dp_rx.c 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_tx.h"
  22. #include "dp_peer.h"
  23. #include "hal_rx.h"
  24. #include "hal_api.h"
  25. #include "qdf_nbuf.h"
  26. #ifdef MESH_MODE_SUPPORT
  27. #include "if_meta_hdr.h"
  28. #endif
  29. #include "dp_internal.h"
  30. #include "dp_rx_mon.h"
  31. #include "dp_ipa.h"
  32. #ifdef FEATURE_WDS
  33. #include "dp_txrx_wds.h"
  34. #endif
  35. #include "dp_hist.h"
  36. #include "dp_rx_buffer_pool.h"
  37. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  38. #ifdef DP_RX_DISABLE_NDI_MDNS_FORWARDING
  39. static inline
  40. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  41. {
  42. if (ta_peer->vdev->opmode == wlan_op_mode_ndi &&
  43. qdf_nbuf_is_ipv6_mdns_pkt(nbuf)) {
  44. DP_STATS_INC(ta_peer, rx.intra_bss.mdns_no_fwd, 1);
  45. return false;
  46. }
  47. return true;
  48. }
  49. #else
  50. static inline
  51. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  52. {
  53. return true;
  54. }
  55. #endif
  56. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  57. #ifdef DUP_RX_DESC_WAR
  58. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  59. hal_ring_handle_t hal_ring,
  60. hal_ring_desc_t ring_desc,
  61. struct dp_rx_desc *rx_desc)
  62. {
  63. void *hal_soc = soc->hal_soc;
  64. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  65. dp_rx_desc_dump(rx_desc);
  66. }
  67. #else
  68. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  69. hal_ring_handle_t hal_ring_hdl,
  70. hal_ring_desc_t ring_desc,
  71. struct dp_rx_desc *rx_desc)
  72. {
  73. hal_soc_handle_t hal_soc = soc->hal_soc;
  74. dp_rx_desc_dump(rx_desc);
  75. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  76. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  77. qdf_assert_always(0);
  78. }
  79. #endif
  80. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  81. #ifdef RX_DESC_SANITY_WAR
  82. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  83. hal_ring_handle_t hal_ring_hdl,
  84. hal_ring_desc_t ring_desc,
  85. struct dp_rx_desc *rx_desc)
  86. {
  87. uint8_t return_buffer_manager;
  88. if (qdf_unlikely(!rx_desc)) {
  89. /*
  90. * This is an unlikely case where the cookie obtained
  91. * from the ring_desc is invalid and hence we are not
  92. * able to find the corresponding rx_desc
  93. */
  94. goto fail;
  95. }
  96. return_buffer_manager = hal_rx_ret_buf_manager_get(hal_soc, ring_desc);
  97. if (qdf_unlikely(!(return_buffer_manager ==
  98. HAL_RX_BUF_RBM_SW1_BM(soc->wbm_sw0_bm_id) ||
  99. return_buffer_manager ==
  100. HAL_RX_BUF_RBM_SW3_BM(soc->wbm_sw0_bm_id)))) {
  101. goto fail;
  102. }
  103. return QDF_STATUS_SUCCESS;
  104. fail:
  105. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  106. dp_err("Ring Desc:");
  107. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  108. ring_desc);
  109. return QDF_STATUS_E_NULL_VALUE;
  110. }
  111. #endif
  112. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  113. /**
  114. * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
  115. *
  116. * @dp_soc: struct dp_soc *
  117. * @nbuf_frag_info_t: nbuf frag info
  118. * @dp_pdev: struct dp_pdev *
  119. * @rx_desc_pool: Rx desc pool
  120. *
  121. * Return: QDF_STATUS
  122. */
  123. #ifdef DP_RX_MON_MEM_FRAG
  124. static inline QDF_STATUS
  125. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  126. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  127. struct dp_pdev *dp_pdev,
  128. struct rx_desc_pool *rx_desc_pool)
  129. {
  130. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  131. (nbuf_frag_info_t->virt_addr).vaddr =
  132. qdf_frag_alloc(rx_desc_pool->buf_size);
  133. if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
  134. dp_err("Frag alloc failed");
  135. DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
  136. return QDF_STATUS_E_NOMEM;
  137. }
  138. ret = qdf_mem_map_page(dp_soc->osdev,
  139. (nbuf_frag_info_t->virt_addr).vaddr,
  140. QDF_DMA_FROM_DEVICE,
  141. rx_desc_pool->buf_size,
  142. &nbuf_frag_info_t->paddr);
  143. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  144. qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
  145. dp_err("Frag map failed");
  146. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  147. return QDF_STATUS_E_FAULT;
  148. }
  149. return QDF_STATUS_SUCCESS;
  150. }
  151. #else
  152. static inline QDF_STATUS
  153. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  154. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  155. struct dp_pdev *dp_pdev,
  156. struct rx_desc_pool *rx_desc_pool)
  157. {
  158. return QDF_STATUS_SUCCESS;
  159. }
  160. #endif /* DP_RX_MON_MEM_FRAG */
  161. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  162. /**
  163. * dp_rx_refill_ring_record_entry() - Record an entry into refill_ring history
  164. * @soc: Datapath soc structure
  165. * @ring_num: Refill ring number
  166. * @num_req: number of buffers requested for refill
  167. * @num_refill: number of buffers refilled
  168. *
  169. * Returns: None
  170. */
  171. static inline void
  172. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  173. hal_ring_handle_t hal_ring_hdl,
  174. uint32_t num_req, uint32_t num_refill)
  175. {
  176. struct dp_refill_info_record *record;
  177. uint32_t idx;
  178. uint32_t tp;
  179. uint32_t hp;
  180. if (qdf_unlikely(ring_num >= MAX_PDEV_CNT ||
  181. !soc->rx_refill_ring_history[ring_num]))
  182. return;
  183. idx = dp_history_get_next_index(&soc->rx_refill_ring_history[ring_num]->index,
  184. DP_RX_REFILL_HIST_MAX);
  185. /* No NULL check needed for record since its an array */
  186. record = &soc->rx_refill_ring_history[ring_num]->entry[idx];
  187. hal_get_sw_hptp(soc->hal_soc, hal_ring_hdl, &tp, &hp);
  188. record->timestamp = qdf_get_log_timestamp();
  189. record->num_req = num_req;
  190. record->num_refill = num_refill;
  191. record->hp = hp;
  192. record->tp = tp;
  193. }
  194. #else
  195. static inline void
  196. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  197. hal_ring_handle_t hal_ring_hdl,
  198. uint32_t num_req, uint32_t num_refill)
  199. {
  200. }
  201. #endif
  202. /**
  203. * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
  204. *
  205. * @dp_soc: struct dp_soc *
  206. * @mac_id: Mac id
  207. * @num_entries_avail: num_entries_avail
  208. * @nbuf_frag_info_t: nbuf frag info
  209. * @dp_pdev: struct dp_pdev *
  210. * @rx_desc_pool: Rx desc pool
  211. *
  212. * Return: QDF_STATUS
  213. */
  214. static inline QDF_STATUS
  215. dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
  216. uint32_t mac_id,
  217. uint32_t num_entries_avail,
  218. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  219. struct dp_pdev *dp_pdev,
  220. struct rx_desc_pool *rx_desc_pool)
  221. {
  222. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  223. (nbuf_frag_info_t->virt_addr).nbuf =
  224. dp_rx_buffer_pool_nbuf_alloc(dp_soc,
  225. mac_id,
  226. rx_desc_pool,
  227. num_entries_avail);
  228. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  229. dp_err("nbuf alloc failed");
  230. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  231. return QDF_STATUS_E_NOMEM;
  232. }
  233. ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
  234. nbuf_frag_info_t);
  235. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  236. dp_rx_buffer_pool_nbuf_free(dp_soc,
  237. (nbuf_frag_info_t->virt_addr).nbuf, mac_id);
  238. dp_err("nbuf map failed");
  239. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  240. return QDF_STATUS_E_FAULT;
  241. }
  242. nbuf_frag_info_t->paddr =
  243. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  244. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc,
  245. (qdf_nbuf_t)((nbuf_frag_info_t->virt_addr).nbuf),
  246. rx_desc_pool->buf_size,
  247. true);
  248. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  249. &nbuf_frag_info_t->paddr,
  250. rx_desc_pool);
  251. if (ret == QDF_STATUS_E_FAILURE) {
  252. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  253. return QDF_STATUS_E_ADDRNOTAVAIL;
  254. }
  255. return QDF_STATUS_SUCCESS;
  256. }
  257. /*
  258. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  259. * called during dp rx initialization
  260. * and at the end of dp_rx_process.
  261. *
  262. * @soc: core txrx main context
  263. * @mac_id: mac_id which is one of 3 mac_ids
  264. * @dp_rxdma_srng: dp rxdma circular ring
  265. * @rx_desc_pool: Pointer to free Rx descriptor pool
  266. * @num_req_buffers: number of buffer to be replenished
  267. * @desc_list: list of descs if called from dp_rx_process
  268. * or NULL during dp rx initialization or out of buffer
  269. * interrupt.
