qdf_mem.c 72 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883
  1. /*
  2. * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. /**
  19. * DOC: qdf_mem
  20. * This file provides OS dependent memory management APIs
  21. */
  22. #include "qdf_debugfs.h"
  23. #include "qdf_mem.h"
  24. #include "qdf_nbuf.h"
  25. #include "qdf_lock.h"
  26. #include "qdf_mc_timer.h"
  27. #include "qdf_module.h"
  28. #include <qdf_trace.h>
  29. #include "qdf_str.h"
  30. #include "qdf_talloc.h"
  31. #include <linux/debugfs.h>
  32. #include <linux/seq_file.h>
  33. #include <linux/string.h>
  34. #include <qdf_list.h>
  35. #if IS_ENABLED(CONFIG_WCNSS_MEM_PRE_ALLOC)
  36. #include <net/cnss_prealloc.h>
  37. #endif
  38. #if defined(MEMORY_DEBUG) || defined(NBUF_MEMORY_DEBUG)
  39. static bool mem_debug_disabled;
  40. qdf_declare_param(mem_debug_disabled, bool);
  41. qdf_export_symbol(mem_debug_disabled);
  42. #endif
  43. #ifdef MEMORY_DEBUG
  44. static bool is_initial_mem_debug_disabled;
  45. #endif
  46. /* Preprocessor Definitions and Constants */
  47. #define QDF_MEM_MAX_MALLOC (4096 * 1024) /* 4 Mega Bytes */
  48. #define QDF_MEM_WARN_THRESHOLD 300 /* ms */
  49. #define QDF_DEBUG_STRING_SIZE 512
  50. /**
  51. * struct __qdf_mem_stat - qdf memory statistics
  52. * @kmalloc: total kmalloc allocations
  53. * @dma: total dma allocations
  54. * @skb: total skb allocations
  55. * @skb_total: total skb allocations in host driver
  56. * @dp_tx_skb: total Tx skb allocations in datapath
  57. * @dp_rx_skb: total Rx skb allocations in datapath
  58. * @skb_mem_max: high watermark for skb allocations
  59. * @dp_tx_skb_mem_max: high watermark for Tx DP skb allocations
  60. * @dp_rx_skb_mem_max: high watermark for Rx DP skb allocations
  61. * @dp_tx_skb_count: DP Tx buffer count
  62. * @dp_tx_skb_count_max: High watermark for DP Tx buffer count
  63. * @dp_rx_skb_count: DP Rx buffer count
  64. * @dp_rx_skb_count_max: High watermark for DP Rx buffer count
  65. * @tx_descs_outstanding: Current pending Tx descs count
  66. * @tx_descs_max: High watermark for pending Tx descs count
  67. */
  68. static struct __qdf_mem_stat {
  69. qdf_atomic_t kmalloc;
  70. qdf_atomic_t dma;
  71. qdf_atomic_t skb;
  72. qdf_atomic_t skb_total;
  73. qdf_atomic_t dp_tx_skb;
  74. qdf_atomic_t dp_rx_skb;
  75. int32_t skb_mem_max;
  76. int32_t dp_tx_skb_mem_max;
  77. int32_t dp_rx_skb_mem_max;
  78. qdf_atomic_t dp_tx_skb_count;
  79. int32_t dp_tx_skb_count_max;
  80. qdf_atomic_t dp_rx_skb_count;
  81. int32_t dp_rx_skb_count_max;
  82. qdf_atomic_t tx_descs_outstanding;
  83. int32_t tx_descs_max;
  84. } qdf_mem_stat;
  85. #ifdef MEMORY_DEBUG
  86. #include "qdf_debug_domain.h"
  87. enum list_type {
  88. LIST_TYPE_MEM = 0,
  89. LIST_TYPE_DMA = 1,
  90. LIST_TYPE_NBUF = 2,
  91. LIST_TYPE_MAX,
  92. };
  93. /**
  94. * major_alloc_priv: private data registered to debugfs entry created to list
  95. * the list major allocations
  96. * @type: type of the list to be parsed
  97. * @threshold: configured by user by overwriting the respective debugfs
  98. * sys entry. This is to list the functions which requested
  99. * memory/dma allocations more than threshold nubmer of times.
  100. */
  101. struct major_alloc_priv {
  102. enum list_type type;
  103. uint32_t threshold;
  104. };
  105. static qdf_list_t qdf_mem_domains[QDF_DEBUG_DOMAIN_COUNT];
  106. static qdf_spinlock_t qdf_mem_list_lock;
  107. static qdf_list_t qdf_mem_dma_domains[QDF_DEBUG_DOMAIN_COUNT];
  108. static qdf_spinlock_t qdf_mem_dma_list_lock;
  109. static inline qdf_list_t *qdf_mem_list_get(enum qdf_debug_domain domain)
  110. {
  111. return &qdf_mem_domains[domain];
  112. }
  113. static inline qdf_list_t *qdf_mem_dma_list(enum qdf_debug_domain domain)
  114. {
  115. return &qdf_mem_dma_domains[domain];
  116. }
  117. /**
  118. * struct qdf_mem_header - memory object to dubug
  119. * @node: node to the list
  120. * @domain: the active memory domain at time of allocation
  121. * @freed: flag set during free, used to detect double frees
  122. * Use uint8_t so we can detect corruption
  123. * @func: name of the function the allocation was made from
  124. * @line: line number of the file the allocation was made from
  125. * @size: size of the allocation in bytes
  126. * @caller: Caller of the function for which memory is allocated
  127. * @header: a known value, used to detect out-of-bounds access
  128. * @time: timestamp at which allocation was made
  129. */
  130. struct qdf_mem_header {
  131. qdf_list_node_t node;
  132. enum qdf_debug_domain domain;
  133. uint8_t freed;
  134. char func[QDF_MEM_FUNC_NAME_SIZE];
  135. uint32_t line;
  136. uint32_t size;
  137. void *caller;
  138. uint64_t header;
  139. uint64_t time;
  140. };
  141. /* align the qdf_mem_header to 8 bytes */
  142. #define QDF_DMA_MEM_HEADER_ALIGN 8
  143. static uint64_t WLAN_MEM_HEADER = 0x6162636465666768;
  144. static uint64_t WLAN_MEM_TRAILER = 0x8081828384858687;
  145. static inline struct qdf_mem_header *qdf_mem_get_header(void *ptr)
  146. {
  147. return (struct qdf_mem_header *)ptr - 1;
  148. }
  149. /* make sure the header pointer is 8bytes aligned */
  150. static inline struct qdf_mem_header *qdf_mem_dma_get_header(void *ptr,
  151. qdf_size_t size)
  152. {
  153. return (struct qdf_mem_header *)
  154. qdf_roundup((size_t)((uint8_t *)ptr + size),
  155. QDF_DMA_MEM_HEADER_ALIGN);
  156. }
  157. static inline uint64_t *qdf_mem_get_trailer(struct qdf_mem_header *header)
  158. {
  159. return (uint64_t *)((void *)(header + 1) + header->size);
  160. }
  161. static inline void *qdf_mem_get_ptr(struct qdf_mem_header *header)
  162. {
  163. return (void *)(header + 1);
  164. }
  165. /* number of bytes needed for the qdf memory debug information */
  166. #define QDF_MEM_DEBUG_SIZE \
  167. (sizeof(struct qdf_mem_header) + sizeof(WLAN_MEM_TRAILER))
  168. /* number of bytes needed for the qdf dma memory debug information */
  169. #define QDF_DMA_MEM_DEBUG_SIZE \
  170. (sizeof(struct qdf_mem_header) + QDF_DMA_MEM_HEADER_ALIGN)
  171. static void qdf_mem_trailer_init(struct qdf_mem_header *header)
  172. {
  173. QDF_BUG(header);
  174. if (!header)
  175. return;
  176. *qdf_mem_get_trailer(header) = WLAN_MEM_TRAILER;
  177. }
  178. static void qdf_mem_header_init(struct qdf_mem_header *header, qdf_size_t size,
  179. const char *func, uint32_t line, void *caller)
  180. {
  181. QDF_BUG(header);
  182. if (!header)
  183. return;
  184. header->domain = qdf_debug_domain_get();
  185. header->freed = false;
  186. qdf_str_lcopy(header->func, func, QDF_MEM_FUNC_NAME_SIZE);
  187. header->line = line;
  188. header->size = size;
  189. header->caller = caller;
  190. header->header = WLAN_MEM_HEADER;
  191. header->time = qdf_get_log_timestamp();
  192. }
  193. enum qdf_mem_validation_bitmap {
  194. QDF_MEM_BAD_HEADER = 1 << 0,
  195. QDF_MEM_BAD_TRAILER = 1 << 1,
  196. QDF_MEM_BAD_SIZE = 1 << 2,
  197. QDF_MEM_DOUBLE_FREE = 1 << 3,
  198. QDF_MEM_BAD_FREED = 1 << 4,
  199. QDF_MEM_BAD_NODE = 1 << 5,
  200. QDF_MEM_BAD_DOMAIN = 1 << 6,
  201. QDF_MEM_WRONG_DOMAIN = 1 << 7,
  202. };
  203. static enum qdf_mem_validation_bitmap
  204. qdf_mem_trailer_validate(struct qdf_mem_header *header)
  205. {
  206. enum qdf_mem_validation_bitmap error_bitmap = 0;
  207. if (*qdf_mem_get_trailer(header) != WLAN_MEM_TRAILER)
  208. error_bitmap |= QDF_MEM_BAD_TRAILER;
  209. return error_bitmap;
  210. }
  211. static enum qdf_mem_validation_bitmap
  212. qdf_mem_header_validate(struct qdf_mem_header *header,
  213. enum qdf_debug_domain domain)
  214. {
  215. enum qdf_mem_validation_bitmap error_bitmap = 0;
  216. if (header->header != WLAN_MEM_HEADER)
  217. error_bitmap |= QDF_MEM_BAD_HEADER;
  218. if (header->size > QDF_MEM_MAX_MALLOC)
  219. error_bitmap |= QDF_MEM_BAD_SIZE;
  220. if (header->freed == true)
  221. error_bitmap |= QDF_MEM_DOUBLE_FREE;
  222. else if (header->freed)
  223. error_bitmap |= QDF_MEM_BAD_FREED;
  224. if (!qdf_list_node_in_any_list(&header->node))
  225. error_bitmap |= QDF_MEM_BAD_NODE;
  226. if (header->domain < QDF_DEBUG_DOMAIN_INIT ||
  227. header->domain >= QDF_DEBUG_DOMAIN_COUNT)
  228. error_bitmap |= QDF_MEM_BAD_DOMAIN;
  229. else if (header->domain != domain)
  230. error_bitmap |= QDF_MEM_WRONG_DOMAIN;
  231. return error_bitmap;
  232. }
  233. static void
  234. qdf_mem_header_assert_valid(struct qdf_mem_header *header,
  235. enum qdf_debug_domain current_domain,
  236. enum qdf_mem_validation_bitmap error_bitmap,
  237. const char *func,
  238. uint32_t line)
  239. {
  240. if (!error_bitmap)
  241. return;
  242. if (error_bitmap & QDF_MEM_BAD_HEADER)
  243. qdf_err("Corrupted memory header 0x%llx (expected 0x%llx)",
  244. header->header, WLAN_MEM_HEADER);
  245. if (error_bitmap & QDF_MEM_BAD_SIZE)
  246. qdf_err("Corrupted memory size %u (expected < %d)",
  247. header->size, QDF_MEM_MAX_MALLOC);
  248. if (error_bitmap & QDF_MEM_BAD_TRAILER)
  249. qdf_err("Corrupted memory trailer 0x%llx (expected 0x%llx)",
  250. *qdf_mem_get_trailer(header), WLAN_MEM_TRAILER);
  251. if (error_bitmap & QDF_MEM_DOUBLE_FREE)
  252. qdf_err("Memory has previously been freed");
  253. if (error_bitmap & QDF_MEM_BAD_FREED)
  254. qdf_err("Corrupted memory freed flag 0x%x", header->freed);
  255. if (error_bitmap & QDF_MEM_BAD_NODE)
  256. qdf_err("Corrupted memory header node or double free");
  257. if (error_bitmap & QDF_MEM_BAD_DOMAIN)
  258. qdf_err("Corrupted memory domain 0x%x", header->domain);
  259. if (error_bitmap & QDF_MEM_WRONG_DOMAIN)
  260. qdf_err("Memory domain mismatch; allocated:%s(%d), current:%s(%d)",
  261. qdf_debug_domain_name(header->domain), header->domain,
  262. qdf_debug_domain_name(current_domain), current_domain);
  263. QDF_MEMDEBUG_PANIC("Fatal memory error detected @ %s:%d", func, line);
  264. }
  265. /**
  266. * struct __qdf_mem_info - memory statistics
  267. * @func: the function which allocated memory
  268. * @line: the line at which allocation happened
  269. * @size: the size of allocation
  270. * @caller: Address of the caller function
  271. * @count: how many allocations of same type
  272. * @time: timestamp at which allocation happened
  273. */
  274. struct __qdf_mem_info {
  275. char func[QDF_MEM_FUNC_NAME_SIZE];
  276. uint32_t line;
  277. uint32_t size;
  278. void *caller;
  279. uint32_t count;
  280. uint64_t time;
  281. };
  282. /*
  283. * The table depth defines the de-duplication proximity scope.
