dp_rx.c 83 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #include "dp_ipa.h"
  31. #ifdef FEATURE_WDS
  32. #include "dp_txrx_wds.h"
  33. #endif
  34. #ifdef ATH_RX_PRI_SAVE
  35. #define DP_RX_TID_SAVE(_nbuf, _tid) \
  36. (qdf_nbuf_set_priority(_nbuf, _tid))
  37. #else
  38. #define DP_RX_TID_SAVE(_nbuf, _tid)
  39. #endif
  40. #ifdef DP_RX_DISABLE_NDI_MDNS_FORWARDING
  41. static inline
  42. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  43. {
  44. if (ta_peer->vdev->opmode == wlan_op_mode_ndi &&
  45. qdf_nbuf_is_ipv6_mdns_pkt(nbuf)) {
  46. DP_STATS_INC(ta_peer, rx.intra_bss.mdns_no_fwd, 1);
  47. return false;
  48. }
  49. return true;
  50. }
  51. #else
  52. static inline
  53. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  54. {
  55. return true;
  56. }
  57. #endif
  58. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  59. {
  60. return vdev->ap_bridge_enabled;
  61. }
  62. #ifdef DUP_RX_DESC_WAR
  63. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  64. hal_ring_handle_t hal_ring,
  65. hal_ring_desc_t ring_desc,
  66. struct dp_rx_desc *rx_desc)
  67. {
  68. void *hal_soc = soc->hal_soc;
  69. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  70. dp_rx_desc_dump(rx_desc);
  71. }
  72. #else
  73. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  74. hal_ring_handle_t hal_ring_hdl,
  75. hal_ring_desc_t ring_desc,
  76. struct dp_rx_desc *rx_desc)
  77. {
  78. hal_soc_handle_t hal_soc = soc->hal_soc;
  79. dp_rx_desc_dump(rx_desc);
  80. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  81. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  82. qdf_assert_always(0);
  83. }
  84. #endif
  85. #ifdef RX_DESC_SANITY_WAR
  86. static inline
  87. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  88. hal_ring_handle_t hal_ring_hdl,
  89. hal_ring_desc_t ring_desc,
  90. struct dp_rx_desc *rx_desc)
  91. {
  92. uint8_t return_buffer_manager;
  93. if (qdf_unlikely(!rx_desc)) {
  94. /*
  95. * This is an unlikely case where the cookie obtained
  96. * from the ring_desc is invalid and hence we are not
  97. * able to find the corresponding rx_desc
  98. */
  99. goto fail;
  100. }
  101. return_buffer_manager = hal_rx_ret_buf_manager_get(ring_desc);
  102. if (qdf_unlikely(!(return_buffer_manager == HAL_RX_BUF_RBM_SW1_BM ||
  103. return_buffer_manager == HAL_RX_BUF_RBM_SW3_BM))) {
  104. goto fail;
  105. }
  106. return QDF_STATUS_SUCCESS;
  107. fail:
  108. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  109. dp_err("Ring Desc:");
  110. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  111. ring_desc);
  112. return QDF_STATUS_E_NULL_VALUE;
  113. }
  114. #else
  115. static inline
  116. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  117. hal_ring_handle_t hal_ring_hdl,
  118. hal_ring_desc_t ring_desc,
  119. struct dp_rx_desc *rx_desc)
  120. {
  121. return QDF_STATUS_SUCCESS;
  122. }
  123. #endif
  124. /*
  125. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  126. * called during dp rx initialization
  127. * and at the end of dp_rx_process.
  128. *
  129. * @soc: core txrx main context
  130. * @mac_id: mac_id which is one of 3 mac_ids
  131. * @dp_rxdma_srng: dp rxdma circular ring
  132. * @rx_desc_pool: Pointer to free Rx descriptor pool
  133. * @num_req_buffers: number of buffer to be replenished
  134. * @desc_list: list of descs if called from dp_rx_process
  135. * or NULL during dp rx initialization or out of buffer
  136. * interrupt.
  137. * @tail: tail of descs list
  138. * @func_name: name of the caller function
  139. * Return: return success or failure
  140. */
  141. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  142. struct dp_srng *dp_rxdma_srng,
  143. struct rx_desc_pool *rx_desc_pool,
  144. uint32_t num_req_buffers,
  145. union dp_rx_desc_list_elem_t **desc_list,
  146. union dp_rx_desc_list_elem_t **tail,
  147. const char *func_name)
  148. {
  149. uint32_t num_alloc_desc;
  150. uint16_t num_desc_to_free = 0;
  151. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  152. uint32_t num_entries_avail;
  153. uint32_t count;
  154. int sync_hw_ptr = 1;
  155. qdf_dma_addr_t paddr;
  156. qdf_nbuf_t rx_netbuf;
  157. void *rxdma_ring_entry;
  158. union dp_rx_desc_list_elem_t *next;
  159. QDF_STATUS ret;
  160. uint16_t buf_size = rx_desc_pool->buf_size;
  161. uint8_t buf_alignment = rx_desc_pool->buf_alignment;
  162. void *rxdma_srng;
  163. rxdma_srng = dp_rxdma_srng->hal_srng;
  164. if (!rxdma_srng) {
  165. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  166. "rxdma srng not initialized");
  167. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  168. return QDF_STATUS_E_FAILURE;
  169. }
  170. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  171. "requested %d buffers for replenish", num_req_buffers);
  172. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  173. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  174. rxdma_srng,
  175. sync_hw_ptr);
  176. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  177. "no of available entries in rxdma ring: %d",
  178. num_entries_avail);
  179. if (!(*desc_list) && (num_entries_avail >
  180. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  181. num_req_buffers = num_entries_avail;
  182. } else if (num_entries_avail < num_req_buffers) {
  183. num_desc_to_free = num_req_buffers - num_entries_avail;
  184. num_req_buffers = num_entries_avail;
  185. }
  186. if (qdf_unlikely(!num_req_buffers)) {
  187. num_desc_to_free = num_req_buffers;
  188. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  189. goto free_descs;
  190. }
  191. /*
  192. * if desc_list is NULL, allocate the descs from freelist
  193. */
  194. if (!(*desc_list)) {
  195. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  196. rx_desc_pool,
  197. num_req_buffers,
  198. desc_list,
  199. tail);
  200. if (!num_alloc_desc) {
  201. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  202. "no free rx_descs in freelist");
  203. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  204. num_req_buffers);
  205. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  206. return QDF_STATUS_E_NOMEM;
  207. }
  208. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  209. "%d rx desc allocated", num_alloc_desc);
  210. num_req_buffers = num_alloc_desc;
  211. }
  212. count = 0;
  213. while (count < num_req_buffers) {
  214. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  215. buf_size,
  216. RX_BUFFER_RESERVATION,
  217. buf_alignment,
  218. FALSE);
  219. if (qdf_unlikely(!rx_netbuf)) {
  220. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  221. break;
  222. }
  223. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev, rx_netbuf,
  224. QDF_DMA_FROM_DEVICE, buf_size);
  225. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  226. qdf_nbuf_free(rx_netbuf);
  227. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  228. continue;
  229. }
  230. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  231. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, rx_netbuf, true);
  232. /*
  233. * check if the physical address of nbuf->data is
  234. * less then 0x50000000 then free the nbuf and try
  235. * allocating new nbuf. We can try for 100 times.
  236. * this is a temp WAR till we fix it properly.
  237. */
  238. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, rx_desc_pool);
  239. if (ret == QDF_STATUS_E_FAILURE) {
  240. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  241. break;
  242. }
  243. count++;
  244. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  245. rxdma_srng);
  246. qdf_assert_always(rxdma_ring_entry);
  247. next = (*desc_list)->next;
  248. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  249. /* rx_desc.in_use should be zero at this time*/
  250. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  251. (*desc_list)->rx_desc.in_use = 1;
  252. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  253. func_name, RX_DESC_REPLENISHED);
  254. dp_verbose_debug("rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
  255. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  256. (unsigned long long)paddr,
  257. (*desc_list)->rx_desc.cookie);
  258. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  259. (*desc_list)->rx_desc.cookie,
  260. rx_desc_pool->owner);
  261. *desc_list = next;
  262. }
  263. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  264. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  265. count, num_desc_to_free);
  266. /* No need to count the number of bytes received during replenish.
  267. * Therefore set replenish.pkts.bytes as 0.
  268. */
  269. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  270. free_descs:
  271. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  272. /*
  273. * add any available free desc back to the free list
  274. */
  275. if (*desc_list)
  276. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  277. mac_id, rx_desc_pool);
  278. return QDF_STATUS_SUCCESS;
  279. }
  280. /*
  281. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  282. * pkts to RAW mode simulation to
  283. * decapsulate the pkt.
  284. *
  285. * @vdev: vdev on which RAW mode is enabled
  286. * @nbuf_list: list of RAW pkts to process
  287. * @peer: peer object from which the pkt is rx
  288. *
  289. * Return: void
  290. */
  291. void
  292. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  293. struct dp_peer *peer)
  294. {
  295. qdf_nbuf_t deliver_list_head = NULL;
  296. qdf_nbuf_t deliver_list_tail = NULL;
  297. qdf_nbuf_t nbuf;
  298. nbuf = nbuf_list;
  299. while (nbuf) {
  300. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  301. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  302. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  303. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  304. /*
  305. * reset the chfrag_start and chfrag_end bits in nbuf cb
  306. * as this is a non-amsdu pkt and RAW mode simulation expects
  307. * these bit s to be 0 for non-amsdu pkt.
  308. */
  309. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  310. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  311. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  312. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  313. }
  314. nbuf = next;
  315. }
  316. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  317. &deliver_list_tail, peer->mac_addr.raw);
  318. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  319. }
  320. #ifdef DP_LFR
  321. /*
  322. * In case of LFR, data of a new peer might be sent up
  323. * even before peer is added.