  270. * @tail: tail of descs list
  271. * @func_name: name of the caller function
  272. * Return: return success or failure
  273. */
  274. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  275. struct dp_srng *dp_rxdma_srng,
  276. struct rx_desc_pool *rx_desc_pool,
  277. uint32_t num_req_buffers,
  278. union dp_rx_desc_list_elem_t **desc_list,
  279. union dp_rx_desc_list_elem_t **tail,
  280. const char *func_name)
  281. {
  282. uint32_t num_alloc_desc;
  283. uint16_t num_desc_to_free = 0;
  284. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  285. uint32_t num_entries_avail;
  286. uint32_t count;
  287. int sync_hw_ptr = 1;
  288. struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
  289. void *rxdma_ring_entry;
  290. union dp_rx_desc_list_elem_t *next;
  291. QDF_STATUS ret;
  292. void *rxdma_srng;
  293. rxdma_srng = dp_rxdma_srng->hal_srng;
  294. if (qdf_unlikely(!dp_pdev)) {
  295. dp_rx_err("%pK: pdev is null for mac_id = %d",
  296. dp_soc, mac_id);
  297. return QDF_STATUS_E_FAILURE;
  298. }
  299. if (qdf_unlikely(!rxdma_srng)) {
  300. dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
  301. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  302. return QDF_STATUS_E_FAILURE;
  303. }
  304. dp_rx_debug("%pK: requested %d buffers for replenish",
  305. dp_soc, num_req_buffers);
  306. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  307. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  308. rxdma_srng,
  309. sync_hw_ptr);
  310. dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
  311. dp_soc, num_entries_avail);
  312. if (!(*desc_list) && (num_entries_avail >
  313. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  314. num_req_buffers = num_entries_avail;
  315. } else if (num_entries_avail < num_req_buffers) {
  316. num_desc_to_free = num_req_buffers - num_entries_avail;
  317. num_req_buffers = num_entries_avail;
  318. }
  319. if (qdf_unlikely(!num_req_buffers)) {
  320. num_desc_to_free = num_req_buffers;
  321. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  322. goto free_descs;
  323. }
  324. /*
  325. * if desc_list is NULL, allocate the descs from freelist
  326. */
  327. if (!(*desc_list)) {
  328. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  329. rx_desc_pool,
  330. num_req_buffers,
  331. desc_list,
  332. tail);
  333. if (!num_alloc_desc) {
  334. dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
  335. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  336. num_req_buffers);
  337. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  338. return QDF_STATUS_E_NOMEM;
  339. }
  340. dp_rx_debug("%pK: %d rx desc allocated", dp_soc, num_alloc_desc);
  341. num_req_buffers = num_alloc_desc;
  342. }
  343. count = 0;
  344. while (count < num_req_buffers) {
  345. /* Flag is set while pdev rx_desc_pool initialization */
  346. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  347. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  348. &nbuf_frag_info,
  349. dp_pdev,
  350. rx_desc_pool);
  351. else
  352. ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
  353. mac_id,
  354. num_entries_avail, &nbuf_frag_info,
  355. dp_pdev, rx_desc_pool);
  356. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  357. if (qdf_unlikely(ret == QDF_STATUS_E_FAULT))
  358. continue;
  359. break;
  360. }
  361. count++;
  362. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  363. rxdma_srng);
  364. qdf_assert_always(rxdma_ring_entry);
  365. next = (*desc_list)->next;
  366. /* Flag is set while pdev rx_desc_pool initialization */
  367. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  368. dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
  369. &nbuf_frag_info);
  370. else
  371. dp_rx_desc_prep(&((*desc_list)->rx_desc),
  372. &nbuf_frag_info);
  373. /* rx_desc.in_use should be zero at this time*/
  374. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  375. (*desc_list)->rx_desc.in_use = 1;
  376. (*desc_list)->rx_desc.in_err_state = 0;
  377. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  378. func_name, RX_DESC_REPLENISHED);
  379. dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
  380. nbuf_frag_info.virt_addr.nbuf,
  381. (unsigned long long)(nbuf_frag_info.paddr),
  382. (*desc_list)->rx_desc.cookie);
  383. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc, rxdma_ring_entry,
  384. nbuf_frag_info.paddr,
  385. (*desc_list)->rx_desc.cookie,
  386. rx_desc_pool->owner);
  387. *desc_list = next;
  388. }
  389. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id, rxdma_srng,
  390. num_req_buffers, count);
  391. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  392. dp_rx_schedule_refill_thread(dp_soc);
  393. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  394. count, num_desc_to_free);
  395. /* No need to count the number of bytes received during replenish.
  396. * Therefore set replenish.pkts.bytes as 0.
  397. */
  398. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  399. free_descs:
  400. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  401. /*
  402. * add any available free desc back to the free list
  403. */
  404. if (*desc_list)
  405. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  406. mac_id, rx_desc_pool);
  407. return QDF_STATUS_SUCCESS;
  408. }
  409. /*
  410. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  411. * pkts to RAW mode simulation to
  412. * decapsulate the pkt.
  413. *
  414. * @vdev: vdev on which RAW mode is enabled
  415. * @nbuf_list: list of RAW pkts to process
  416. * @peer: peer object from which the pkt is rx
  417. *
  418. * Return: void
  419. */
  420. void
  421. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  422. struct dp_peer *peer)
  423. {
  424. qdf_nbuf_t deliver_list_head = NULL;
  425. qdf_nbuf_t deliver_list_tail = NULL;
  426. qdf_nbuf_t nbuf;
  427. nbuf = nbuf_list;
  428. while (nbuf) {
  429. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  430. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  431. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  432. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  433. /*
  434. * reset the chfrag_start and chfrag_end bits in nbuf cb
  435. * as this is a non-amsdu pkt and RAW mode simulation expects
  436. * these bit s to be 0 for non-amsdu pkt.
  437. */
  438. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  439. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  440. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  441. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  442. }
  443. nbuf = next;
  444. }
  445. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  446. &deliver_list_tail, peer->mac_addr.raw);
  447. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  448. }
  449. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  450. #ifndef FEATURE_WDS
  451. void dp_rx_da_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr,
  452. struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  453. {
  454. }
  455. #endif
  456. /*
  457. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  458. *
  459. * @soc: core txrx main context
  460. * @ta_peer : source peer entry
  461. * @rx_tlv_hdr : start address of rx tlvs
  462. * @nbuf : nbuf that has to be intrabss forwarded
  463. *
  464. * Return: bool: true if it is forwarded else false
  465. */
  466. bool
  467. dp_rx_intrabss_fwd(struct dp_soc *soc,
  468. struct dp_peer *ta_peer,
  469. uint8_t *rx_tlv_hdr,
  470. qdf_nbuf_t nbuf,
  471. struct hal_rx_msdu_metadata msdu_metadata)
  472. {
  473. uint16_t len;
  474. uint8_t is_frag;
  475. uint16_t da_peer_id = HTT_INVALID_PEER;
  476. struct dp_peer *da_peer = NULL;
  477. bool is_da_bss_peer = false;
  478. struct dp_ast_entry *ast_entry;
  479. qdf_nbuf_t nbuf_copy;
  480. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  481. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  482. struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats.
  483. tid_stats.tid_rx_stats[ring_id][tid];
  484. /* check if the destination peer is available in peer table
  485. * and also check if the source peer and destination peer
  486. * belong to the same vap and destination peer is not bss peer.
  487. */
  488. if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
  489. ast_entry = soc->ast_table[msdu_metadata.da_idx];
  490. if (!ast_entry)
  491. return false;
  492. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  493. ast_entry->is_active = TRUE;
  494. return false;
  495. }
  496. da_peer_id = ast_entry->peer_id;
  497. if (da_peer_id == HTT_INVALID_PEER)
  498. return false;
  499. /* TA peer cannot be same as peer(DA) on which AST is present
  500. * this indicates a change in topology and that AST entries
  501. * are yet to be updated.
  502. */
  503. if (da_peer_id == ta_peer->peer_id)
  504. return false;
  505. if (ast_entry->vdev_id != ta_peer->vdev->vdev_id)
  506. return false;
  507. da_peer = dp_peer_get_ref_by_id(soc, da_peer_id,
  508. DP_MOD_ID_RX);
  509. if (!da_peer)
  510. return false;
  511. is_da_bss_peer = da_peer->bss_peer;
  512. dp_peer_unref_delete(da_peer, DP_MOD_ID_RX);
  513. if (!is_da_bss_peer) {
  514. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  515. is_frag = qdf_nbuf_is_frag(nbuf);
  516. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  517. /* If the source or destination peer in the isolation
  518. * list then dont forward instead push to bridge stack.
  519. */
  520. if (dp_get_peer_isolation(ta_peer) ||
  521. dp_get_peer_isolation(da_peer))
  522. return false;
  523. /* linearize the nbuf just before we send to
  524. * dp_tx_send()
  525. */
  526. if (qdf_unlikely(is_frag)) {
  527. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  528. return false;
  529. nbuf = qdf_nbuf_unshare(nbuf);
  530. if (!nbuf) {
  531. DP_STATS_INC_PKT(ta_peer,
  532. rx.intra_bss.fail,
  533. 1,
  534. len);
  535. /* return true even though the pkt is
  536. * not forwarded. Basically skb_unshare
  537. * failed and we want to continue with
  538. * next nbuf.
  539. */
  540. tid_stats->fail_cnt[INTRABSS_DROP]++;
  541. return true;
  542. }
  543. }
  544. if (!dp_tx_send((struct cdp_soc_t *)soc,
  545. ta_peer->vdev->vdev_id, nbuf)) {
  546. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  547. len);
  548. return true;
  549. } else {
  550. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  551. len);
  552. tid_stats->fail_cnt[INTRABSS_DROP]++;
  553. return false;
  554. }
  555. }
  556. }
  557. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  558. * source, then clone the pkt and send the cloned pkt for
  559. * intra BSS forwarding and original pkt up the network stack
  560. * Note: how do we handle multicast pkts. do we forward
  561. * all multicast pkts as is or let a higher layer module
  562. * like igmpsnoop decide whether to forward or not with
  563. * Mcast enhancement.
