dp_rx_defrag.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147
  1. /*
  2. * Copyright (c) 2017-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #ifndef RX_DEFRAG_DO_NOT_REINJECT
  20. #ifndef DP_BE_WAR
  21. #include "li/hal_li_rx.h"
  22. #endif
  23. #endif
  24. #include "dp_types.h"
  25. #include "dp_rx.h"
  26. #include "dp_peer.h"
  27. #include "hal_api.h"
  28. #include "qdf_trace.h"
  29. #include "qdf_nbuf.h"
  30. #include "dp_internal.h"
  31. #include "dp_rx_defrag.h"
  32. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  33. #include "dp_rx_defrag.h"
  34. #include "dp_ipa.h"
  35. #include "dp_rx_buffer_pool.h"
  36. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  37. "AES-CCM",
  38. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  39. IEEE80211_WEP_MICLEN,
  40. 0,
  41. };
  42. const struct dp_rx_defrag_cipher dp_f_tkip = {
  43. "TKIP",
  44. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  45. IEEE80211_WEP_CRCLEN,
  46. IEEE80211_WEP_MICLEN,
  47. };
  48. const struct dp_rx_defrag_cipher dp_f_wep = {
  49. "WEP",
  50. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  51. IEEE80211_WEP_CRCLEN,
  52. 0,
  53. };
  54. /*
  55. * The header and mic length are same for both
  56. * GCMP-128 and GCMP-256.
  57. */
  58. const struct dp_rx_defrag_cipher dp_f_gcmp = {
  59. "AES-GCMP",
  60. WLAN_IEEE80211_GCMP_HEADERLEN,
  61. WLAN_IEEE80211_GCMP_MICLEN,
  62. WLAN_IEEE80211_GCMP_MICLEN,
  63. };
  64. /*
  65. * dp_rx_defrag_frames_free(): Free fragment chain
  66. * @frames: Fragment chain
  67. *
  68. * Iterates through the fragment chain and frees them
  69. * Returns: None
  70. */
  71. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  72. {
  73. qdf_nbuf_t next, frag = frames;
  74. while (frag) {
  75. next = qdf_nbuf_next(frag);
  76. qdf_nbuf_free(frag);
  77. frag = next;
  78. }
  79. }
  80. /*
  81. * dp_rx_clear_saved_desc_info(): Clears descriptor info
  82. * @peer: Pointer to the peer data structure
  83. * @tid: Transmit ID (TID)
  84. *
  85. * Saves MPDU descriptor info and MSDU link pointer from REO
  86. * ring descriptor. The cache is created per peer, per TID
  87. *
  88. * Returns: None
  89. */
  90. static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
  91. {
  92. if (peer->rx_tid[tid].dst_ring_desc)
  93. qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
  94. peer->rx_tid[tid].dst_ring_desc = NULL;
  95. peer->rx_tid[tid].head_frag_desc = NULL;
  96. }
  97. static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
  98. unsigned int tid)
  99. {
  100. struct dp_soc *soc;
  101. struct dp_pdev *pdev;
  102. struct dp_srng *dp_rxdma_srng;
  103. struct rx_desc_pool *rx_desc_pool;
  104. union dp_rx_desc_list_elem_t *head = NULL;
  105. union dp_rx_desc_list_elem_t *tail = NULL;
  106. uint8_t pool_id;
  107. pdev = peer->vdev->pdev;
  108. soc = pdev->soc;
  109. if (peer->rx_tid[tid].head_frag_desc) {
  110. pool_id = peer->rx_tid[tid].head_frag_desc->pool_id;
  111. dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id];
  112. rx_desc_pool = &soc->rx_desc_buf[pool_id];
  113. dp_rx_add_to_free_desc_list(&head, &tail,
  114. peer->rx_tid[tid].head_frag_desc);
  115. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  116. 1, &head, &tail);
  117. }
  118. if (peer->rx_tid[tid].dst_ring_desc) {
  119. if (dp_rx_link_desc_return(soc,
  120. peer->rx_tid[tid].dst_ring_desc,
  121. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  122. QDF_STATUS_SUCCESS)
  123. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  124. "%s: Failed to return link desc", __func__);
  125. }
  126. }
  127. /*
  128. * dp_rx_reorder_flush_frag(): Flush the frag list
  129. * @peer: Pointer to the peer data structure
  130. * @tid: Transmit ID (TID)
  131. *
  132. * Flush the per-TID frag list
  133. *
  134. * Returns: None
  135. */
  136. void dp_rx_reorder_flush_frag(struct dp_peer *peer,
  137. unsigned int tid)
  138. {
  139. dp_info_rl("Flushing TID %d", tid);
  140. if (!peer) {
  141. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  142. "%s: NULL peer", __func__);
  143. return;
  144. }
  145. dp_rx_return_head_frag_desc(peer, tid);
  146. dp_rx_defrag_cleanup(peer, tid);
  147. }
  148. /*
  149. * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
  150. * @soc: DP SOC
  151. *
  152. * Flush fragments of all waitlisted TID's
  153. *
  154. * Returns: None
  155. */
  156. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  157. {
  158. struct dp_rx_tid *rx_reorder = NULL;
  159. struct dp_rx_tid *tmp;
  160. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  161. TAILQ_HEAD(, dp_rx_tid) temp_list;
  162. TAILQ_INIT(&temp_list);
  163. dp_debug("Current time %u", now_ms);
  164. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  165. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  166. defrag_waitlist_elem, tmp) {
  167. uint32_t tid;
  168. if (rx_reorder->defrag_timeout_ms > now_ms)
  169. break;
  170. tid = rx_reorder->tid;
  171. if (tid >= DP_MAX_TIDS) {
  172. qdf_assert(0);
  173. continue;
  174. }
  175. TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
  176. defrag_waitlist_elem);
  177. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  178. /* Move to temp list and clean-up later */
  179. TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
  180. defrag_waitlist_elem);
  181. }
  182. if (rx_reorder) {
  183. soc->rx.defrag.next_flush_ms =
  184. rx_reorder->defrag_timeout_ms;
  185. } else {
  186. soc->rx.defrag.next_flush_ms =
  187. now_ms + soc->rx.defrag.timeout_ms;
  188. }
  189. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  190. TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
  191. defrag_waitlist_elem, tmp) {
  192. struct dp_peer *peer, *temp_peer = NULL;
  193. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  194. TAILQ_REMOVE(&temp_list, rx_reorder,
  195. defrag_waitlist_elem);
  196. /* get address of current peer */
  197. peer =
  198. container_of(rx_reorder, struct dp_peer,
  199. rx_tid[rx_reorder->tid]);
  200. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  201. temp_peer = dp_peer_get_ref_by_id(soc, peer->peer_id,
  202. DP_MOD_ID_RX_ERR);
  203. if (temp_peer == peer) {
  204. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  205. dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
  206. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  207. }
  208. if (temp_peer)
  209. dp_peer_unref_delete(temp_peer, DP_MOD_ID_RX_ERR);
  210. }
  211. }
  212. /*
  213. * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
  214. * @peer: Pointer to the peer data structure
  215. * @tid: Transmit ID (TID)
  216. *
  217. * Appends per-tid fragments to global fragment wait list
  218. *
  219. * Returns: None
  220. */
  221. static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
  222. {
  223. struct dp_soc *psoc = peer->vdev->pdev->soc;
  224. struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
  225. dp_debug("Adding TID %u to waitlist for peer %pK at MAC address "QDF_MAC_ADDR_FMT,
  226. tid, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  227. /* TODO: use LIST macros instead of TAIL macros */
  228. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  229. if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
  230. psoc->rx.defrag.next_flush_ms = rx_reorder->defrag_timeout_ms;
  231. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
  232. defrag_waitlist_elem);
  233. DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
  234. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  235. }
  236. /*
  237. * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
  238. * @peer: Pointer to the peer data structure
  239. * @tid: Transmit ID (TID)
  240. *
  241. * Remove fragments from waitlist
  242. *
  243. * Returns: None
  244. */
  245. void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
  246. {
  247. struct dp_pdev *pdev = peer->vdev->pdev;
  248. struct dp_soc *soc = pdev->soc;
  249. struct dp_rx_tid *rx_reorder;
  250. struct dp_rx_tid *tmp;
  251. dp_debug("Removing TID %u to waitlist for peer %pK at MAC address "QDF_MAC_ADDR_FMT,
  252. tid, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  253. if (tid >= DP_MAX_TIDS) {
  254. dp_err("TID out of bounds: %d", tid);
  255. qdf_assert_always(0);
  256. }
  257. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  258. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  259. defrag_waitlist_elem, tmp) {
  260. struct dp_peer *peer_on_waitlist;
  261. /* get address of current peer */
  262. peer_on_waitlist =
  263. container_of(rx_reorder, struct dp_peer,
  264. rx_tid[rx_reorder->tid]);
  265. /* Ensure it is TID for same peer */
  266. if (peer_on_waitlist == peer && rx_reorder->tid == tid) {
  267. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  268. rx_reorder, defrag_waitlist_elem);
  269. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  270. }
  271. }
  272. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  273. }
  274. /*
  275. * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
  276. * @peer: Pointer to the peer data structure
  277. * @tid: Transmit ID (TID)
  278. * @head_addr: Pointer to head list
  279. * @tail_addr: Pointer to tail list
  280. * @frag: Incoming fragment
  281. * @all_frag_present: Flag to indicate whether all fragments are received
  282. *
  283. * Build a per-tid, per-sequence fragment list.