  284. * A deeper table takes more time, so choose any optimum value.
  285. */
  286. #define QDF_MEM_STAT_TABLE_SIZE 8
  287. /**
  288. * qdf_mem_debug_print_header() - memory debug header print logic
  289. * @print: the print adapter function
  290. * @print_priv: the private data to be consumed by @print
  291. * @threshold: the threshold value set by user to list top allocations
  292. *
  293. * Return: None
  294. */
  295. static void qdf_mem_debug_print_header(qdf_abstract_print print,
  296. void *print_priv,
  297. uint32_t threshold)
  298. {
  299. if (threshold)
  300. print(print_priv, "APIs requested allocations >= %u no of time",
  301. threshold);
  302. print(print_priv,
  303. "--------------------------------------------------------------");
  304. print(print_priv,
  305. " count size total filename caller timestamp");
  306. print(print_priv,
  307. "--------------------------------------------------------------");
  308. }
  309. /**
  310. * qdf_mem_meta_table_insert() - insert memory metadata into the given table
  311. * @table: the memory metadata table to insert into
  312. * @meta: the memory metadata to insert
  313. *
  314. * Return: true if the table is full after inserting, false otherwise
  315. */
  316. static bool qdf_mem_meta_table_insert(struct __qdf_mem_info *table,
  317. struct qdf_mem_header *meta)
  318. {
  319. int i;
  320. for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
  321. if (!table[i].count) {
  322. qdf_str_lcopy(table[i].func, meta->func,
  323. QDF_MEM_FUNC_NAME_SIZE);
  324. table[i].line = meta->line;
  325. table[i].size = meta->size;
  326. table[i].count = 1;
  327. table[i].caller = meta->caller;
  328. table[i].time = meta->time;
  329. break;
  330. }
  331. if (qdf_str_eq(table[i].func, meta->func) &&
  332. table[i].line == meta->line &&
  333. table[i].size == meta->size &&
  334. table[i].caller == meta->caller) {
  335. table[i].count++;
  336. break;
  337. }
  338. }
  339. /* return true if the table is now full */
  340. return i >= QDF_MEM_STAT_TABLE_SIZE - 1;
  341. }
  342. /**
  343. * qdf_mem_domain_print() - output agnostic memory domain print logic
  344. * @domain: the memory domain to print
  345. * @print: the print adapter function
  346. * @print_priv: the private data to be consumed by @print
  347. * @threshold: the threshold value set by uset to list top allocations
  348. * @mem_print: pointer to function which prints the memory allocation data
  349. *
  350. * Return: None
  351. */
  352. static void qdf_mem_domain_print(qdf_list_t *domain,
  353. qdf_abstract_print print,
  354. void *print_priv,
  355. uint32_t threshold,
  356. void (*mem_print)(struct __qdf_mem_info *,
  357. qdf_abstract_print,
  358. void *, uint32_t))
  359. {
  360. QDF_STATUS status;
  361. struct __qdf_mem_info table[QDF_MEM_STAT_TABLE_SIZE];
  362. qdf_list_node_t *node;
  363. qdf_mem_zero(table, sizeof(table));
  364. qdf_mem_debug_print_header(print, print_priv, threshold);
  365. /* hold lock while inserting to avoid use-after free of the metadata */
  366. qdf_spin_lock(&qdf_mem_list_lock);
  367. status = qdf_list_peek_front(domain, &node);
  368. while (QDF_IS_STATUS_SUCCESS(status)) {
  369. struct qdf_mem_header *meta = (struct qdf_mem_header *)node;
  370. bool is_full = qdf_mem_meta_table_insert(table, meta);
  371. qdf_spin_unlock(&qdf_mem_list_lock);
  372. if (is_full) {
  373. (*mem_print)(table, print, print_priv, threshold);
  374. qdf_mem_zero(table, sizeof(table));
  375. }
  376. qdf_spin_lock(&qdf_mem_list_lock);
  377. status = qdf_list_peek_next(domain, node, &node);
  378. }
  379. qdf_spin_unlock(&qdf_mem_list_lock);
  380. (*mem_print)(table, print, print_priv, threshold);
  381. }
  382. /**
  383. * qdf_mem_meta_table_print() - memory metadata table print logic
  384. * @table: the memory metadata table to print
  385. * @print: the print adapter function
  386. * @print_priv: the private data to be consumed by @print
  387. * @threshold: the threshold value set by user to list top allocations
  388. *
  389. * Return: None
  390. */
  391. static void qdf_mem_meta_table_print(struct __qdf_mem_info *table,
  392. qdf_abstract_print print,
  393. void *print_priv,
  394. uint32_t threshold)
  395. {
  396. int i;
  397. char debug_str[QDF_DEBUG_STRING_SIZE];
  398. size_t len = 0;
  399. char *debug_prefix = "WLAN_BUG_RCA: memory leak detected";
  400. len += qdf_scnprintf(debug_str, sizeof(debug_str) - len,
  401. "%s", debug_prefix);
  402. for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
  403. if (!table[i].count)
  404. break;
  405. print(print_priv,
  406. "%6u x %5u = %7uB @ %s:%u %pS %llu",
  407. table[i].count,
  408. table[i].size,
  409. table[i].count * table[i].size,
  410. table[i].func,
  411. table[i].line, table[i].caller,
  412. table[i].time);
  413. len += qdf_scnprintf(debug_str + len,
  414. sizeof(debug_str) - len,
  415. " @ %s:%u %pS",
  416. table[i].func,
  417. table[i].line,
  418. table[i].caller);
  419. }
  420. print(print_priv, "%s", debug_str);
  421. }
  422. static int qdf_err_printer(void *priv, const char *fmt, ...)
  423. {
  424. va_list args;
  425. va_start(args, fmt);
  426. QDF_VTRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, (char *)fmt, args);
  427. va_end(args);
  428. return 0;
  429. }
  430. #endif /* MEMORY_DEBUG */
  431. bool prealloc_disabled = 1;
  432. qdf_declare_param(prealloc_disabled, bool);
  433. qdf_export_symbol(prealloc_disabled);
  434. int qdf_mem_malloc_flags(void)
  435. {
  436. if (in_interrupt() || irqs_disabled() || in_atomic())
  437. return GFP_ATOMIC;
  438. return GFP_KERNEL;
  439. }
  440. qdf_export_symbol(qdf_mem_malloc_flags);
  441. /**
  442. * qdf_prealloc_disabled_config_get() - Get the user configuration of
  443. * prealloc_disabled
  444. *
  445. * Return: value of prealloc_disabled qdf module argument
  446. */
  447. bool qdf_prealloc_disabled_config_get(void)
  448. {
  449. return prealloc_disabled;
  450. }
  451. qdf_export_symbol(qdf_prealloc_disabled_config_get);
  452. #ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI
  453. /**
  454. * qdf_prealloc_disabled_config_set() - Set prealloc_disabled
  455. * @str_value: value of the module param
  456. *
  457. * This function will set qdf module param prealloc_disabled
  458. *
  459. * Return: QDF_STATUS_SUCCESS on Success
  460. */
  461. QDF_STATUS qdf_prealloc_disabled_config_set(const char *str_value)
  462. {
  463. QDF_STATUS status;
  464. status = qdf_bool_parse(str_value, &prealloc_disabled);
  465. return status;
  466. }
  467. #endif
  468. #if defined WLAN_DEBUGFS
  469. /* Debugfs root directory for qdf_mem */
  470. static struct dentry *qdf_mem_debugfs_root;
  471. #ifdef MEMORY_DEBUG
  472. static int seq_printf_printer(void *priv, const char *fmt, ...)
  473. {
  474. struct seq_file *file = priv;
  475. va_list args;
  476. va_start(args, fmt);
  477. seq_vprintf(file, fmt, args);
  478. seq_puts(file, "\n");
  479. va_end(args);
  480. return 0;
  481. }
  482. /**
  483. * qdf_print_major_alloc() - memory metadata table print logic
  484. * @table: the memory metadata table to print
  485. * @print: the print adapter function
  486. * @print_priv: the private data to be consumed by @print
  487. * @threshold: the threshold value set by uset to list top allocations
  488. *
  489. * Return: None
  490. */
  491. static void qdf_print_major_alloc(struct __qdf_mem_info *table,
  492. qdf_abstract_print print,
  493. void *print_priv,
  494. uint32_t threshold)
  495. {
  496. int i;
  497. for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
  498. if (!table[i].count)
  499. break;
  500. if (table[i].count >= threshold)
  501. print(print_priv,
  502. "%6u x %5u = %7uB @ %s:%u %pS %llu",
  503. table[i].count,
  504. table[i].size,
  505. table[i].count * table[i].size,
  506. table[i].func,
  507. table[i].line, table[i].caller,
  508. table[i].time);
  509. }
  510. }
  511. /**
  512. * qdf_mem_seq_start() - sequential callback to start
  513. * @seq: seq_file handle
  514. * @pos: The start position of the sequence
  515. *
  516. * Return: iterator pointer, or NULL if iteration is complete
  517. */
  518. static void *qdf_mem_seq_start(struct seq_file *seq, loff_t *pos)
  519. {
  520. enum qdf_debug_domain domain = *pos;
  521. if (!qdf_debug_domain_valid(domain))
  522. return NULL;
  523. /* just use the current position as our iterator */
  524. return pos;
  525. }
  526. /**
  527. * qdf_mem_seq_next() - next sequential callback
  528. * @seq: seq_file handle
  529. * @v: the current iterator
  530. * @pos: the current position
  531. *
  532. * Get the next node and release previous node.