  564. */
  565. else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
  566. !ta_peer->bss_peer))) {
  567. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  568. goto end;
  569. /* If the source peer in the isolation list
  570. * then dont forward instead push to bridge stack
  571. */
  572. if (dp_get_peer_isolation(ta_peer))
  573. goto end;
  574. nbuf_copy = qdf_nbuf_copy(nbuf);
  575. if (!nbuf_copy)
  576. goto end;
  577. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  578. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  579. /* Set cb->ftype to intrabss FWD */
  580. qdf_nbuf_set_tx_ftype(nbuf_copy, CB_FTYPE_INTRABSS_FWD);
  581. if (dp_tx_send((struct cdp_soc_t *)soc,
  582. ta_peer->vdev->vdev_id, nbuf_copy)) {
  583. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  584. tid_stats->fail_cnt[INTRABSS_DROP]++;
  585. qdf_nbuf_free(nbuf_copy);
  586. } else {
  587. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  588. tid_stats->intrabss_cnt++;
  589. }
  590. }
  591. end:
  592. /* return false as we have to still send the original pkt
  593. * up the stack
  594. */
  595. return false;
  596. }
  597. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  598. #ifdef MESH_MODE_SUPPORT
  599. /**
  600. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  601. *
  602. * @vdev: DP Virtual device handle
  603. * @nbuf: Buffer pointer
  604. * @rx_tlv_hdr: start of rx tlv header
  605. * @peer: pointer to peer
  606. *
  607. * This function allocated memory for mesh receive stats and fill the
  608. * required stats. Stores the memory address in skb cb.
  609. *
  610. * Return: void
  611. */
  612. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  613. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  614. {
  615. struct mesh_recv_hdr_s *rx_info = NULL;
  616. uint32_t pkt_type;
  617. uint32_t nss;
  618. uint32_t rate_mcs;
  619. uint32_t bw;
  620. uint8_t primary_chan_num;
  621. uint32_t center_chan_freq;
  622. struct dp_soc *soc = vdev->pdev->soc;
  623. /* fill recv mesh stats */
  624. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  625. /* upper layers are resposible to free this memory */
  626. if (!rx_info) {
  627. dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
  628. vdev->pdev->soc);
  629. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  630. return;
  631. }
  632. rx_info->rs_flags = MESH_RXHDR_VER1;
  633. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  634. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  635. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  636. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  637. if (hal_rx_tlv_get_is_decrypted(soc->hal_soc, rx_tlv_hdr)) {
  638. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  639. rx_info->rs_keyix = hal_rx_msdu_get_keyid(soc->hal_soc,
  640. rx_tlv_hdr);
  641. if (vdev->osif_get_key)
  642. vdev->osif_get_key(vdev->osif_vdev,
  643. &rx_info->rs_decryptkey[0],
  644. &peer->mac_addr.raw[0],
  645. rx_info->rs_keyix);
  646. }
  647. rx_info->rs_snr = peer->stats.rx.snr;
  648. rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
  649. soc = vdev->pdev->soc;
  650. primary_chan_num = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr);
  651. center_chan_freq = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr) >> 16;
  652. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  653. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  654. soc->ctrl_psoc,
  655. vdev->pdev->pdev_id,
  656. center_chan_freq);
  657. }
  658. rx_info->rs_channel = primary_chan_num;
  659. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  660. rate_mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  661. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  662. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  663. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  664. (bw << 24);
  665. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  666. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  667. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
  668. rx_info->rs_flags,
  669. rx_info->rs_rssi,
  670. rx_info->rs_channel,
  671. rx_info->rs_ratephy1,
  672. rx_info->rs_keyix,
  673. rx_info->rs_snr);
  674. }
  675. /**
  676. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  677. *
  678. * @vdev: DP Virtual device handle
  679. * @nbuf: Buffer pointer
  680. * @rx_tlv_hdr: start of rx tlv header
  681. *
  682. * This checks if the received packet is matching any filter out
  683. * catogery and and drop the packet if it matches.
  684. *
  685. * Return: status(0 indicates drop, 1 indicate to no drop)
  686. */
  687. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  688. uint8_t *rx_tlv_hdr)
  689. {
  690. union dp_align_mac_addr mac_addr;
  691. struct dp_soc *soc = vdev->pdev->soc;
  692. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  693. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  694. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  695. rx_tlv_hdr))
  696. return QDF_STATUS_SUCCESS;
  697. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  698. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  699. rx_tlv_hdr))
  700. return QDF_STATUS_SUCCESS;
  701. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  702. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  703. rx_tlv_hdr) &&
  704. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  705. rx_tlv_hdr))
  706. return QDF_STATUS_SUCCESS;
  707. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  708. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  709. rx_tlv_hdr,
  710. &mac_addr.raw[0]))
  711. return QDF_STATUS_E_FAILURE;
  712. if (!qdf_mem_cmp(&mac_addr.raw[0],
  713. &vdev->mac_addr.raw[0],
  714. QDF_MAC_ADDR_SIZE))
  715. return QDF_STATUS_SUCCESS;
  716. }
  717. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  718. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  719. rx_tlv_hdr,
  720. &mac_addr.raw[0]))
  721. return QDF_STATUS_E_FAILURE;
  722. if (!qdf_mem_cmp(&mac_addr.raw[0],
  723. &vdev->mac_addr.raw[0],
  724. QDF_MAC_ADDR_SIZE))
  725. return QDF_STATUS_SUCCESS;
  726. }
  727. }
  728. return QDF_STATUS_E_FAILURE;
  729. }
  730. #else
  731. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  732. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  733. {
  734. }
  735. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  736. uint8_t *rx_tlv_hdr)
  737. {
  738. return QDF_STATUS_E_FAILURE;
  739. }
  740. #endif
  741. #ifdef FEATURE_NAC_RSSI
  742. /**
  743. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  744. * clients
  745. * @pdev: DP pdev handle
  746. * @rx_pkt_hdr: Rx packet Header
  747. *
  748. * return: dp_vdev*
  749. */
  750. static
  751. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  752. uint8_t *rx_pkt_hdr)
  753. {
  754. struct ieee80211_frame *wh;
  755. struct dp_neighbour_peer *peer = NULL;
  756. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  757. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  758. return NULL;
  759. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  760. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  761. neighbour_peer_list_elem) {
  762. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  763. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  764. dp_rx_debug("%pK: NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x",
  765. pdev->soc,
  766. peer->neighbour_peers_macaddr.raw[0],
  767. peer->neighbour_peers_macaddr.raw[1],
  768. peer->neighbour_peers_macaddr.raw[2],
  769. peer->neighbour_peers_macaddr.raw[3],
  770. peer->neighbour_peers_macaddr.raw[4],
  771. peer->neighbour_peers_macaddr.raw[5]);
  772. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  773. return pdev->monitor_vdev;
  774. }
  775. }
  776. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  777. return NULL;
  778. }
  779. /**
  780. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  781. * @soc: DP SOC handle
  782. * @mpdu: mpdu for which peer is invalid
  783. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  784. * pool_id has same mapping)
  785. *
  786. * return: integer type
  787. */
  788. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  789. uint8_t mac_id)
  790. {
  791. struct dp_invalid_peer_msg msg;
  792. struct dp_vdev *vdev = NULL;
  793. struct dp_pdev *pdev = NULL;
  794. struct ieee80211_frame *wh;
  795. qdf_nbuf_t curr_nbuf, next_nbuf;
  796. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  797. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
  798. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  799. dp_rx_debug("%pK: Drop decapped frames", soc);
  800. goto free;
  801. }
  802. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  803. if (!DP_FRAME_IS_DATA(wh)) {
  804. dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
  805. goto free;
  806. }
  807. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  808. dp_rx_err("%pK: Invalid nbuf length", soc);
  809. goto free;
  810. }
  811. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  812. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  813. dp_rx_err("%pK: PDEV %s", soc, !pdev ? "not found" : "down");
  814. goto free;
  815. }
  816. if (pdev->filter_neighbour_peers) {
  817. /* Next Hop scenario not yet handle */
  818. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  819. if (vdev) {
  820. dp_rx_mon_deliver(soc, pdev->pdev_id,
  821. pdev->invalid_peer_head_msdu,
  822. pdev->invalid_peer_tail_msdu);
  823. pdev->invalid_peer_head_msdu = NULL;
  824. pdev->invalid_peer_tail_msdu = NULL;
  825. return 0;
  826. }
  827. }
  828. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  829. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  830. QDF_MAC_ADDR_SIZE) == 0) {
  831. goto out;
  832. }
  833. }
  834. if (!vdev) {
  835. dp_rx_err("%pK: VDEV not found", soc);
  836. goto free;
  837. }
  838. out:
  839. msg.wh = wh;
  840. qdf_nbuf_pull_head(mpdu, soc->rx_pkt_tlv_size);
  841. msg.nbuf = mpdu;
  842. msg.vdev_id = vdev->vdev_id;
  843. /*
  844. * NOTE: Only valid for HKv1.
  845. * If smart monitor mode is enabled on RE, we are getting invalid
  846. * peer frames with RA as STA mac of RE and the TA not matching
  847. * with any NAC list or the the BSSID.Such frames need to dropped
  848. * in order to avoid HM_WDS false addition.