  284. *
  285. * Returns: Success, if inserted
  286. */
  287. static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
  288. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
  289. uint8_t *all_frag_present)
  290. {
  291. struct dp_soc *soc = peer->vdev->pdev->soc;
  292. qdf_nbuf_t next;
  293. qdf_nbuf_t prev = NULL;
  294. qdf_nbuf_t cur;
  295. uint16_t head_fragno, cur_fragno, next_fragno;
  296. uint8_t last_morefrag = 1, count = 0;
  297. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  298. uint8_t *rx_desc_info;
  299. qdf_assert(frag);
  300. qdf_assert(head_addr);
  301. qdf_assert(tail_addr);
  302. *all_frag_present = 0;
  303. rx_desc_info = qdf_nbuf_data(frag);
  304. cur_fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc_info);
  305. dp_debug("cur_fragno %d\n", cur_fragno);
  306. /* If this is the first fragment */
  307. if (!(*head_addr)) {
  308. *head_addr = *tail_addr = frag;
  309. qdf_nbuf_set_next(*tail_addr, NULL);
  310. rx_tid->curr_frag_num = cur_fragno;
  311. goto insert_done;
  312. }
  313. /* In sequence fragment */
  314. if (cur_fragno > rx_tid->curr_frag_num) {
  315. qdf_nbuf_set_next(*tail_addr, frag);
  316. *tail_addr = frag;
  317. qdf_nbuf_set_next(*tail_addr, NULL);
  318. rx_tid->curr_frag_num = cur_fragno;
  319. } else {
  320. /* Out of sequence fragment */
  321. cur = *head_addr;
  322. rx_desc_info = qdf_nbuf_data(cur);
  323. head_fragno = dp_rx_frag_get_mpdu_frag_number(soc,
  324. rx_desc_info);
  325. if (cur_fragno == head_fragno) {
  326. qdf_nbuf_free(frag);
  327. goto insert_fail;
  328. } else if (head_fragno > cur_fragno) {
  329. qdf_nbuf_set_next(frag, cur);
  330. cur = frag;
  331. *head_addr = frag; /* head pointer to be updated */
  332. } else {
  333. while ((cur_fragno > head_fragno) && cur) {
  334. prev = cur;
  335. cur = qdf_nbuf_next(cur);
  336. if (cur) {
  337. rx_desc_info = qdf_nbuf_data(cur);
  338. head_fragno =
  339. dp_rx_frag_get_mpdu_frag_number(
  340. soc,
  341. rx_desc_info);
  342. }
  343. }
  344. if (cur_fragno == head_fragno) {
  345. qdf_nbuf_free(frag);
  346. goto insert_fail;
  347. }
  348. qdf_nbuf_set_next(prev, frag);
  349. qdf_nbuf_set_next(frag, cur);
  350. }
  351. }
  352. next = qdf_nbuf_next(*head_addr);
  353. rx_desc_info = qdf_nbuf_data(*tail_addr);
  354. last_morefrag = dp_rx_frag_get_more_frag_bit(soc, rx_desc_info);
  355. /* TODO: optimize the loop */
  356. if (!last_morefrag) {
  357. /* Check if all fragments are present */
  358. do {
  359. rx_desc_info = qdf_nbuf_data(next);
  360. next_fragno =
  361. dp_rx_frag_get_mpdu_frag_number(soc,
  362. rx_desc_info);
  363. count++;
  364. if (next_fragno != count)
  365. break;
  366. next = qdf_nbuf_next(next);
  367. } while (next);
  368. if (!next) {
  369. *all_frag_present = 1;
  370. return QDF_STATUS_SUCCESS;
  371. } else {
  372. /* revisit */
  373. }
  374. }
  375. insert_done:
  376. return QDF_STATUS_SUCCESS;
  377. insert_fail:
  378. return QDF_STATUS_E_FAILURE;
  379. }
  380. /*
  381. * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
  382. * @msdu: Pointer to the fragment
  383. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  384. *
  385. * decap tkip encrypted fragment
  386. *
  387. * Returns: QDF_STATUS
  388. */
  389. static QDF_STATUS
  390. dp_rx_defrag_tkip_decap(struct dp_soc *soc,
  391. qdf_nbuf_t msdu, uint16_t hdrlen)
  392. {
  393. uint8_t *ivp, *orig_hdr;
  394. int rx_desc_len = soc->rx_pkt_tlv_size;
  395. /* start of 802.11 header info */
  396. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  397. /* TKIP header is located post 802.11 header */
  398. ivp = orig_hdr + hdrlen;
  399. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  400. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  401. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  402. return QDF_STATUS_E_DEFRAG_ERROR;
  403. }
  404. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  405. return QDF_STATUS_SUCCESS;
  406. }
  407. /*
  408. * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
  409. * @nbuf: Pointer to the fragment buffer
  410. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  411. *
  412. * Remove MIC information from CCMP fragment
  413. *
  414. * Returns: QDF_STATUS
  415. */
  416. static QDF_STATUS
  417. dp_rx_defrag_ccmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen)
  418. {
  419. uint8_t *ivp, *orig_hdr;
  420. int rx_desc_len = soc->rx_pkt_tlv_size;
  421. /* start of the 802.11 header */
  422. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  423. /* CCMP header is located after 802.11 header */
  424. ivp = orig_hdr + hdrlen;
  425. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  426. return QDF_STATUS_E_DEFRAG_ERROR;
  427. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  428. return QDF_STATUS_SUCCESS;
  429. }
  430. /*
  431. * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
  432. * @nbuf: Pointer to the fragment
  433. * @hdrlen: length of the header information
  434. *
  435. * decap CCMP encrypted fragment
  436. *
  437. * Returns: QDF_STATUS
  438. */
  439. static QDF_STATUS
  440. dp_rx_defrag_ccmp_decap(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen)
  441. {
  442. uint8_t *ivp, *origHdr;
  443. int rx_desc_len = soc->rx_pkt_tlv_size;
  444. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  445. ivp = origHdr + hdrlen;
  446. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  447. return QDF_STATUS_E_DEFRAG_ERROR;
  448. /* Let's pull the header later */
  449. return QDF_STATUS_SUCCESS;
  450. }
  451. /*
  452. * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
  453. * @msdu: Pointer to the fragment
  454. * @hdrlen: length of the header information
  455. *
  456. * decap WEP encrypted fragment
  457. *
  458. * Returns: QDF_STATUS
  459. */
  460. static QDF_STATUS
  461. dp_rx_defrag_wep_decap(struct dp_soc *soc, qdf_nbuf_t msdu, uint16_t hdrlen)
  462. {
  463. uint8_t *origHdr;
  464. int rx_desc_len = soc->rx_pkt_tlv_size;
  465. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  466. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  467. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  468. return QDF_STATUS_SUCCESS;
  469. }
  470. /*
  471. * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
  472. * @soc: soc handle
  473. * @nbuf: Pointer to the fragment
  474. *
  475. * Calculate the header size of the received fragment
  476. *
  477. * Returns: header size (uint16_t)
  478. */
  479. static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
  480. {
  481. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  482. uint16_t size = sizeof(struct ieee80211_frame);
  483. uint16_t fc = 0;
  484. uint32_t to_ds, fr_ds;
  485. uint8_t frm_ctrl_valid;
  486. uint16_t frm_ctrl_field;
  487. to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
  488. fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
  489. frm_ctrl_valid =
  490. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  491. rx_tlv_hdr);
  492. frm_ctrl_field = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_tlv_hdr);
  493. if (to_ds && fr_ds)
  494. size += QDF_MAC_ADDR_SIZE;
  495. if (frm_ctrl_valid) {
  496. fc = frm_ctrl_field;
  497. /* use 1-st byte for validation */
  498. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  499. size += sizeof(uint16_t);
  500. /* use 2-nd byte for validation */
  501. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  502. size += sizeof(struct ieee80211_htc);
  503. }
  504. }
  505. return size;
  506. }
  507. /*
  508. * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
  509. * @wh0: Pointer to the wireless header of the fragment
  510. * @hdr: Array to hold the pseudo header
  511. *
  512. * Calculate a pseudo MIC header
  513. *
  514. * Returns: None
  515. */
  516. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  517. uint8_t hdr[])
  518. {
  519. const struct ieee80211_frame_addr4 *wh =
  520. (const struct ieee80211_frame_addr4 *)wh0;
  521. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  522. case IEEE80211_FC1_DIR_NODS:
  523. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  524. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  525. wh->i_addr2);
  526. break;
  527. case IEEE80211_FC1_DIR_TODS:
  528. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  529. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  530. wh->i_addr2);
  531. break;
  532. case IEEE80211_FC1_DIR_FROMDS:
  533. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  534. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  535. wh->i_addr3);
  536. break;
  537. case IEEE80211_FC1_DIR_DSTODS:
  538. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  539. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  540. wh->i_addr4);
  541. break;
  542. }
  543. /*
  544. * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  545. * it could also be set for deauth, disassoc, action, etc. for
  546. * a mgt type frame. It comes into picture for MFP.