  324. */
  325. static inline struct dp_vdev *
  326. dp_get_vdev_from_peer(struct dp_soc *soc,
  327. uint16_t peer_id,
  328. struct dp_peer *peer,
  329. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  330. {
  331. struct dp_vdev *vdev;
  332. uint8_t vdev_id;
  333. if (unlikely(!peer)) {
  334. if (peer_id != HTT_INVALID_PEER) {
  335. vdev_id = DP_PEER_METADATA_VDEV_ID_GET(
  336. mpdu_desc_info.peer_meta_data);
  337. QDF_TRACE(QDF_MODULE_ID_DP,
  338. QDF_TRACE_LEVEL_DEBUG,
  339. FL("PeerID %d not found use vdevID %d"),
  340. peer_id, vdev_id);
  341. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  342. vdev_id);
  343. } else {
  344. QDF_TRACE(QDF_MODULE_ID_DP,
  345. QDF_TRACE_LEVEL_DEBUG,
  346. FL("Invalid PeerID %d"),
  347. peer_id);
  348. return NULL;
  349. }
  350. } else {
  351. vdev = peer->vdev;
  352. }
  353. return vdev;
  354. }
  355. #else
  356. static inline struct dp_vdev *
  357. dp_get_vdev_from_peer(struct dp_soc *soc,
  358. uint16_t peer_id,
  359. struct dp_peer *peer,
  360. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  361. {
  362. if (unlikely(!peer)) {
  363. QDF_TRACE(QDF_MODULE_ID_DP,
  364. QDF_TRACE_LEVEL_DEBUG,
  365. FL("Peer not found for peerID %d"),
  366. peer_id);
  367. return NULL;
  368. } else {
  369. return peer->vdev;
  370. }
  371. }
  372. #endif
  373. #ifndef FEATURE_WDS
  374. static void
  375. dp_rx_da_learn(struct dp_soc *soc,
  376. uint8_t *rx_tlv_hdr,
  377. struct dp_peer *ta_peer,
  378. qdf_nbuf_t nbuf)
  379. {
  380. }
  381. #endif
  382. /*
  383. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  384. *
  385. * @soc: core txrx main context
  386. * @ta_peer : source peer entry
  387. * @rx_tlv_hdr : start address of rx tlvs
  388. * @nbuf : nbuf that has to be intrabss forwarded
  389. *
  390. * Return: bool: true if it is forwarded else false
  391. */
  392. static bool
  393. dp_rx_intrabss_fwd(struct dp_soc *soc,
  394. struct dp_peer *ta_peer,
  395. uint8_t *rx_tlv_hdr,
  396. qdf_nbuf_t nbuf,
  397. struct hal_rx_msdu_metadata msdu_metadata)
  398. {
  399. uint16_t len;
  400. uint8_t is_frag;
  401. struct dp_peer *da_peer;
  402. struct dp_ast_entry *ast_entry;
  403. qdf_nbuf_t nbuf_copy;
  404. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  405. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  406. struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats.
  407. tid_stats.tid_rx_stats[ring_id][tid];
  408. /* check if the destination peer is available in peer table
  409. * and also check if the source peer and destination peer
  410. * belong to the same vap and destination peer is not bss peer.
  411. */
  412. if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
  413. ast_entry = soc->ast_table[msdu_metadata.da_idx];
  414. if (!ast_entry)
  415. return false;
  416. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  417. ast_entry->is_active = TRUE;
  418. return false;
  419. }
  420. da_peer = ast_entry->peer;
  421. if (!da_peer)
  422. return false;
  423. /* TA peer cannot be same as peer(DA) on which AST is present
  424. * this indicates a change in topology and that AST entries
  425. * are yet to be updated.
  426. */
  427. if (da_peer == ta_peer)
  428. return false;
  429. if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) {
  430. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  431. is_frag = qdf_nbuf_is_frag(nbuf);
  432. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  433. /* If the source or destination peer in the isolation
  434. * list then dont forward instead push to bridge stack.
  435. */
  436. if (dp_get_peer_isolation(ta_peer) ||
  437. dp_get_peer_isolation(da_peer))
  438. return false;
  439. /* linearize the nbuf just before we send to
  440. * dp_tx_send()
  441. */
  442. if (qdf_unlikely(is_frag)) {
  443. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  444. return false;
  445. nbuf = qdf_nbuf_unshare(nbuf);
  446. if (!nbuf) {
  447. DP_STATS_INC_PKT(ta_peer,
  448. rx.intra_bss.fail,
  449. 1,
  450. len);
  451. /* return true even though the pkt is
  452. * not forwarded. Basically skb_unshare
  453. * failed and we want to continue with
  454. * next nbuf.
  455. */
  456. tid_stats->fail_cnt[INTRABSS_DROP]++;
  457. return true;
  458. }
  459. }
  460. if (!dp_tx_send((struct cdp_soc_t *)soc,
  461. ta_peer->vdev->vdev_id, nbuf)) {
  462. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  463. len);
  464. return true;
  465. } else {
  466. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  467. len);
  468. tid_stats->fail_cnt[INTRABSS_DROP]++;
  469. return false;
  470. }
  471. }
  472. }
  473. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  474. * source, then clone the pkt and send the cloned pkt for
  475. * intra BSS forwarding and original pkt up the network stack
  476. * Note: how do we handle multicast pkts. do we forward
  477. * all multicast pkts as is or let a higher layer module
  478. * like igmpsnoop decide whether to forward or not with
  479. * Mcast enhancement.
  480. */
  481. else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
  482. !ta_peer->bss_peer))) {
  483. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  484. goto end;
  485. /* If the source peer in the isolation list
  486. * then dont forward instead push to bridge stack
  487. */
  488. if (dp_get_peer_isolation(ta_peer))
  489. goto end;
  490. nbuf_copy = qdf_nbuf_copy(nbuf);
  491. if (!nbuf_copy)
  492. goto end;
  493. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  494. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  495. /* Set cb->ftype to intrabss FWD */
  496. qdf_nbuf_set_tx_ftype(nbuf_copy, CB_FTYPE_INTRABSS_FWD);
  497. if (dp_tx_send((struct cdp_soc_t *)soc,
  498. ta_peer->vdev->vdev_id, nbuf_copy)) {
  499. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  500. tid_stats->fail_cnt[INTRABSS_DROP]++;
  501. qdf_nbuf_free(nbuf_copy);
  502. } else {
  503. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  504. tid_stats->intrabss_cnt++;
  505. }
  506. }
  507. end:
  508. /* return false as we have to still send the original pkt
  509. * up the stack
  510. */
  511. return false;
  512. }
  513. #ifdef MESH_MODE_SUPPORT
  514. /**
  515. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  516. *
  517. * @vdev: DP Virtual device handle
  518. * @nbuf: Buffer pointer
  519. * @rx_tlv_hdr: start of rx tlv header
  520. * @peer: pointer to peer
  521. *
  522. * This function allocated memory for mesh receive stats and fill the
  523. * required stats. Stores the memory address in skb cb.
  524. *
  525. * Return: void
  526. */
  527. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  528. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  529. {
  530. struct mesh_recv_hdr_s *rx_info = NULL;
  531. uint32_t pkt_type;
  532. uint32_t nss;
  533. uint32_t rate_mcs;
  534. uint32_t bw;
  535. uint8_t primary_chan_num;
  536. uint32_t center_chan_freq;
  537. struct dp_soc *soc;
  538. /* fill recv mesh stats */
  539. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  540. /* upper layers are resposible to free this memory */
  541. if (!rx_info) {
  542. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  543. "Memory allocation failed for mesh rx stats");
  544. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  545. return;
  546. }
  547. rx_info->rs_flags = MESH_RXHDR_VER1;
  548. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  549. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  550. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  551. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  552. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  553. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  554. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  555. if (vdev->osif_get_key)
  556. vdev->osif_get_key(vdev->osif_vdev,
  557. &rx_info->rs_decryptkey[0],
  558. &peer->mac_addr.raw[0],
  559. rx_info->rs_keyix);
  560. }
  561. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  562. soc = vdev->pdev->soc;
  563. primary_chan_num = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  564. center_chan_freq = hal_rx_msdu_start_get_freq(rx_tlv_hdr) >> 16;
  565. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  566. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  567. soc->ctrl_psoc,
  568. vdev->pdev->pdev_id,
  569. center_chan_freq);
  570. }
  571. rx_info->rs_channel = primary_chan_num;
  572. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  573. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  574. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  575. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  576. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  577. (bw << 24);
  578. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  579. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  580. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  581. rx_info->rs_flags,
  582. rx_info->rs_rssi,
  583. rx_info->rs_channel,
  584. rx_info->rs_ratephy1,
  585. rx_info->rs_keyix);
  586. }
  587. /**
  588. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  589. *
  590. * @vdev: DP Virtual device handle
  591. * @nbuf: Buffer pointer
  592. * @rx_tlv_hdr: start of rx tlv header
  593. *
  594. * This checks if the received packet is matching any filter out
  595. * catogery and and drop the packet if it matches.
