. srng->u.src_ring.hp_addr =
  1071. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1072. HAL_SRNG_LMAC1_ID_START]);
  1073. srng->flags |= HAL_SRNG_LMAC_RING;
  1074. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1075. srng->u.src_ring.hp_addr =
  1076. hal_get_window_address(hal,
  1077. SRNG_SRC_ADDR(srng, HP));
  1078. if (CHECK_SHADOW_REGISTERS) {
  1079. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1080. QDF_TRACE_LEVEL_ERROR,
  1081. "%s: Ring (%d, %d) missing shadow config",
  1082. __func__, ring_type, ring_num);
  1083. }
  1084. } else {
  1085. hal_validate_shadow_register(hal,
  1086. SRNG_SRC_ADDR(srng, HP),
  1087. srng->u.src_ring.hp_addr);
  1088. }
  1089. } else {
  1090. /* During initialization loop count in all the descriptors
  1091. * will be set to zero, and HW will set it to 1 on completing
  1092. * descriptor update in first loop, and increments it by 1 on
  1093. * subsequent loops (loop count wraps around after reaching
  1094. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1095. * loop count in descriptors updated by HW (to be processed
  1096. * by SW).
  1097. */
  1098. srng->u.dst_ring.loop_cnt = 1;
  1099. srng->u.dst_ring.tp = 0;
  1100. srng->u.dst_ring.hp_addr =
  1101. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1102. if (ring_config->lmac_ring) {
  1103. /* For LMAC rings, tail pointer updates will be done
  1104. * through FW by writing to a shared memory location
  1105. */
  1106. srng->u.dst_ring.tp_addr =
  1107. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1108. HAL_SRNG_LMAC1_ID_START]);
  1109. srng->flags |= HAL_SRNG_LMAC_RING;
  1110. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1111. srng->u.dst_ring.tp_addr =
  1112. hal_get_window_address(hal,
  1113. SRNG_DST_ADDR(srng, TP));
  1114. if (CHECK_SHADOW_REGISTERS) {
  1115. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1116. QDF_TRACE_LEVEL_ERROR,
  1117. "%s: Ring (%d, %d) missing shadow config",
  1118. __func__, ring_type, ring_num);
  1119. }
  1120. } else {
  1121. hal_validate_shadow_register(hal,
  1122. SRNG_DST_ADDR(srng, TP),
  1123. srng->u.dst_ring.tp_addr);
  1124. }
  1125. }
  1126. if (!(ring_config->lmac_ring)) {
  1127. hal_srng_hw_init(hal, srng);
  1128. if (ring_type == CE_DST) {
  1129. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1130. hal_ce_dst_setup(hal, srng, ring_num);
  1131. }
  1132. }
  1133. SRNG_LOCK_INIT(&srng->lock);
  1134. srng->srng_event = 0;
  1135. srng->initialized = true;
  1136. return (void *)srng;
  1137. }
  1138. qdf_export_symbol(hal_srng_setup);
  1139. /**
  1140. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1141. * @hal_soc: Opaque HAL SOC handle
  1142. * @hal_srng: Opaque HAL SRNG pointer
  1143. */
  1144. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1145. {
  1146. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1147. SRNG_LOCK_DESTROY(&srng->lock);
  1148. srng->initialized = 0;
  1149. }
  1150. qdf_export_symbol(hal_srng_cleanup);
  1151. /**
  1152. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1153. * @hal_soc: Opaque HAL SOC handle
  1154. * @ring_type: one of the types from hal_ring_type
  1155. *
  1156. */
  1157. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1158. {
  1159. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1160. struct hal_hw_srng_config *ring_config =
  1161. HAL_SRNG_CONFIG(hal, ring_type);
  1162. return ring_config->entry_size << 2;
  1163. }
  1164. qdf_export_symbol(hal_srng_get_entrysize);
  1165. /**
  1166. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1167. * @hal_soc: Opaque HAL SOC handle
  1168. * @ring_type: one of the types from hal_ring_type
  1169. *
  1170. * Return: Maximum number of entries for the given ring_type
  1171. */
  1172. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1173. {
  1174. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1175. struct hal_hw_srng_config *ring_config =
  1176. HAL_SRNG_CONFIG(hal, ring_type);
  1177. return ring_config->max_size / ring_config->entry_size;
  1178. }
  1179. qdf_export_symbol(hal_srng_max_entries);
  1180. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1181. {
  1182. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1183. struct hal_hw_srng_config *ring_config =
  1184. HAL_SRNG_CONFIG(hal, ring_type);
  1185. return ring_config->ring_dir;
  1186. }
  1187. /**
  1188. * hal_srng_dump - Dump ring status
  1189. * @srng: hal srng pointer
  1190. */
  1191. void hal_srng_dump(struct hal_srng *srng)
  1192. {
  1193. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1194. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1195. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1196. srng->u.src_ring.hp,
  1197. srng->u.src_ring.reap_hp,
  1198. *srng->u.src_ring.tp_addr,
  1199. srng->u.src_ring.cached_tp);
  1200. } else {
  1201. hal_debug("=== DST RING %d ===", srng->ring_id);
  1202. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1203. srng->u.dst_ring.tp,
  1204. *srng->u.dst_ring.hp_addr,
  1205. srng->u.dst_ring.cached_hp,
  1206. srng->u.dst_ring.loop_cnt);
  1207. }
  1208. }
  1209. /**
  1210. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1211. *
  1212. * @hal_soc: Opaque HAL SOC handle
  1213. * @hal_ring: Ring pointer (Source or Destination ring)
  1214. * @ring_params: SRNG parameters will be returned through this structure
  1215. */
  1216. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1217. hal_ring_handle_t hal_ring_hdl,
  1218. struct hal_srng_params *ring_params)
  1219. {
  1220. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1221. int i =0;
  1222. ring_params->ring_id = srng->ring_id;
  1223. ring_params->ring_dir = srng->ring_dir;
  1224. ring_params->entry_size = srng->entry_size;
  1225. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1226. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1227. ring_params->num_entries = srng->num_entries;
  1228. ring_params->msi_addr = srng->msi_addr;
  1229. ring_params->msi_data = srng->msi_data;
  1230. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1231. ring_params->intr_batch_cntr_thres_entries =
  1232. srng->intr_batch_cntr_thres_entries;
  1233. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1234. ring_params->flags = srng->flags;
  1235. ring_params->ring_id = srng->ring_id;
  1236. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1237. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1238. }
  1239. qdf_export_symbol(hal_get_srng_params);
  1240. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1241. uint32_t low_threshold)
  1242. {
  1243. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1244. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1245. }
  1246. qdf_export_symbol(hal_set_low_threshold);
  1247. #ifdef FORCE_WAKE
  1248. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1249. {
  1250. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1251. hal_soc->init_phase = init_phase;
  1252. }
  1253. #endif /* FORCE_WAKE */