  547. */
  548. if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
  549. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
  550. IEEE80211_FC1_DIR_DSTODS) {
  551. const struct ieee80211_qosframe_addr4 *qwh =
  552. (const struct ieee80211_qosframe_addr4 *)wh;
  553. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  554. } else {
  555. const struct ieee80211_qosframe *qwh =
  556. (const struct ieee80211_qosframe *)wh;
  557. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  558. }
  559. } else {
  560. hdr[12] = 0;
  561. }
  562. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  563. }
  564. /*
  565. * dp_rx_defrag_mic(): Calculate MIC header
  566. * @key: Pointer to the key
  567. * @wbuf: fragment buffer
  568. * @off: Offset
  569. * @data_len: Data length
  570. * @mic: Array to hold MIC
  571. *
  572. * Calculate a pseudo MIC header
  573. *
  574. * Returns: QDF_STATUS
  575. */
  576. static QDF_STATUS dp_rx_defrag_mic(struct dp_soc *soc, const uint8_t *key,
  577. qdf_nbuf_t wbuf, uint16_t off,
  578. uint16_t data_len, uint8_t mic[])
  579. {
  580. uint8_t hdr[16] = { 0, };
  581. uint32_t l, r;
  582. const uint8_t *data;
  583. uint32_t space;
  584. int rx_desc_len = soc->rx_pkt_tlv_size;
  585. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  586. + rx_desc_len), hdr);
  587. l = dp_rx_get_le32(key);
  588. r = dp_rx_get_le32(key + 4);
  589. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  590. l ^= dp_rx_get_le32(hdr);
  591. dp_rx_michael_block(l, r);
  592. l ^= dp_rx_get_le32(&hdr[4]);
  593. dp_rx_michael_block(l, r);
  594. l ^= dp_rx_get_le32(&hdr[8]);
  595. dp_rx_michael_block(l, r);
  596. l ^= dp_rx_get_le32(&hdr[12]);
  597. dp_rx_michael_block(l, r);
  598. /* first buffer has special handling */
  599. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  600. space = qdf_nbuf_len(wbuf) - off;
  601. for (;; ) {
  602. if (space > data_len)
  603. space = data_len;
  604. /* collect 32-bit blocks from current buffer */
  605. while (space >= sizeof(uint32_t)) {
  606. l ^= dp_rx_get_le32(data);
  607. dp_rx_michael_block(l, r);
  608. data += sizeof(uint32_t);
  609. space -= sizeof(uint32_t);
  610. data_len -= sizeof(uint32_t);
  611. }
  612. if (data_len < sizeof(uint32_t))
  613. break;
  614. wbuf = qdf_nbuf_next(wbuf);
  615. if (!wbuf)
  616. return QDF_STATUS_E_DEFRAG_ERROR;
  617. if (space != 0) {
  618. const uint8_t *data_next;
  619. /*
  620. * Block straddles buffers, split references.
  621. */
  622. data_next =
  623. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  624. if ((qdf_nbuf_len(wbuf)) <
  625. sizeof(uint32_t) - space) {
  626. return QDF_STATUS_E_DEFRAG_ERROR;
  627. }
  628. switch (space) {
  629. case 1:
  630. l ^= dp_rx_get_le32_split(data[0],
  631. data_next[0], data_next[1],
  632. data_next[2]);
  633. data = data_next + 3;
  634. space = (qdf_nbuf_len(wbuf) - off) - 3;
  635. break;
  636. case 2:
  637. l ^= dp_rx_get_le32_split(data[0], data[1],
  638. data_next[0], data_next[1]);
  639. data = data_next + 2;
  640. space = (qdf_nbuf_len(wbuf) - off) - 2;
  641. break;
  642. case 3:
  643. l ^= dp_rx_get_le32_split(data[0], data[1],
  644. data[2], data_next[0]);
  645. data = data_next + 1;
  646. space = (qdf_nbuf_len(wbuf) - off) - 1;
  647. break;
  648. }
  649. dp_rx_michael_block(l, r);
  650. data_len -= sizeof(uint32_t);
  651. } else {
  652. /*
  653. * Setup for next buffer.
  654. */
  655. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  656. space = qdf_nbuf_len(wbuf) - off;
  657. }
  658. }
  659. /* Last block and padding (0x5a, 4..7 x 0) */
  660. switch (data_len) {
  661. case 0:
  662. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  663. break;
  664. case 1:
  665. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  666. break;
  667. case 2:
  668. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  669. break;
  670. case 3:
  671. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  672. break;
  673. }
  674. dp_rx_michael_block(l, r);
  675. dp_rx_michael_block(l, r);
  676. dp_rx_put_le32(mic, l);
  677. dp_rx_put_le32(mic + 4, r);
  678. return QDF_STATUS_SUCCESS;
  679. }
  680. /*
  681. * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
  682. * @key: Pointer to the key
  683. * @msdu: fragment buffer
  684. * @hdrlen: Length of the header information
  685. *
  686. * Remove MIC information from the TKIP frame
  687. *
  688. * Returns: QDF_STATUS
  689. */
  690. static QDF_STATUS dp_rx_defrag_tkip_demic(struct dp_soc *soc,
  691. const uint8_t *key,
  692. qdf_nbuf_t msdu, uint16_t hdrlen)
  693. {
  694. QDF_STATUS status;
  695. uint32_t pktlen = 0, prev_data_len;
  696. uint8_t mic[IEEE80211_WEP_MICLEN];
  697. uint8_t mic0[IEEE80211_WEP_MICLEN];
  698. qdf_nbuf_t prev = NULL, prev0, next;
  699. uint8_t len0 = 0;
  700. next = msdu;
  701. prev0 = msdu;
  702. while (next) {
  703. pktlen += (qdf_nbuf_len(next) - hdrlen);
  704. prev = next;
  705. dp_debug("pktlen %u",
  706. (uint32_t)(qdf_nbuf_len(next) - hdrlen));
  707. next = qdf_nbuf_next(next);
  708. if (next && !qdf_nbuf_next(next))
  709. prev0 = prev;
  710. }
  711. if (!prev) {
  712. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  713. "%s Defrag chaining failed !\n", __func__);
  714. return QDF_STATUS_E_DEFRAG_ERROR;
  715. }
  716. prev_data_len = qdf_nbuf_len(prev) - hdrlen;
  717. if (prev_data_len < dp_f_tkip.ic_miclen) {
  718. if (prev0 == prev) {
  719. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  720. "%s Fragments don't have MIC header !\n", __func__);
  721. return QDF_STATUS_E_DEFRAG_ERROR;
  722. }
  723. len0 = dp_f_tkip.ic_miclen - (uint8_t)prev_data_len;
  724. qdf_nbuf_copy_bits(prev0, qdf_nbuf_len(prev0) - len0, len0,
  725. (caddr_t)mic0);
  726. qdf_nbuf_trim_tail(prev0, len0);
  727. }
  728. qdf_nbuf_copy_bits(prev, (qdf_nbuf_len(prev) -
  729. (dp_f_tkip.ic_miclen - len0)),
  730. (dp_f_tkip.ic_miclen - len0),
  731. (caddr_t)(&mic0[len0]));
  732. qdf_nbuf_trim_tail(prev, (dp_f_tkip.ic_miclen - len0));
  733. pktlen -= dp_f_tkip.ic_miclen;
  734. if (((qdf_nbuf_len(prev) - hdrlen) == 0) && prev != msdu) {
  735. qdf_nbuf_free(prev);
  736. qdf_nbuf_set_next(prev0, NULL);
  737. }
  738. status = dp_rx_defrag_mic(soc, key, msdu, hdrlen,
  739. pktlen, mic);
  740. if (QDF_IS_STATUS_ERROR(status))
  741. return status;
  742. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  743. return QDF_STATUS_E_DEFRAG_ERROR;
  744. return QDF_STATUS_SUCCESS;
  745. }
  746. /*
  747. * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
  748. * @nbuf: buffer pointer
  749. * @hdrsize: size of the header to be pulled
  750. *
  751. * Pull the RXTLV & the 802.11 headers
  752. *
  753. * Returns: None
  754. */
  755. static void dp_rx_frag_pull_hdr(struct dp_soc *soc,
  756. qdf_nbuf_t nbuf, uint16_t hdrsize)
  757. {
  758. hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf));
  759. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + hdrsize);
  760. dp_debug("final pktlen %d .11len %d",
  761. (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  762. }
  763. /*
  764. * dp_rx_defrag_pn_check(): Check the PN of current fragmented with prev PN
  765. * @msdu: msdu to get the current PN
  766. * @cur_pn128: PN extracted from current msdu
  767. * @prev_pn128: Prev PN
  768. *
  769. * Returns: 0 on success, non zero on failure
  770. */
  771. static int dp_rx_defrag_pn_check(struct dp_soc *soc, qdf_nbuf_t msdu,
  772. uint64_t *cur_pn128, uint64_t *prev_pn128)
  773. {
  774. int out_of_order = 0;
  775. hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(msdu), cur_pn128);
  776. if (cur_pn128[1] == prev_pn128[1])
  777. out_of_order = (cur_pn128[0] - prev_pn128[0] != 1);
  778. else
  779. out_of_order = (cur_pn128[1] - prev_pn128[1] != 1);
  780. return out_of_order;
  781. }
  782. /*
  783. * dp_rx_construct_fraglist(): Construct a nbuf fraglist
  784. * @peer: Pointer to the peer
  785. * @head: Pointer to list of fragments
  786. * @hdrsize: Size of the header to be pulled
  787. *
  788. * Construct a nbuf fraglist
  789. *
  790. * Returns: None
  791. */
  792. static int
  793. dp_rx_construct_fraglist(struct dp_peer *peer, int tid, qdf_nbuf_t head,
  794. uint16_t hdrsize)
  795. {
  796. struct dp_soc *soc = peer->vdev->pdev->soc;
  797. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  798. qdf_nbuf_t rx_nbuf = msdu;
  799. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  800. uint32_t len = 0;
  801. uint64_t cur_pn128[2] = {0, 0}, prev_pn128[2];