  849. */
  850. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
  851. if (!soc->hw_nac_monitor_support &&
  852. pdev->filter_neighbour_peers &&
  853. vdev->opmode == wlan_op_mode_sta) {
  854. dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
  855. soc, wh->i_addr1);
  856. goto free;
  857. }
  858. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  859. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  860. pdev->pdev_id, &msg);
  861. }
  862. free:
  863. /* Drop and free packet */
  864. curr_nbuf = mpdu;
  865. while (curr_nbuf) {
  866. next_nbuf = qdf_nbuf_next(curr_nbuf);
  867. qdf_nbuf_free(curr_nbuf);
  868. curr_nbuf = next_nbuf;
  869. }
  870. return 0;
  871. }
  872. /**
  873. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  874. * @soc: DP SOC handle
  875. * @mpdu: mpdu for which peer is invalid
  876. * @mpdu_done: if an mpdu is completed
  877. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  878. * pool_id has same mapping)
  879. *
  880. * return: integer type
  881. */
  882. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  883. qdf_nbuf_t mpdu, bool mpdu_done,
  884. uint8_t mac_id)
  885. {
  886. /* Only trigger the process when mpdu is completed */
  887. if (mpdu_done)
  888. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  889. }
  890. #else
  891. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  892. uint8_t mac_id)
  893. {
  894. qdf_nbuf_t curr_nbuf, next_nbuf;
  895. struct dp_pdev *pdev;
  896. struct dp_vdev *vdev = NULL;
  897. struct ieee80211_frame *wh;
  898. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  899. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
  900. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  901. if (!DP_FRAME_IS_DATA(wh)) {
  902. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  903. "only for data frames");
  904. goto free;
  905. }
  906. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  907. dp_rx_info_rl("%pK: Invalid nbuf length", soc);
  908. goto free;
  909. }
  910. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  911. if (!pdev) {
  912. dp_rx_info_rl("%pK: PDEV not found", soc);
  913. goto free;
  914. }
  915. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  916. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  917. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  918. QDF_MAC_ADDR_SIZE) == 0) {
  919. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  920. goto out;
  921. }
  922. }
  923. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  924. if (!vdev) {
  925. dp_rx_info_rl("%pK: VDEV not found", soc);
  926. goto free;
  927. }
  928. out:
  929. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  930. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  931. free:
  932. /* reset the head and tail pointers */
  933. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  934. if (pdev) {
  935. pdev->invalid_peer_head_msdu = NULL;
  936. pdev->invalid_peer_tail_msdu = NULL;
  937. }
  938. /* Drop and free packet */
  939. curr_nbuf = mpdu;
  940. while (curr_nbuf) {
  941. next_nbuf = qdf_nbuf_next(curr_nbuf);
  942. qdf_nbuf_free(curr_nbuf);
  943. curr_nbuf = next_nbuf;
  944. }
  945. /* Reset the head and tail pointers */
  946. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  947. if (pdev) {
  948. pdev->invalid_peer_head_msdu = NULL;
  949. pdev->invalid_peer_tail_msdu = NULL;
  950. }
  951. return 0;
  952. }
  953. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  954. qdf_nbuf_t mpdu, bool mpdu_done,
  955. uint8_t mac_id)
  956. {
  957. /* Process the nbuf */
  958. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  959. }
  960. #endif
  961. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  962. #ifdef RECEIVE_OFFLOAD
  963. /**
  964. * dp_rx_print_offload_info() - Print offload info from RX TLV
  965. * @soc: dp soc handle
  966. * @msdu: MSDU for which the offload info is to be printed
  967. *
  968. * Return: None
  969. */
  970. static void dp_rx_print_offload_info(struct dp_soc *soc,
  971. qdf_nbuf_t msdu)
  972. {
  973. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  974. dp_verbose_debug("lro_eligible 0x%x",
  975. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu));
  976. dp_verbose_debug("pure_ack 0x%x", QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu));
  977. dp_verbose_debug("chksum 0x%x", QDF_NBUF_CB_RX_TCP_CHKSUM(msdu));
  978. dp_verbose_debug("TCP seq num 0x%x", QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu));
  979. dp_verbose_debug("TCP ack num 0x%x", QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu));
  980. dp_verbose_debug("TCP window 0x%x", QDF_NBUF_CB_RX_TCP_WIN(msdu));
  981. dp_verbose_debug("TCP protocol 0x%x", QDF_NBUF_CB_RX_TCP_PROTO(msdu));
  982. dp_verbose_debug("TCP offset 0x%x", QDF_NBUF_CB_RX_TCP_OFFSET(msdu));
  983. dp_verbose_debug("toeplitz 0x%x", QDF_NBUF_CB_RX_FLOW_ID(msdu));
  984. dp_verbose_debug("---------------------------------------------------------");
  985. }
  986. /**
  987. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  988. * @soc: DP SOC handle
  989. * @rx_tlv: RX TLV received for the msdu
  990. * @msdu: msdu for which GRO info needs to be filled
  991. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  992. *
  993. * Return: None
  994. */
  995. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  996. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  997. {
  998. struct hal_offload_info offload_info;
  999. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  1000. return;
  1001. if (hal_rx_tlv_get_offload_info(soc->hal_soc, rx_tlv, &offload_info))
  1002. return;
  1003. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  1004. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = offload_info.lro_eligible;
  1005. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) = offload_info.tcp_pure_ack;
  1006. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  1007. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  1008. rx_tlv);
  1009. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) = offload_info.tcp_seq_num;
  1010. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) = offload_info.tcp_ack_num;
  1011. QDF_NBUF_CB_RX_TCP_WIN(msdu) = offload_info.tcp_win;
  1012. QDF_NBUF_CB_RX_TCP_PROTO(msdu) = offload_info.tcp_proto;
  1013. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) = offload_info.ipv6_proto;
  1014. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) = offload_info.tcp_offset;
  1015. QDF_NBUF_CB_RX_FLOW_ID(msdu) = offload_info.flow_id;
  1016. dp_rx_print_offload_info(soc, msdu);
  1017. }
  1018. #endif /* RECEIVE_OFFLOAD */
  1019. /**
  1020. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  1021. *
  1022. * @soc: DP soc handle
  1023. * @nbuf: pointer to msdu.
  1024. * @mpdu_len: mpdu length
  1025. *
  1026. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  1027. */
  1028. static inline bool dp_rx_adjust_nbuf_len(struct dp_soc *soc,
  1029. qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  1030. {
  1031. bool last_nbuf;
  1032. if (*mpdu_len > (RX_DATA_BUFFER_SIZE - soc->rx_pkt_tlv_size)) {
  1033. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  1034. last_nbuf = false;
  1035. } else {
  1036. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + soc->rx_pkt_tlv_size));
  1037. last_nbuf = true;
  1038. }
  1039. *mpdu_len -= (RX_DATA_BUFFER_SIZE - soc->rx_pkt_tlv_size);
  1040. return last_nbuf;
  1041. }
  1042. /**
  1043. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  1044. * multiple nbufs.
  1045. * @soc: DP SOC handle
  1046. * @nbuf: pointer to the first msdu of an amsdu.
  1047. *
  1048. * This function implements the creation of RX frag_list for cases
  1049. * where an MSDU is spread across multiple nbufs.
  1050. *
  1051. * Return: returns the head nbuf which contains complete frag_list.
  1052. */
  1053. qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1054. {
  1055. qdf_nbuf_t parent, frag_list, next = NULL;
  1056. uint16_t frag_list_len = 0;
  1057. uint16_t mpdu_len;
  1058. bool last_nbuf;
  1059. /*
  1060. * Use msdu len got from REO entry descriptor instead since
  1061. * there is case the RX PKT TLV is corrupted while msdu_len
  1062. * from REO descriptor is right for non-raw RX scatter msdu.
  1063. */
  1064. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1065. /*
  1066. * this is a case where the complete msdu fits in one single nbuf.
  1067. * in this case HW sets both start and end bit and we only need to
  1068. * reset these bits for RAW mode simulator to decap the pkt
  1069. */
  1070. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  1071. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  1072. qdf_nbuf_set_pktlen(nbuf, mpdu_len + soc->rx_pkt_tlv_size);
  1073. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size);
  1074. return nbuf;
  1075. }
  1076. /*
  1077. * This is a case where we have multiple msdus (A-MSDU) spread across
  1078. * multiple nbufs. here we create a fraglist out of these nbufs.
  1079. *
  1080. * the moment we encounter a nbuf with continuation bit set we
  1081. * know for sure we have an MSDU which is spread across multiple
  1082. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  1083. */
  1084. parent = nbuf;
  1085. frag_list = nbuf->next;
  1086. nbuf = nbuf->next;
  1087. /*
  1088. * set the start bit in the first nbuf we encounter with continuation
  1089. * bit set. This has the proper mpdu length set as it is the first
  1090. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  1091. * nbufs will form the frag_list of the parent nbuf.
  1092. */
  1093. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1094. last_nbuf = dp_rx_adjust_nbuf_len(soc, parent, &mpdu_len);
  1095. /*
  1096. * HW issue: MSDU cont bit is set but reported MPDU length can fit
  1097. * in to single buffer
  1098. *
  1099. * Increment error stats and avoid SG list creation
  1100. */
  1101. if (last_nbuf) {
  1102. DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
  1103. qdf_nbuf_pull_head(parent, soc->rx_pkt_tlv_size);
  1104. return parent;
  1105. }
  1106. /*
  1107. * this is where we set the length of the fragments which are
  1108. * associated to the parent nbuf. We iterate through the frag_list
  1109. * till we hit the last_nbuf of the list.
  1110. */
  1111. do {
  1112. last_nbuf = dp_rx_adjust_nbuf_len(soc, nbuf, &mpdu_len);
  1113. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size);
  1114. frag_list_len += qdf_nbuf_len(nbuf);
  1115. if (last_nbuf) {
  1116. next = nbuf->next;
  1117. nbuf->next = NULL;
  1118. break;
  1119. }
  1120. nbuf = nbuf->next;
  1121. } while (!last_nbuf);
  1122. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1123. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1124. parent->next = next;
  1125. qdf_nbuf_pull_head(parent, soc->rx_pkt_tlv_size);
  1126. return parent;
  1127. }
  1128. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1129. #ifdef QCA_PEER_EXT_STATS
  1130. /*
  1131. * dp_rx_compute_tid_delay - Computer per TID delay stats
  1132. * @peer: DP soc context
  1133. * @nbuf: NBuffer
  1134. *
  1135. * Return: Void
  1136. */
  1137. void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  1138. qdf_nbuf_t nbuf)
  1139. {
  1140. struct cdp_delay_rx_stats *rx_delay = &stats->rx_delay;
  1141. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1142. dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
  1143. }
  1144. #endif /* QCA_PEER_EXT_STATS */
  1145. /**
  1146. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1147. * to pass in correct fields
  1148. *
  1149. * @vdev: pdev handle
  1150. * @tx_desc: tx descriptor
  1151. * @tid: tid value
  1152. * Return: none
  1153. */
  1154. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1155. {
  1156. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1157. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1158. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1159. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1160. uint32_t interframe_delay =
  1161. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1162. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  1163. CDP_DELAY_STATS_REAP_STACK, ring_id);
  1164. /*
  1165. * Update interframe delay stats calculated at deliver_data_ol point.