  533. *
  534. * Return: iterator pointer, or NULL if iteration is complete
  535. */
  536. static void *qdf_mem_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  537. {
  538. ++*pos;
  539. return qdf_mem_seq_start(seq, pos);
  540. }
  541. /**
  542. * qdf_mem_seq_stop() - stop sequential callback
  543. * @seq: seq_file handle
  544. * @v: current iterator
  545. *
  546. * Return: None
  547. */
  548. static void qdf_mem_seq_stop(struct seq_file *seq, void *v) { }
  549. /**
  550. * qdf_mem_seq_show() - print sequential callback
  551. * @seq: seq_file handle
  552. * @v: current iterator
  553. *
  554. * Return: 0 - success
  555. */
  556. static int qdf_mem_seq_show(struct seq_file *seq, void *v)
  557. {
  558. enum qdf_debug_domain domain_id = *(enum qdf_debug_domain *)v;
  559. seq_printf(seq, "\n%s Memory Domain (Id %d)\n",
  560. qdf_debug_domain_name(domain_id), domain_id);
  561. qdf_mem_domain_print(qdf_mem_list_get(domain_id),
  562. seq_printf_printer,
  563. seq,
  564. 0,
  565. qdf_mem_meta_table_print);
  566. return 0;
  567. }
  568. /* sequential file operation table */
  569. static const struct seq_operations qdf_mem_seq_ops = {
  570. .start = qdf_mem_seq_start,
  571. .next = qdf_mem_seq_next,
  572. .stop = qdf_mem_seq_stop,
  573. .show = qdf_mem_seq_show,
  574. };
  575. static int qdf_mem_debugfs_open(struct inode *inode, struct file *file)
  576. {
  577. return seq_open(file, &qdf_mem_seq_ops);
  578. }
  579. /**
  580. * qdf_major_alloc_show() - print sequential callback
  581. * @seq: seq_file handle
  582. * @v: current iterator
  583. *
  584. * Return: 0 - success
  585. */
  586. static int qdf_major_alloc_show(struct seq_file *seq, void *v)
  587. {
  588. enum qdf_debug_domain domain_id = *(enum qdf_debug_domain *)v;
  589. struct major_alloc_priv *priv;
  590. qdf_list_t *list;
  591. priv = (struct major_alloc_priv *)seq->private;
  592. seq_printf(seq, "\n%s Memory Domain (Id %d)\n",
  593. qdf_debug_domain_name(domain_id), domain_id);
  594. switch (priv->type) {
  595. case LIST_TYPE_MEM:
  596. list = qdf_mem_list_get(domain_id);
  597. break;
  598. case LIST_TYPE_DMA:
  599. list = qdf_mem_dma_list(domain_id);
  600. break;
  601. default:
  602. list = NULL;
  603. break;
  604. }
  605. if (list)
  606. qdf_mem_domain_print(list,
  607. seq_printf_printer,
  608. seq,
  609. priv->threshold,
  610. qdf_print_major_alloc);
  611. return 0;
  612. }
  613. /* sequential file operation table created to track major allocs */
  614. static const struct seq_operations qdf_major_allocs_seq_ops = {
  615. .start = qdf_mem_seq_start,
  616. .next = qdf_mem_seq_next,
  617. .stop = qdf_mem_seq_stop,
  618. .show = qdf_major_alloc_show,
  619. };
  620. static int qdf_major_allocs_open(struct inode *inode, struct file *file)
  621. {
  622. void *private = inode->i_private;
  623. struct seq_file *seq;
  624. int rc;
  625. rc = seq_open(file, &qdf_major_allocs_seq_ops);
  626. if (rc == 0) {
  627. seq = file->private_data;
  628. seq->private = private;
  629. }
  630. return rc;
  631. }
  632. static ssize_t qdf_major_alloc_set_threshold(struct file *file,
  633. const char __user *user_buf,
  634. size_t count,
  635. loff_t *pos)
  636. {
  637. char buf[32];
  638. ssize_t buf_size;
  639. uint32_t threshold;
  640. struct seq_file *seq = file->private_data;
  641. struct major_alloc_priv *priv = (struct major_alloc_priv *)seq->private;
  642. buf_size = min(count, (sizeof(buf) - 1));
  643. if (buf_size <= 0)
  644. return 0;
  645. if (copy_from_user(buf, user_buf, buf_size))
  646. return -EFAULT;
  647. buf[buf_size] = '\0';
  648. if (!kstrtou32(buf, 10, &threshold))
  649. priv->threshold = threshold;
  650. return buf_size;
  651. }
  652. /**
  653. * qdf_print_major_nbuf_allocs() - output agnostic nbuf print logic
  654. * @threshold: the threshold value set by uset to list top allocations
  655. * @print: the print adapter function
  656. * @print_priv: the private data to be consumed by @print
  657. * @mem_print: pointer to function which prints the memory allocation data
  658. *
  659. * Return: None
  660. */
  661. static void
  662. qdf_print_major_nbuf_allocs(uint32_t threshold,
  663. qdf_abstract_print print,
  664. void *print_priv,
  665. void (*mem_print)(struct __qdf_mem_info *,
  666. qdf_abstract_print,
  667. void *, uint32_t))
  668. {
  669. uint32_t nbuf_iter;
  670. unsigned long irq_flag = 0;
  671. QDF_NBUF_TRACK *p_node;
  672. QDF_NBUF_TRACK *p_prev;
  673. struct __qdf_mem_info table[QDF_MEM_STAT_TABLE_SIZE];
  674. struct qdf_mem_header meta;
  675. bool is_full;
  676. qdf_mem_zero(table, sizeof(table));
  677. qdf_mem_debug_print_header(print, print_priv, threshold);
  678. if (is_initial_mem_debug_disabled)
  679. return;
  680. qdf_rl_info("major nbuf print with threshold %u", threshold);
  681. for (nbuf_iter = 0; nbuf_iter < QDF_NET_BUF_TRACK_MAX_SIZE;
  682. nbuf_iter++) {
  683. qdf_nbuf_acquire_track_lock(nbuf_iter, irq_flag);
  684. p_node = qdf_nbuf_get_track_tbl(nbuf_iter);
  685. while (p_node) {
  686. meta.line = p_node->line_num;
  687. meta.size = p_node->size;
  688. meta.caller = NULL;
  689. meta.time = p_node->time;
  690. qdf_str_lcopy(meta.func, p_node->func_name,
  691. QDF_MEM_FUNC_NAME_SIZE);
  692. is_full = qdf_mem_meta_table_insert(table, &meta);
  693. if (is_full) {
  694. (*mem_print)(table, print,
  695. print_priv, threshold);
  696. qdf_mem_zero(table, sizeof(table));
  697. }
  698. p_prev = p_node;
  699. p_node = p_node->p_next;
  700. }
  701. qdf_nbuf_release_track_lock(nbuf_iter, irq_flag);
  702. }
  703. (*mem_print)(table, print, print_priv, threshold);
  704. qdf_rl_info("major nbuf print end");
  705. }
  706. /**
  707. * qdf_major_nbuf_alloc_show() - print sequential callback
  708. * @seq: seq_file handle
  709. * @v: current iterator
  710. *
  711. * Return: 0 - success
  712. */
  713. static int qdf_major_nbuf_alloc_show(struct seq_file *seq, void *v)
  714. {
  715. struct major_alloc_priv *priv = (struct major_alloc_priv *)seq->private;
  716. if (!priv) {
  717. qdf_err("priv is null");
  718. return -EINVAL;
  719. }
  720. qdf_print_major_nbuf_allocs(priv->threshold,
  721. seq_printf_printer,
  722. seq,
  723. qdf_print_major_alloc);
  724. return 0;
  725. }
  726. /**
  727. * qdf_nbuf_seq_start() - sequential callback to start
  728. * @seq: seq_file handle
  729. * @pos: The start position of the sequence
  730. *
  731. * Return: iterator pointer, or NULL if iteration is complete
  732. */
  733. static void *qdf_nbuf_seq_start(struct seq_file *seq, loff_t *pos)
  734. {
  735. enum qdf_debug_domain domain = *pos;
  736. if (domain > QDF_DEBUG_NBUF_DOMAIN)
  737. return NULL;
  738. return pos;
  739. }
  740. /**
  741. * qdf_nbuf_seq_next() - next sequential callback
  742. * @seq: seq_file handle
  743. * @v: the current iterator
  744. * @pos: the current position
  745. *
  746. * Get the next node and release previous node.
  747. *
  748. * Return: iterator pointer, or NULL if iteration is complete
  749. */
  750. static void *qdf_nbuf_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  751. {
  752. ++*pos;
  753. return qdf_nbuf_seq_start(seq, pos);
  754. }
  755. /**
  756. * qdf_nbuf_seq_stop() - stop sequential callback
  757. * @seq: seq_file handle
  758. * @v: current iterator
  759. *
  760. * Return: None
  761. */
  762. static void qdf_nbuf_seq_stop(struct seq_file *seq, void *v) { }
  763. /* sequential file operation table created to track major skb allocs */
  764. static const struct seq_operations qdf_major_nbuf_allocs_seq_ops = {
  765. .start = qdf_nbuf_seq_start,
  766. .next = qdf_nbuf_seq_next,
  767. .stop = qdf_nbuf_seq_stop,
  768. .show = qdf_major_nbuf_alloc_show,
  769. };
  770. static int qdf_major_nbuf_allocs_open(struct inode *inode, struct file *file)
  771. {
  772. void *private = inode->i_private;
  773. struct seq_file *seq;
  774. int rc;
  775. rc = seq_open(file, &qdf_major_nbuf_allocs_seq_ops);
  776. if (rc == 0) {
  777. seq = file->private_data;
  778. seq->private = private;
  779. }
  780. return rc;
  781. }
  782. static ssize_t qdf_major_nbuf_alloc_set_threshold(struct file *file,
  783. const char __user *user_buf,
  784. size_t count,
  785. loff_t *pos)
  786. {
  787. char buf[32];
  788. ssize_t buf_size;
  789. uint32_t threshold;
  790. struct seq_file *seq = file->private_data;
  791. struct major_alloc_priv *priv = (struct major_alloc_priv *)seq->private;
  792. buf_size = min(count, (sizeof(buf) - 1));
  793. if (buf_size <= 0)
  794. return 0;
  795. if (copy_from_user(buf, user_buf, buf_size))
  796. return -EFAULT;
  797. buf[buf_size] = '\0';
  798. if (!kstrtou32(buf, 10, &threshold))
  799. priv->threshold = threshold;
  800. return buf_size;
  801. }
  802. /* file operation table for listing major allocs */
  803. static const struct file_operations fops_qdf_major_allocs = {
  804. .owner = THIS_MODULE,
  805. .open = qdf_major_allocs_open,
  806. .read = seq_read,
  807. .llseek = seq_lseek,
  808. .release = seq_release,
  809. .write = qdf_major_alloc_set_threshold,
  810. };
  811. /* debugfs file operation table */
  812. static const struct file_operations fops_qdf_mem_debugfs = {
  813. .owner = THIS_MODULE,
  814. .open = qdf_mem_debugfs_open,
  815. .read = seq_read,
  816. .llseek = seq_lseek,
  817. .release = seq_release,
  818. };
  819. /* file operation table for listing major allocs */
  820. static const struct file_operations fops_qdf_nbuf_major_allocs = {
  821. .owner = THIS_MODULE,
  822. .open = qdf_major_nbuf_allocs_open,
  823. .read = seq_read,
  824. .llseek = seq_lseek,
  825. .release = seq_release,
  826. .write = qdf_major_nbuf_alloc_set_threshold,
  827. };
  828. static struct major_alloc_priv mem_priv = {
  829. /* List type set to mem */
  830. LIST_TYPE_MEM,
  831. /* initial threshold to list APIs which allocates mem >= 50 times */
  832. 50
  833. };
  834. static struct major_alloc_priv dma_priv = {
  835. /* List type set to DMA */
  836. LIST_TYPE_DMA,
  837. /* initial threshold to list APIs which allocates dma >= 50 times */
  838. 50
  839. };
  840. static struct major_alloc_priv nbuf_priv = {
  841. /* List type set to NBUF */
  842. LIST_TYPE_NBUF,
  843. /* initial threshold to list APIs which allocates nbuf >= 50 times */
  844. 50
  845. };
  846. static QDF_STATUS qdf_mem_debug_debugfs_init(void)
  847. {
  848. if (is_initial_mem_debug_disabled)
  849. return QDF_STATUS_SUCCESS;
  850. if (!qdf_mem_debugfs_root)
  851. return QDF_STATUS_E_FAILURE;
  852. debugfs_create_file("list",
  853. S_IRUSR,
  854. qdf_mem_debugfs_root,
  855. NULL,
  856. &fops_qdf_mem_debugfs);
  857. debugfs_create_file("major_mem_allocs",
  858. 0600,
  859. qdf_mem_debugfs_root,
  860. &mem_priv,
  861. &fops_qdf_major_allocs);
  862. debugfs_create_file("major_dma_allocs",
  863. 0600,
  864. qdf_mem_debugfs_root,