  802. int out_of_order = 0;
  803. int index;
  804. int needs_pn_check = 0;
  805. prev_pn128[0] = rx_tid->pn128[0];
  806. prev_pn128[1] = rx_tid->pn128[1];
  807. index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu) ? dp_sec_mcast :
  808. dp_sec_ucast;
  809. if (qdf_likely(peer->security[index].sec_type != cdp_sec_type_none))
  810. needs_pn_check = 1;
  811. while (msdu) {
  812. if (qdf_likely(needs_pn_check))
  813. out_of_order = dp_rx_defrag_pn_check(soc, msdu,
  814. &cur_pn128[0],
  815. &prev_pn128[0]);
  816. if (qdf_unlikely(out_of_order)) {
  817. dp_info_rl("cur_pn128[0] 0x%llx cur_pn128[1] 0x%llx prev_pn128[0] 0x%llx prev_pn128[1] 0x%llx",
  818. cur_pn128[0], cur_pn128[1],
  819. prev_pn128[0], prev_pn128[1]);
  820. return QDF_STATUS_E_FAILURE;
  821. }
  822. prev_pn128[0] = cur_pn128[0];
  823. prev_pn128[1] = cur_pn128[1];
  824. /*
  825. * Broadcast and multicast frames should never be fragmented.
  826. * Iterating through all msdus and dropping fragments if even
  827. * one of them has mcast/bcast destination address.
  828. */
  829. if (hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu)) {
  830. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  831. "Dropping multicast/broadcast fragments");
  832. return QDF_STATUS_E_FAILURE;
  833. }
  834. dp_rx_frag_pull_hdr(soc, msdu, hdrsize);
  835. len += qdf_nbuf_len(msdu);
  836. msdu = qdf_nbuf_next(msdu);
  837. }
  838. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  839. qdf_nbuf_set_next(head, NULL);
  840. qdf_nbuf_set_is_frag(head, 1);
  841. dp_debug("head len %d ext len %d data len %d ",
  842. (uint32_t)qdf_nbuf_len(head),
  843. (uint32_t)qdf_nbuf_len(rx_nbuf),
  844. (uint32_t)(head->data_len));
  845. return QDF_STATUS_SUCCESS;
  846. }
  847. /**
  848. * dp_rx_defrag_err() - rx err handler
  849. * @pdev: handle to pdev object
  850. * @vdev_id: vdev id
  851. * @peer_mac_addr: peer mac address
  852. * @tid: TID
  853. * @tsf32: TSF
  854. * @err_type: error type
  855. * @rx_frame: rx frame
  856. * @pn: PN Number
  857. * @key_id: key id
  858. *
  859. * This function handles rx error and send MIC error notification
  860. *
  861. * Return: None
  862. */
  863. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  864. {
  865. struct ol_if_ops *tops = NULL;
  866. struct dp_pdev *pdev = vdev->pdev;
  867. int rx_desc_len = pdev->soc->rx_pkt_tlv_size;
  868. uint8_t *orig_hdr;
  869. struct ieee80211_frame *wh;
  870. struct cdp_rx_mic_err_info mic_failure_info;
  871. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  872. wh = (struct ieee80211_frame *)orig_hdr;
  873. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
  874. (struct qdf_mac_addr *)&wh->i_addr1);
  875. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
  876. (struct qdf_mac_addr *)&wh->i_addr2);
  877. mic_failure_info.key_id = 0;
  878. mic_failure_info.multicast =
  879. IEEE80211_IS_MULTICAST(wh->i_addr1);
  880. qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
  881. mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
  882. mic_failure_info.data = (uint8_t *)wh;
  883. mic_failure_info.vdev_id = vdev->vdev_id;
  884. tops = pdev->soc->cdp_soc.ol_ops;
  885. if (tops->rx_mic_error)
  886. tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
  887. &mic_failure_info);
  888. }
  889. /*
  890. * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
  891. * @soc: dp soc handle
  892. * @nbuf: Pointer to the fragment buffer
  893. * @hdrsize: Size of headers
  894. *
  895. * Transcap the fragment from 802.11 to 802.3
  896. *
  897. * Returns: None
  898. */
  899. static void
  900. dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc, struct dp_peer *peer, int tid,
  901. qdf_nbuf_t nbuf, uint16_t hdrsize)
  902. {
  903. struct llc_snap_hdr_t *llchdr;
  904. struct ethernet_hdr_t *eth_hdr;
  905. uint8_t ether_type[2];
  906. uint16_t fc = 0;
  907. union dp_align_mac_addr mac_addr;
  908. uint8_t *rx_desc_info = qdf_mem_malloc(soc->rx_pkt_tlv_size);
  909. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  910. hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(nbuf), rx_tid->pn128);
  911. hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf));
  912. if (!rx_desc_info) {
  913. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  914. "%s: Memory alloc failed ! ", __func__);
  915. QDF_ASSERT(0);
  916. return;
  917. }
  918. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), soc->rx_pkt_tlv_size);
  919. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  920. soc->rx_pkt_tlv_size + hdrsize);
  921. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  922. qdf_nbuf_pull_head(nbuf, (soc->rx_pkt_tlv_size + hdrsize +
  923. sizeof(struct llc_snap_hdr_t) -
  924. sizeof(struct ethernet_hdr_t)));
  925. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  926. if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  927. rx_desc_info))
  928. fc = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_desc_info);
  929. dp_debug("Frame control type: 0x%x", fc);
  930. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  931. case IEEE80211_FC1_DIR_NODS:
  932. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  933. &mac_addr.raw[0]);
  934. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  935. QDF_MAC_ADDR_SIZE);
  936. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  937. &mac_addr.raw[0]);
  938. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  939. QDF_MAC_ADDR_SIZE);
  940. break;
  941. case IEEE80211_FC1_DIR_TODS:
  942. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  943. &mac_addr.raw[0]);
  944. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  945. QDF_MAC_ADDR_SIZE);
  946. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  947. &mac_addr.raw[0]);
  948. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  949. QDF_MAC_ADDR_SIZE);
  950. break;
  951. case IEEE80211_FC1_DIR_FROMDS:
  952. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  953. &mac_addr.raw[0]);
  954. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  955. QDF_MAC_ADDR_SIZE);
  956. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  957. &mac_addr.raw[0]);
  958. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  959. QDF_MAC_ADDR_SIZE);
  960. break;
  961. case IEEE80211_FC1_DIR_DSTODS:
  962. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  963. &mac_addr.raw[0]);
  964. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  965. QDF_MAC_ADDR_SIZE);
  966. hal_rx_mpdu_get_addr4(soc->hal_soc, rx_desc_info,
  967. &mac_addr.raw[0]);
  968. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  969. QDF_MAC_ADDR_SIZE);
  970. break;
  971. default:
  972. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  973. "%s: Unknown frame control type: 0x%x", __func__, fc);
  974. }
  975. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  976. sizeof(ether_type));
  977. qdf_nbuf_push_head(nbuf, soc->rx_pkt_tlv_size);
  978. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, soc->rx_pkt_tlv_size);
  979. qdf_mem_free(rx_desc_info);
  980. }
  981. #ifdef RX_DEFRAG_DO_NOT_REINJECT
  982. /*
  983. * dp_rx_defrag_deliver(): Deliver defrag packet to stack
  984. * @peer: Pointer to the peer
  985. * @tid: Transmit Identifier
  986. * @head: Nbuf to be delivered
  987. *
  988. * Returns: None
  989. */
  990. static inline void dp_rx_defrag_deliver(struct dp_peer *peer,
  991. unsigned int tid,
  992. qdf_nbuf_t head)
  993. {
  994. struct dp_vdev *vdev = peer->vdev;
  995. struct dp_soc *soc = vdev->pdev->soc;
  996. qdf_nbuf_t deliver_list_head = NULL;
  997. qdf_nbuf_t deliver_list_tail = NULL;
  998. uint8_t *rx_tlv_hdr;
  999. rx_tlv_hdr = qdf_nbuf_data(head);
  1000. QDF_NBUF_CB_RX_VDEV_ID(head) = vdev->vdev_id;
  1001. qdf_nbuf_set_tid_val(head, tid);
  1002. qdf_nbuf_pull_head(head, soc->rx_pkt_tlv_size);
  1003. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail,
  1004. head);
  1005. dp_rx_deliver_to_stack(soc, vdev, peer, deliver_list_head,
  1006. deliver_list_tail);
  1007. }
  1008. /*
  1009. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  1010. * @peer: Pointer to the peer
  1011. * @tid: Transmit Identifier
  1012. * @head: Buffer to be reinjected back
  1013. *
  1014. * Reinject the fragment chain back into REO
  1015. *
  1016. * Returns: QDF_STATUS
  1017. */
  1018. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  1019. unsigned int tid, qdf_nbuf_t head)
  1020. {
  1021. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1022. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1023. dp_rx_defrag_deliver(peer, tid, head);