  1166. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1167. * interframe delay will not be calculate correctly for 1st frame.
  1168. * On the other side, this will help in avoiding extra per packet check
  1169. * of vdev->prev_rx_deliver_tstamp.
  1170. */
  1171. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  1172. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  1173. vdev->prev_rx_deliver_tstamp = current_ts;
  1174. }
  1175. /**
  1176. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1177. * @pdev: dp pdev reference
  1178. * @buf_list: buffer list to be dropepd
  1179. *
  1180. * Return: int (number of bufs dropped)
  1181. */
  1182. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1183. qdf_nbuf_t buf_list)
  1184. {
  1185. struct cdp_tid_rx_stats *stats = NULL;
  1186. uint8_t tid = 0, ring_id = 0;
  1187. int num_dropped = 0;
  1188. qdf_nbuf_t buf, next_buf;
  1189. buf = buf_list;
  1190. while (buf) {
  1191. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1192. next_buf = qdf_nbuf_queue_next(buf);
  1193. tid = qdf_nbuf_get_tid_val(buf);
  1194. if (qdf_likely(pdev)) {
  1195. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1196. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1197. stats->delivered_to_stack--;
  1198. }
  1199. qdf_nbuf_free(buf);
  1200. buf = next_buf;
  1201. num_dropped++;
  1202. }
  1203. return num_dropped;
  1204. }
  1205. #ifdef QCA_SUPPORT_WDS_EXTENDED
  1206. /**
  1207. * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
  1208. * @soc: core txrx main context
  1209. * @vdev: vdev
  1210. * @peer: peer
  1211. * @nbuf_head: skb list head
  1212. *
  1213. * Return: true if packet is delivered to netdev per STA.
  1214. */
  1215. static inline bool
  1216. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1217. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1218. {
  1219. /*
  1220. * When extended WDS is disabled, frames are sent to AP netdevice.
  1221. */
  1222. if (qdf_likely(!vdev->wds_ext_enabled))
  1223. return false;
  1224. /*
  1225. * There can be 2 cases:
  1226. * 1. Send frame to parent netdev if its not for netdev per STA
  1227. * 2. If frame is meant for netdev per STA:
  1228. * a. Send frame to appropriate netdev using registered fp.
  1229. * b. If fp is NULL, drop the frames.
  1230. */
  1231. if (!peer->wds_ext.init)
  1232. return false;
  1233. if (peer->osif_rx)
  1234. peer->osif_rx(peer->wds_ext.osif_peer, nbuf_head);
  1235. else
  1236. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1237. return true;
  1238. }
  1239. #else
  1240. static inline bool
  1241. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1242. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1243. {
  1244. return false;
  1245. }
  1246. #endif
  1247. #ifdef PEER_CACHE_RX_PKTS
  1248. /**
  1249. * dp_rx_flush_rx_cached() - flush cached rx frames
  1250. * @peer: peer
  1251. * @drop: flag to drop frames or forward to net stack
  1252. *
  1253. * Return: None
  1254. */
  1255. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1256. {
  1257. struct dp_peer_cached_bufq *bufqi;
  1258. struct dp_rx_cached_buf *cache_buf = NULL;
  1259. ol_txrx_rx_fp data_rx = NULL;
  1260. int num_buff_elem;
  1261. QDF_STATUS status;
  1262. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1263. qdf_atomic_dec(&peer->flush_in_progress);
  1264. return;
  1265. }
  1266. qdf_spin_lock_bh(&peer->peer_info_lock);
  1267. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1268. data_rx = peer->vdev->osif_rx;
  1269. else
  1270. drop = true;
  1271. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1272. bufqi = &peer->bufq_info;
  1273. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1274. qdf_list_remove_front(&bufqi->cached_bufq,
  1275. (qdf_list_node_t **)&cache_buf);
  1276. while (cache_buf) {
  1277. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1278. cache_buf->buf);
  1279. bufqi->entries -= num_buff_elem;
  1280. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1281. if (drop) {
  1282. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1283. cache_buf->buf);
  1284. } else {
  1285. /* Flush the cached frames to OSIF DEV */
  1286. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1287. if (status != QDF_STATUS_SUCCESS)
  1288. bufqi->dropped = dp_rx_drop_nbuf_list(
  1289. peer->vdev->pdev,
  1290. cache_buf->buf);
  1291. }
  1292. qdf_mem_free(cache_buf);
  1293. cache_buf = NULL;
  1294. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1295. qdf_list_remove_front(&bufqi->cached_bufq,
  1296. (qdf_list_node_t **)&cache_buf);
  1297. }
  1298. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1299. qdf_atomic_dec(&peer->flush_in_progress);
  1300. }
  1301. /**
  1302. * dp_rx_enqueue_rx() - cache rx frames
  1303. * @peer: peer
  1304. * @rx_buf_list: cache buffer list
  1305. *
  1306. * Return: None
  1307. */
  1308. static QDF_STATUS
  1309. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1310. {
  1311. struct dp_rx_cached_buf *cache_buf;
  1312. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1313. int num_buff_elem;
  1314. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1315. bufqi->dropped);
  1316. if (!peer->valid) {
  1317. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1318. rx_buf_list);
  1319. return QDF_STATUS_E_INVAL;
  1320. }
  1321. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1322. if (bufqi->entries >= bufqi->thresh) {
  1323. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1324. rx_buf_list);
  1325. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1326. return QDF_STATUS_E_RESOURCES;
  1327. }
  1328. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1329. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1330. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1331. if (!cache_buf) {
  1332. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1333. "Failed to allocate buf to cache rx frames");
  1334. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1335. rx_buf_list);
  1336. return QDF_STATUS_E_NOMEM;
  1337. }
  1338. cache_buf->buf = rx_buf_list;
  1339. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1340. qdf_list_insert_back(&bufqi->cached_bufq,
  1341. &cache_buf->node);
  1342. bufqi->entries += num_buff_elem;
  1343. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1344. return QDF_STATUS_SUCCESS;
  1345. }
  1346. static inline
  1347. bool dp_rx_is_peer_cache_bufq_supported(void)
  1348. {
  1349. return true;
  1350. }
  1351. #else
  1352. static inline
  1353. bool dp_rx_is_peer_cache_bufq_supported(void)
  1354. {
  1355. return false;
  1356. }
  1357. static inline QDF_STATUS
  1358. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1359. {
  1360. return QDF_STATUS_SUCCESS;
  1361. }
  1362. #endif
  1363. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1364. /**
  1365. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1366. * using the appropriate call back functions.
  1367. * @soc: soc
  1368. * @vdev: vdev
  1369. * @peer: peer
  1370. * @nbuf_head: skb list head
  1371. * @nbuf_tail: skb list tail
  1372. *
  1373. * Return: None
  1374. */
  1375. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1376. struct dp_vdev *vdev,
  1377. struct dp_peer *peer,
  1378. qdf_nbuf_t nbuf_head)
  1379. {
  1380. if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
  1381. peer, nbuf_head)))
  1382. return;
  1383. /* Function pointer initialized only when FISA is enabled */
  1384. if (vdev->osif_fisa_rx)
  1385. /* on failure send it via regular path */
  1386. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1387. else
  1388. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1389. }
  1390. #else
  1391. /**
  1392. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1393. * using the appropriate call back functions.
  1394. * @soc: soc
  1395. * @vdev: vdev
  1396. * @peer: peer
  1397. * @nbuf_head: skb list head
  1398. * @nbuf_tail: skb list tail
  1399. *
  1400. * Check the return status of the call back function and drop
  1401. * the packets if the return status indicates a failure.
  1402. *
  1403. * Return: None
  1404. */
  1405. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1406. struct dp_vdev *vdev,
  1407. struct dp_peer *peer,
  1408. qdf_nbuf_t nbuf_head)
  1409. {
  1410. int num_nbuf = 0;
  1411. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1412. /* Function pointer initialized only when FISA is enabled */
  1413. if (vdev->osif_fisa_rx)
  1414. /* on failure send it via regular path */
  1415. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1416. else if (vdev->osif_rx)
  1417. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1418. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1419. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1420. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1421. if (peer)
  1422. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1423. }
  1424. }
  1425. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1426. void dp_rx_deliver_to_stack(struct dp_soc *soc,
  1427. struct dp_vdev *vdev,
  1428. struct dp_peer *peer,
  1429. qdf_nbuf_t nbuf_head,
  1430. qdf_nbuf_t nbuf_tail)
  1431. {
  1432. int num_nbuf = 0;
  1433. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1434. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1435. /*
  1436. * This is a special case where vdev is invalid,
  1437. * so we cannot know the pdev to which this packet
  1438. * belonged. Hence we update the soc rx error stats.
  1439. */
  1440. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1441. return;
  1442. }
  1443. /*
  1444. * highly unlikely to have a vdev without a registered rx
  1445. * callback function. if so let us free the nbuf_list.