  865. &dma_priv,
  866. &fops_qdf_major_allocs);
  867. debugfs_create_file("major_nbuf_allocs",
  868. 0600,
  869. qdf_mem_debugfs_root,
  870. &nbuf_priv,
  871. &fops_qdf_nbuf_major_allocs);
  872. return QDF_STATUS_SUCCESS;
  873. }
  874. static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
  875. {
  876. return QDF_STATUS_SUCCESS;
  877. }
  878. #else /* MEMORY_DEBUG */
  879. static QDF_STATUS qdf_mem_debug_debugfs_init(void)
  880. {
  881. return QDF_STATUS_E_NOSUPPORT;
  882. }
  883. static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
  884. {
  885. return QDF_STATUS_E_NOSUPPORT;
  886. }
  887. #endif /* MEMORY_DEBUG */
  888. static void qdf_mem_debugfs_exit(void)
  889. {
  890. debugfs_remove_recursive(qdf_mem_debugfs_root);
  891. qdf_mem_debugfs_root = NULL;
  892. }
  893. static QDF_STATUS qdf_mem_debugfs_init(void)
  894. {
  895. struct dentry *qdf_debugfs_root = qdf_debugfs_get_root();
  896. if (!qdf_debugfs_root)
  897. return QDF_STATUS_E_FAILURE;
  898. qdf_mem_debugfs_root = debugfs_create_dir("mem", qdf_debugfs_root);
  899. if (!qdf_mem_debugfs_root)
  900. return QDF_STATUS_E_FAILURE;
  901. debugfs_create_atomic_t("kmalloc",
  902. S_IRUSR,
  903. qdf_mem_debugfs_root,
  904. &qdf_mem_stat.kmalloc);
  905. debugfs_create_atomic_t("dma",
  906. S_IRUSR,
  907. qdf_mem_debugfs_root,
  908. &qdf_mem_stat.dma);
  909. debugfs_create_atomic_t("skb",
  910. S_IRUSR,
  911. qdf_mem_debugfs_root,
  912. &qdf_mem_stat.skb);
  913. return QDF_STATUS_SUCCESS;
  914. }
  915. #else /* WLAN_DEBUGFS */
  916. static QDF_STATUS qdf_mem_debugfs_init(void)
  917. {
  918. return QDF_STATUS_E_NOSUPPORT;
  919. }
  920. static void qdf_mem_debugfs_exit(void) {}
  921. static QDF_STATUS qdf_mem_debug_debugfs_init(void)
  922. {
  923. return QDF_STATUS_E_NOSUPPORT;
  924. }
  925. static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
  926. {
  927. return QDF_STATUS_E_NOSUPPORT;
  928. }
  929. #endif /* WLAN_DEBUGFS */
  930. void qdf_mem_kmalloc_inc(qdf_size_t size)
  931. {
  932. qdf_atomic_add(size, &qdf_mem_stat.kmalloc);
  933. }
  934. static void qdf_mem_dma_inc(qdf_size_t size)
  935. {
  936. qdf_atomic_add(size, &qdf_mem_stat.dma);
  937. }
  938. #ifdef CONFIG_WLAN_SYSFS_MEM_STATS
  939. void qdf_mem_skb_inc(qdf_size_t size)
  940. {
  941. qdf_atomic_add(size, &qdf_mem_stat.skb);
  942. }
  943. void qdf_mem_skb_dec(qdf_size_t size)
  944. {
  945. qdf_atomic_sub(size, &qdf_mem_stat.skb);
  946. }
  947. void qdf_mem_skb_total_inc(qdf_size_t size)
  948. {
  949. int32_t skb_mem_max = 0;
  950. qdf_atomic_add(size, &qdf_mem_stat.skb_total);
  951. skb_mem_max = qdf_atomic_read(&qdf_mem_stat.skb_total);
  952. if (qdf_mem_stat.skb_mem_max < skb_mem_max)
  953. qdf_mem_stat.skb_mem_max = skb_mem_max;
  954. }
  955. void qdf_mem_skb_total_dec(qdf_size_t size)
  956. {
  957. qdf_atomic_sub(size, &qdf_mem_stat.skb_total);
  958. }
  959. void qdf_mem_dp_tx_skb_inc(qdf_size_t size)
  960. {
  961. int32_t curr_dp_tx_skb_mem_max = 0;
  962. qdf_atomic_add(size, &qdf_mem_stat.dp_tx_skb);
  963. curr_dp_tx_skb_mem_max = qdf_atomic_read(&qdf_mem_stat.dp_tx_skb);
  964. if (qdf_mem_stat.dp_tx_skb_mem_max < curr_dp_tx_skb_mem_max)
  965. qdf_mem_stat.dp_tx_skb_mem_max = curr_dp_tx_skb_mem_max;
  966. }
  967. void qdf_mem_dp_tx_skb_dec(qdf_size_t size)
  968. {
  969. qdf_atomic_sub(size, &qdf_mem_stat.dp_tx_skb);
  970. }
  971. void qdf_mem_dp_rx_skb_inc(qdf_size_t size)
  972. {
  973. int32_t curr_dp_rx_skb_mem_max = 0;
  974. qdf_atomic_add(size, &qdf_mem_stat.dp_rx_skb);
  975. curr_dp_rx_skb_mem_max = qdf_atomic_read(&qdf_mem_stat.dp_rx_skb);
  976. if (qdf_mem_stat.dp_rx_skb_mem_max < curr_dp_rx_skb_mem_max)
  977. qdf_mem_stat.dp_rx_skb_mem_max = curr_dp_rx_skb_mem_max;
  978. }
  979. void qdf_mem_dp_rx_skb_dec(qdf_size_t size)
  980. {
  981. qdf_atomic_sub(size, &qdf_mem_stat.dp_rx_skb);
  982. }
  983. void qdf_mem_dp_tx_skb_cnt_inc(void)
  984. {
  985. int32_t curr_dp_tx_skb_count_max = 0;
  986. qdf_atomic_add(1, &qdf_mem_stat.dp_tx_skb_count);
  987. curr_dp_tx_skb_count_max =
  988. qdf_atomic_read(&qdf_mem_stat.dp_tx_skb_count);
  989. if (qdf_mem_stat.dp_tx_skb_count_max < curr_dp_tx_skb_count_max)
  990. qdf_mem_stat.dp_tx_skb_count_max = curr_dp_tx_skb_count_max;
  991. }
  992. void qdf_mem_dp_tx_skb_cnt_dec(void)
  993. {
  994. qdf_atomic_sub(1, &qdf_mem_stat.dp_tx_skb_count);
  995. }
  996. void qdf_mem_dp_rx_skb_cnt_inc(void)
  997. {
  998. int32_t curr_dp_rx_skb_count_max = 0;
  999. qdf_atomic_add(1, &qdf_mem_stat.dp_rx_skb_count);
  1000. curr_dp_rx_skb_count_max =
  1001. qdf_atomic_read(&qdf_mem_stat.dp_rx_skb_count);
  1002. if (qdf_mem_stat.dp_rx_skb_count_max < curr_dp_rx_skb_count_max)
  1003. qdf_mem_stat.dp_rx_skb_count_max = curr_dp_rx_skb_count_max;
  1004. }
  1005. void qdf_mem_dp_rx_skb_cnt_dec(void)
  1006. {
  1007. qdf_atomic_sub(1, &qdf_mem_stat.dp_rx_skb_count);
  1008. }
  1009. #endif
  1010. void qdf_mem_kmalloc_dec(qdf_size_t size)
  1011. {
  1012. qdf_atomic_sub(size, &qdf_mem_stat.kmalloc);
  1013. }
  1014. static inline void qdf_mem_dma_dec(qdf_size_t size)
  1015. {
  1016. qdf_atomic_sub(size, &qdf_mem_stat.dma);
  1017. }
  1018. /**
  1019. * __qdf_mempool_init() - Create and initialize memory pool
  1020. *
  1021. * @osdev: platform device object
  1022. * @pool_addr: address of the pool created
  1023. * @elem_cnt: no. of elements in pool
  1024. * @elem_size: size of each pool element in bytes
  1025. * @flags: flags
  1026. *
  1027. * return: Handle to memory pool or NULL if allocation failed
  1028. */
  1029. int __qdf_mempool_init(qdf_device_t osdev, __qdf_mempool_t *pool_addr,
  1030. int elem_cnt, size_t elem_size, u_int32_t flags)
  1031. {
  1032. __qdf_mempool_ctxt_t *new_pool = NULL;
  1033. u_int32_t align = L1_CACHE_BYTES;
  1034. unsigned long aligned_pool_mem;
  1035. int pool_id;
  1036. int i;
  1037. if (prealloc_disabled) {
  1038. /* TBD: We can maintain a list of pools in qdf_device_t
  1039. * to help debugging
  1040. * when pre-allocation is not enabled
  1041. */
  1042. new_pool = (__qdf_mempool_ctxt_t *)
  1043. kmalloc(sizeof(__qdf_mempool_ctxt_t), GFP_KERNEL);
  1044. if (!new_pool)
  1045. return QDF_STATUS_E_NOMEM;
  1046. memset(new_pool, 0, sizeof(*new_pool));
  1047. /* TBD: define flags for zeroing buffers etc */
  1048. new_pool->flags = flags;
  1049. new_pool->elem_size = elem_size;
  1050. new_pool->max_elem = elem_cnt;
  1051. *pool_addr = new_pool;
  1052. return 0;
  1053. }
  1054. for (pool_id = 0; pool_id < MAX_MEM_POOLS; pool_id++) {
  1055. if (!osdev->mem_pool[pool_id])
  1056. break;
  1057. }
  1058. if (pool_id == MAX_MEM_POOLS)
  1059. return -ENOMEM;
  1060. new_pool = osdev->mem_pool[pool_id] = (__qdf_mempool_ctxt_t *)
  1061. kmalloc(sizeof(__qdf_mempool_ctxt_t), GFP_KERNEL);
  1062. if (!new_pool)
  1063. return -ENOMEM;
  1064. memset(new_pool, 0, sizeof(*new_pool));
  1065. /* TBD: define flags for zeroing buffers etc */
  1066. new_pool->flags = flags;
  1067. new_pool->pool_id = pool_id;
  1068. /* Round up the element size to cacheline */
  1069. new_pool->elem_size = roundup(elem_size, L1_CACHE_BYTES);
  1070. new_pool->mem_size = elem_cnt * new_pool->elem_size +
  1071. ((align)?(align - 1):0);
  1072. new_pool->pool_mem = kzalloc(new_pool->mem_size, GFP_KERNEL);
  1073. if (!new_pool->pool_mem) {
  1074. /* TBD: Check if we need get_free_pages above */
  1075. kfree(new_pool);
  1076. osdev->mem_pool[pool_id] = NULL;
  1077. return -ENOMEM;
  1078. }
  1079. spin_lock_init(&new_pool->lock);
  1080. /* Initialize free list */
  1081. aligned_pool_mem = (unsigned long)(new_pool->pool_mem) +
  1082. ((align) ? (unsigned long)(new_pool->pool_mem)%align:0);
  1083. STAILQ_INIT(&new_pool->free_list);
  1084. for (i = 0; i < elem_cnt; i++)
  1085. STAILQ_INSERT_TAIL(&(new_pool->free_list),
  1086. (mempool_elem_t *)(aligned_pool_mem +
  1087. (new_pool->elem_size * i)), mempool_entry);
  1088. new_pool->free_cnt = elem_cnt;
  1089. *pool_addr = new_pool;
  1090. return 0;
  1091. }
  1092. qdf_export_symbol(__qdf_mempool_init);
  1093. /**
  1094. * __qdf_mempool_destroy() - Destroy memory pool
  1095. * @osdev: platform device object
  1096. * @Handle: to memory pool
  1097. *
  1098. * Returns: none
  1099. */
  1100. void __qdf_mempool_destroy(qdf_device_t osdev, __qdf_mempool_t pool)
  1101. {
  1102. int pool_id = 0;
  1103. if (!pool)
  1104. return;
  1105. if (prealloc_disabled) {
  1106. kfree(pool);
  1107. return;
  1108. }
  1109. pool_id = pool->pool_id;
  1110. /* TBD: Check if free count matches elem_cnt if debug is enabled */
  1111. kfree(pool->pool_mem);
  1112. kfree(pool);
  1113. osdev->mem_pool[pool_id] = NULL;
  1114. }
  1115. qdf_export_symbol(__qdf_mempool_destroy);
  1116. /**
  1117. * __qdf_mempool_alloc() - Allocate an element memory pool
  1118. *
  1119. * @osdev: platform device object
  1120. * @Handle: to memory pool
  1121. *
  1122. * Return: Pointer to the allocated element or NULL if the pool is empty
  1123. */
  1124. void *__qdf_mempool_alloc(qdf_device_t osdev, __qdf_mempool_t pool)
  1125. {
  1126. void *buf = NULL;
  1127. if (!pool)
  1128. return NULL;
  1129. if (prealloc_disabled)
  1130. return qdf_mem_malloc(pool->elem_size);
  1131. spin_lock_bh(&pool->lock);
  1132. buf = STAILQ_FIRST(&pool->free_list);
  1133. if (buf) {
  1134. STAILQ_REMOVE_HEAD(&pool->free_list, mempool_entry);
  1135. pool->free_cnt--;
  1136. }
  1137. /* TBD: Update free count if debug is enabled */
  1138. spin_unlock_bh(&pool->lock);
  1139. return buf;
  1140. }
  1141. qdf_export_symbol(__qdf_mempool_alloc);
  1142. /**
  1143. * __qdf_mempool_free() - Free a memory pool element
  1144. * @osdev: Platform device object
  1145. * @pool: Handle to memory pool
  1146. * @buf: Element to be freed
  1147. *
  1148. * Returns: none
  1149. */
  1150. void __qdf_mempool_free(qdf_device_t osdev, __qdf_mempool_t pool, void *buf)
  1151. {
  1152. if (!pool)
  1153. return;
  1154. if (prealloc_disabled)
  1155. return qdf_mem_free(buf);
  1156. spin_lock_bh(&pool->lock);
  1157. pool->free_cnt++;
  1158. STAILQ_INSERT_TAIL
  1159. (&pool->free_list, (mempool_elem_t *)buf, mempool_entry);
  1160. spin_unlock_bh(&pool->lock);
  1161. }
  1162. qdf_export_symbol(__qdf_mempool_free);
  1163. #if IS_ENABLED(CONFIG_WCNSS_MEM_PRE_ALLOC)
  1164. static bool qdf_might_be_prealloc(void *ptr)
  1165. {
  1166. if (ksize(ptr) > WCNSS_PRE_ALLOC_GET_THRESHOLD)
  1167. return true;
  1168. else
  1169. return false;
  1170. }
  1171. /**
  1172. * qdf_mem_prealloc_get() - conditionally pre-allocate memory
  1173. * @size: the number of bytes to allocate
  1174. *
  1175. * If size if greater than WCNSS_PRE_ALLOC_GET_THRESHOLD, this function returns
  1176. * a chunk of pre-allocated memory. If size if less than or equal to
  1177. * WCNSS_PRE_ALLOC_GET_THRESHOLD, or an error occurs, NULL is returned instead.