  596. *
  597. * Return: status(0 indicates drop, 1 indicate to no drop)
  598. */
  599. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  600. uint8_t *rx_tlv_hdr)
  601. {
  602. union dp_align_mac_addr mac_addr;
  603. struct dp_soc *soc = vdev->pdev->soc;
  604. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  605. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  606. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  607. rx_tlv_hdr))
  608. return QDF_STATUS_SUCCESS;
  609. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  610. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  611. rx_tlv_hdr))
  612. return QDF_STATUS_SUCCESS;
  613. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  614. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  615. rx_tlv_hdr) &&
  616. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  617. rx_tlv_hdr))
  618. return QDF_STATUS_SUCCESS;
  619. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  620. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  621. rx_tlv_hdr,
  622. &mac_addr.raw[0]))
  623. return QDF_STATUS_E_FAILURE;
  624. if (!qdf_mem_cmp(&mac_addr.raw[0],
  625. &vdev->mac_addr.raw[0],
  626. QDF_MAC_ADDR_SIZE))
  627. return QDF_STATUS_SUCCESS;
  628. }
  629. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  630. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  631. rx_tlv_hdr,
  632. &mac_addr.raw[0]))
  633. return QDF_STATUS_E_FAILURE;
  634. if (!qdf_mem_cmp(&mac_addr.raw[0],
  635. &vdev->mac_addr.raw[0],
  636. QDF_MAC_ADDR_SIZE))
  637. return QDF_STATUS_SUCCESS;
  638. }
  639. }
  640. return QDF_STATUS_E_FAILURE;
  641. }
  642. #else
  643. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  644. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  645. {
  646. }
  647. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  648. uint8_t *rx_tlv_hdr)
  649. {
  650. return QDF_STATUS_E_FAILURE;
  651. }
  652. #endif
  653. #ifdef FEATURE_NAC_RSSI
  654. /**
  655. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  656. * clients
  657. * @pdev: DP pdev handle
  658. * @rx_pkt_hdr: Rx packet Header
  659. *
  660. * return: dp_vdev*
  661. */
  662. static
  663. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  664. uint8_t *rx_pkt_hdr)
  665. {
  666. struct ieee80211_frame *wh;
  667. struct dp_neighbour_peer *peer = NULL;
  668. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  669. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  670. return NULL;
  671. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  672. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  673. neighbour_peer_list_elem) {
  674. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  675. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  676. QDF_TRACE(
  677. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  678. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  679. peer->neighbour_peers_macaddr.raw[0],
  680. peer->neighbour_peers_macaddr.raw[1],
  681. peer->neighbour_peers_macaddr.raw[2],
  682. peer->neighbour_peers_macaddr.raw[3],
  683. peer->neighbour_peers_macaddr.raw[4],
  684. peer->neighbour_peers_macaddr.raw[5]);
  685. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  686. return pdev->monitor_vdev;
  687. }
  688. }
  689. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  690. return NULL;
  691. }
  692. /**
  693. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  694. * @soc: DP SOC handle
  695. * @mpdu: mpdu for which peer is invalid
  696. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  697. * pool_id has same mapping)
  698. *
  699. * return: integer type
  700. */
  701. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  702. uint8_t mac_id)
  703. {
  704. struct dp_invalid_peer_msg msg;
  705. struct dp_vdev *vdev = NULL;
  706. struct dp_pdev *pdev = NULL;
  707. struct ieee80211_frame *wh;
  708. qdf_nbuf_t curr_nbuf, next_nbuf;
  709. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  710. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  711. rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  712. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  713. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  714. "Drop decapped frames");
  715. goto free;
  716. }
  717. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  718. if (!DP_FRAME_IS_DATA(wh)) {
  719. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  720. "NAWDS valid only for data frames");
  721. goto free;
  722. }
  723. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  724. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  725. "Invalid nbuf length");
  726. goto free;
  727. }
  728. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  729. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  730. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  731. "PDEV %s", !pdev ? "not found" : "down");
  732. goto free;
  733. }
  734. if (pdev->filter_neighbour_peers) {
  735. /* Next Hop scenario not yet handle */
  736. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  737. if (vdev) {
  738. dp_rx_mon_deliver(soc, pdev->pdev_id,
  739. pdev->invalid_peer_head_msdu,
  740. pdev->invalid_peer_tail_msdu);
  741. pdev->invalid_peer_head_msdu = NULL;
  742. pdev->invalid_peer_tail_msdu = NULL;
  743. return 0;
  744. }
  745. }
  746. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  747. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  748. QDF_MAC_ADDR_SIZE) == 0) {
  749. goto out;
  750. }
  751. }
  752. if (!vdev) {
  753. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  754. "VDEV not found");
  755. goto free;
  756. }
  757. out:
  758. msg.wh = wh;
  759. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  760. msg.nbuf = mpdu;
  761. msg.vdev_id = vdev->vdev_id;
  762. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  763. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  764. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  765. pdev->pdev_id, &msg);
  766. free:
  767. /* Drop and free packet */
  768. curr_nbuf = mpdu;
  769. while (curr_nbuf) {
  770. next_nbuf = qdf_nbuf_next(curr_nbuf);
  771. qdf_nbuf_free(curr_nbuf);
  772. curr_nbuf = next_nbuf;
  773. }
  774. return 0;
  775. }
  776. /**
  777. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  778. * @soc: DP SOC handle
  779. * @mpdu: mpdu for which peer is invalid
  780. * @mpdu_done: if an mpdu is completed
  781. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  782. * pool_id has same mapping)
  783. *
  784. * return: integer type
  785. */
  786. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  787. qdf_nbuf_t mpdu, bool mpdu_done,
  788. uint8_t mac_id)
  789. {
  790. /* Only trigger the process when mpdu is completed */
  791. if (mpdu_done)
  792. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  793. }
  794. #else
  795. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  796. uint8_t mac_id)
  797. {
  798. qdf_nbuf_t curr_nbuf, next_nbuf;
  799. struct dp_pdev *pdev;
  800. struct dp_vdev *vdev = NULL;
  801. struct ieee80211_frame *wh;
  802. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  803. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  804. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  805. if (!DP_FRAME_IS_DATA(wh)) {
  806. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  807. "only for data frames");
  808. goto free;
  809. }
  810. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  811. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  812. "Invalid nbuf length");
  813. goto free;
  814. }
  815. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  816. if (!pdev) {
  817. QDF_TRACE(QDF_MODULE_ID_DP,
  818. QDF_TRACE_LEVEL_ERROR,
  819. "PDEV not found");
  820. goto free;
  821. }
  822. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  823. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  824. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  825. QDF_MAC_ADDR_SIZE) == 0) {
  826. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  827. goto out;
  828. }
  829. }
  830. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  831. if (!vdev) {
  832. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  833. "VDEV not found");
  834. goto free;
  835. }
  836. out:
  837. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  838. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  839. free:
  840. /* reset the head and tail pointers */
  841. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  842. if (pdev) {
  843. pdev->invalid_peer_head_msdu = NULL;
  844. pdev->invalid_peer_tail_msdu = NULL;
  845. }
  846. /* Drop and free packet */
  847. curr_nbuf = mpdu;
  848. while (curr_nbuf) {
  849. next_nbuf = qdf_nbuf_next(curr_nbuf);
  850. qdf_nbuf_free(curr_nbuf);
  851. curr_nbuf = next_nbuf;
  852. }
  853. /* Reset the head and tail pointers */
  854. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  855. if (pdev) {
  856. pdev->invalid_peer_head_msdu = NULL;
  857. pdev->invalid_peer_tail_msdu = NULL;
  858. }
  859. return 0;
  860. }
  861. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  862. qdf_nbuf_t mpdu, bool mpdu_done,
  863. uint8_t mac_id)
  864. {
  865. /* Process the nbuf */
  866. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  867. }
  868. #endif
  869. #ifdef RECEIVE_OFFLOAD
  870. /**
  871. * dp_rx_print_offload_info() - Print offload info from RX TLV
  872. * @soc: dp soc handle
  873. * @rx_tlv: RX TLV for which offload information is to be printed
  874. *
  875. * Return: None
  876. */
  877. static void dp_rx_print_offload_info(struct dp_soc *soc, uint8_t *rx_tlv)
  878. {
  879. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  880. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  881. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  882. dp_verbose_debug("chksum 0x%x", hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  883. rx_tlv));
  884. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  885. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  886. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  887. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  888. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  889. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  890. dp_verbose_debug("---------------------------------------------------------");
  891. }
  892. /**
  893. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  894. * @soc: DP SOC handle
  895. * @rx_tlv: RX TLV received for the msdu
  896. * @msdu: msdu for which GRO info needs to be filled
  897. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  898. *
  899. * Return: None
  900. */
  901. static
  902. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  903. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  904. {
  905. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  906. return;
  907. /* Filling up RX offload info only for TCP packets */
  908. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  909. return;
  910. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  911. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  912. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  913. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  914. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  915. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  916. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  917. rx_tlv);
  918. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  919. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  920. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  921. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  922. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  923. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  924. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  925. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  926. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  927. HAL_RX_TLV_GET_IPV6(rx_tlv);
  928. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  929. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  930. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  931. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  932. dp_rx_print_offload_info(soc, rx_tlv);
  933. }
  934. #else
  935. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  936. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  937. {
  938. }
  939. #endif /* RECEIVE_OFFLOAD */
  940. /**
  941. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  942. *
  943. * @nbuf: pointer to msdu.
  944. * @mpdu_len: mpdu length
  945. *
  946. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  947. */
  948. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  949. {
  950. bool last_nbuf;
  951. if (*mpdu_len > (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  952. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  953. last_nbuf = false;
  954. } else {
  955. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  956. last_nbuf = true;
  957. }
  958. *mpdu_len -= (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  959. return last_nbuf;
  960. }
  961. /**
  962. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  963. * multiple nbufs.
  964. * @nbuf: pointer to the first msdu of an amsdu.
  965. *
  966. * This function implements the creation of RX frag_list for cases
  967. * where an MSDU is spread across multiple nbufs.
  968. *
  969. * Return: returns the head nbuf which contains complete frag_list.
  970. */
  971. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf)
  972. {
  973. qdf_nbuf_t parent, frag_list, next = NULL;
  974. uint16_t frag_list_len = 0;
  975. uint16_t mpdu_len;
  976. bool last_nbuf;
  977. /*
  978. * Use msdu len got from REO entry descriptor instead since
  979. * there is case the RX PKT TLV is corrupted while msdu_len
  980. * from REO descriptor is right for non-raw RX scatter msdu.
  981. */
  982. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  983. /*
  984. * this is a case where the complete msdu fits in one single nbuf.
  985. * in this case HW sets both start and end bit and we only need to
  986. * reset these bits for RAW mode simulator to decap the pkt
  987. */
  988. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  989. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  990. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  991. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  992. return nbuf;
  993. }
  994. /*
  995. * This is a case where we have multiple msdus (A-MSDU) spread across
  996. * multiple nbufs. here we create a fraglist out of these nbufs.
  997. *
  998. * the moment we encounter a nbuf with continuation bit set we
  999. * know for sure we have an MSDU which is spread across multiple
  1000. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  1001. */
  1002. parent = nbuf;
  1003. frag_list = nbuf->next;
  1004. nbuf = nbuf->next;
  1005. /*
  1006. * set the start bit in the first nbuf we encounter with continuation
  1007. * bit set. This has the proper mpdu length set as it is the first
  1008. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  1009. * nbufs will form the frag_list of the parent nbuf.
  1010. */
  1011. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1012. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  1013. /*
  1014. * this is where we set the length of the fragments which are
  1015. * associated to the parent nbuf. We iterate through the frag_list
  1016. * till we hit the last_nbuf of the list.
  1017. */
  1018. do {
  1019. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  1020. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1021. frag_list_len += qdf_nbuf_len(nbuf);
  1022. if (last_nbuf) {
  1023. next = nbuf->next;
  1024. nbuf->next = NULL;
  1025. break;
  1026. }
  1027. nbuf = nbuf->next;
  1028. } while (!last_nbuf);
  1029. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1030. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1031. parent->next = next;
  1032. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  1033. return parent;
  1034. }
  1035. /**
  1036. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1037. * to pass in correct fields
  1038. *
  1039. * @vdev: pdev handle
  1040. * @tx_desc: tx descriptor
  1041. * @tid: tid value
  1042. * Return: none
  1043. */
  1044. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1045. {
  1046. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1047. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1048. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1049. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1050. uint32_t interframe_delay =
  1051. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1052. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  1053. CDP_DELAY_STATS_REAP_STACK, ring_id);
  1054. /*
  1055. * Update interframe delay stats calculated at deliver_data_ol point.
  1056. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1057. * interframe delay will not be calculate correctly for 1st frame.
  1058. * On the other side, this will help in avoiding extra per packet check
  1059. * of vdev->prev_rx_deliver_tstamp.