  1446. */
  1447. if (qdf_unlikely(!vdev->osif_rx)) {
  1448. if (peer && dp_rx_is_peer_cache_bufq_supported()) {
  1449. dp_rx_enqueue_rx(peer, nbuf_head);
  1450. } else {
  1451. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1452. nbuf_head);
  1453. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1454. }
  1455. return;
  1456. }
  1457. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1458. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1459. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1460. &nbuf_tail, peer->mac_addr.raw);
  1461. }
  1462. dp_rx_check_delivery_to_stack(soc, vdev, peer, nbuf_head);
  1463. }
  1464. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1465. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1466. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer) \
  1467. { \
  1468. qdf_nbuf_t nbuf_local; \
  1469. struct dp_peer *peer_local; \
  1470. struct dp_vdev *vdev_local = vdev_hdl; \
  1471. do { \
  1472. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1473. break; \
  1474. nbuf_local = nbuf; \
  1475. peer_local = peer; \
  1476. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1477. break; \
  1478. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1479. break; \
  1480. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1481. (nbuf_local), \
  1482. (peer_local), 0, 1); \
  1483. } while (0); \
  1484. }
  1485. #else
  1486. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer)
  1487. #endif
  1488. /**
  1489. * dp_rx_msdu_stats_update() - update per msdu stats.
  1490. * @soc: core txrx main context
  1491. * @nbuf: pointer to the first msdu of an amsdu.
  1492. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1493. * @peer: pointer to the peer object.
  1494. * @ring_id: reo dest ring number on which pkt is reaped.
  1495. * @tid_stats: per tid rx stats.
  1496. *
  1497. * update all the per msdu stats for that nbuf.
  1498. * Return: void
  1499. */
  1500. void dp_rx_msdu_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1501. uint8_t *rx_tlv_hdr, struct dp_peer *peer,
  1502. uint8_t ring_id,
  1503. struct cdp_tid_rx_stats *tid_stats)
  1504. {
  1505. bool is_ampdu, is_not_amsdu;
  1506. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1507. struct dp_vdev *vdev = peer->vdev;
  1508. qdf_ether_header_t *eh;
  1509. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1510. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, peer);
  1511. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1512. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1513. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1514. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1515. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1516. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1517. tid_stats->msdu_cnt++;
  1518. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1519. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1520. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1521. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1522. tid_stats->mcast_msdu_cnt++;
  1523. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1524. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1525. tid_stats->bcast_msdu_cnt++;
  1526. }
  1527. }
  1528. /*
  1529. * currently we can return from here as we have similar stats
  1530. * updated at per ppdu level instead of msdu level
  1531. */
  1532. if (!soc->process_rx_status)
  1533. return;
  1534. /*
  1535. * TODO - For WCN7850 this field is present in ring_desc
  1536. * Try to use ring desc instead of tlv.
  1537. */
  1538. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(soc->hal_soc, rx_tlv_hdr);
  1539. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1540. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1541. sgi = hal_rx_tlv_sgi_get(soc->hal_soc, rx_tlv_hdr);
  1542. mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  1543. tid = qdf_nbuf_get_tid_val(nbuf);
  1544. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  1545. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1546. rx_tlv_hdr);
  1547. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1548. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  1549. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[mcs], 1,
  1550. ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1551. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
  1552. ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1553. DP_STATS_INC(peer, rx.bw[bw], 1);
  1554. /*
  1555. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1556. * then increase index [nss - 1] in array counter.
  1557. */
  1558. if (nss > 0 && (pkt_type == DOT11_N ||
  1559. pkt_type == DOT11_AC ||
  1560. pkt_type == DOT11_AX))
  1561. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1562. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1563. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1564. hal_rx_tlv_mic_err_get(soc->hal_soc, rx_tlv_hdr));
  1565. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1566. hal_rx_tlv_decrypt_err_get(soc->hal_soc, rx_tlv_hdr));
  1567. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1568. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1569. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1570. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1571. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1572. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1573. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1574. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1575. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1576. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1577. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1578. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1579. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1580. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1581. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1582. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1583. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1584. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1585. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1586. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1587. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1588. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1589. if ((soc->process_rx_status) &&
  1590. hal_rx_tlv_first_mpdu_get(soc->hal_soc, rx_tlv_hdr)) {
  1591. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1592. if (!vdev->pdev)
  1593. return;
  1594. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1595. &peer->stats, peer->peer_id,
  1596. UPDATE_PEER_STATS,
  1597. vdev->pdev->pdev_id);
  1598. #endif
  1599. }
  1600. }
  1601. #ifndef WDS_VENDOR_EXTENSION
  1602. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1603. struct dp_vdev *vdev,
  1604. struct dp_peer *peer)
  1605. {
  1606. return 1;
  1607. }
  1608. #endif
  1609. #ifdef RX_DESC_DEBUG_CHECK
  1610. /**
  1611. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1612. * corruption
  1613. *
  1614. * @ring_desc: REO ring descriptor
  1615. * @rx_desc: Rx descriptor
  1616. *
  1617. * Return: NONE
  1618. */
  1619. QDF_STATUS dp_rx_desc_nbuf_sanity_check(struct dp_soc *soc,
  1620. hal_ring_desc_t ring_desc,
  1621. struct dp_rx_desc *rx_desc)
  1622. {
  1623. struct hal_buf_info hbi;
  1624. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  1625. /* Sanity check for possible buffer paddr corruption */
  1626. if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
  1627. return QDF_STATUS_SUCCESS;
  1628. return QDF_STATUS_E_FAILURE;
  1629. }
  1630. /**
  1631. * dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer
  1632. * out of bound access from H.W
  1633. *
  1634. * @soc: DP soc
  1635. * @pkt_len: Packet length received from H.W
  1636. *
  1637. * Return: NONE
  1638. */
  1639. static inline void
  1640. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc,
  1641. uint32_t pkt_len)
  1642. {
  1643. struct rx_desc_pool *rx_desc_pool;
  1644. rx_desc_pool = &soc->rx_desc_buf[0];
  1645. qdf_assert_always(pkt_len <= rx_desc_pool->buf_size);
  1646. }
  1647. #else
  1648. static inline void
  1649. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { }
  1650. #endif
  1651. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1652. /**
  1653. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1654. * no corresbonding peer found
  1655. * @soc: core txrx main context
  1656. * @nbuf: pkt skb pointer
  1657. *
  1658. * This function will try to deliver some RX special frames to stack
  1659. * even there is no peer matched found. for instance, LFR case, some
  1660. * eapol data will be sent to host before peer_map done.
  1661. *
  1662. * Return: None
  1663. */
  1664. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1665. {
  1666. uint16_t peer_id;
  1667. uint8_t vdev_id;
  1668. struct dp_vdev *vdev = NULL;
  1669. uint32_t l2_hdr_offset = 0;
  1670. uint16_t msdu_len = 0;
  1671. uint32_t pkt_len = 0;
  1672. uint8_t *rx_tlv_hdr;
  1673. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  1674. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  1675. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1676. if (peer_id > soc->max_peers)
  1677. goto deliver_fail;
  1678. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1679. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
  1680. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  1681. goto deliver_fail;
  1682. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  1683. goto deliver_fail;
  1684. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1685. l2_hdr_offset =
  1686. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1687. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1688. pkt_len = msdu_len + l2_hdr_offset + soc->rx_pkt_tlv_size;
  1689. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  1690. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1691. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + l2_hdr_offset);
  1692. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  1693. qdf_nbuf_set_exc_frame(nbuf, 1);
  1694. if (QDF_STATUS_SUCCESS !=
  1695. vdev->osif_rx(vdev->osif_vdev, nbuf))
  1696. goto deliver_fail;
  1697. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1698. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1699. return;
  1700. }
  1701. deliver_fail:
  1702. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1703. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1704. qdf_nbuf_free(nbuf);
  1705. if (vdev)
  1706. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1707. }
  1708. #else
  1709. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1710. {
  1711. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1712. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1713. qdf_nbuf_free(nbuf);
  1714. }
  1715. #endif
  1716. /**
  1717. * dp_rx_srng_get_num_pending() - get number of pending entries
  1718. * @hal_soc: hal soc opaque pointer
  1719. * @hal_ring: opaque pointer to the HAL Rx Ring
  1720. * @num_entries: number of entries in the hal_ring.
  1721. * @near_full: pointer to a boolean. This is set if ring is near full.
  1722. *
  1723. * The function returns the number of entries in a destination ring which are
  1724. * yet to be reaped. The function also checks if the ring is near full.
  1725. * If more than half of the ring needs to be reaped, the ring is considered
  1726. * approaching full.
  1727. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1728. * entries. It should not be called within a SRNG lock. HW pointer value is
  1729. * synced into cached_hp.