  1178. *
  1179. * Return: NULL on failure, non-NULL on success
  1180. */
  1181. static void *qdf_mem_prealloc_get(size_t size)
  1182. {
  1183. void *ptr;
  1184. if (size <= WCNSS_PRE_ALLOC_GET_THRESHOLD)
  1185. return NULL;
  1186. ptr = wcnss_prealloc_get(size);
  1187. if (!ptr)
  1188. return NULL;
  1189. memset(ptr, 0, size);
  1190. return ptr;
  1191. }
  1192. static inline bool qdf_mem_prealloc_put(void *ptr)
  1193. {
  1194. return wcnss_prealloc_put(ptr);
  1195. }
  1196. #else
  1197. static bool qdf_might_be_prealloc(void *ptr)
  1198. {
  1199. return false;
  1200. }
  1201. static inline void *qdf_mem_prealloc_get(size_t size)
  1202. {
  1203. return NULL;
  1204. }
  1205. static inline bool qdf_mem_prealloc_put(void *ptr)
  1206. {
  1207. return false;
  1208. }
  1209. #endif /* CONFIG_WCNSS_MEM_PRE_ALLOC */
  1210. /* External Function implementation */
  1211. #ifdef MEMORY_DEBUG
  1212. /**
  1213. * qdf_mem_debug_config_get() - Get the user configuration of mem_debug_disabled
  1214. *
  1215. * Return: value of mem_debug_disabled qdf module argument
  1216. */
  1217. #ifdef DISABLE_MEM_DBG_LOAD_CONFIG
  1218. bool qdf_mem_debug_config_get(void)
  1219. {
  1220. /* Return false if DISABLE_LOAD_MEM_DBG_CONFIG flag is enabled */
  1221. return false;
  1222. }
  1223. #else
  1224. bool qdf_mem_debug_config_get(void)
  1225. {
  1226. return mem_debug_disabled;
  1227. }
  1228. #endif /* DISABLE_MEM_DBG_LOAD_CONFIG */
  1229. /**
  1230. * qdf_mem_debug_disabled_set() - Set mem_debug_disabled
  1231. * @str_value: value of the module param
  1232. *
  1233. * This function will se qdf module param mem_debug_disabled
  1234. *
  1235. * Return: QDF_STATUS_SUCCESS on Success
  1236. */
  1237. #ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI
  1238. QDF_STATUS qdf_mem_debug_disabled_config_set(const char *str_value)
  1239. {
  1240. QDF_STATUS status;
  1241. status = qdf_bool_parse(str_value, &mem_debug_disabled);
  1242. return status;
  1243. }
  1244. #endif
  1245. /**
  1246. * qdf_mem_debug_init() - initialize qdf memory debug functionality
  1247. *
  1248. * Return: none
  1249. */
  1250. static void qdf_mem_debug_init(void)
  1251. {
  1252. int i;
  1253. is_initial_mem_debug_disabled = qdf_mem_debug_config_get();
  1254. if (is_initial_mem_debug_disabled)
  1255. return;
  1256. /* Initalizing the list with maximum size of 60000 */
  1257. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1258. qdf_list_create(&qdf_mem_domains[i], 60000);
  1259. qdf_spinlock_create(&qdf_mem_list_lock);
  1260. /* dma */
  1261. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1262. qdf_list_create(&qdf_mem_dma_domains[i], 0);
  1263. qdf_spinlock_create(&qdf_mem_dma_list_lock);
  1264. }
  1265. static uint32_t
  1266. qdf_mem_domain_check_for_leaks(enum qdf_debug_domain domain,
  1267. qdf_list_t *mem_list)
  1268. {
  1269. if (is_initial_mem_debug_disabled)
  1270. return 0;
  1271. if (qdf_list_empty(mem_list))
  1272. return 0;
  1273. qdf_err("Memory leaks detected in %s domain!",
  1274. qdf_debug_domain_name(domain));
  1275. qdf_mem_domain_print(mem_list,
  1276. qdf_err_printer,
  1277. NULL,
  1278. 0,
  1279. qdf_mem_meta_table_print);
  1280. return mem_list->count;
  1281. }
  1282. static void qdf_mem_domain_set_check_for_leaks(qdf_list_t *domains)
  1283. {
  1284. uint32_t leak_count = 0;
  1285. int i;
  1286. if (is_initial_mem_debug_disabled)
  1287. return;
  1288. /* detect and print leaks */
  1289. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1290. leak_count += qdf_mem_domain_check_for_leaks(i, domains + i);
  1291. if (leak_count)
  1292. QDF_MEMDEBUG_PANIC("%u fatal memory leaks detected!",
  1293. leak_count);
  1294. }
  1295. /**
  1296. * qdf_mem_debug_exit() - exit qdf memory debug functionality
  1297. *
  1298. * Return: none
  1299. */
  1300. static void qdf_mem_debug_exit(void)
  1301. {
  1302. int i;
  1303. if (is_initial_mem_debug_disabled)
  1304. return;
  1305. /* mem */
  1306. qdf_mem_domain_set_check_for_leaks(qdf_mem_domains);
  1307. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1308. qdf_list_destroy(qdf_mem_list_get(i));
  1309. qdf_spinlock_destroy(&qdf_mem_list_lock);
  1310. /* dma */
  1311. qdf_mem_domain_set_check_for_leaks(qdf_mem_dma_domains);
  1312. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1313. qdf_list_destroy(&qdf_mem_dma_domains[i]);
  1314. qdf_spinlock_destroy(&qdf_mem_dma_list_lock);
  1315. }
  1316. void *qdf_mem_malloc_debug(size_t size, const char *func, uint32_t line,
  1317. void *caller, uint32_t flag)
  1318. {
  1319. QDF_STATUS status;
  1320. enum qdf_debug_domain current_domain = qdf_debug_domain_get();
  1321. qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
  1322. struct qdf_mem_header *header;
  1323. void *ptr;
  1324. unsigned long start, duration;
  1325. if (is_initial_mem_debug_disabled)
  1326. return __qdf_mem_malloc(size, func, line);
  1327. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1328. qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
  1329. return NULL;
  1330. }
  1331. ptr = qdf_mem_prealloc_get(size);
  1332. if (ptr)
  1333. return ptr;
  1334. if (!flag)
  1335. flag = qdf_mem_malloc_flags();
  1336. start = qdf_mc_timer_get_system_time();
  1337. header = kzalloc(size + QDF_MEM_DEBUG_SIZE, flag);
  1338. duration = qdf_mc_timer_get_system_time() - start;
  1339. if (duration > QDF_MEM_WARN_THRESHOLD)
  1340. qdf_warn("Malloc slept; %lums, %zuB @ %s:%d",
  1341. duration, size, func, line);
  1342. if (!header) {
  1343. qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
  1344. return NULL;
  1345. }
  1346. qdf_mem_header_init(header, size, func, line, caller);
  1347. qdf_mem_trailer_init(header);
  1348. ptr = qdf_mem_get_ptr(header);
  1349. qdf_spin_lock_irqsave(&qdf_mem_list_lock);
  1350. status = qdf_list_insert_front(mem_list, &header->node);
  1351. qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
  1352. if (QDF_IS_STATUS_ERROR(status))
  1353. qdf_err("Failed to insert memory header; status %d", status);
  1354. qdf_mem_kmalloc_inc(ksize(header));
  1355. return ptr;
  1356. }
  1357. qdf_export_symbol(qdf_mem_malloc_debug);
  1358. void qdf_mem_free_debug(void *ptr, const char *func, uint32_t line)
  1359. {
  1360. enum qdf_debug_domain current_domain = qdf_debug_domain_get();
  1361. struct qdf_mem_header *header;
  1362. enum qdf_mem_validation_bitmap error_bitmap;
  1363. if (is_initial_mem_debug_disabled) {
  1364. __qdf_mem_free(ptr);
  1365. return;
  1366. }
  1367. /* freeing a null pointer is valid */
  1368. if (qdf_unlikely(!ptr))
  1369. return;
  1370. if (qdf_mem_prealloc_put(ptr))
  1371. return;
  1372. if (qdf_unlikely((qdf_size_t)ptr <= sizeof(*header)))
  1373. QDF_MEMDEBUG_PANIC("Failed to free invalid memory location %pK",
  1374. ptr);
  1375. qdf_talloc_assert_no_children_fl(ptr, func, line);
  1376. qdf_spin_lock_irqsave(&qdf_mem_list_lock);
  1377. header = qdf_mem_get_header(ptr);
  1378. error_bitmap = qdf_mem_header_validate(header, current_domain);
  1379. error_bitmap |= qdf_mem_trailer_validate(header);
  1380. if (!error_bitmap) {
  1381. header->freed = true;
  1382. qdf_list_remove_node(qdf_mem_list_get(header->domain),
  1383. &header->node);
  1384. }
  1385. qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
  1386. qdf_mem_header_assert_valid(header, current_domain, error_bitmap,
  1387. func, line);
  1388. qdf_mem_kmalloc_dec(ksize(header));
  1389. kfree(header);
  1390. }
  1391. qdf_export_symbol(qdf_mem_free_debug);
  1392. void qdf_mem_check_for_leaks(void)
  1393. {
  1394. enum qdf_debug_domain current_domain = qdf_debug_domain_get();
  1395. qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
  1396. qdf_list_t *dma_list = qdf_mem_dma_list(current_domain);
  1397. uint32_t leaks_count = 0;
  1398. if (is_initial_mem_debug_disabled)
  1399. return;
  1400. leaks_count += qdf_mem_domain_check_for_leaks(current_domain, mem_list);
  1401. leaks_count += qdf_mem_domain_check_for_leaks(current_domain, dma_list);
  1402. if (leaks_count)
  1403. QDF_MEMDEBUG_PANIC("%u fatal memory leaks detected!",
  1404. leaks_count);
  1405. }
  1406. /**
  1407. * qdf_mem_multi_pages_alloc_debug() - Debug version of
  1408. * qdf_mem_multi_pages_alloc
  1409. * @osdev: OS device handle pointer
  1410. * @pages: Multi page information storage
  1411. * @element_size: Each element size
  1412. * @element_num: Total number of elements should be allocated
  1413. * @memctxt: Memory context
  1414. * @cacheable: Coherent memory or cacheable memory
  1415. * @func: Caller of this allocator
  1416. * @line: Line number of the caller
  1417. * @caller: Return address of the caller
  1418. *
  1419. * This function will allocate large size of memory over multiple pages.
  1420. * Large size of contiguous memory allocation will fail frequently, then
  1421. * instead of allocate large memory by one shot, allocate through multiple, non
  1422. * contiguous memory and combine pages when actual usage
  1423. *
  1424. * Return: None
  1425. */
  1426. void qdf_mem_multi_pages_alloc_debug(qdf_device_t osdev,
  1427. struct qdf_mem_multi_page_t *pages,
  1428. size_t element_size, uint16_t element_num,
  1429. qdf_dma_context_t memctxt, bool cacheable,
  1430. const char *func, uint32_t line,
  1431. void *caller)
  1432. {
  1433. uint16_t page_idx;
  1434. struct qdf_mem_dma_page_t *dma_pages;
  1435. void **cacheable_pages = NULL;
  1436. uint16_t i;
  1437. if (!pages->page_size)
  1438. pages->page_size = qdf_page_size;
  1439. pages->num_element_per_page = pages->page_size / element_size;
  1440. if (!pages->num_element_per_page) {
  1441. qdf_print("Invalid page %d or element size %d",
  1442. (int)pages->page_size, (int)element_size);
  1443. goto out_fail;
  1444. }
  1445. pages->num_pages = element_num / pages->num_element_per_page;
  1446. if (element_num % pages->num_element_per_page)
  1447. pages->num_pages++;
  1448. if (cacheable) {
  1449. /* Pages information storage */
  1450. pages->cacheable_pages = qdf_mem_malloc_debug(
  1451. pages->num_pages * sizeof(pages->cacheable_pages),
  1452. func, line, caller, 0);
  1453. if (!pages->cacheable_pages)
  1454. goto out_fail;
  1455. cacheable_pages = pages->cacheable_pages;
  1456. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1457. cacheable_pages[page_idx] = qdf_mem_malloc_debug(
  1458. pages->page_size, func, line, caller, 0);
  1459. if (!cacheable_pages[page_idx])
  1460. goto page_alloc_fail;
  1461. }
  1462. pages->dma_pages = NULL;
  1463. } else {
  1464. pages->dma_pages = qdf_mem_malloc_debug(
  1465. pages->num_pages * sizeof(struct qdf_mem_dma_page_t),
  1466. func, line, caller, 0);
  1467. if (!pages->dma_pages)
  1468. goto out_fail;
  1469. dma_pages = pages->dma_pages;
  1470. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1471. dma_pages->page_v_addr_start =
  1472. qdf_mem_alloc_consistent_debug(
  1473. osdev, osdev->dev, pages->page_size,
  1474. &dma_pages->page_p_addr,
  1475. func, line, caller);
  1476. if (!dma_pages->page_v_addr_start) {
  1477. qdf_print("dmaable page alloc fail pi %d",
  1478. page_idx);
  1479. goto page_alloc_fail;
  1480. }
  1481. dma_pages->page_v_addr_end =
  1482. dma_pages->page_v_addr_start + pages->page_size;
  1483. dma_pages++;
  1484. }
  1485. pages->cacheable_pages = NULL;
  1486. }
  1487. return;
  1488. page_alloc_fail:
  1489. if (cacheable) {
  1490. for (i = 0; i < page_idx; i++)
  1491. qdf_mem_free_debug(pages->cacheable_pages[i],
  1492. func, line);
  1493. qdf_mem_free_debug(pages->cacheable_pages, func, line);
  1494. } else {
  1495. dma_pages = pages->dma_pages;
  1496. for (i = 0; i < page_idx; i++) {
  1497. qdf_mem_free_consistent_debug(
  1498. osdev, osdev->dev,
  1499. pages->page_size, dma_pages->page_v_addr_start,
  1500. dma_pages->page_p_addr, memctxt, func, line);
  1501. dma_pages++;
  1502. }
  1503. qdf_mem_free_debug(pages->dma_pages, func, line);
  1504. }
  1505. out_fail:
  1506. pages->cacheable_pages = NULL;
  1507. pages->dma_pages = NULL;
  1508. pages->num_pages = 0;
  1509. }
  1510. qdf_export_symbol(qdf_mem_multi_pages_alloc_debug);
  1511. /**
  1512. * qdf_mem_multi_pages_free_debug() - Debug version of qdf_mem_multi_pages_free
  1513. * @osdev: OS device handle pointer
  1514. * @pages: Multi page information storage
  1515. * @memctxt: Memory context
  1516. * @cacheable: Coherent memory or cacheable memory
  1517. * @func: Caller of this allocator
  1518. * @line: Line number of the caller
  1519. *
  1520. * This function will free large size of memory over multiple pages.