  1024. rx_reorder_array_elem->head = NULL;
  1025. rx_reorder_array_elem->tail = NULL;
  1026. dp_rx_return_head_frag_desc(peer, tid);
  1027. return QDF_STATUS_SUCCESS;
  1028. }
  1029. #else
  1030. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1031. /**
  1032. * dp_rx_reinject_ring_record_entry() - Record reinject ring history
  1033. * @soc: Datapath soc structure
  1034. * @paddr: paddr of the buffer reinjected to SW2REO ring
  1035. * @sw_cookie: SW cookie of the buffer reinjected to SW2REO ring
  1036. * @rbm: Return buffer manager of the buffer reinjected to SW2REO ring
  1037. *
  1038. * Returns: None
  1039. */
  1040. static inline void
  1041. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1042. uint32_t sw_cookie, uint8_t rbm)
  1043. {
  1044. struct dp_buf_info_record *record;
  1045. uint32_t idx;
  1046. if (qdf_unlikely(!soc->rx_reinject_ring_history))
  1047. return;
  1048. idx = dp_history_get_next_index(&soc->rx_reinject_ring_history->index,
  1049. DP_RX_REINJECT_HIST_MAX);
  1050. /* No NULL check needed for record since its an array */
  1051. record = &soc->rx_reinject_ring_history->entry[idx];
  1052. record->timestamp = qdf_get_log_timestamp();
  1053. record->hbi.paddr = paddr;
  1054. record->hbi.sw_cookie = sw_cookie;
  1055. record->hbi.rbm = rbm;
  1056. }
  1057. #else
  1058. static inline void
  1059. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1060. uint32_t sw_cookie, uint8_t rbm)
  1061. {
  1062. }
  1063. #endif
  1064. /*
  1065. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  1066. * @peer: Pointer to the peer
  1067. * @tid: Transmit Identifier
  1068. * @head: Buffer to be reinjected back
  1069. *
  1070. * Reinject the fragment chain back into REO
  1071. *
  1072. * Returns: QDF_STATUS
  1073. */
  1074. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  1075. unsigned int tid, qdf_nbuf_t head)
  1076. {
  1077. struct dp_pdev *pdev = peer->vdev->pdev;
  1078. struct dp_soc *soc = pdev->soc;
  1079. struct hal_buf_info buf_info;
  1080. struct hal_buf_info temp_buf_info;
  1081. void *link_desc_va;
  1082. void *msdu0, *msdu_desc_info;
  1083. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  1084. void *dst_mpdu_desc_info, *dst_qdesc_addr;
  1085. qdf_dma_addr_t paddr;
  1086. uint32_t nbuf_len, seq_no, dst_ind;
  1087. uint32_t *mpdu_wrd;
  1088. uint32_t ret, cookie;
  1089. hal_ring_desc_t dst_ring_desc =
  1090. peer->rx_tid[tid].dst_ring_desc;
  1091. hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
  1092. struct dp_rx_desc *rx_desc = peer->rx_tid[tid].head_frag_desc;
  1093. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1094. peer->rx_tid[tid].array;
  1095. qdf_nbuf_t nbuf_head;
  1096. struct rx_desc_pool *rx_desc_pool = NULL;
  1097. void *buf_addr_info = HAL_RX_REO_BUF_ADDR_INFO_GET(dst_ring_desc);
  1098. /* do duplicate link desc address check */
  1099. dp_rx_link_desc_refill_duplicate_check(
  1100. soc,
  1101. &soc->last_op_info.reo_reinject_link_desc,
  1102. buf_addr_info);
  1103. nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
  1104. if (qdf_unlikely(!nbuf_head)) {
  1105. dp_err_rl("IPA RX REO reinject failed");
  1106. return QDF_STATUS_E_FAILURE;
  1107. }
  1108. /* update new allocated skb in case IPA is enabled */
  1109. if (nbuf_head != head) {
  1110. head = nbuf_head;
  1111. rx_desc->nbuf = head;
  1112. rx_reorder_array_elem->head = head;
  1113. }
  1114. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  1115. if (!ent_ring_desc) {
  1116. dp_err_rl("HAL src ring next entry NULL");
  1117. return QDF_STATUS_E_FAILURE;
  1118. }
  1119. hal_rx_reo_buf_paddr_get(soc->hal_soc, dst_ring_desc, &buf_info);
  1120. /* buffer_addr_info is the first element of ring_desc */
  1121. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)dst_ring_desc,
  1122. &buf_info);
  1123. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  1124. qdf_assert_always(link_desc_va);
  1125. msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
  1126. nbuf_len = qdf_nbuf_len(head) - soc->rx_pkt_tlv_size;
  1127. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  1128. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  1129. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  1130. /* msdu reconfig */
  1131. msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
  1132. dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
  1133. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  1134. hal_msdu_desc_info_set(soc->hal_soc, msdu_desc_info, dst_ind, nbuf_len);
  1135. /* change RX TLV's */
  1136. hal_rx_tlv_msdu_len_set(soc->hal_soc, qdf_nbuf_data(head), nbuf_len);
  1137. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)msdu0,
  1138. &temp_buf_info);
  1139. cookie = temp_buf_info.sw_cookie;
  1140. rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id];
  1141. /* map the nbuf before reinject it into HW */
  1142. ret = qdf_nbuf_map_nbytes_single(soc->osdev, head,
  1143. QDF_DMA_FROM_DEVICE,
  1144. rx_desc_pool->buf_size);
  1145. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  1146. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1147. "%s: nbuf map failed !", __func__);
  1148. return QDF_STATUS_E_FAILURE;
  1149. }
  1150. dp_ipa_handle_rx_buf_smmu_mapping(soc, head,
  1151. rx_desc_pool->buf_size,
  1152. true);
  1153. /*
  1154. * As part of rx frag handler bufffer was unmapped and rx desc
  1155. * unmapped is set to 1. So again for defrag reinject frame reset
  1156. * it back to 0.
  1157. */
  1158. rx_desc->unmapped = 0;
  1159. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  1160. ret = dp_check_paddr(soc, &head, &paddr, rx_desc_pool);
  1161. if (ret == QDF_STATUS_E_FAILURE) {
  1162. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1163. "%s: x86 check failed !", __func__);
  1164. return QDF_STATUS_E_FAILURE;
  1165. }
  1166. hal_rxdma_buff_addr_info_set(soc->hal_soc, msdu0, paddr, cookie,
  1167. DP_DEFRAG_RBM(soc->wbm_sw0_bm_id));
  1168. /* Lets fill entrance ring now !!! */
  1169. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  1170. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1171. "HAL RING Access For REO entrance SRNG Failed: %pK",
  1172. hal_srng);
  1173. return QDF_STATUS_E_FAILURE;
  1174. }
  1175. dp_rx_reinject_ring_record_entry(soc, paddr, cookie,
  1176. DP_DEFRAG_RBM(soc->wbm_sw0_bm_id));
  1177. paddr = (uint64_t)buf_info.paddr;
  1178. /* buf addr */
  1179. hal_rxdma_buff_addr_info_set(soc->hal_soc, ent_ring_desc, paddr,
  1180. buf_info.sw_cookie,
  1181. HAL_RX_BUF_RBM_WBM_CHIP0_IDLE_DESC_LIST);
  1182. /* mpdu desc info */
  1183. ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
  1184. ent_ring_desc);
  1185. dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
  1186. dst_ring_desc);
  1187. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  1188. sizeof(struct rx_mpdu_desc_info));
  1189. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  1190. mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
  1191. seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
  1192. hal_mpdu_desc_info_set(soc->hal_soc, ent_mpdu_desc_info, seq_no);
  1193. /* qdesc addr */
  1194. ent_qdesc_addr = (uint8_t *)ent_ring_desc +
  1195. REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  1196. dst_qdesc_addr = (uint8_t *)dst_ring_desc +
  1197. REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  1198. qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
  1199. HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
  1200. REO_DESTINATION_INDICATION, dst_ind);
  1201. hal_srng_access_end(soc->hal_soc, hal_srng);
  1202. DP_STATS_INC(soc, rx.reo_reinject, 1);
  1203. dp_debug("reinjection done !");
  1204. return QDF_STATUS_SUCCESS;
  1205. }
  1206. #endif
  1207. /*
  1208. * dp_rx_defrag_gcmp_demic(): Remove MIC information from GCMP fragment
  1209. * @soc: Datapath soc structure
  1210. * @nbuf: Pointer to the fragment buffer
  1211. * @hdrlen: 802.11 header length
  1212. *
  1213. * Remove MIC information from GCMP fragment
  1214. *
  1215. * Returns: QDF_STATUS
  1216. */
  1217. static QDF_STATUS dp_rx_defrag_gcmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1218. uint16_t hdrlen)
  1219. {
  1220. uint8_t *ivp, *orig_hdr;
  1221. int rx_desc_len = soc->rx_pkt_tlv_size;
  1222. /* start of the 802.11 header */
  1223. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  1224. /*
  1225. * GCMP header is located after 802.11 header and EXTIV
  1226. * field should always be set to 1 for GCMP protocol.