  1060. */
  1061. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  1062. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  1063. vdev->prev_rx_deliver_tstamp = current_ts;
  1064. }
  1065. /**
  1066. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1067. * @pdev: dp pdev reference
  1068. * @buf_list: buffer list to be dropepd
  1069. *
  1070. * Return: int (number of bufs dropped)
  1071. */
  1072. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1073. qdf_nbuf_t buf_list)
  1074. {
  1075. struct cdp_tid_rx_stats *stats = NULL;
  1076. uint8_t tid = 0, ring_id = 0;
  1077. int num_dropped = 0;
  1078. qdf_nbuf_t buf, next_buf;
  1079. buf = buf_list;
  1080. while (buf) {
  1081. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1082. next_buf = qdf_nbuf_queue_next(buf);
  1083. tid = qdf_nbuf_get_tid_val(buf);
  1084. if (qdf_likely(pdev)) {
  1085. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1086. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1087. stats->delivered_to_stack--;
  1088. }
  1089. qdf_nbuf_free(buf);
  1090. buf = next_buf;
  1091. num_dropped++;
  1092. }
  1093. return num_dropped;
  1094. }
  1095. #ifdef PEER_CACHE_RX_PKTS
  1096. /**
  1097. * dp_rx_flush_rx_cached() - flush cached rx frames
  1098. * @peer: peer
  1099. * @drop: flag to drop frames or forward to net stack
  1100. *
  1101. * Return: None
  1102. */
  1103. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1104. {
  1105. struct dp_peer_cached_bufq *bufqi;
  1106. struct dp_rx_cached_buf *cache_buf = NULL;
  1107. ol_txrx_rx_fp data_rx = NULL;
  1108. int num_buff_elem;
  1109. QDF_STATUS status;
  1110. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1111. qdf_atomic_dec(&peer->flush_in_progress);
  1112. return;
  1113. }
  1114. qdf_spin_lock_bh(&peer->peer_info_lock);
  1115. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1116. data_rx = peer->vdev->osif_rx;
  1117. else
  1118. drop = true;
  1119. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1120. bufqi = &peer->bufq_info;
  1121. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1122. qdf_list_remove_front(&bufqi->cached_bufq,
  1123. (qdf_list_node_t **)&cache_buf);
  1124. while (cache_buf) {
  1125. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1126. cache_buf->buf);
  1127. bufqi->entries -= num_buff_elem;
  1128. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1129. if (drop) {
  1130. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1131. cache_buf->buf);
  1132. } else {
  1133. /* Flush the cached frames to OSIF DEV */
  1134. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1135. if (status != QDF_STATUS_SUCCESS)
  1136. bufqi->dropped = dp_rx_drop_nbuf_list(
  1137. peer->vdev->pdev,
  1138. cache_buf->buf);
  1139. }
  1140. qdf_mem_free(cache_buf);
  1141. cache_buf = NULL;
  1142. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1143. qdf_list_remove_front(&bufqi->cached_bufq,
  1144. (qdf_list_node_t **)&cache_buf);
  1145. }
  1146. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1147. qdf_atomic_dec(&peer->flush_in_progress);
  1148. }
  1149. /**
  1150. * dp_rx_enqueue_rx() - cache rx frames
  1151. * @peer: peer
  1152. * @rx_buf_list: cache buffer list
  1153. *
  1154. * Return: None
  1155. */
  1156. static QDF_STATUS
  1157. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1158. {
  1159. struct dp_rx_cached_buf *cache_buf;
  1160. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1161. int num_buff_elem;
  1162. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1163. bufqi->dropped);
  1164. if (!peer->valid) {
  1165. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1166. rx_buf_list);
  1167. return QDF_STATUS_E_INVAL;
  1168. }
  1169. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1170. if (bufqi->entries >= bufqi->thresh) {
  1171. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1172. rx_buf_list);
  1173. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1174. return QDF_STATUS_E_RESOURCES;
  1175. }
  1176. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1177. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1178. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1179. if (!cache_buf) {
  1180. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1181. "Failed to allocate buf to cache rx frames");
  1182. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1183. rx_buf_list);
  1184. return QDF_STATUS_E_NOMEM;
  1185. }
  1186. cache_buf->buf = rx_buf_list;
  1187. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1188. qdf_list_insert_back(&bufqi->cached_bufq,
  1189. &cache_buf->node);
  1190. bufqi->entries += num_buff_elem;
  1191. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1192. return QDF_STATUS_SUCCESS;
  1193. }
  1194. static inline
  1195. bool dp_rx_is_peer_cache_bufq_supported(void)
  1196. {
  1197. return true;
  1198. }
  1199. #else
  1200. static inline
  1201. bool dp_rx_is_peer_cache_bufq_supported(void)
  1202. {
  1203. return false;
  1204. }
  1205. static inline QDF_STATUS
  1206. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1207. {
  1208. return QDF_STATUS_SUCCESS;
  1209. }
  1210. #endif
  1211. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1212. /**
  1213. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1214. * using the appropriate call back functions.
  1215. * @soc: soc
  1216. * @vdev: vdev
  1217. * @peer: peer
  1218. * @nbuf_head: skb list head
  1219. * @nbuf_tail: skb list tail
  1220. *
  1221. * Return: None
  1222. */
  1223. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1224. struct dp_vdev *vdev,
  1225. struct dp_peer *peer,
  1226. qdf_nbuf_t nbuf_head)
  1227. {
  1228. /* Function pointer initialized only when FISA is enabled */
  1229. if (vdev->osif_fisa_rx)
  1230. /* on failure send it via regular path */
  1231. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1232. else
  1233. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1234. }
  1235. #else
  1236. /**
  1237. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1238. * using the appropriate call back functions.
  1239. * @soc: soc
  1240. * @vdev: vdev
  1241. * @peer: peer
  1242. * @nbuf_head: skb list head
  1243. * @nbuf_tail: skb list tail
  1244. *
  1245. * Check the return status of the call back function and drop
  1246. * the packets if the return status indicates a failure.
  1247. *
  1248. * Return: None
  1249. */
  1250. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1251. struct dp_vdev *vdev,
  1252. struct dp_peer *peer,
  1253. qdf_nbuf_t nbuf_head)
  1254. {
  1255. int num_nbuf = 0;
  1256. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1257. /* Function pointer initialized only when FISA is enabled */
  1258. if (vdev->osif_fisa_rx)
  1259. /* on failure send it via regular path */
  1260. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1261. else if (vdev->osif_rx)
  1262. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1263. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1264. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1265. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1266. if (peer)
  1267. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1268. }
  1269. }
  1270. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1271. void dp_rx_deliver_to_stack(struct dp_soc *soc,
  1272. struct dp_vdev *vdev,
  1273. struct dp_peer *peer,
  1274. qdf_nbuf_t nbuf_head,
  1275. qdf_nbuf_t nbuf_tail)
  1276. {
  1277. int num_nbuf = 0;
  1278. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1279. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1280. /*
  1281. * This is a special case where vdev is invalid,
  1282. * so we cannot know the pdev to which this packet
  1283. * belonged. Hence we update the soc rx error stats.
  1284. */
  1285. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1286. return;
  1287. }
  1288. /*
  1289. * highly unlikely to have a vdev without a registered rx
  1290. * callback function. if so let us free the nbuf_list.
  1291. */
  1292. if (qdf_unlikely(!vdev->osif_rx)) {
  1293. if (peer && dp_rx_is_peer_cache_bufq_supported()) {
  1294. dp_rx_enqueue_rx(peer, nbuf_head);
  1295. } else {
  1296. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1297. nbuf_head);
  1298. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1299. }
  1300. return;
  1301. }
  1302. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1303. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1304. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1305. &nbuf_tail, peer->mac_addr.raw);
  1306. }
  1307. dp_rx_check_delivery_to_stack(soc, vdev, peer, nbuf_head);
  1308. }
  1309. /**
  1310. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1311. * @nbuf: pointer to the first msdu of an amsdu.
  1312. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1313. *
  1314. * The ipsumed field of the skb is set based on whether HW validated the
  1315. * IP/TCP/UDP checksum.
  1316. *
  1317. * Return: void
  1318. */
  1319. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1320. qdf_nbuf_t nbuf,
  1321. uint8_t *rx_tlv_hdr)
  1322. {
  1323. qdf_nbuf_rx_cksum_t cksum = {0};
  1324. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1325. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1326. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1327. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1328. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1329. } else {
  1330. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1331. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1332. }
  1333. }
  1334. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1335. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer) \
  1336. { \
  1337. qdf_nbuf_t nbuf_local; \
  1338. struct dp_peer *peer_local; \
  1339. struct dp_vdev *vdev_local = vdev_hdl; \
  1340. do { \
  1341. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1342. break; \
  1343. nbuf_local = nbuf; \
  1344. peer_local = peer; \
  1345. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1346. break; \
  1347. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1348. break; \
  1349. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1350. (nbuf_local), \
  1351. (peer_local), 0, 1); \
  1352. } while (0); \
  1353. }
  1354. #else
  1355. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer)
  1356. #endif
  1357. /**
  1358. * dp_rx_msdu_stats_update() - update per msdu stats.
  1359. * @soc: core txrx main context
  1360. * @nbuf: pointer to the first msdu of an amsdu.
  1361. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1362. * @peer: pointer to the peer object.
  1363. * @ring_id: reo dest ring number on which pkt is reaped.
  1364. * @tid_stats: per tid rx stats.
  1365. *
  1366. * update all the per msdu stats for that nbuf.
  1367. * Return: void
  1368. */
  1369. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1370. qdf_nbuf_t nbuf,
  1371. uint8_t *rx_tlv_hdr,
  1372. struct dp_peer *peer,
  1373. uint8_t ring_id,
  1374. struct cdp_tid_rx_stats *tid_stats)
  1375. {
  1376. bool is_ampdu, is_not_amsdu;
  1377. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1378. struct dp_vdev *vdev = peer->vdev;
  1379. qdf_ether_header_t *eh;
  1380. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1381. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, peer);
  1382. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1383. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1384. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1385. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1386. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1387. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1388. tid_stats->msdu_cnt++;
  1389. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1390. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1391. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1392. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1393. tid_stats->mcast_msdu_cnt++;
  1394. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1395. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1396. tid_stats->bcast_msdu_cnt++;
  1397. }
  1398. }
  1399. /*
  1400. * currently we can return from here as we have similar stats
  1401. * updated at per ppdu level instead of msdu level
  1402. */
  1403. if (!soc->process_rx_status)
  1404. return;
  1405. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1406. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1407. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1408. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1409. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1410. tid = qdf_nbuf_get_tid_val(nbuf);
  1411. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1412. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1413. rx_tlv_hdr);
  1414. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1415. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1416. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[mcs], 1,
  1417. ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1418. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
  1419. ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1420. DP_STATS_INC(peer, rx.bw[bw], 1);
  1421. /*
  1422. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1423. * then increase index [nss - 1] in array counter.