  1521. *
  1522. * Return: None
  1523. */
  1524. void qdf_mem_multi_pages_free_debug(qdf_device_t osdev,
  1525. struct qdf_mem_multi_page_t *pages,
  1526. qdf_dma_context_t memctxt, bool cacheable,
  1527. const char *func, uint32_t line)
  1528. {
  1529. unsigned int page_idx;
  1530. struct qdf_mem_dma_page_t *dma_pages;
  1531. if (!pages->page_size)
  1532. pages->page_size = qdf_page_size;
  1533. if (cacheable) {
  1534. for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
  1535. qdf_mem_free_debug(pages->cacheable_pages[page_idx],
  1536. func, line);
  1537. qdf_mem_free_debug(pages->cacheable_pages, func, line);
  1538. } else {
  1539. dma_pages = pages->dma_pages;
  1540. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1541. qdf_mem_free_consistent_debug(
  1542. osdev, osdev->dev, pages->page_size,
  1543. dma_pages->page_v_addr_start,
  1544. dma_pages->page_p_addr, memctxt, func, line);
  1545. dma_pages++;
  1546. }
  1547. qdf_mem_free_debug(pages->dma_pages, func, line);
  1548. }
  1549. pages->cacheable_pages = NULL;
  1550. pages->dma_pages = NULL;
  1551. pages->num_pages = 0;
  1552. }
  1553. qdf_export_symbol(qdf_mem_multi_pages_free_debug);
  1554. #else
  1555. static void qdf_mem_debug_init(void) {}
  1556. static void qdf_mem_debug_exit(void) {}
  1557. void *qdf_mem_malloc_atomic_fl(size_t size, const char *func, uint32_t line)
  1558. {
  1559. void *ptr;
  1560. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1561. qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
  1562. line);
  1563. return NULL;
  1564. }
  1565. ptr = qdf_mem_prealloc_get(size);
  1566. if (ptr)
  1567. return ptr;
  1568. ptr = kzalloc(size, GFP_ATOMIC);
  1569. if (!ptr) {
  1570. qdf_nofl_warn("Failed to malloc %zuB @ %s:%d",
  1571. size, func, line);
  1572. return NULL;
  1573. }
  1574. qdf_mem_kmalloc_inc(ksize(ptr));
  1575. return ptr;
  1576. }
  1577. qdf_export_symbol(qdf_mem_malloc_atomic_fl);
  1578. /**
  1579. * qdf_mem_multi_pages_alloc() - allocate large size of kernel memory
  1580. * @osdev: OS device handle pointer
  1581. * @pages: Multi page information storage
  1582. * @element_size: Each element size
  1583. * @element_num: Total number of elements should be allocated
  1584. * @memctxt: Memory context
  1585. * @cacheable: Coherent memory or cacheable memory
  1586. *
  1587. * This function will allocate large size of memory over multiple pages.
  1588. * Large size of contiguous memory allocation will fail frequently, then
  1589. * instead of allocate large memory by one shot, allocate through multiple, non
  1590. * contiguous memory and combine pages when actual usage
  1591. *
  1592. * Return: None
  1593. */
  1594. void qdf_mem_multi_pages_alloc(qdf_device_t osdev,
  1595. struct qdf_mem_multi_page_t *pages,
  1596. size_t element_size, uint16_t element_num,
  1597. qdf_dma_context_t memctxt, bool cacheable)
  1598. {
  1599. uint16_t page_idx;
  1600. struct qdf_mem_dma_page_t *dma_pages;
  1601. void **cacheable_pages = NULL;
  1602. uint16_t i;
  1603. if (!pages->page_size)
  1604. pages->page_size = qdf_page_size;
  1605. pages->num_element_per_page = pages->page_size / element_size;
  1606. if (!pages->num_element_per_page) {
  1607. qdf_print("Invalid page %d or element size %d",
  1608. (int)pages->page_size, (int)element_size);
  1609. goto out_fail;
  1610. }
  1611. pages->num_pages = element_num / pages->num_element_per_page;
  1612. if (element_num % pages->num_element_per_page)
  1613. pages->num_pages++;
  1614. if (cacheable) {
  1615. /* Pages information storage */
  1616. pages->cacheable_pages = qdf_mem_malloc(
  1617. pages->num_pages * sizeof(pages->cacheable_pages));
  1618. if (!pages->cacheable_pages)
  1619. goto out_fail;
  1620. cacheable_pages = pages->cacheable_pages;
  1621. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1622. cacheable_pages[page_idx] =
  1623. qdf_mem_malloc(pages->page_size);
  1624. if (!cacheable_pages[page_idx])
  1625. goto page_alloc_fail;
  1626. }
  1627. pages->dma_pages = NULL;
  1628. } else {
  1629. pages->dma_pages = qdf_mem_malloc(
  1630. pages->num_pages * sizeof(struct qdf_mem_dma_page_t));
  1631. if (!pages->dma_pages)
  1632. goto out_fail;
  1633. dma_pages = pages->dma_pages;
  1634. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1635. dma_pages->page_v_addr_start =
  1636. qdf_mem_alloc_consistent(osdev, osdev->dev,
  1637. pages->page_size,
  1638. &dma_pages->page_p_addr);
  1639. if (!dma_pages->page_v_addr_start) {
  1640. qdf_print("dmaable page alloc fail pi %d",
  1641. page_idx);
  1642. goto page_alloc_fail;
  1643. }
  1644. dma_pages->page_v_addr_end =
  1645. dma_pages->page_v_addr_start + pages->page_size;
  1646. dma_pages++;
  1647. }
  1648. pages->cacheable_pages = NULL;
  1649. }
  1650. return;
  1651. page_alloc_fail:
  1652. if (cacheable) {
  1653. for (i = 0; i < page_idx; i++)
  1654. qdf_mem_free(pages->cacheable_pages[i]);
  1655. qdf_mem_free(pages->cacheable_pages);
  1656. } else {
  1657. dma_pages = pages->dma_pages;
  1658. for (i = 0; i < page_idx; i++) {
  1659. qdf_mem_free_consistent(
  1660. osdev, osdev->dev, pages->page_size,
  1661. dma_pages->page_v_addr_start,
  1662. dma_pages->page_p_addr, memctxt);
  1663. dma_pages++;
  1664. }
  1665. qdf_mem_free(pages->dma_pages);
  1666. }
  1667. out_fail:
  1668. pages->cacheable_pages = NULL;
  1669. pages->dma_pages = NULL;
  1670. pages->num_pages = 0;
  1671. return;
  1672. }
  1673. qdf_export_symbol(qdf_mem_multi_pages_alloc);
  1674. /**
  1675. * qdf_mem_multi_pages_free() - free large size of kernel memory
  1676. * @osdev: OS device handle pointer
  1677. * @pages: Multi page information storage
  1678. * @memctxt: Memory context
  1679. * @cacheable: Coherent memory or cacheable memory
  1680. *
  1681. * This function will free large size of memory over multiple pages.
  1682. *
  1683. * Return: None
  1684. */
  1685. void qdf_mem_multi_pages_free(qdf_device_t osdev,
  1686. struct qdf_mem_multi_page_t *pages,
  1687. qdf_dma_context_t memctxt, bool cacheable)
  1688. {
  1689. unsigned int page_idx;
  1690. struct qdf_mem_dma_page_t *dma_pages;
  1691. if (!pages->page_size)
  1692. pages->page_size = qdf_page_size;
  1693. if (cacheable) {
  1694. for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
  1695. qdf_mem_free(pages->cacheable_pages[page_idx]);
  1696. qdf_mem_free(pages->cacheable_pages);
  1697. } else {
  1698. dma_pages = pages->dma_pages;
  1699. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1700. qdf_mem_free_consistent(
  1701. osdev, osdev->dev, pages->page_size,
  1702. dma_pages->page_v_addr_start,
  1703. dma_pages->page_p_addr, memctxt);
  1704. dma_pages++;
  1705. }
  1706. qdf_mem_free(pages->dma_pages);
  1707. }
  1708. pages->cacheable_pages = NULL;
  1709. pages->dma_pages = NULL;
  1710. pages->num_pages = 0;
  1711. return;
  1712. }
  1713. qdf_export_symbol(qdf_mem_multi_pages_free);
  1714. #endif
  1715. void qdf_mem_multi_pages_zero(struct qdf_mem_multi_page_t *pages,
  1716. bool cacheable)
  1717. {
  1718. unsigned int page_idx;
  1719. struct qdf_mem_dma_page_t *dma_pages;
  1720. if (!pages->page_size)
  1721. pages->page_size = qdf_page_size;
  1722. if (cacheable) {
  1723. for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
  1724. qdf_mem_zero(pages->cacheable_pages[page_idx],
  1725. pages->page_size);
  1726. } else {
  1727. dma_pages = pages->dma_pages;
  1728. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1729. qdf_mem_zero(dma_pages->page_v_addr_start,
  1730. pages->page_size);
  1731. dma_pages++;
  1732. }
  1733. }
  1734. }
  1735. qdf_export_symbol(qdf_mem_multi_pages_zero);
  1736. void __qdf_mem_free(void *ptr)
  1737. {
  1738. if (!ptr)
  1739. return;
  1740. if (qdf_might_be_prealloc(ptr)) {
  1741. if (qdf_mem_prealloc_put(ptr))
  1742. return;
  1743. }
  1744. qdf_mem_kmalloc_dec(ksize(ptr));
  1745. kfree(ptr);
  1746. }
  1747. qdf_export_symbol(__qdf_mem_free);
  1748. void *__qdf_mem_malloc(size_t size, const char *func, uint32_t line)
  1749. {
  1750. void *ptr;
  1751. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1752. qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
  1753. line);
  1754. return NULL;
  1755. }
  1756. ptr = qdf_mem_prealloc_get(size);
  1757. if (ptr)
  1758. return ptr;
  1759. ptr = kzalloc(size, qdf_mem_malloc_flags());
  1760. if (!ptr)
  1761. return NULL;
  1762. qdf_mem_kmalloc_inc(ksize(ptr));
  1763. return ptr;
  1764. }
  1765. qdf_export_symbol(__qdf_mem_malloc);
  1766. #ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI
  1767. void __qdf_untracked_mem_free(void *ptr)
  1768. {
  1769. if (!ptr)
  1770. return;
  1771. kfree(ptr);
  1772. }
  1773. void *__qdf_untracked_mem_malloc(size_t size, const char *func, uint32_t line)
  1774. {
  1775. void *ptr;
  1776. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1777. qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
  1778. line);
  1779. return NULL;
  1780. }
  1781. ptr = kzalloc(size, qdf_mem_malloc_flags());
  1782. if (!ptr)
  1783. return NULL;
  1784. return ptr;
  1785. }
  1786. #endif
  1787. void *qdf_aligned_malloc_fl(uint32_t *size,
  1788. void **vaddr_unaligned,
  1789. qdf_dma_addr_t *paddr_unaligned,
  1790. qdf_dma_addr_t *paddr_aligned,
  1791. uint32_t align,
  1792. const char *func, uint32_t line)
  1793. {
  1794. void *vaddr_aligned;
  1795. uint32_t align_alloc_size;
  1796. *vaddr_unaligned = qdf_mem_malloc_fl((qdf_size_t)*size, func,
  1797. line);
  1798. if (!*vaddr_unaligned) {
  1799. qdf_warn("Failed to alloc %uB @ %s:%d", *size, func, line);
  1800. return NULL;
  1801. }
  1802. *paddr_unaligned = qdf_mem_virt_to_phys(*vaddr_unaligned);
  1803. /* Re-allocate additional bytes to align base address only if
  1804. * above allocation returns unaligned address. Reason for
  1805. * trying exact size allocation above is, OS tries to allocate
  1806. * blocks of size power-of-2 pages and then free extra pages.
  1807. * e.g., of a ring size of 1MB, the allocation below will
  1808. * request 1MB plus 7 bytes for alignment, which will cause a
  1809. * 2MB block allocation,and that is failing sometimes due to
  1810. * memory fragmentation.
  1811. */
  1812. if ((unsigned long)(*paddr_unaligned) & (align - 1)) {
  1813. align_alloc_size = *size + align - 1;
  1814. qdf_mem_free(*vaddr_unaligned);
  1815. *vaddr_unaligned = qdf_mem_malloc_fl(
  1816. (qdf_size_t)align_alloc_size, func, line);
  1817. if (!*vaddr_unaligned) {
  1818. qdf_warn("Failed to alloc %uB @ %s:%d",
  1819. align_alloc_size, func, line);
  1820. return NULL;
  1821. }
  1822. *paddr_unaligned = qdf_mem_virt_to_phys(
  1823. *vaddr_unaligned);
  1824. *size = align_alloc_size;
  1825. }
  1826. *paddr_aligned = (qdf_dma_addr_t)qdf_align
  1827. ((unsigned long)(*paddr_unaligned), align);
  1828. vaddr_aligned = (void *)((unsigned long)(*vaddr_unaligned) +
  1829. ((unsigned long)(*paddr_aligned) -
  1830. (unsigned long)(*paddr_unaligned)));
  1831. return vaddr_aligned;
  1832. }
  1833. qdf_export_symbol(qdf_aligned_malloc_fl);
  1834. /**
  1835. * qdf_mem_multi_page_link() - Make links for multi page elements
  1836. * @osdev: OS device handle pointer
  1837. * @pages: Multi page information storage
  1838. * @elem_size: Single element size
  1839. * @elem_count: elements count should be linked
  1840. * @cacheable: Coherent memory or cacheable memory
  1841. *
  1842. * This function will make links for multi page allocated structure
  1843. *
  1844. * Return: 0 success
  1845. */
  1846. int qdf_mem_multi_page_link(qdf_device_t osdev,
  1847. struct qdf_mem_multi_page_t *pages,
  1848. uint32_t elem_size, uint32_t elem_count, uint8_t cacheable)
  1849. {
  1850. uint16_t i, i_int;
  1851. void *page_info;
  1852. void **c_elem = NULL;
  1853. uint32_t num_link = 0;
  1854. for (i = 0; i < pages->num_pages; i++) {
  1855. if (cacheable)
  1856. page_info = pages->cacheable_pages[i];
  1857. else
  1858. page_info = pages->dma_pages[i].page_v_addr_start;
  1859. if (!page_info)
  1860. return -ENOMEM;
  1861. c_elem = (void **)page_info;
  1862. for (i_int = 0; i_int < pages->num_element_per_page; i_int++) {
  1863. if (i_int == (pages->num_element_per_page - 1)) {
  1864. if ((i + 1) == pages->num_pages)
  1865. break;
  1866. if (cacheable)
  1867. *c_elem = pages->
  1868. cacheable_pages[i + 1];
  1869. else
  1870. *c_elem = pages->
  1871. dma_pages[i + 1].