  1227. */
  1228. ivp = orig_hdr + hdrlen;
  1229. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  1230. return QDF_STATUS_E_DEFRAG_ERROR;
  1231. qdf_nbuf_trim_tail(nbuf, dp_f_gcmp.ic_trailer);
  1232. return QDF_STATUS_SUCCESS;
  1233. }
  1234. /*
  1235. * dp_rx_defrag(): Defragment the fragment chain
  1236. * @peer: Pointer to the peer
  1237. * @tid: Transmit Identifier
  1238. * @frag_list_head: Pointer to head list
  1239. * @frag_list_tail: Pointer to tail list
  1240. *
  1241. * Defragment the fragment chain
  1242. *
  1243. * Returns: QDF_STATUS
  1244. */
  1245. static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
  1246. qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
  1247. {
  1248. qdf_nbuf_t tmp_next, prev;
  1249. qdf_nbuf_t cur = frag_list_head, msdu;
  1250. uint32_t index, tkip_demic = 0;
  1251. uint16_t hdr_space;
  1252. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  1253. struct dp_vdev *vdev = peer->vdev;
  1254. struct dp_soc *soc = vdev->pdev->soc;
  1255. uint8_t status = 0;
  1256. hdr_space = dp_rx_defrag_hdrsize(soc, cur);
  1257. index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, cur) ?
  1258. dp_sec_mcast : dp_sec_ucast;
  1259. /* Remove FCS from all fragments */
  1260. while (cur) {
  1261. tmp_next = qdf_nbuf_next(cur);
  1262. qdf_nbuf_set_next(cur, NULL);
  1263. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  1264. prev = cur;
  1265. qdf_nbuf_set_next(cur, tmp_next);
  1266. cur = tmp_next;
  1267. }
  1268. cur = frag_list_head;
  1269. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1270. "%s: index %d Security type: %d", __func__,
  1271. index, peer->security[index].sec_type);
  1272. switch (peer->security[index].sec_type) {
  1273. case cdp_sec_type_tkip:
  1274. tkip_demic = 1;
  1275. case cdp_sec_type_tkip_nomic:
  1276. while (cur) {
  1277. tmp_next = qdf_nbuf_next(cur);
  1278. if (dp_rx_defrag_tkip_decap(soc, cur, hdr_space)) {
  1279. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1280. QDF_TRACE_LEVEL_ERROR,
  1281. "dp_rx_defrag: TKIP decap failed");
  1282. return QDF_STATUS_E_DEFRAG_ERROR;
  1283. }
  1284. cur = tmp_next;
  1285. }
  1286. /* If success, increment header to be stripped later */
  1287. hdr_space += dp_f_tkip.ic_header;
  1288. break;
  1289. case cdp_sec_type_aes_ccmp:
  1290. while (cur) {
  1291. tmp_next = qdf_nbuf_next(cur);
  1292. if (dp_rx_defrag_ccmp_demic(soc, cur, hdr_space)) {
  1293. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1294. QDF_TRACE_LEVEL_ERROR,
  1295. "dp_rx_defrag: CCMP demic failed");
  1296. return QDF_STATUS_E_DEFRAG_ERROR;
  1297. }
  1298. if (dp_rx_defrag_ccmp_decap(soc, cur, hdr_space)) {
  1299. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1300. QDF_TRACE_LEVEL_ERROR,
  1301. "dp_rx_defrag: CCMP decap failed");
  1302. return QDF_STATUS_E_DEFRAG_ERROR;
  1303. }
  1304. cur = tmp_next;
  1305. }
  1306. /* If success, increment header to be stripped later */
  1307. hdr_space += dp_f_ccmp.ic_header;
  1308. break;
  1309. case cdp_sec_type_wep40:
  1310. case cdp_sec_type_wep104:
  1311. case cdp_sec_type_wep128:
  1312. while (cur) {
  1313. tmp_next = qdf_nbuf_next(cur);
  1314. if (dp_rx_defrag_wep_decap(soc, cur, hdr_space)) {
  1315. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1316. QDF_TRACE_LEVEL_ERROR,
  1317. "dp_rx_defrag: WEP decap failed");
  1318. return QDF_STATUS_E_DEFRAG_ERROR;
  1319. }
  1320. cur = tmp_next;
  1321. }
  1322. /* If success, increment header to be stripped later */
  1323. hdr_space += dp_f_wep.ic_header;
  1324. break;
  1325. case cdp_sec_type_aes_gcmp:
  1326. case cdp_sec_type_aes_gcmp_256:
  1327. while (cur) {
  1328. tmp_next = qdf_nbuf_next(cur);
  1329. if (dp_rx_defrag_gcmp_demic(soc, cur, hdr_space)) {
  1330. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1331. QDF_TRACE_LEVEL_ERROR,
  1332. "dp_rx_defrag: GCMP demic failed");
  1333. return QDF_STATUS_E_DEFRAG_ERROR;
  1334. }
  1335. cur = tmp_next;
  1336. }
  1337. hdr_space += dp_f_gcmp.ic_header;
  1338. break;
  1339. default:
  1340. break;
  1341. }
  1342. if (tkip_demic) {
  1343. msdu = frag_list_head;
  1344. qdf_mem_copy(key,
  1345. &peer->security[index].michael_key[0],
  1346. IEEE80211_WEP_MICLEN);
  1347. status = dp_rx_defrag_tkip_demic(soc, key, msdu,
  1348. soc->rx_pkt_tlv_size +
  1349. hdr_space);
  1350. if (status) {
  1351. dp_rx_defrag_err(vdev, frag_list_head);
  1352. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1353. QDF_TRACE_LEVEL_ERROR,
  1354. "%s: TKIP demic failed status %d",
  1355. __func__, status);
  1356. return QDF_STATUS_E_DEFRAG_ERROR;
  1357. }
  1358. }
  1359. /* Convert the header to 802.3 header */
  1360. dp_rx_defrag_nwifi_to_8023(soc, peer, tid, frag_list_head, hdr_space);
  1361. if (qdf_nbuf_next(frag_list_head)) {
  1362. if (dp_rx_construct_fraglist(peer, tid, frag_list_head, hdr_space))
  1363. return QDF_STATUS_E_DEFRAG_ERROR;
  1364. }
  1365. return QDF_STATUS_SUCCESS;
  1366. }
  1367. /*
  1368. * dp_rx_defrag_cleanup(): Clean up activities
  1369. * @peer: Pointer to the peer
  1370. * @tid: Transmit Identifier
  1371. *
  1372. * Returns: None
  1373. */
  1374. void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
  1375. {
  1376. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1377. peer->rx_tid[tid].array;
  1378. if (rx_reorder_array_elem) {
  1379. /* Free up nbufs */
  1380. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1381. rx_reorder_array_elem->head = NULL;
  1382. rx_reorder_array_elem->tail = NULL;
  1383. } else {
  1384. dp_info("Cleanup self peer %pK and TID %u at MAC address "QDF_MAC_ADDR_FMT,
  1385. peer, tid, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  1386. }
  1387. /* Free up saved ring descriptors */
  1388. dp_rx_clear_saved_desc_info(peer, tid);
  1389. peer->rx_tid[tid].defrag_timeout_ms = 0;
  1390. peer->rx_tid[tid].curr_frag_num = 0;
  1391. peer->rx_tid[tid].curr_seq_num = 0;
  1392. }
  1393. /*
  1394. * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
  1395. * @ring_desc: Pointer to the dst ring descriptor
  1396. * @peer: Pointer to the peer
  1397. * @tid: Transmit Identifier
  1398. *
  1399. * Returns: None
  1400. */
  1401. static QDF_STATUS
  1402. dp_rx_defrag_save_info_from_ring_desc(hal_ring_desc_t ring_desc,
  1403. struct dp_rx_desc *rx_desc,
  1404. struct dp_peer *peer,
  1405. unsigned int tid)
  1406. {
  1407. void *dst_ring_desc = qdf_mem_malloc(
  1408. sizeof(struct reo_destination_ring));
  1409. if (!dst_ring_desc) {
  1410. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1411. "%s: Memory alloc failed !", __func__);