  1424. */
  1425. if (nss > 0 && (pkt_type == DOT11_N ||
  1426. pkt_type == DOT11_AC ||
  1427. pkt_type == DOT11_AX))
  1428. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1429. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1430. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1431. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1432. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1433. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1434. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1435. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1436. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1437. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1438. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1439. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1440. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1441. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1442. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1443. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1444. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1445. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1446. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1447. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1448. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1449. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1450. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1451. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1452. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1453. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1454. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1455. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1456. if ((soc->process_rx_status) &&
  1457. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1458. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1459. if (!vdev->pdev)
  1460. return;
  1461. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1462. &peer->stats, peer->peer_id,
  1463. UPDATE_PEER_STATS,
  1464. vdev->pdev->pdev_id);
  1465. #endif
  1466. }
  1467. }
  1468. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1469. uint8_t *rx_tlv_hdr,
  1470. qdf_nbuf_t nbuf,
  1471. struct hal_rx_msdu_metadata msdu_info)
  1472. {
  1473. if ((qdf_nbuf_is_sa_valid(nbuf) &&
  1474. (msdu_info.sa_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1475. (!qdf_nbuf_is_da_mcbc(nbuf) &&
  1476. qdf_nbuf_is_da_valid(nbuf) &&
  1477. (msdu_info.da_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1478. return false;
  1479. return true;
  1480. }
  1481. #ifndef WDS_VENDOR_EXTENSION
  1482. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1483. struct dp_vdev *vdev,
  1484. struct dp_peer *peer)
  1485. {
  1486. return 1;
  1487. }
  1488. #endif
  1489. #ifdef RX_DESC_DEBUG_CHECK
  1490. /**
  1491. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1492. * corruption
  1493. *
  1494. * @ring_desc: REO ring descriptor
  1495. * @rx_desc: Rx descriptor
  1496. *
  1497. * Return: NONE
  1498. */
  1499. static inline
  1500. void dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1501. struct dp_rx_desc *rx_desc)
  1502. {
  1503. struct hal_buf_info hbi;
  1504. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1505. /* Sanity check for possible buffer paddr corruption */
  1506. qdf_assert_always((&hbi)->paddr ==
  1507. qdf_nbuf_get_frag_paddr(rx_desc->nbuf, 0));
  1508. }
  1509. #else
  1510. static inline
  1511. void dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1512. struct dp_rx_desc *rx_desc)
  1513. {
  1514. }
  1515. #endif
  1516. #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
  1517. static inline
  1518. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1519. {
  1520. bool limit_hit = false;
  1521. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  1522. limit_hit =
  1523. (num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
  1524. if (limit_hit)
  1525. DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
  1526. return limit_hit;
  1527. }
  1528. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1529. {
  1530. return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
  1531. }
  1532. #else
  1533. static inline
  1534. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1535. {
  1536. return false;
  1537. }
  1538. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1539. {
  1540. return false;
  1541. }
  1542. #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
  1543. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1544. /**
  1545. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1546. * no corresbonding peer found
  1547. * @soc: core txrx main context
  1548. * @nbuf: pkt skb pointer
  1549. *
  1550. * This function will try to deliver some RX special frames to stack
  1551. * even there is no peer matched found. for instance, LFR case, some
  1552. * eapol data will be sent to host before peer_map done.
  1553. *
  1554. * Return: None
  1555. */
  1556. static
  1557. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1558. {
  1559. uint16_t peer_id;
  1560. uint8_t vdev_id;
  1561. struct dp_vdev *vdev;
  1562. uint32_t l2_hdr_offset = 0;
  1563. uint16_t msdu_len = 0;
  1564. uint32_t pkt_len = 0;
  1565. uint8_t *rx_tlv_hdr;
  1566. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  1567. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  1568. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1569. if (peer_id > soc->max_peers)
  1570. goto deliver_fail;
  1571. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1572. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id);
  1573. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  1574. goto deliver_fail;
  1575. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  1576. goto deliver_fail;
  1577. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1578. l2_hdr_offset =
  1579. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1580. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1581. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1582. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  1583. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1584. qdf_nbuf_pull_head(nbuf,
  1585. RX_PKT_TLVS_LEN +
  1586. l2_hdr_offset);
  1587. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  1588. qdf_nbuf_set_exc_frame(nbuf, 1);
  1589. if (QDF_STATUS_SUCCESS !=
  1590. vdev->osif_rx(vdev->osif_vdev, nbuf))
  1591. goto deliver_fail;
  1592. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1593. return;
  1594. }
  1595. deliver_fail:
  1596. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1597. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1598. qdf_nbuf_free(nbuf);
  1599. }
  1600. #else
  1601. static inline
  1602. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1603. {
  1604. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1605. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1606. qdf_nbuf_free(nbuf);
  1607. }
  1608. #endif
  1609. /**
  1610. * dp_rx_srng_get_num_pending() - get number of pending entries
  1611. * @hal_soc: hal soc opaque pointer
  1612. * @hal_ring: opaque pointer to the HAL Rx Ring
  1613. * @num_entries: number of entries in the hal_ring.
  1614. * @near_full: pointer to a boolean. This is set if ring is near full.
  1615. *
  1616. * The function returns the number of entries in a destination ring which are
  1617. * yet to be reaped. The function also checks if the ring is near full.
  1618. * If more than half of the ring needs to be reaped, the ring is considered
  1619. * approaching full.
  1620. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1621. * entries. It should not be called within a SRNG lock. HW pointer value is
  1622. * synced into cached_hp.
  1623. *
  1624. * Return: Number of pending entries if any
  1625. */
  1626. static
  1627. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1628. hal_ring_handle_t hal_ring_hdl,
  1629. uint32_t num_entries,
  1630. bool *near_full)
  1631. {
  1632. uint32_t num_pending = 0;
  1633. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1634. hal_ring_hdl,
  1635. true);
  1636. if (num_entries && (num_pending >= num_entries >> 1))
  1637. *near_full = true;
  1638. else
  1639. *near_full = false;
  1640. return num_pending;
  1641. }
  1642. #ifdef WLAN_SUPPORT_RX_FISA
  1643. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1644. {
  1645. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1646. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1647. }
  1648. /**
  1649. * dp_rx_set_hdr_pad() - set l3 padding in nbuf cb
  1650. * @nbuf: pkt skb pointer
  1651. * @l3_padding: l3 padding
  1652. *
  1653. * Return: None
  1654. */
  1655. static inline
  1656. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1657. {
  1658. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1659. }
  1660. #else
  1661. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1662. {
  1663. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1664. }
  1665. static inline
  1666. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1667. {
  1668. }
  1669. #endif
  1670. /**
  1671. * dp_rx_process() - Brain of the Rx processing functionality
  1672. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1673. * @int_ctx: per interrupt context
  1674. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1675. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  1676. * @quota: No. of units (packets) that can be serviced in one shot.
  1677. *
  1678. * This function implements the core of Rx functionality. This is
  1679. * expected to handle only non-error frames.
  1680. *
  1681. * Return: uint32_t: No. of elements processed
  1682. */
  1683. uint32_t dp_rx_process(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl,
  1684. uint8_t reo_ring_num, uint32_t quota)
  1685. {
  1686. hal_ring_desc_t ring_desc;
  1687. hal_soc_handle_t hal_soc;
  1688. struct dp_rx_desc *rx_desc = NULL;
  1689. qdf_nbuf_t nbuf, next;
  1690. bool near_full;
  1691. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
  1692. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
  1693. uint32_t num_pending;
  1694. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  1695. uint16_t msdu_len = 0;
  1696. uint16_t peer_id;
  1697. uint8_t vdev_id;
  1698. struct dp_peer *peer;
  1699. struct dp_vdev *vdev;
  1700. uint32_t pkt_len = 0;
  1701. struct hal_rx_mpdu_desc_info mpdu_desc_info;
  1702. struct hal_rx_msdu_desc_info msdu_desc_info;
  1703. enum hal_reo_error_status error;
  1704. uint32_t peer_mdata;
  1705. uint8_t *rx_tlv_hdr;
  1706. uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
  1707. uint8_t mac_id = 0;
  1708. struct dp_pdev *rx_pdev;
  1709. struct dp_srng *dp_rxdma_srng;
  1710. struct rx_desc_pool *rx_desc_pool;
  1711. struct dp_soc *soc = int_ctx->soc;
  1712. uint8_t ring_id = 0;
  1713. uint8_t core_id = 0;
  1714. struct cdp_tid_rx_stats *tid_stats;
  1715. qdf_nbuf_t nbuf_head;
  1716. qdf_nbuf_t nbuf_tail;
  1717. qdf_nbuf_t deliver_list_head;
  1718. qdf_nbuf_t deliver_list_tail;
  1719. uint32_t num_rx_bufs_reaped = 0;
  1720. uint32_t intr_id;
  1721. struct hif_opaque_softc *scn;
  1722. int32_t tid = 0;
  1723. bool is_prev_msdu_last = true;
  1724. uint32_t num_entries_avail = 0;
  1725. uint32_t rx_ol_pkt_cnt = 0;
  1726. uint32_t num_entries = 0;
  1727. struct hal_rx_msdu_metadata msdu_metadata;
  1728. QDF_STATUS status;
  1729. DP_HIST_INIT();
  1730. qdf_assert_always(soc && hal_ring_hdl);
  1731. hal_soc = soc->hal_soc;
  1732. qdf_assert_always(hal_soc);
  1733. scn = soc->hif_handle;
  1734. hif_pm_runtime_mark_dp_rx_busy(scn);
  1735. intr_id = int_ctx->dp_intr_id;
  1736. num_entries = hal_srng_get_num_entries(hal_soc, hal_ring_hdl);
  1737. more_data:
  1738. /* reset local variables here to be re-used in the function */
  1739. nbuf_head = NULL;
  1740. nbuf_tail = NULL;
  1741. deliver_list_head = NULL;
  1742. deliver_list_tail = NULL;
  1743. peer = NULL;
  1744. vdev = NULL;
  1745. num_rx_bufs_reaped = 0;
  1746. qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
  1747. qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
  1748. qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
  1749. qdf_mem_zero(head, sizeof(head));
  1750. qdf_mem_zero(tail, sizeof(tail));
  1751. if (qdf_unlikely(dp_rx_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
  1752. /*
  1753. * Need API to convert from hal_ring pointer to
  1754. * Ring Type / Ring Id combo
  1755. */
  1756. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1757. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1758. FL("HAL RING Access Failed -- %pK"), hal_ring_hdl);
  1759. goto done;
  1760. }
  1761. /*
  1762. * start reaping the buffers from reo ring and queue
  1763. * them in per vdev queue.