  1872. page_v_addr_start;
  1873. num_link++;
  1874. break;
  1875. } else {
  1876. *c_elem =
  1877. (void *)(((char *)c_elem) + elem_size);
  1878. }
  1879. num_link++;
  1880. c_elem = (void **)*c_elem;
  1881. /* Last link established exit */
  1882. if (num_link == (elem_count - 1))
  1883. break;
  1884. }
  1885. }
  1886. if (c_elem)
  1887. *c_elem = NULL;
  1888. return 0;
  1889. }
  1890. qdf_export_symbol(qdf_mem_multi_page_link);
  1891. void qdf_mem_copy(void *dst_addr, const void *src_addr, uint32_t num_bytes)
  1892. {
  1893. /* special case where dst_addr or src_addr can be NULL */
  1894. if (!num_bytes)
  1895. return;
  1896. QDF_BUG(dst_addr);
  1897. QDF_BUG(src_addr);
  1898. if (!dst_addr || !src_addr)
  1899. return;
  1900. memcpy(dst_addr, src_addr, num_bytes);
  1901. }
  1902. qdf_export_symbol(qdf_mem_copy);
  1903. qdf_shared_mem_t *qdf_mem_shared_mem_alloc(qdf_device_t osdev, uint32_t size)
  1904. {
  1905. qdf_shared_mem_t *shared_mem;
  1906. qdf_dma_addr_t dma_addr, paddr;
  1907. int ret;
  1908. shared_mem = qdf_mem_malloc(sizeof(*shared_mem));
  1909. if (!shared_mem)
  1910. return NULL;
  1911. shared_mem->vaddr = qdf_mem_alloc_consistent(osdev, osdev->dev,
  1912. size, qdf_mem_get_dma_addr_ptr(osdev,
  1913. &shared_mem->mem_info));
  1914. if (!shared_mem->vaddr) {
  1915. qdf_err("Unable to allocate DMA memory for shared resource");
  1916. qdf_mem_free(shared_mem);
  1917. return NULL;
  1918. }
  1919. qdf_mem_set_dma_size(osdev, &shared_mem->mem_info, size);
  1920. size = qdf_mem_get_dma_size(osdev, &shared_mem->mem_info);
  1921. qdf_mem_zero(shared_mem->vaddr, size);
  1922. dma_addr = qdf_mem_get_dma_addr(osdev, &shared_mem->mem_info);
  1923. paddr = qdf_mem_paddr_from_dmaaddr(osdev, dma_addr);
  1924. qdf_mem_set_dma_pa(osdev, &shared_mem->mem_info, paddr);
  1925. ret = qdf_mem_dma_get_sgtable(osdev->dev, &shared_mem->sgtable,
  1926. shared_mem->vaddr, dma_addr, size);
  1927. if (ret) {
  1928. qdf_err("Unable to get DMA sgtable");
  1929. qdf_mem_free_consistent(osdev, osdev->dev,
  1930. shared_mem->mem_info.size,
  1931. shared_mem->vaddr,
  1932. dma_addr,
  1933. qdf_get_dma_mem_context(shared_mem,
  1934. memctx));
  1935. qdf_mem_free(shared_mem);
  1936. return NULL;
  1937. }
  1938. qdf_dma_get_sgtable_dma_addr(&shared_mem->sgtable);
  1939. return shared_mem;
  1940. }
  1941. qdf_export_symbol(qdf_mem_shared_mem_alloc);
  1942. /**
  1943. * qdf_mem_copy_toio() - copy memory
  1944. * @dst_addr: Pointer to destination memory location (to copy to)
  1945. * @src_addr: Pointer to source memory location (to copy from)
  1946. * @num_bytes: Number of bytes to copy.
  1947. *
  1948. * Return: none
  1949. */
  1950. void qdf_mem_copy_toio(void *dst_addr, const void *src_addr, uint32_t num_bytes)
  1951. {
  1952. if (0 == num_bytes) {
  1953. /* special case where dst_addr or src_addr can be NULL */
  1954. return;
  1955. }
  1956. if ((!dst_addr) || (!src_addr)) {
  1957. QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
  1958. "%s called with NULL parameter, source:%pK destination:%pK",
  1959. __func__, src_addr, dst_addr);
  1960. QDF_ASSERT(0);
  1961. return;
  1962. }
  1963. memcpy_toio(dst_addr, src_addr, num_bytes);
  1964. }
  1965. qdf_export_symbol(qdf_mem_copy_toio);
  1966. /**
  1967. * qdf_mem_set_io() - set (fill) memory with a specified byte value.
  1968. * @ptr: Pointer to memory that will be set
  1969. * @value: Byte set in memory
  1970. * @num_bytes: Number of bytes to be set
  1971. *
  1972. * Return: None
  1973. */
  1974. void qdf_mem_set_io(void *ptr, uint32_t num_bytes, uint32_t value)
  1975. {
  1976. if (!ptr) {
  1977. qdf_print("%s called with NULL parameter ptr", __func__);
  1978. return;
  1979. }
  1980. memset_io(ptr, value, num_bytes);
  1981. }
  1982. qdf_export_symbol(qdf_mem_set_io);
  1983. void qdf_mem_set(void *ptr, uint32_t num_bytes, uint32_t value)
  1984. {
  1985. QDF_BUG(ptr);
  1986. if (!ptr)
  1987. return;
  1988. memset(ptr, value, num_bytes);
  1989. }
  1990. qdf_export_symbol(qdf_mem_set);
  1991. void qdf_mem_move(void *dst_addr, const void *src_addr, uint32_t num_bytes)
  1992. {
  1993. /* special case where dst_addr or src_addr can be NULL */
  1994. if (!num_bytes)
  1995. return;
  1996. QDF_BUG(dst_addr);
  1997. QDF_BUG(src_addr);
  1998. if (!dst_addr || !src_addr)
  1999. return;
  2000. memmove(dst_addr, src_addr, num_bytes);
  2001. }
  2002. qdf_export_symbol(qdf_mem_move);
  2003. int qdf_mem_cmp(const void *left, const void *right, size_t size)
  2004. {
  2005. QDF_BUG(left);
  2006. QDF_BUG(right);
  2007. return memcmp(left, right, size);
  2008. }
  2009. qdf_export_symbol(qdf_mem_cmp);
  2010. #if defined(A_SIMOS_DEVHOST) || defined(HIF_SDIO) || defined(HIF_USB)
  2011. /**
  2012. * qdf_mem_dma_alloc() - allocates memory for dma
  2013. * @osdev: OS device handle
  2014. * @dev: Pointer to device handle
  2015. * @size: Size to be allocated
  2016. * @phy_addr: Physical address
  2017. *
  2018. * Return: pointer of allocated memory or null if memory alloc fails
  2019. */
  2020. static inline void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev,
  2021. qdf_size_t size,
  2022. qdf_dma_addr_t *phy_addr)
  2023. {
  2024. void *vaddr;
  2025. vaddr = qdf_mem_malloc(size);
  2026. *phy_addr = ((uintptr_t) vaddr);
  2027. /* using this type conversion to suppress "cast from pointer to integer
  2028. * of different size" warning on some platforms
  2029. */
  2030. BUILD_BUG_ON(sizeof(*phy_addr) < sizeof(vaddr));
  2031. return vaddr;
  2032. }
  2033. #elif defined(CONFIG_WIFI_EMULATION_WIFI_3_0) && defined(BUILD_X86) && \
  2034. !defined(QCA_WIFI_QCN9000)
  2035. #define QCA8074_RAM_BASE 0x50000000
  2036. #define QDF_MEM_ALLOC_X86_MAX_RETRIES 10
  2037. void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev, qdf_size_t size,
  2038. qdf_dma_addr_t *phy_addr)
  2039. {
  2040. void *vaddr = NULL;
  2041. int i;
  2042. *phy_addr = 0;
  2043. for (i = 0; i < QDF_MEM_ALLOC_X86_MAX_RETRIES; i++) {
  2044. vaddr = dma_alloc_coherent(dev, size, phy_addr,
  2045. qdf_mem_malloc_flags());
  2046. if (!vaddr) {
  2047. qdf_err("%s failed , size: %zu!", __func__, size);
  2048. return NULL;
  2049. }
  2050. if (*phy_addr >= QCA8074_RAM_BASE)
  2051. return vaddr;
  2052. dma_free_coherent(dev, size, vaddr, *phy_addr);
  2053. }
  2054. return NULL;
  2055. }
  2056. #else
  2057. static inline void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev,
  2058. qdf_size_t size, qdf_dma_addr_t *paddr)
  2059. {
  2060. return dma_alloc_coherent(dev, size, paddr, qdf_mem_malloc_flags());
  2061. }
  2062. #endif
  2063. #if defined(A_SIMOS_DEVHOST) || defined(HIF_SDIO) || defined(HIF_USB)
  2064. static inline void
  2065. qdf_mem_dma_free(void *dev, qdf_size_t size, void *vaddr, qdf_dma_addr_t paddr)
  2066. {
  2067. qdf_mem_free(vaddr);
  2068. }
  2069. #else
  2070. static inline void
  2071. qdf_mem_dma_free(void *dev, qdf_size_t size, void *vaddr, qdf_dma_addr_t paddr)
  2072. {
  2073. dma_free_coherent(dev, size, vaddr, paddr);
  2074. }
  2075. #endif
  2076. #ifdef MEMORY_DEBUG
  2077. void *qdf_mem_alloc_consistent_debug(qdf_device_t osdev, void *dev,
  2078. qdf_size_t size, qdf_dma_addr_t *paddr,
  2079. const char *func, uint32_t line,
  2080. void *caller)
  2081. {
  2082. QDF_STATUS status;
  2083. enum qdf_debug_domain current_domain = qdf_debug_domain_get();
  2084. qdf_list_t *mem_list = qdf_mem_dma_list(current_domain);
  2085. struct qdf_mem_header *header;
  2086. void *vaddr;
  2087. if (is_initial_mem_debug_disabled)
  2088. return __qdf_mem_alloc_consistent(osdev, dev,
  2089. size, paddr,
  2090. func, line);
  2091. if (!size || size > QDF_MEM_MAX_MALLOC) {
  2092. qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
  2093. return NULL;
  2094. }
  2095. vaddr = qdf_mem_dma_alloc(osdev, dev, size + QDF_DMA_MEM_DEBUG_SIZE,
  2096. paddr);
  2097. if (!vaddr) {
  2098. qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
  2099. return NULL;
  2100. }
  2101. header = qdf_mem_dma_get_header(vaddr, size);
  2102. /* For DMA buffers we only add trailers, this function will init
  2103. * the header structure at the tail
  2104. * Prefix the header into DMA buffer causes SMMU faults, so
  2105. * do not prefix header into the DMA buffers
  2106. */
  2107. qdf_mem_header_init(header, size, func, line, caller);
  2108. qdf_spin_lock_irqsave(&qdf_mem_dma_list_lock);
  2109. status = qdf_list_insert_front(mem_list, &header->node);
  2110. qdf_spin_unlock_irqrestore(&qdf_mem_dma_list_lock);
  2111. if (QDF_IS_STATUS_ERROR(status))
  2112. qdf_err("Failed to insert memory header; status %d", status);
  2113. qdf_mem_dma_inc(size);
  2114. return vaddr;
  2115. }
  2116. qdf_export_symbol(qdf_mem_alloc_consistent_debug);
  2117. void qdf_mem_free_consistent_debug(qdf_device_t osdev, void *dev,
  2118. qdf_size_t size, void *vaddr,
  2119. qdf_dma_addr_t paddr,
  2120. qdf_dma_context_t memctx,
  2121. const char *func, uint32_t line)
  2122. {
  2123. enum qdf_debug_domain domain = qdf_debug_domain_get();
  2124. struct qdf_mem_header *header;
  2125. enum qdf_mem_validation_bitmap error_bitmap;
  2126. if (is_initial_mem_debug_disabled) {
  2127. __qdf_mem_free_consistent(
  2128. osdev, dev,
  2129. size, vaddr,
  2130. paddr, memctx);
  2131. return;
  2132. }
  2133. /* freeing a null pointer is valid */
  2134. if (qdf_unlikely(!vaddr))
  2135. return;
  2136. qdf_talloc_assert_no_children_fl(vaddr, func, line);
  2137. qdf_spin_lock_irqsave(&qdf_mem_dma_list_lock);
  2138. /* For DMA buffers we only add trailers, this function will retrieve
  2139. * the header structure at the tail
  2140. * Prefix the header into DMA buffer causes SMMU faults, so
  2141. * do not prefix header into the DMA buffers
  2142. */
  2143. header = qdf_mem_dma_get_header(vaddr, size);
  2144. error_bitmap = qdf_mem_header_validate(header, domain);
  2145. if (!error_bitmap) {
  2146. header->freed = true;
  2147. qdf_list_remove_node(qdf_mem_dma_list(header->domain),
  2148. &header->node);
  2149. }
  2150. qdf_spin_unlock_irqrestore(&qdf_mem_dma_list_lock);
  2151. qdf_mem_header_assert_valid(header, domain, error_bitmap, func, line);
  2152. qdf_mem_dma_dec(header->size);
  2153. qdf_mem_dma_free(dev, size + QDF_DMA_MEM_DEBUG_SIZE, vaddr, paddr);
  2154. }
  2155. qdf_export_symbol(qdf_mem_free_consistent_debug);
  2156. #endif /* MEMORY_DEBUG */
  2157. void __qdf_mem_free_consistent(qdf_device_t osdev, void *dev,
  2158. qdf_size_t size, void *vaddr,
  2159. qdf_dma_addr_t paddr, qdf_dma_context_t memctx)
  2160. {
  2161. qdf_mem_dma_dec(size);
  2162. qdf_mem_dma_free(dev, size, vaddr, paddr);
  2163. }
  2164. qdf_export_symbol(__qdf_mem_free_consistent);
  2165. void *__qdf_mem_alloc_consistent(qdf_device_t osdev, void *dev,
  2166. qdf_size_t size, qdf_dma_addr_t *paddr,
  2167. const char *func, uint32_t line)
  2168. {
  2169. void *vaddr;
  2170. if (!size || size > QDF_MEM_MAX_MALLOC) {
  2171. qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d",
  2172. size, func, line);
  2173. return NULL;
  2174. }
  2175. vaddr = qdf_mem_dma_alloc(osdev, dev, size, paddr);
  2176. if (vaddr)
  2177. qdf_mem_dma_inc(size);
  2178. return vaddr;
  2179. }
  2180. qdf_export_symbol(__qdf_mem_alloc_consistent);
  2181. void *qdf_aligned_mem_alloc_consistent_fl(
  2182. qdf_device_t osdev, uint32_t *size,
  2183. void **vaddr_unaligned, qdf_dma_addr_t *paddr_unaligned,
  2184. qdf_dma_addr_t *paddr_aligned, uint32_t align,
  2185. const char *func, uint32_t line)
  2186. {
  2187. void *vaddr_aligned;
  2188. uint32_t align_alloc_size;
  2189. *vaddr_unaligned = qdf_mem_alloc_consistent(
  2190. osdev, osdev->dev, (qdf_size_t)*size, paddr_unaligned);
  2191. if (!*vaddr_unaligned) {
  2192. qdf_warn("Failed to alloc %uB @ %s:%d",
  2193. *size, func, line);
  2194. return NULL;
  2195. }
  2196. /* Re-allocate additional bytes to align base address only if
  2197. * above allocation returns unaligned address. Reason for
  2198. * trying exact size allocation above is, OS tries to allocate
  2199. * blocks of size power-of-2 pages and then free extra pages.