  1412. QDF_ASSERT(0);
  1413. return QDF_STATUS_E_NOMEM;
  1414. }
  1415. qdf_mem_copy(dst_ring_desc, ring_desc,
  1416. sizeof(struct reo_destination_ring));
  1417. peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1418. peer->rx_tid[tid].head_frag_desc = rx_desc;
  1419. return QDF_STATUS_SUCCESS;
  1420. }
  1421. /*
  1422. * dp_rx_defrag_store_fragment(): Store incoming fragments
  1423. * @soc: Pointer to the SOC data structure
  1424. * @ring_desc: Pointer to the ring descriptor
  1425. * @mpdu_desc_info: MPDU descriptor info
  1426. * @tid: Traffic Identifier
  1427. * @rx_desc: Pointer to rx descriptor
  1428. * @rx_bfs: Number of bfs consumed
  1429. *
  1430. * Returns: QDF_STATUS
  1431. */
  1432. static QDF_STATUS
  1433. dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1434. hal_ring_desc_t ring_desc,
  1435. union dp_rx_desc_list_elem_t **head,
  1436. union dp_rx_desc_list_elem_t **tail,
  1437. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1438. unsigned int tid, struct dp_rx_desc *rx_desc,
  1439. uint32_t *rx_bfs)
  1440. {
  1441. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1442. struct dp_pdev *pdev;
  1443. struct dp_peer *peer = NULL;
  1444. uint16_t peer_id;
  1445. uint8_t fragno, more_frag, all_frag_present = 0;
  1446. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1447. QDF_STATUS status;
  1448. struct dp_rx_tid *rx_tid;
  1449. uint8_t mpdu_sequence_control_valid;
  1450. uint8_t mpdu_frame_control_valid;
  1451. qdf_nbuf_t frag = rx_desc->nbuf;
  1452. uint32_t msdu_len;
  1453. if (qdf_nbuf_len(frag) > 0) {
  1454. dp_info("Dropping unexpected packet with skb_len: %d,"
  1455. "data len: %d, cookie: %d",
  1456. (uint32_t)qdf_nbuf_len(frag), frag->data_len,
  1457. rx_desc->cookie);
  1458. DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
  1459. goto discard_frag;
  1460. }
  1461. if (dp_rx_buffer_pool_refill(soc, frag, rx_desc->pool_id)) {
  1462. /* fragment queued back to the pool, free the link desc */
  1463. goto err_free_desc;
  1464. }
  1465. msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
  1466. rx_desc->rx_buf_start);
  1467. qdf_nbuf_set_pktlen(frag, (msdu_len + soc->rx_pkt_tlv_size));
  1468. qdf_nbuf_append_ext_list(frag, NULL, 0);
  1469. /* Check if the packet is from a valid peer */
  1470. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1471. mpdu_desc_info->peer_meta_data);
  1472. peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_RX_ERR);
  1473. if (!peer) {
  1474. /* We should not receive anything from unknown peer
  1475. * however, that might happen while we are in the monitor mode.
  1476. * We don't need to handle that here
  1477. */
  1478. dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
  1479. peer_id);
  1480. DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
  1481. goto discard_frag;
  1482. }
  1483. if (tid >= DP_MAX_TIDS) {
  1484. dp_info("TID out of bounds: %d", tid);
  1485. qdf_assert_always(0);
  1486. goto discard_frag;
  1487. }
  1488. pdev = peer->vdev->pdev;
  1489. rx_tid = &peer->rx_tid[tid];
  1490. mpdu_sequence_control_valid =
  1491. hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
  1492. rx_desc->rx_buf_start);
  1493. /* Invalid MPDU sequence control field, MPDU is of no use */
  1494. if (!mpdu_sequence_control_valid) {
  1495. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1496. "Invalid MPDU seq control field, dropping MPDU");
  1497. qdf_assert(0);
  1498. goto discard_frag;
  1499. }
  1500. mpdu_frame_control_valid =
  1501. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  1502. rx_desc->rx_buf_start);
  1503. /* Invalid frame control field */
  1504. if (!mpdu_frame_control_valid) {
  1505. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1506. "Invalid frame control field, dropping MPDU");
  1507. qdf_assert(0);
  1508. goto discard_frag;
  1509. }
  1510. /* Current mpdu sequence */
  1511. more_frag = dp_rx_frag_get_more_frag_bit(soc, rx_desc->rx_buf_start);
  1512. /* HW does not populate the fragment number as of now
  1513. * need to get from the 802.11 header
  1514. */
  1515. fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc->rx_buf_start);
  1516. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1517. if (!rx_reorder_array_elem) {
  1518. dp_err_rl("Rcvd Fragmented pkt before tid setup for peer %pK",
  1519. peer);
  1520. goto discard_frag;
  1521. }
  1522. /*
  1523. * !more_frag: no more fragments to be delivered
  1524. * !frag_no: packet is not fragmented
  1525. * !rx_reorder_array_elem->head: no saved fragments so far
  1526. */
  1527. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1528. /* We should not get into this situation here.
  1529. * It means an unfragmented packet with fragment flag
  1530. * is delivered over the REO exception ring.
  1531. * Typically it follows normal rx path.
  1532. */
  1533. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1534. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1535. qdf_assert(0);
  1536. goto discard_frag;
  1537. }
  1538. /* Check if the fragment is for the same sequence or a different one */
  1539. dp_debug("rx_tid %d", tid);
  1540. if (rx_reorder_array_elem->head) {
  1541. dp_debug("rxseq %d\n", rxseq);
  1542. if (rxseq != rx_tid->curr_seq_num) {
  1543. dp_debug("mismatch cur_seq %d rxseq %d\n",
  1544. rx_tid->curr_seq_num, rxseq);
  1545. /* Drop stored fragments if out of sequence
  1546. * fragment is received
  1547. */
  1548. dp_rx_reorder_flush_frag(peer, tid);
  1549. DP_STATS_INC(soc, rx.rx_frag_oor, 1);
  1550. dp_debug("cur rxseq %d\n", rxseq);
  1551. /*
  1552. * The sequence number for this fragment becomes the
  1553. * new sequence number to be processed
  1554. */
  1555. rx_tid->curr_seq_num = rxseq;
  1556. }
  1557. } else {
  1558. dp_debug("cur rxseq %d\n", rxseq);
  1559. /* Start of a new sequence */
  1560. dp_rx_defrag_cleanup(peer, tid);
  1561. rx_tid->curr_seq_num = rxseq;
  1562. /* store PN number also */
  1563. }
  1564. /*
  1565. * If the earlier sequence was dropped, this will be the fresh start.
  1566. * Else, continue with next fragment in a given sequence
  1567. */
  1568. status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
  1569. &rx_reorder_array_elem->tail, frag,
  1570. &all_frag_present);
  1571. /*
  1572. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1573. * packet sequence has more than 6 MSDUs for some reason, we will
  1574. * have to use the next MSDU link descriptor and chain them together
  1575. * before reinjection.
  1576. * ring_desc is validated in dp_rx_err_process.