  1764. * Process the received pkts in a different per vdev loop.
  1765. */
  1766. while (qdf_likely(quota &&
  1767. (ring_desc = hal_srng_dst_peek(hal_soc,
  1768. hal_ring_hdl)))) {
  1769. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1770. ring_id = hal_srng_ring_id_get(hal_ring_hdl);
  1771. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1772. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1773. FL("HAL RING 0x%pK:error %d"), hal_ring_hdl, error);
  1774. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1775. /* Don't know how to deal with this -- assert */
  1776. qdf_assert(0);
  1777. }
  1778. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1779. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1780. status = dp_rx_desc_sanity(soc, hal_soc, hal_ring_hdl,
  1781. ring_desc, rx_desc);
  1782. if (QDF_IS_STATUS_ERROR(status)) {
  1783. if (qdf_unlikely(rx_desc && rx_desc->nbuf)) {
  1784. qdf_assert_always(rx_desc->unmapped);
  1785. qdf_nbuf_unmap_nbytes_single(
  1786. soc->osdev,
  1787. rx_desc->nbuf,
  1788. QDF_DMA_FROM_DEVICE,
  1789. RX_DATA_BUFFER_SIZE);
  1790. rx_desc->unmapped = 1;
  1791. qdf_nbuf_free(rx_desc->nbuf);
  1792. dp_rx_add_to_free_desc_list(
  1793. &head[rx_desc->pool_id],
  1794. &tail[rx_desc->pool_id],
  1795. rx_desc);
  1796. }
  1797. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1798. continue;
  1799. }
  1800. /*
  1801. * this is a unlikely scenario where the host is reaping
  1802. * a descriptor which it already reaped just a while ago
  1803. * but is yet to replenish it back to HW.
  1804. * In this case host will dump the last 128 descriptors
  1805. * including the software descriptor rx_desc and assert.
  1806. */
  1807. if (qdf_unlikely(!rx_desc->in_use)) {
  1808. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  1809. dp_info_rl("Reaping rx_desc not in use!");
  1810. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  1811. ring_desc, rx_desc);
  1812. /* ignore duplicate RX desc and continue to process */
  1813. /* Pop out the descriptor */
  1814. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1815. continue;
  1816. }
  1817. dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
  1818. if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
  1819. dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
  1820. DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
  1821. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  1822. ring_desc, rx_desc);
  1823. }
  1824. /* Get MPDU DESC info */
  1825. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  1826. /* Get MSDU DESC info */
  1827. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  1828. if (qdf_unlikely(msdu_desc_info.msdu_flags &
  1829. HAL_MSDU_F_MSDU_CONTINUATION)) {
  1830. /* previous msdu has end bit set, so current one is
  1831. * the new MPDU
  1832. */
  1833. if (is_prev_msdu_last) {
  1834. /* Get number of entries available in HW ring */
  1835. num_entries_avail =
  1836. hal_srng_dst_num_valid(hal_soc,
  1837. hal_ring_hdl, 1);
  1838. /* For new MPDU check if we can read complete
  1839. * MPDU by comparing the number of buffers
  1840. * available and number of buffers needed to
  1841. * reap this MPDU
  1842. */
  1843. if (((msdu_desc_info.msdu_len /
  1844. (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN) +
  1845. 1)) > num_entries_avail) {
  1846. DP_STATS_INC(
  1847. soc,
  1848. rx.msdu_scatter_wait_break,
  1849. 1);
  1850. break;
  1851. }
  1852. is_prev_msdu_last = false;
  1853. }
  1854. }
  1855. core_id = smp_processor_id();
  1856. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  1857. if (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RETRY_BIT)
  1858. qdf_nbuf_set_rx_retry_flag(rx_desc->nbuf, 1);
  1859. if (qdf_unlikely(mpdu_desc_info.mpdu_flags &
  1860. HAL_MPDU_F_RAW_AMPDU))
  1861. qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1);
  1862. if (!is_prev_msdu_last &&
  1863. msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1864. is_prev_msdu_last = true;
  1865. /* Pop out the descriptor*/
  1866. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1867. rx_bufs_reaped[rx_desc->pool_id]++;
  1868. peer_mdata = mpdu_desc_info.peer_meta_data;
  1869. QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
  1870. DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1871. QDF_NBUF_CB_RX_VDEV_ID(rx_desc->nbuf) =
  1872. DP_PEER_METADATA_VDEV_ID_GET(peer_mdata);
  1873. /*
  1874. * save msdu flags first, last and continuation msdu in
  1875. * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
  1876. * length to nbuf->cb. This ensures the info required for
  1877. * per pkt processing is always in the same cache line.
  1878. * This helps in improving throughput for smaller pkt
  1879. * sizes.
  1880. */
  1881. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  1882. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  1883. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  1884. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  1885. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1886. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  1887. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
  1888. qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
  1889. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
  1890. qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
  1891. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
  1892. qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
  1893. qdf_nbuf_set_tid_val(rx_desc->nbuf,
  1894. HAL_RX_REO_QUEUE_NUMBER_GET(ring_desc));
  1895. QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
  1896. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  1897. /*
  1898. * move unmap after scattered msdu waiting break logic
  1899. * in case double skb unmap happened.
  1900. */
  1901. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  1902. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  1903. QDF_DMA_FROM_DEVICE,
  1904. rx_desc_pool->buf_size);
  1905. rx_desc->unmapped = 1;
  1906. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1907. /*
  1908. * if continuation bit is set then we have MSDU spread
  1909. * across multiple buffers, let us not decrement quota
  1910. * till we reap all buffers of that MSDU.
  1911. */
  1912. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1913. quota -= 1;
  1914. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1915. &tail[rx_desc->pool_id],
  1916. rx_desc);
  1917. num_rx_bufs_reaped++;
  1918. /*
  1919. * only if complete msdu is received for scatter case,
  1920. * then allow break.
  1921. */
  1922. if (is_prev_msdu_last &&
  1923. dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
  1924. break;
  1925. }
  1926. done:
  1927. dp_rx_srng_access_end(int_ctx, soc, hal_ring_hdl);
  1928. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1929. /*
  1930. * continue with next mac_id if no pkts were reaped
  1931. * from that pool
  1932. */
  1933. if (!rx_bufs_reaped[mac_id])
  1934. continue;
  1935. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_id];
  1936. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1937. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1938. rx_desc_pool, rx_bufs_reaped[mac_id],
  1939. &head[mac_id], &tail[mac_id]);
  1940. }
  1941. dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
  1942. /* Peer can be NULL is case of LFR */
  1943. if (qdf_likely(peer))
  1944. vdev = NULL;
  1945. /*
  1946. * BIG loop where each nbuf is dequeued from global queue,
  1947. * processed and queued back on a per vdev basis. These nbufs
  1948. * are sent to stack as and when we run out of nbufs
  1949. * or a new nbuf dequeued from global queue has a different
  1950. * vdev when compared to previous nbuf.
  1951. */
  1952. nbuf = nbuf_head;
  1953. while (nbuf) {
  1954. next = nbuf->next;
  1955. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1956. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1957. if (deliver_list_head && vdev && (vdev->vdev_id != vdev_id)) {
  1958. dp_rx_deliver_to_stack(soc, vdev, peer,
  1959. deliver_list_head,
  1960. deliver_list_tail);
  1961. deliver_list_head = NULL;
  1962. deliver_list_tail = NULL;
  1963. }
  1964. /* Get TID from struct cb->tid_val, save to tid */
  1965. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  1966. tid = qdf_nbuf_get_tid_val(nbuf);
  1967. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1968. peer = dp_peer_find_by_id(soc, peer_id);
  1969. if (peer) {
  1970. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  1971. qdf_dp_trace_set_track(nbuf, QDF_RX);
  1972. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  1973. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  1974. QDF_NBUF_RX_PKT_DATA_TRACK;
  1975. }
  1976. rx_bufs_used++;
  1977. if (qdf_likely(peer)) {
  1978. vdev = peer->vdev;
  1979. } else {
  1980. nbuf->next = NULL;
  1981. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  1982. nbuf = next;
  1983. continue;
  1984. }
  1985. if (qdf_unlikely(!vdev)) {
  1986. qdf_nbuf_free(nbuf);
  1987. nbuf = next;
  1988. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  1989. dp_peer_unref_del_find_by_id(peer);
  1990. continue;
  1991. }
  1992. rx_pdev = vdev->pdev;
  1993. DP_RX_TID_SAVE(nbuf, tid);
  1994. if (qdf_unlikely(rx_pdev->delay_stats_flag))
  1995. qdf_nbuf_set_timestamp(nbuf);
  1996. ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1997. tid_stats =
  1998. &rx_pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1999. /*
  2000. * Check if DMA completed -- msdu_done is the last bit
  2001. * to be written
  2002. */
  2003. if (qdf_unlikely(!qdf_nbuf_is_rx_chfrag_cont(nbuf) &&
  2004. !hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  2005. dp_err("MSDU DONE failure");
  2006. DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
  2007. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  2008. QDF_TRACE_LEVEL_INFO);
  2009. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  2010. qdf_nbuf_free(nbuf);
  2011. qdf_assert(0);
  2012. nbuf = next;
  2013. continue;
  2014. }
  2015. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  2016. /*
  2017. * First IF condition:
  2018. * 802.11 Fragmented pkts are reinjected to REO
  2019. * HW block as SG pkts and for these pkts we only
  2020. * need to pull the RX TLVS header length.
  2021. * Second IF condition:
  2022. * The below condition happens when an MSDU is spread
  2023. * across multiple buffers. This can happen in two cases
  2024. * 1. The nbuf size is smaller then the received msdu.
  2025. * ex: we have set the nbuf size to 2048 during
  2026. * nbuf_alloc. but we received an msdu which is
  2027. * 2304 bytes in size then this msdu is spread
  2028. * across 2 nbufs.
  2029. *
  2030. * 2. AMSDUs when RAW mode is enabled.
  2031. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  2032. * across 1st nbuf and 2nd nbuf and last MSDU is
  2033. * spread across 2nd nbuf and 3rd nbuf.
  2034. *
  2035. * for these scenarios let us create a skb frag_list and
  2036. * append these buffers till the last MSDU of the AMSDU
  2037. * Third condition:
  2038. * This is the most likely case, we receive 802.3 pkts
  2039. * decapsulated by HW, here we need to set the pkt length.