  2200. * e.g., of a ring size of 1MB, the allocation below will
  2201. * request 1MB plus 7 bytes for alignment, which will cause a
  2202. * 2MB block allocation,and that is failing sometimes due to
  2203. * memory fragmentation.
  2204. */
  2205. if ((unsigned long)(*paddr_unaligned) & (align - 1)) {
  2206. align_alloc_size = *size + align - 1;
  2207. qdf_mem_free_consistent(osdev, osdev->dev, *size,
  2208. *vaddr_unaligned,
  2209. *paddr_unaligned, 0);
  2210. *vaddr_unaligned = qdf_mem_alloc_consistent(
  2211. osdev, osdev->dev, align_alloc_size,
  2212. paddr_unaligned);
  2213. if (!*vaddr_unaligned) {
  2214. qdf_warn("Failed to alloc %uB @ %s:%d",
  2215. align_alloc_size, func, line);
  2216. return NULL;
  2217. }
  2218. *size = align_alloc_size;
  2219. }
  2220. *paddr_aligned = (qdf_dma_addr_t)qdf_align(
  2221. (unsigned long)(*paddr_unaligned), align);
  2222. vaddr_aligned = (void *)((unsigned long)(*vaddr_unaligned) +
  2223. ((unsigned long)(*paddr_aligned) -
  2224. (unsigned long)(*paddr_unaligned)));
  2225. return vaddr_aligned;
  2226. }
  2227. qdf_export_symbol(qdf_aligned_mem_alloc_consistent_fl);
  2228. /**
  2229. * qdf_mem_dma_sync_single_for_device() - assign memory to device
  2230. * @osdev: OS device handle
  2231. * @bus_addr: dma address to give to the device
  2232. * @size: Size of the memory block
  2233. * @direction: direction data will be DMAed
  2234. *
  2235. * Assign memory to the remote device.
  2236. * The cache lines are flushed to ram or invalidated as needed.
  2237. *
  2238. * Return: none
  2239. */
  2240. void qdf_mem_dma_sync_single_for_device(qdf_device_t osdev,
  2241. qdf_dma_addr_t bus_addr,
  2242. qdf_size_t size,
  2243. enum dma_data_direction direction)
  2244. {
  2245. dma_sync_single_for_device(osdev->dev, bus_addr, size, direction);
  2246. }
  2247. qdf_export_symbol(qdf_mem_dma_sync_single_for_device);
  2248. /**
  2249. * qdf_mem_dma_sync_single_for_cpu() - assign memory to CPU
  2250. * @osdev: OS device handle
  2251. * @bus_addr: dma address to give to the cpu
  2252. * @size: Size of the memory block
  2253. * @direction: direction data will be DMAed
  2254. *
  2255. * Assign memory to the CPU.
  2256. *
  2257. * Return: none
  2258. */
  2259. void qdf_mem_dma_sync_single_for_cpu(qdf_device_t osdev,
  2260. qdf_dma_addr_t bus_addr,
  2261. qdf_size_t size,
  2262. enum dma_data_direction direction)
  2263. {
  2264. dma_sync_single_for_cpu(osdev->dev, bus_addr, size, direction);
  2265. }
  2266. qdf_export_symbol(qdf_mem_dma_sync_single_for_cpu);
  2267. void qdf_mem_init(void)
  2268. {
  2269. qdf_mem_debug_init();
  2270. qdf_net_buf_debug_init();
  2271. qdf_frag_debug_init();
  2272. qdf_mem_debugfs_init();
  2273. qdf_mem_debug_debugfs_init();
  2274. }
  2275. qdf_export_symbol(qdf_mem_init);
  2276. void qdf_mem_exit(void)
  2277. {
  2278. qdf_mem_debug_debugfs_exit();
  2279. qdf_mem_debugfs_exit();
  2280. qdf_frag_debug_exit();
  2281. qdf_net_buf_debug_exit();
  2282. qdf_mem_debug_exit();
  2283. }
  2284. qdf_export_symbol(qdf_mem_exit);
  2285. /**
  2286. * qdf_ether_addr_copy() - copy an Ethernet address
  2287. *
  2288. * @dst_addr: A six-byte array Ethernet address destination
  2289. * @src_addr: A six-byte array Ethernet address source
  2290. *
  2291. * Please note: dst & src must both be aligned to u16.
  2292. *
  2293. * Return: none
  2294. */
  2295. void qdf_ether_addr_copy(void *dst_addr, const void *src_addr)
  2296. {
  2297. if ((!dst_addr) || (!src_addr)) {
  2298. QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
  2299. "%s called with NULL parameter, source:%pK destination:%pK",
  2300. __func__, src_addr, dst_addr);
  2301. QDF_ASSERT(0);
  2302. return;
  2303. }
  2304. ether_addr_copy(dst_addr, src_addr);
  2305. }
  2306. qdf_export_symbol(qdf_ether_addr_copy);
  2307. int32_t qdf_dma_mem_stats_read(void)
  2308. {
  2309. return qdf_atomic_read(&qdf_mem_stat.dma);
  2310. }
  2311. qdf_export_symbol(qdf_dma_mem_stats_read);
  2312. int32_t qdf_heap_mem_stats_read(void)
  2313. {
  2314. return qdf_atomic_read(&qdf_mem_stat.kmalloc);
  2315. }
  2316. qdf_export_symbol(qdf_heap_mem_stats_read);
  2317. int32_t qdf_skb_mem_stats_read(void)
  2318. {
  2319. return qdf_atomic_read(&qdf_mem_stat.skb);
  2320. }
  2321. qdf_export_symbol(qdf_skb_mem_stats_read);
  2322. int32_t qdf_skb_total_mem_stats_read(void)
  2323. {
  2324. return qdf_atomic_read(&qdf_mem_stat.skb_total);
  2325. }
  2326. qdf_export_symbol(qdf_skb_total_mem_stats_read);
  2327. int32_t qdf_skb_max_mem_stats_read(void)
  2328. {
  2329. return qdf_mem_stat.skb_mem_max;
  2330. }
  2331. qdf_export_symbol(qdf_skb_max_mem_stats_read);
  2332. int32_t qdf_dp_tx_skb_mem_stats_read(void)
  2333. {
  2334. return qdf_atomic_read(&qdf_mem_stat.dp_tx_skb);
  2335. }
  2336. qdf_export_symbol(qdf_dp_tx_skb_mem_stats_read);
  2337. int32_t qdf_dp_rx_skb_mem_stats_read(void)
  2338. {
  2339. return qdf_atomic_read(&qdf_mem_stat.dp_rx_skb);
  2340. }
  2341. qdf_export_symbol(qdf_dp_rx_skb_mem_stats_read);
  2342. int32_t qdf_mem_dp_tx_skb_cnt_read(void)
  2343. {
  2344. return qdf_atomic_read(&qdf_mem_stat.dp_tx_skb_count);
  2345. }
  2346. qdf_export_symbol(qdf_mem_dp_tx_skb_cnt_read);
  2347. int32_t qdf_mem_dp_tx_skb_max_cnt_read(void)
  2348. {
  2349. return qdf_mem_stat.dp_tx_skb_count_max;
  2350. }
  2351. qdf_export_symbol(qdf_mem_dp_tx_skb_max_cnt_read);
  2352. int32_t qdf_mem_dp_rx_skb_cnt_read(void)
  2353. {
  2354. return qdf_atomic_read(&qdf_mem_stat.dp_rx_skb_count);
  2355. }
  2356. qdf_export_symbol(qdf_mem_dp_rx_skb_cnt_read);
  2357. int32_t qdf_mem_dp_rx_skb_max_cnt_read(void)
  2358. {
  2359. return qdf_mem_stat.dp_rx_skb_count_max;
  2360. }
  2361. qdf_export_symbol(qdf_mem_dp_rx_skb_max_cnt_read);
  2362. int32_t qdf_dp_tx_skb_max_mem_stats_read(void)
  2363. {
  2364. return qdf_mem_stat.dp_tx_skb_mem_max;
  2365. }
  2366. qdf_export_symbol(qdf_dp_tx_skb_max_mem_stats_read);
  2367. int32_t qdf_dp_rx_skb_max_mem_stats_read(void)
  2368. {
  2369. return qdf_mem_stat.dp_rx_skb_mem_max;
  2370. }
  2371. qdf_export_symbol(qdf_dp_rx_skb_max_mem_stats_read);
  2372. int32_t qdf_mem_tx_desc_cnt_read(void)
  2373. {
  2374. return qdf_atomic_read(&qdf_mem_stat.tx_descs_outstanding);
  2375. }
  2376. qdf_export_symbol(qdf_mem_tx_desc_cnt_read);
  2377. int32_t qdf_mem_tx_desc_max_read(void)
  2378. {
  2379. return qdf_mem_stat.tx_descs_max;
  2380. }
  2381. qdf_export_symbol(qdf_mem_tx_desc_max_read);
  2382. void qdf_mem_tx_desc_cnt_update(qdf_atomic_t pending_tx_descs,
  2383. int32_t tx_descs_max)
  2384. {
  2385. qdf_mem_stat.tx_descs_outstanding = pending_tx_descs;
  2386. qdf_mem_stat.tx_descs_max = tx_descs_max;
  2387. }
  2388. qdf_export_symbol(qdf_mem_tx_desc_cnt_update);
  2389. void qdf_mem_stats_init(void)
  2390. {
  2391. qdf_mem_stat.skb_mem_max = 0;
  2392. qdf_mem_stat.dp_tx_skb_mem_max = 0;
  2393. qdf_mem_stat.dp_rx_skb_mem_max = 0;
  2394. qdf_mem_stat.dp_tx_skb_count_max = 0;
  2395. qdf_mem_stat.dp_rx_skb_count_max = 0;
  2396. qdf_mem_stat.tx_descs_max = 0;
  2397. }
  2398. qdf_export_symbol(qdf_mem_stats_init);
  2399. void *__qdf_mem_valloc(size_t size, const char *func, uint32_t line)
  2400. {
  2401. void *ptr;
  2402. if (!size) {
  2403. qdf_err("Valloc called with 0 bytes @ %s:%d", func, line);
  2404. return NULL;
  2405. }
  2406. ptr = vzalloc(size);
  2407. return ptr;
  2408. }
  2409. qdf_export_symbol(__qdf_mem_valloc);
  2410. void __qdf_mem_vfree(void *ptr)
  2411. {
  2412. if (qdf_unlikely(!ptr))
  2413. return;
  2414. vfree(ptr);
  2415. }
  2416. qdf_export_symbol(__qdf_mem_vfree);