  1730. *
  1731. * Return: Number of pending entries if any
  1732. */
  1733. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1734. hal_ring_handle_t hal_ring_hdl,
  1735. uint32_t num_entries,
  1736. bool *near_full)
  1737. {
  1738. uint32_t num_pending = 0;
  1739. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1740. hal_ring_hdl,
  1741. true);
  1742. if (num_entries && (num_pending >= num_entries >> 1))
  1743. *near_full = true;
  1744. else
  1745. *near_full = false;
  1746. return num_pending;
  1747. }
  1748. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1749. #ifdef WLAN_SUPPORT_RX_FISA
  1750. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  1751. {
  1752. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1753. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  1754. }
  1755. /**
  1756. * dp_rx_set_hdr_pad() - set l3 padding in nbuf cb
  1757. * @nbuf: pkt skb pointer
  1758. * @l3_padding: l3 padding
  1759. *
  1760. * Return: None
  1761. */
  1762. static inline
  1763. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1764. {
  1765. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1766. }
  1767. #else
  1768. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  1769. {
  1770. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  1771. }
  1772. static inline
  1773. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1774. {
  1775. }
  1776. #endif
  1777. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1778. #ifdef DP_RX_DROP_RAW_FRM
  1779. /**
  1780. * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
  1781. * @nbuf: pkt skb pointer
  1782. *
  1783. * Return: true - raw frame, dropped
  1784. * false - not raw frame, do nothing
  1785. */
  1786. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  1787. {
  1788. if (qdf_nbuf_is_raw_frame(nbuf)) {
  1789. qdf_nbuf_free(nbuf);
  1790. return true;
  1791. }
  1792. return false;
  1793. }
  1794. #endif
  1795. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1796. /**
  1797. * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
  1798. * @soc: Datapath soc structure
  1799. * @ring_num: REO ring number
  1800. * @ring_desc: REO ring descriptor
  1801. *
  1802. * Returns: None
  1803. */
  1804. void
  1805. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  1806. hal_ring_desc_t ring_desc)
  1807. {
  1808. struct dp_buf_info_record *record;
  1809. struct hal_buf_info hbi;
  1810. uint32_t idx;
  1811. if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
  1812. return;
  1813. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  1814. /* buffer_addr_info is the first element of ring_desc */
  1815. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)ring_desc,
  1816. &hbi);
  1817. idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
  1818. DP_RX_HIST_MAX);
  1819. /* No NULL check needed for record since its an array */
  1820. record = &soc->rx_ring_history[ring_num]->entry[idx];
  1821. record->timestamp = qdf_get_log_timestamp();
  1822. record->hbi.paddr = hbi.paddr;
  1823. record->hbi.sw_cookie = hbi.sw_cookie;
  1824. record->hbi.rbm = hbi.rbm;
  1825. }
  1826. #endif
  1827. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  1828. /**
  1829. * dp_rx_update_stats() - Update soc level rx packet count
  1830. * @soc: DP soc handle
  1831. * @nbuf: nbuf received
  1832. *
  1833. * Returns: none
  1834. */
  1835. void dp_rx_update_stats(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1836. {
  1837. DP_STATS_INC_PKT(soc, rx.ingress, 1,
  1838. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1839. }
  1840. #endif
  1841. #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
  1842. /**
  1843. * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
  1844. * @soc : dp_soc handle
  1845. * @pdev: dp_pdev handle
  1846. * @peer_id: peer_id of the peer for which completion came
  1847. * @ppdu_id: ppdu_id
  1848. * @netbuf: Buffer pointer
  1849. *
  1850. * This function is used to deliver rx packet to packet capture
  1851. */
  1852. void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc, struct dp_pdev *pdev,
  1853. uint16_t peer_id, uint32_t is_offload,
  1854. qdf_nbuf_t netbuf)
  1855. {
  1856. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
  1857. peer_id, is_offload, pdev->pdev_id);
  1858. }
  1859. void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1860. uint32_t is_offload)
  1861. {
  1862. uint16_t msdu_len = 0;
  1863. uint16_t peer_id, vdev_id;
  1864. uint32_t pkt_len = 0;
  1865. uint8_t *rx_tlv_hdr;
  1866. uint32_t l2_hdr_offset = 0;
  1867. struct hal_rx_msdu_metadata msdu_metadata;
  1868. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1869. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1870. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1871. hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr, &msdu_metadata);
  1872. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1873. pkt_len = msdu_len + msdu_metadata.l3_hdr_pad +
  1874. soc->rx_pkt_tlv_size;
  1875. l2_hdr_offset =
  1876. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1877. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1878. dp_rx_skip_tlvs(soc, nbuf, msdu_metadata.l3_hdr_pad);
  1879. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, nbuf,
  1880. HTT_INVALID_VDEV, is_offload, 0);
  1881. }
  1882. #endif
  1883. #if defined(FEATURE_MCL_REPEATER) && defined(FEATURE_MEC)
  1884. /**
  1885. * dp_rx_mec_check_wrapper() - wrapper to dp_rx_mcast_echo_check
  1886. * @soc: core DP main context
  1887. * @peer: dp peer handler
  1888. * @rx_tlv_hdr: start of the rx TLV header
  1889. * @nbuf: pkt buffer
  1890. *
  1891. * Return: bool (true if it is a looped back pkt else false)
  1892. */
  1893. static inline bool dp_rx_mec_check_wrapper(struct dp_soc *soc,
  1894. struct dp_peer *peer,
  1895. uint8_t *rx_tlv_hdr,
  1896. qdf_nbuf_t nbuf)
  1897. {
  1898. return dp_rx_mcast_echo_check(soc, peer, rx_tlv_hdr, nbuf);
  1899. }
  1900. #else
  1901. static inline bool dp_rx_mec_check_wrapper(struct dp_soc *soc,
  1902. struct dp_peer *peer,
  1903. uint8_t *rx_tlv_hdr,
  1904. qdf_nbuf_t nbuf)
  1905. {
  1906. return false;
  1907. }
  1908. #endif
  1909. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1910. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  1911. {
  1912. QDF_STATUS ret;
  1913. if (vdev->osif_rx_flush) {
  1914. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  1915. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  1916. dp_err("Failed to flush rx pkts for vdev %d\n",
  1917. vdev->vdev_id);
  1918. return ret;
  1919. }
  1920. }
  1921. return QDF_STATUS_SUCCESS;
  1922. }
  1923. static QDF_STATUS
  1924. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
  1925. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  1926. struct dp_pdev *dp_pdev,
  1927. struct rx_desc_pool *rx_desc_pool)
  1928. {
  1929. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  1930. (nbuf_frag_info_t->virt_addr).nbuf =
  1931. qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  1932. RX_BUFFER_RESERVATION,
  1933. rx_desc_pool->buf_alignment, FALSE);
  1934. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  1935. dp_err("nbuf alloc failed");
  1936. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  1937. return ret;
  1938. }
  1939. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  1940. (nbuf_frag_info_t->virt_addr).nbuf,
  1941. QDF_DMA_FROM_DEVICE,
  1942. rx_desc_pool->buf_size);
  1943. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  1944. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  1945. dp_err("nbuf map failed");
  1946. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  1947. return ret;
  1948. }
  1949. nbuf_frag_info_t->paddr =
  1950. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  1951. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  1952. &nbuf_frag_info_t->paddr,
  1953. rx_desc_pool);
  1954. if (ret == QDF_STATUS_E_FAILURE) {
  1955. dp_err("nbuf check x86 failed");
  1956. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  1957. return ret;
  1958. }
  1959. return QDF_STATUS_SUCCESS;
  1960. }
  1961. QDF_STATUS
  1962. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  1963. struct dp_srng *dp_rxdma_srng,
  1964. struct rx_desc_pool *rx_desc_pool,
  1965. uint32_t num_req_buffers)
  1966. {
  1967. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  1968. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  1969. union dp_rx_desc_list_elem_t *next;
  1970. void *rxdma_ring_entry;
  1971. qdf_dma_addr_t paddr;
  1972. struct dp_rx_nbuf_frag_info *nf_info;
  1973. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  1974. uint32_t buffer_index, nbuf_ptrs_per_page;
  1975. qdf_nbuf_t nbuf;
  1976. QDF_STATUS ret;
  1977. int page_idx, total_pages;
  1978. union dp_rx_desc_list_elem_t *desc_list = NULL;
  1979. union dp_rx_desc_list_elem_t *tail = NULL;
  1980. int sync_hw_ptr = 1;
  1981. uint32_t num_entries_avail;
  1982. if (qdf_unlikely(!dp_pdev)) {
  1983. dp_rx_err("%pK: pdev is null for mac_id = %d",
  1984. dp_soc, mac_id);
  1985. return QDF_STATUS_E_FAILURE;
  1986. }
  1987. if (qdf_unlikely(!rxdma_srng)) {
  1988. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  1989. return QDF_STATUS_E_FAILURE;
  1990. }
  1991. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  1992. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  1993. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  1994. rxdma_srng,
  1995. sync_hw_ptr);
  1996. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  1997. if (!num_entries_avail) {
  1998. dp_err("Num of available entries is zero, nothing to do");
  1999. return QDF_STATUS_E_NOMEM;
  2000. }
  2001. if (num_entries_avail < num_req_buffers)
  2002. num_req_buffers = num_entries_avail;
  2003. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2004. num_req_buffers, &desc_list, &tail);
  2005. if (!nr_descs) {
  2006. dp_err("no free rx_descs in freelist");
  2007. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2008. return QDF_STATUS_E_NOMEM;
  2009. }
  2010. dp_debug("got %u RX descs for driver attach", nr_descs);
  2011. /*
  2012. * Try to allocate pointers to the nbuf one page at a time.
  2013. * Take pointers that can fit in one page of memory and
  2014. * iterate through the total descriptors that need to be
  2015. * allocated in order of pages. Reuse the pointers that
  2016. * have been allocated to fit in one page across each
  2017. * iteration to index into the nbuf.
  2018. */
  2019. total_pages = (nr_descs * sizeof(*nf_info)) / PAGE_SIZE;
  2020. /*
  2021. * Add an extra page to store the remainder if any
  2022. */
  2023. if ((nr_descs * sizeof(*nf_info)) % PAGE_SIZE)
  2024. total_pages++;
  2025. nf_info = qdf_mem_malloc(PAGE_SIZE);
  2026. if (!nf_info) {
  2027. dp_err("failed to allocate nbuf array");
  2028. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2029. QDF_BUG(0);
  2030. return QDF_STATUS_E_NOMEM;
  2031. }
  2032. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*nf_info);
  2033. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2034. qdf_mem_zero(nf_info, PAGE_SIZE);
  2035. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2036. /*
  2037. * The last page of buffer pointers may not be required
  2038. * completely based on the number of descriptors. Below
  2039. * check will ensure we are allocating only the
  2040. * required number of descriptors.