  2040. */
  2041. hal_rx_msdu_metadata_get(hal_soc, rx_tlv_hdr, &msdu_metadata);
  2042. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2043. bool is_mcbc, is_sa_vld, is_da_vld;
  2044. is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(soc->hal_soc,
  2045. rx_tlv_hdr);
  2046. is_sa_vld =
  2047. hal_rx_msdu_end_sa_is_valid_get(soc->hal_soc,
  2048. rx_tlv_hdr);
  2049. is_da_vld =
  2050. hal_rx_msdu_end_da_is_valid_get(soc->hal_soc,
  2051. rx_tlv_hdr);
  2052. qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
  2053. qdf_nbuf_set_da_valid(nbuf, is_da_vld);
  2054. qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
  2055. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  2056. } else if (qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  2057. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2058. nbuf = dp_rx_sg_create(nbuf);
  2059. next = nbuf->next;
  2060. if (qdf_nbuf_is_raw_frame(nbuf)) {
  2061. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  2062. DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
  2063. } else {
  2064. qdf_nbuf_free(nbuf);
  2065. DP_STATS_INC(soc, rx.err.scatter_msdu, 1);
  2066. dp_info_rl("scatter msdu len %d, dropped",
  2067. msdu_len);
  2068. nbuf = next;
  2069. dp_peer_unref_del_find_by_id(peer);
  2070. continue;
  2071. }
  2072. } else {
  2073. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2074. pkt_len = msdu_len +
  2075. msdu_metadata.l3_hdr_pad +
  2076. RX_PKT_TLVS_LEN;
  2077. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  2078. dp_rx_skip_tlvs(nbuf, msdu_metadata.l3_hdr_pad);
  2079. }
  2080. /*
  2081. * process frame for mulitpass phrase processing
  2082. */
  2083. if (qdf_unlikely(vdev->multipass_en)) {
  2084. if (dp_rx_multipass_process(peer, nbuf, tid) == false) {
  2085. DP_STATS_INC(peer, rx.multipass_rx_pkt_drop, 1);
  2086. qdf_nbuf_free(nbuf);
  2087. nbuf = next;
  2088. dp_peer_unref_del_find_by_id(peer);
  2089. continue;
  2090. }
  2091. }
  2092. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
  2093. QDF_TRACE(QDF_MODULE_ID_DP,
  2094. QDF_TRACE_LEVEL_ERROR,
  2095. FL("Policy Check Drop pkt"));
  2096. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  2097. /* Drop & free packet */
  2098. qdf_nbuf_free(nbuf);
  2099. /* Statistics */
  2100. nbuf = next;
  2101. dp_peer_unref_del_find_by_id(peer);
  2102. continue;
  2103. }
  2104. if (qdf_unlikely(peer && (peer->nawds_enabled) &&
  2105. (qdf_nbuf_is_da_mcbc(nbuf)) &&
  2106. (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc,
  2107. rx_tlv_hdr) ==
  2108. false))) {
  2109. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  2110. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  2111. qdf_nbuf_free(nbuf);
  2112. nbuf = next;
  2113. dp_peer_unref_del_find_by_id(peer);
  2114. continue;
  2115. }
  2116. if (soc->process_rx_status)
  2117. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  2118. /* Update the protocol tag in SKB based on CCE metadata */
  2119. dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
  2120. reo_ring_num, false, true);
  2121. /* Update the flow tag in SKB based on FSE metadata */
  2122. dp_rx_update_flow_tag(soc, vdev, nbuf, rx_tlv_hdr, true);
  2123. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
  2124. ring_id, tid_stats);
  2125. if (qdf_unlikely(vdev->mesh_vdev)) {
  2126. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  2127. == QDF_STATUS_SUCCESS) {
  2128. QDF_TRACE(QDF_MODULE_ID_DP,
  2129. QDF_TRACE_LEVEL_INFO_MED,
  2130. FL("mesh pkt filtered"));
  2131. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  2132. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  2133. 1);
  2134. qdf_nbuf_free(nbuf);
  2135. nbuf = next;
  2136. dp_peer_unref_del_find_by_id(peer);
  2137. continue;
  2138. }
  2139. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  2140. }
  2141. if (qdf_likely(vdev->rx_decap_type ==
  2142. htt_cmn_pkt_type_ethernet) &&
  2143. qdf_likely(!vdev->mesh_vdev)) {
  2144. /* WDS Destination Address Learning */
  2145. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  2146. /* Due to HW issue, sometimes we see that the sa_idx
  2147. * and da_idx are invalid with sa_valid and da_valid
  2148. * bits set
  2149. *
  2150. * in this case we also see that value of
  2151. * sa_sw_peer_id is set as 0
  2152. *
  2153. * Drop the packet if sa_idx and da_idx OOB or
  2154. * sa_sw_peerid is 0
  2155. */
  2156. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf,
  2157. msdu_metadata)) {
  2158. qdf_nbuf_free(nbuf);
  2159. nbuf = next;
  2160. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  2161. dp_peer_unref_del_find_by_id(peer);
  2162. continue;
  2163. }
  2164. /* WDS Source Port Learning */
  2165. if (qdf_likely(vdev->wds_enabled))
  2166. dp_rx_wds_srcport_learn(soc,
  2167. rx_tlv_hdr,
  2168. peer,
  2169. nbuf,
  2170. msdu_metadata);
  2171. /* Intrabss-fwd */
  2172. if (dp_rx_check_ap_bridge(vdev))
  2173. if (dp_rx_intrabss_fwd(soc,
  2174. peer,
  2175. rx_tlv_hdr,
  2176. nbuf,
  2177. msdu_metadata)) {
  2178. nbuf = next;
  2179. dp_peer_unref_del_find_by_id(peer);
  2180. tid_stats->intrabss_cnt++;
  2181. continue; /* Get next desc */
  2182. }
  2183. }
  2184. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf, &rx_ol_pkt_cnt);
  2185. DP_RX_LIST_APPEND(deliver_list_head,
  2186. deliver_list_tail,
  2187. nbuf);
  2188. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  2189. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2190. tid_stats->delivered_to_stack++;
  2191. nbuf = next;
  2192. dp_peer_unref_del_find_by_id(peer);
  2193. }
  2194. if (qdf_likely(deliver_list_head)) {
  2195. if (qdf_likely(peer))
  2196. dp_rx_deliver_to_stack(soc, vdev, peer,
  2197. deliver_list_head,
  2198. deliver_list_tail);
  2199. else {
  2200. nbuf = deliver_list_head;
  2201. while (nbuf) {
  2202. next = nbuf->next;
  2203. nbuf->next = NULL;
  2204. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2205. nbuf = next;
  2206. }
  2207. }
  2208. }
  2209. if (dp_rx_enable_eol_data_check(soc) && rx_bufs_used) {
  2210. if (quota) {
  2211. num_pending =
  2212. dp_rx_srng_get_num_pending(hal_soc,
  2213. hal_ring_hdl,
  2214. num_entries,
  2215. &near_full);
  2216. if (num_pending) {
  2217. DP_STATS_INC(soc, rx.hp_oos2, 1);
  2218. if (!hif_exec_should_yield(scn, intr_id))
  2219. goto more_data;
  2220. if (qdf_unlikely(near_full)) {
  2221. DP_STATS_INC(soc, rx.near_full, 1);
  2222. goto more_data;
  2223. }
  2224. }
  2225. }
  2226. if (vdev && vdev->osif_fisa_flush)
  2227. vdev->osif_fisa_flush(soc, reo_ring_num);
  2228. if (vdev && vdev->osif_gro_flush && rx_ol_pkt_cnt) {
  2229. vdev->osif_gro_flush(vdev->osif_vdev,
  2230. reo_ring_num);
  2231. }
  2232. }
  2233. /* Update histogram statistics by looping through pdev's */
  2234. DP_RX_HIST_STATS_PER_PDEV();
  2235. return rx_bufs_used; /* Assume no scale factor for now */
  2236. }
  2237. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2238. {
  2239. QDF_STATUS ret;
  2240. if (vdev->osif_rx_flush) {
  2241. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2242. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  2243. dp_err("Failed to flush rx pkts for vdev %d\n",
  2244. vdev->vdev_id);
  2245. return ret;
  2246. }
  2247. }
  2248. return QDF_STATUS_SUCCESS;
  2249. }
  2250. static QDF_STATUS
  2251. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc, qdf_nbuf_t *nbuf,
  2252. struct dp_pdev *dp_pdev,
  2253. struct rx_desc_pool *rx_desc_pool)
  2254. {
  2255. qdf_dma_addr_t paddr;
  2256. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2257. *nbuf = qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  2258. RX_BUFFER_RESERVATION,
  2259. rx_desc_pool->buf_alignment, FALSE);
  2260. if (!(*nbuf)) {
  2261. dp_err("nbuf alloc failed");
  2262. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2263. return ret;
  2264. }
  2265. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev, *nbuf,
  2266. QDF_DMA_FROM_DEVICE,
  2267. rx_desc_pool->buf_size);
  2268. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2269. qdf_nbuf_free(*nbuf);
  2270. dp_err("nbuf map failed");
  2271. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2272. return ret;
  2273. }
  2274. paddr = qdf_nbuf_get_frag_paddr(*nbuf, 0);
  2275. ret = check_x86_paddr(dp_soc, nbuf, &paddr, rx_desc_pool);
  2276. if (ret == QDF_STATUS_E_FAILURE) {
  2277. qdf_nbuf_unmap_nbytes_single(dp_soc->osdev, *nbuf,
  2278. QDF_DMA_FROM_DEVICE,
  2279. rx_desc_pool->buf_size);
  2280. qdf_nbuf_free(*nbuf);
  2281. dp_err("nbuf check x86 failed");
  2282. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2283. return ret;
  2284. }
  2285. return QDF_STATUS_SUCCESS;
  2286. }
  2287. QDF_STATUS
  2288. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2289. struct dp_srng *dp_rxdma_srng,
  2290. struct rx_desc_pool *rx_desc_pool,
  2291. uint32_t num_req_buffers)
  2292. {
  2293. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2294. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2295. union dp_rx_desc_list_elem_t *next;
  2296. void *rxdma_ring_entry;
  2297. qdf_dma_addr_t paddr;
  2298. qdf_nbuf_t *rx_nbuf_arr;
  2299. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2300. uint32_t buffer_index, nbuf_ptrs_per_page;
  2301. qdf_nbuf_t nbuf;
  2302. QDF_STATUS ret;
  2303. int page_idx, total_pages;
  2304. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2305. union dp_rx_desc_list_elem_t *tail = NULL;
  2306. int sync_hw_ptr = 1;
  2307. uint32_t num_entries_avail;
  2308. if (qdf_unlikely(!rxdma_srng)) {
  2309. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2310. return QDF_STATUS_E_FAILURE;
  2311. }
  2312. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2313. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2314. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  2315. rxdma_srng,
  2316. sync_hw_ptr);
  2317. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2318. if (!num_entries_avail) {
  2319. dp_err("Num of available entries is zero, nothing to do");
  2320. return QDF_STATUS_E_NOMEM;
  2321. }
  2322. if (num_entries_avail < num_req_buffers)
  2323. num_req_buffers = num_entries_avail;
  2324. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2325. num_req_buffers, &desc_list, &tail);
  2326. if (!nr_descs) {
  2327. dp_err("no free rx_descs in freelist");
  2328. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2329. return QDF_STATUS_E_NOMEM;
  2330. }
  2331. dp_debug("got %u RX descs for driver attach", nr_descs);
  2332. /*
  2333. * Try to allocate pointers to the nbuf one page at a time.