  1577. */
  1578. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1579. (rx_reorder_array_elem->head == frag)) {
  1580. status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
  1581. rx_desc, peer, tid);
  1582. if (status != QDF_STATUS_SUCCESS) {
  1583. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1584. "%s: Unable to store ring desc !", __func__);
  1585. goto discard_frag;
  1586. }
  1587. } else {
  1588. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1589. (*rx_bfs)++;
  1590. /* Return the non-head link desc */
  1591. if (dp_rx_link_desc_return(soc, ring_desc,
  1592. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1593. QDF_STATUS_SUCCESS)
  1594. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1595. "%s: Failed to return link desc", __func__);
  1596. }
  1597. if (pdev->soc->rx.flags.defrag_timeout_check)
  1598. dp_rx_defrag_waitlist_remove(peer, tid);
  1599. /* Yet to receive more fragments for this sequence number */
  1600. if (!all_frag_present) {
  1601. uint32_t now_ms =
  1602. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1603. peer->rx_tid[tid].defrag_timeout_ms =
  1604. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1605. dp_rx_defrag_waitlist_add(peer, tid);
  1606. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1607. return QDF_STATUS_SUCCESS;
  1608. }
  1609. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1610. "All fragments received for sequence: %d", rxseq);
  1611. /* Process the fragments */
  1612. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1613. rx_reorder_array_elem->tail);
  1614. if (QDF_IS_STATUS_ERROR(status)) {
  1615. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1616. "Fragment processing failed");
  1617. dp_rx_add_to_free_desc_list(head, tail,
  1618. peer->rx_tid[tid].head_frag_desc);
  1619. (*rx_bfs)++;
  1620. if (dp_rx_link_desc_return(soc,
  1621. peer->rx_tid[tid].dst_ring_desc,
  1622. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1623. QDF_STATUS_SUCCESS)
  1624. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1625. "%s: Failed to return link desc",
  1626. __func__);
  1627. dp_rx_defrag_cleanup(peer, tid);
  1628. goto end;
  1629. }
  1630. /* Re-inject the fragments back to REO for further processing */
  1631. status = dp_rx_defrag_reo_reinject(peer, tid,
  1632. rx_reorder_array_elem->head);
  1633. if (QDF_IS_STATUS_SUCCESS(status)) {
  1634. rx_reorder_array_elem->head = NULL;
  1635. rx_reorder_array_elem->tail = NULL;
  1636. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1637. "Fragmented sequence successfully reinjected");
  1638. } else {
  1639. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1640. "Fragmented sequence reinjection failed");
  1641. dp_rx_return_head_frag_desc(peer, tid);
  1642. }
  1643. dp_rx_defrag_cleanup(peer, tid);
  1644. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1645. return QDF_STATUS_SUCCESS;
  1646. discard_frag:
  1647. qdf_nbuf_free(frag);
  1648. err_free_desc:
  1649. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1650. if (dp_rx_link_desc_return(soc, ring_desc,
  1651. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1652. QDF_STATUS_SUCCESS)
  1653. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1654. "%s: Failed to return link desc", __func__);
  1655. (*rx_bfs)++;
  1656. end:
  1657. if (peer)
  1658. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1659. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1660. return QDF_STATUS_E_DEFRAG_ERROR;
  1661. }
  1662. /**
  1663. * dp_rx_frag_handle() - Handles fragmented Rx frames
  1664. *
  1665. * @soc: core txrx main context
  1666. * @ring_desc: opaque pointer to the REO error ring descriptor
  1667. * @mpdu_desc_info: MPDU descriptor information from ring descriptor
  1668. * @head: head of the local descriptor free-list
  1669. * @tail: tail of the local descriptor free-list
  1670. * @quota: No. of units (packets) that can be serviced in one shot.
  1671. *
  1672. * This function implements RX 802.11 fragmentation handling
  1673. * The handling is mostly same as legacy fragmentation handling.
  1674. * If required, this function can re-inject the frames back to
  1675. * REO ring (with proper setting to by-pass fragmentation check
  1676. * but use duplicate detection / re-ordering and routing these frames
  1677. * to a different core.
  1678. *
  1679. * Return: uint32_t: No. of elements processed
  1680. */
  1681. uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
  1682. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1683. struct dp_rx_desc *rx_desc,
  1684. uint8_t *mac_id,
  1685. uint32_t quota)
  1686. {
  1687. uint32_t rx_bufs_used = 0;
  1688. qdf_nbuf_t msdu = NULL;
  1689. uint32_t tid;
  1690. uint32_t rx_bfs = 0;
  1691. struct dp_pdev *pdev;
  1692. QDF_STATUS status = QDF_STATUS_SUCCESS;
  1693. struct rx_desc_pool *rx_desc_pool;
  1694. qdf_assert(soc);
  1695. qdf_assert(mpdu_desc_info);
  1696. qdf_assert(rx_desc);
  1697. dp_debug("Number of MSDUs to process, num_msdus: %d",
  1698. mpdu_desc_info->msdu_count);
  1699. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1700. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1701. "Not sufficient MSDUs to process");
  1702. return rx_bufs_used;
  1703. }
  1704. /* all buffers in MSDU link belong to same pdev */
  1705. pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id);
  1706. if (!pdev) {
  1707. dp_nofl_debug("pdev is null for pool_id = %d",
  1708. rx_desc->pool_id);
  1709. return rx_bufs_used;
  1710. }
  1711. *mac_id = rx_desc->pool_id;
  1712. msdu = rx_desc->nbuf;
  1713. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  1714. if (rx_desc->unmapped)
  1715. return rx_bufs_used;
  1716. dp_ipa_rx_buf_smmu_mapping_lock(soc);
  1717. dp_ipa_handle_rx_buf_smmu_mapping(soc, rx_desc->nbuf,
  1718. rx_desc_pool->buf_size,
  1719. false);
  1720. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  1721. QDF_DMA_FROM_DEVICE,
  1722. rx_desc_pool->buf_size);
  1723. rx_desc->unmapped = 1;
  1724. dp_ipa_rx_buf_smmu_mapping_unlock(soc);
  1725. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1726. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
  1727. /* Process fragment-by-fragment */
  1728. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1729. &pdev->free_list_head,
  1730. &pdev->free_list_tail,
  1731. mpdu_desc_info,
  1732. tid, rx_desc, &rx_bfs);
  1733. if (rx_bfs)
  1734. rx_bufs_used += rx_bfs;
  1735. if (!QDF_IS_STATUS_SUCCESS(status))
  1736. dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1737. mpdu_desc_info->mpdu_seq,
  1738. mpdu_desc_info->msdu_count,
  1739. mpdu_desc_info->mpdu_flags);
  1740. return rx_bufs_used;
  1741. }
  1742. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1743. struct dp_peer *peer, uint16_t tid,
  1744. uint16_t rxseq, qdf_nbuf_t nbuf)
  1745. {
  1746. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1747. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1748. uint8_t all_frag_present;
  1749. uint32_t msdu_len;
  1750. QDF_STATUS status;
  1751. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1752. /*
  1753. * HW may fill in unexpected peer_id in RX PKT TLV,
  1754. * if this peer_id related peer is valid by coincidence,
  1755. * but actually this peer won't do dp_peer_rx_init(like SAP vdev
  1756. * self peer), then invalid access to rx_reorder_array_elem happened.
  1757. */
  1758. if (!rx_reorder_array_elem) {
  1759. dp_verbose_debug(
  1760. "peer id:%d mac: "QDF_MAC_ADDR_FMT" drop rx frame!",
  1761. peer->peer_id,
  1762. QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  1763. DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
  1764. qdf_nbuf_free(nbuf);
  1765. goto fail;
  1766. }
  1767. if (rx_reorder_array_elem->head &&
  1768. rxseq != rx_tid->curr_seq_num) {
  1769. /* Drop stored fragments if out of sequence
  1770. * fragment is received
  1771. */
  1772. dp_rx_reorder_flush_frag(peer, tid);
  1773. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1774. "%s: No list found for TID %d Seq# %d",
  1775. __func__, tid, rxseq);
  1776. qdf_nbuf_free(nbuf);
  1777. goto fail;
  1778. }
  1779. msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
  1780. qdf_nbuf_data(nbuf));
  1781. qdf_nbuf_set_pktlen(nbuf, (msdu_len + soc->rx_pkt_tlv_size));
  1782. status = dp_rx_defrag_fraglist_insert(peer, tid,
  1783. &rx_reorder_array_elem->head,
  1784. &rx_reorder_array_elem->tail, nbuf,
  1785. &all_frag_present);
  1786. if (QDF_IS_STATUS_ERROR(status)) {
  1787. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1788. "%s Fragment insert failed", __func__);
  1789. goto fail;
  1790. }
  1791. if (soc->rx.flags.defrag_timeout_check)
  1792. dp_rx_defrag_waitlist_remove(peer, tid);
  1793. if (!all_frag_present) {
  1794. uint32_t now_ms =
  1795. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1796. peer->rx_tid[tid].defrag_timeout_ms =
  1797. now_ms + soc->rx.defrag.timeout_ms;
  1798. dp_rx_defrag_waitlist_add(peer, tid);
  1799. return QDF_STATUS_SUCCESS;
  1800. }
  1801. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1802. rx_reorder_array_elem->tail);
  1803. if (QDF_IS_STATUS_ERROR(status)) {
  1804. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1805. "%s Fragment processing failed", __func__);
  1806. dp_rx_return_head_frag_desc(peer, tid);
  1807. dp_rx_defrag_cleanup(peer, tid);
  1808. goto fail;
  1809. }
  1810. /* Re-inject the fragments back to REO for further processing */
  1811. status = dp_rx_defrag_reo_reinject(peer, tid,
  1812. rx_reorder_array_elem->head);
  1813. if (QDF_IS_STATUS_SUCCESS(status)) {
  1814. rx_reorder_array_elem->head = NULL;
  1815. rx_reorder_array_elem->tail = NULL;
  1816. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1817. "%s: Frag seq successfully reinjected",
  1818. __func__);
  1819. } else {
  1820. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1821. "%s: Frag seq reinjection failed", __func__);
  1822. dp_rx_return_head_frag_desc(peer, tid);
  1823. }
  1824. dp_rx_defrag_cleanup(peer, tid);
  1825. return QDF_STATUS_SUCCESS;
  1826. fail:
  1827. return QDF_STATUS_E_DEFRAG_ERROR;
  1828. }