  2041. */
  2042. if (nr_nbuf_total >= nr_descs)
  2043. break;
  2044. /* Flag is set while pdev rx_desc_pool initialization */
  2045. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2046. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  2047. &nf_info[nr_nbuf], dp_pdev,
  2048. rx_desc_pool);
  2049. else
  2050. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2051. &nf_info[nr_nbuf], dp_pdev,
  2052. rx_desc_pool);
  2053. if (QDF_IS_STATUS_ERROR(ret))
  2054. break;
  2055. nr_nbuf_total++;
  2056. }
  2057. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2058. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2059. rxdma_ring_entry =
  2060. hal_srng_src_get_next(dp_soc->hal_soc,
  2061. rxdma_srng);
  2062. qdf_assert_always(rxdma_ring_entry);
  2063. next = desc_list->next;
  2064. paddr = nf_info[buffer_index].paddr;
  2065. nbuf = nf_info[buffer_index].virt_addr.nbuf;
  2066. /* Flag is set while pdev rx_desc_pool initialization */
  2067. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2068. dp_rx_desc_frag_prep(&desc_list->rx_desc,
  2069. &nf_info[buffer_index]);
  2070. else
  2071. dp_rx_desc_prep(&desc_list->rx_desc,
  2072. &nf_info[buffer_index]);
  2073. desc_list->rx_desc.in_use = 1;
  2074. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  2075. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  2076. __func__,
  2077. RX_DESC_REPLENISHED);
  2078. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc ,rxdma_ring_entry, paddr,
  2079. desc_list->rx_desc.cookie,
  2080. rx_desc_pool->owner);
  2081. dp_ipa_handle_rx_buf_smmu_mapping(
  2082. dp_soc, nbuf,
  2083. rx_desc_pool->buf_size,
  2084. true);
  2085. desc_list = next;
  2086. }
  2087. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id,
  2088. rxdma_srng, nr_nbuf, nr_nbuf);
  2089. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2090. }
  2091. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2092. qdf_mem_free(nf_info);
  2093. if (!nr_nbuf_total) {
  2094. dp_err("No nbuf's allocated");
  2095. QDF_BUG(0);
  2096. return QDF_STATUS_E_RESOURCES;
  2097. }
  2098. /* No need to count the number of bytes received during replenish.
  2099. * Therefore set replenish.pkts.bytes as 0.
  2100. */
  2101. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2102. return QDF_STATUS_SUCCESS;
  2103. }
  2104. /**
  2105. * dp_rx_enable_mon_dest_frag() - Enable frag processing for
  2106. * monitor destination ring via frag.
  2107. *
  2108. * Enable this flag only for monitor destination buffer processing
  2109. * if DP_RX_MON_MEM_FRAG feature is enabled.
  2110. * If flag is set then frag based function will be called for alloc,
  2111. * map, prep desc and free ops for desc buffer else normal nbuf based
  2112. * function will be called.
  2113. *
  2114. * @rx_desc_pool: Rx desc pool
  2115. * @is_mon_dest_desc: Is it for monitor dest buffer
  2116. *
  2117. * Return: None
  2118. */
  2119. #ifdef DP_RX_MON_MEM_FRAG
  2120. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2121. bool is_mon_dest_desc)
  2122. {
  2123. rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
  2124. if (is_mon_dest_desc)
  2125. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
  2126. }
  2127. #else
  2128. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2129. bool is_mon_dest_desc)
  2130. {
  2131. rx_desc_pool->rx_mon_dest_frag_enable = false;
  2132. if (is_mon_dest_desc)
  2133. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
  2134. }
  2135. #endif
  2136. /*
  2137. * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
  2138. * pool
  2139. *
  2140. * @pdev: core txrx pdev context
  2141. *
  2142. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2143. * QDF_STATUS_E_NOMEM
  2144. */
  2145. QDF_STATUS
  2146. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2147. {
  2148. struct dp_soc *soc = pdev->soc;
  2149. uint32_t rxdma_entries;
  2150. uint32_t rx_sw_desc_num;
  2151. struct dp_srng *dp_rxdma_srng;
  2152. struct rx_desc_pool *rx_desc_pool;
  2153. uint32_t status = QDF_STATUS_SUCCESS;
  2154. int mac_for_pdev;
  2155. mac_for_pdev = pdev->lmac_id;
  2156. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2157. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2158. soc, mac_for_pdev);
  2159. return status;
  2160. }
  2161. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2162. rxdma_entries = dp_rxdma_srng->num_entries;
  2163. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2164. rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2165. rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
  2166. status = dp_rx_desc_pool_alloc(soc,
  2167. rx_sw_desc_num,
  2168. rx_desc_pool);
  2169. if (status != QDF_STATUS_SUCCESS)
  2170. return status;
  2171. return status;
  2172. }
  2173. /*
  2174. * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
  2175. *
  2176. * @pdev: core txrx pdev context
  2177. */
  2178. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2179. {
  2180. int mac_for_pdev = pdev->lmac_id;
  2181. struct dp_soc *soc = pdev->soc;
  2182. struct rx_desc_pool *rx_desc_pool;
  2183. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2184. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2185. }
  2186. /*
  2187. * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
  2188. *
  2189. * @pdev: core txrx pdev context
  2190. *
  2191. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2192. * QDF_STATUS_E_NOMEM
  2193. */
  2194. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2195. {
  2196. int mac_for_pdev = pdev->lmac_id;
  2197. struct dp_soc *soc = pdev->soc;
  2198. uint32_t rxdma_entries;
  2199. uint32_t rx_sw_desc_num;
  2200. struct dp_srng *dp_rxdma_srng;
  2201. struct rx_desc_pool *rx_desc_pool;
  2202. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2203. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2204. /**
  2205. * If NSS is enabled, rx_desc_pool is already filled.
  2206. * Hence, just disable desc_pool frag flag.
  2207. */
  2208. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2209. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2210. soc, mac_for_pdev);
  2211. return QDF_STATUS_SUCCESS;
  2212. }
  2213. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2214. return QDF_STATUS_E_NOMEM;
  2215. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2216. rxdma_entries = dp_rxdma_srng->num_entries;
  2217. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2218. rx_sw_desc_num =
  2219. wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2220. rx_desc_pool->owner = DP_WBM2SW_RBM(soc->wbm_sw0_bm_id);
  2221. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2222. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2223. /* Disable monitor dest processing via frag */
  2224. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2225. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2226. rx_sw_desc_num, rx_desc_pool);
  2227. return QDF_STATUS_SUCCESS;
  2228. }
  2229. /*
  2230. * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
  2231. * @pdev: core txrx pdev context
  2232. *
  2233. * This function resets the freelist of rx descriptors and destroys locks
  2234. * associated with this list of descriptors.
  2235. */
  2236. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  2237. {
  2238. int mac_for_pdev = pdev->lmac_id;
  2239. struct dp_soc *soc = pdev->soc;
  2240. struct rx_desc_pool *rx_desc_pool;
  2241. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2242. dp_rx_desc_pool_deinit(soc, rx_desc_pool, mac_for_pdev);
  2243. }
  2244. /*
  2245. * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
  2246. *
  2247. * @pdev: core txrx pdev context
  2248. *
  2249. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2250. * QDF_STATUS_E_NOMEM
  2251. */
  2252. QDF_STATUS
  2253. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  2254. {
  2255. int mac_for_pdev = pdev->lmac_id;
  2256. struct dp_soc *soc = pdev->soc;
  2257. struct dp_srng *dp_rxdma_srng;
  2258. struct rx_desc_pool *rx_desc_pool;
  2259. uint32_t rxdma_entries;
  2260. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2261. rxdma_entries = dp_rxdma_srng->num_entries;
  2262. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2263. /* Initialize RX buffer pool which will be
  2264. * used during low memory conditions
  2265. */
  2266. dp_rx_buffer_pool_init(soc, mac_for_pdev);
  2267. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev, dp_rxdma_srng,
  2268. rx_desc_pool, rxdma_entries - 1);
  2269. }
  2270. /*
  2271. * dp_rx_pdev_buffers_free - Free nbufs (skbs)
  2272. *
  2273. * @pdev: core txrx pdev context
  2274. */
  2275. void
  2276. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  2277. {
  2278. int mac_for_pdev = pdev->lmac_id;
  2279. struct dp_soc *soc = pdev->soc;
  2280. struct rx_desc_pool *rx_desc_pool;
  2281. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2282. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  2283. dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
  2284. }
  2285. #ifdef DP_RX_SPECIAL_FRAME_NEED
  2286. bool dp_rx_deliver_special_frame(struct dp_soc *soc, struct dp_peer *peer,
  2287. qdf_nbuf_t nbuf, uint32_t frame_mask,
  2288. uint8_t *rx_tlv_hdr)
  2289. {
  2290. uint32_t l2_hdr_offset = 0;
  2291. uint16_t msdu_len = 0;
  2292. uint32_t skip_len;
  2293. l2_hdr_offset =
  2294. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2295. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2296. skip_len = l2_hdr_offset;
  2297. } else {
  2298. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2299. skip_len = l2_hdr_offset + soc->rx_pkt_tlv_size;
  2300. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  2301. }
  2302. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2303. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  2304. qdf_nbuf_pull_head(nbuf, skip_len);
  2305. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  2306. dp_info("special frame, mpdu sn 0x%x",
  2307. hal_rx_get_rx_sequence(soc->hal_soc, rx_tlv_hdr));
  2308. qdf_nbuf_set_exc_frame(nbuf, 1);
  2309. dp_rx_deliver_to_stack(soc, peer->vdev, peer,
  2310. nbuf, NULL);
  2311. return true;
  2312. }
  2313. return false;
  2314. }
  2315. #endif