  2334. * Take pointers that can fit in one page of memory and
  2335. * iterate through the total descriptors that need to be
  2336. * allocated in order of pages. Reuse the pointers that
  2337. * have been allocated to fit in one page across each
  2338. * iteration to index into the nbuf.
  2339. */
  2340. total_pages = (nr_descs * sizeof(*rx_nbuf_arr)) / PAGE_SIZE;
  2341. /*
  2342. * Add an extra page to store the remainder if any
  2343. */
  2344. if ((nr_descs * sizeof(*rx_nbuf_arr)) % PAGE_SIZE)
  2345. total_pages++;
  2346. rx_nbuf_arr = qdf_mem_malloc(PAGE_SIZE);
  2347. if (!rx_nbuf_arr) {
  2348. dp_err("failed to allocate nbuf array");
  2349. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2350. QDF_BUG(0);
  2351. return QDF_STATUS_E_NOMEM;
  2352. }
  2353. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*rx_nbuf_arr);
  2354. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2355. qdf_mem_zero(rx_nbuf_arr, PAGE_SIZE);
  2356. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2357. /*
  2358. * The last page of buffer pointers may not be required
  2359. * completely based on the number of descriptors. Below
  2360. * check will ensure we are allocating only the
  2361. * required number of descriptors.
  2362. */
  2363. if (nr_nbuf_total >= nr_descs)
  2364. break;
  2365. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2366. &rx_nbuf_arr[nr_nbuf],
  2367. dp_pdev, rx_desc_pool);
  2368. if (QDF_IS_STATUS_ERROR(ret))
  2369. break;
  2370. nr_nbuf_total++;
  2371. }
  2372. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2373. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2374. rxdma_ring_entry =
  2375. hal_srng_src_get_next(dp_soc->hal_soc,
  2376. rxdma_srng);
  2377. qdf_assert_always(rxdma_ring_entry);
  2378. next = desc_list->next;
  2379. nbuf = rx_nbuf_arr[buffer_index];
  2380. paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
  2381. dp_rx_desc_prep(&desc_list->rx_desc, nbuf);
  2382. desc_list->rx_desc.in_use = 1;
  2383. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  2384. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  2385. __func__,
  2386. RX_DESC_REPLENISHED);
  2387. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  2388. desc_list->rx_desc.cookie,
  2389. rx_desc_pool->owner);
  2390. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, nbuf, true);
  2391. desc_list = next;
  2392. }
  2393. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2394. }
  2395. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2396. qdf_mem_free(rx_nbuf_arr);
  2397. if (!nr_nbuf_total) {
  2398. dp_err("No nbuf's allocated");
  2399. QDF_BUG(0);
  2400. return QDF_STATUS_E_RESOURCES;
  2401. }
  2402. /* No need to count the number of bytes received during replenish.
  2403. * Therefore set replenish.pkts.bytes as 0.
  2404. */
  2405. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2406. return QDF_STATUS_SUCCESS;
  2407. }
  2408. /*
  2409. * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
  2410. * pool
  2411. *
  2412. * @pdev: core txrx pdev context
  2413. *
  2414. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2415. * QDF_STATUS_E_NOMEM
  2416. */
  2417. QDF_STATUS
  2418. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2419. {
  2420. struct dp_soc *soc = pdev->soc;
  2421. uint32_t rxdma_entries;
  2422. uint32_t rx_sw_desc_weight;
  2423. struct dp_srng *dp_rxdma_srng;
  2424. struct rx_desc_pool *rx_desc_pool;
  2425. uint32_t status = QDF_STATUS_SUCCESS;
  2426. int mac_for_pdev;
  2427. mac_for_pdev = pdev->lmac_id;
  2428. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2429. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  2430. "nss-wifi<4> skip Rx refil %d", mac_for_pdev);
  2431. return status;
  2432. }
  2433. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2434. rxdma_entries = dp_rxdma_srng->num_entries;
  2435. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2436. rx_sw_desc_weight = wlan_cfg_get_dp_soc_rx_sw_desc_weight(soc->wlan_cfg_ctx);
  2437. status = dp_rx_desc_pool_alloc(soc,
  2438. rx_sw_desc_weight * rxdma_entries,
  2439. rx_desc_pool);
  2440. if (status != QDF_STATUS_SUCCESS)
  2441. return status;
  2442. return status;
  2443. }
  2444. /*
  2445. * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
  2446. *
  2447. * @pdev: core txrx pdev context
  2448. */
  2449. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2450. {
  2451. int mac_for_pdev = pdev->lmac_id;
  2452. struct dp_soc *soc = pdev->soc;
  2453. struct rx_desc_pool *rx_desc_pool;
  2454. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2455. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2456. }
  2457. /*
  2458. * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
  2459. *
  2460. * @pdev: core txrx pdev context
  2461. *
  2462. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2463. * QDF_STATUS_E_NOMEM
  2464. */
  2465. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2466. {
  2467. int mac_for_pdev = pdev->lmac_id;
  2468. struct dp_soc *soc = pdev->soc;
  2469. uint32_t rxdma_entries;
  2470. uint32_t rx_sw_desc_weight;
  2471. struct dp_srng *dp_rxdma_srng;
  2472. struct rx_desc_pool *rx_desc_pool;
  2473. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2474. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  2475. "nss-wifi<4> skip Rx refil %d", mac_for_pdev);
  2476. return QDF_STATUS_SUCCESS;
  2477. }
  2478. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2479. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2480. return QDF_STATUS_E_NOMEM;
  2481. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2482. rxdma_entries = dp_rxdma_srng->num_entries;
  2483. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2484. rx_sw_desc_weight =
  2485. wlan_cfg_get_dp_soc_rx_sw_desc_weight(soc->wlan_cfg_ctx);
  2486. rx_desc_pool->owner = DP_WBM2SW_RBM;
  2487. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2488. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2489. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2490. rx_sw_desc_weight * rxdma_entries,
  2491. rx_desc_pool);
  2492. return QDF_STATUS_SUCCESS;
  2493. }
  2494. /*
  2495. * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
  2496. * @pdev: core txrx pdev context
  2497. *
  2498. * This function resets the freelist of rx descriptors and destroys locks
  2499. * associated with this list of descriptors.
  2500. */
  2501. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  2502. {
  2503. int mac_for_pdev = pdev->lmac_id;
  2504. struct dp_soc *soc = pdev->soc;
  2505. struct rx_desc_pool *rx_desc_pool;
  2506. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2507. dp_rx_desc_pool_deinit(soc, rx_desc_pool);
  2508. }
  2509. /*
  2510. * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
  2511. *
  2512. * @pdev: core txrx pdev context
  2513. *
  2514. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2515. * QDF_STATUS_E_NOMEM
  2516. */
  2517. QDF_STATUS
  2518. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  2519. {
  2520. int mac_for_pdev = pdev->lmac_id;
  2521. struct dp_soc *soc = pdev->soc;
  2522. struct dp_srng *dp_rxdma_srng;
  2523. struct rx_desc_pool *rx_desc_pool;
  2524. uint32_t rxdma_entries;
  2525. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2526. rxdma_entries = dp_rxdma_srng->num_entries;
  2527. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2528. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev, dp_rxdma_srng,
  2529. rx_desc_pool, rxdma_entries - 1);
  2530. }
  2531. /*
  2532. * dp_rx_pdev_buffers_free - Free nbufs (skbs)
  2533. *
  2534. * @pdev: core txrx pdev context
  2535. */
  2536. void
  2537. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  2538. {
  2539. int mac_for_pdev = pdev->lmac_id;
  2540. struct dp_soc *soc = pdev->soc;
  2541. struct rx_desc_pool *rx_desc_pool;
  2542. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2543. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  2544. }
  2545. /*
  2546. * dp_rx_nbuf_prepare() - prepare RX nbuf
  2547. * @soc: core txrx main context
  2548. * @pdev: core txrx pdev context
  2549. *
  2550. * This function alloc & map nbuf for RX dma usage, retry it if failed
  2551. * until retry times reaches max threshold or succeeded.
  2552. *
  2553. * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
  2554. */
  2555. qdf_nbuf_t
  2556. dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
  2557. {
  2558. uint8_t *buf;
  2559. int32_t nbuf_retry_count;
  2560. QDF_STATUS ret;
  2561. qdf_nbuf_t nbuf = NULL;
  2562. for (nbuf_retry_count = 0; nbuf_retry_count <
  2563. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
  2564. nbuf_retry_count++) {
  2565. /* Allocate a new skb */
  2566. nbuf = qdf_nbuf_alloc(soc->osdev,
  2567. RX_DATA_BUFFER_SIZE,
  2568. RX_BUFFER_RESERVATION,
  2569. RX_DATA_BUFFER_ALIGNMENT,
  2570. FALSE);
  2571. if (!nbuf) {
  2572. DP_STATS_INC(pdev,
  2573. replenish.nbuf_alloc_fail, 1);
  2574. continue;
  2575. }
  2576. buf = qdf_nbuf_data(nbuf);
  2577. memset(buf, 0, RX_DATA_BUFFER_SIZE);
  2578. ret = qdf_nbuf_map_nbytes_single(soc->osdev, nbuf,
  2579. QDF_DMA_FROM_DEVICE,
  2580. RX_DATA_BUFFER_SIZE);
  2581. /* nbuf map failed */
  2582. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2583. qdf_nbuf_free(nbuf);
  2584. DP_STATS_INC(pdev, replenish.map_err, 1);
  2585. continue;
  2586. }
  2587. /* qdf_nbuf alloc and map succeeded */
  2588. break;
  2589. }
  2590. /* qdf_nbuf still alloc or map failed */
  2591. if (qdf_unlikely(nbuf_retry_count >=
  2592. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
  2593. return NULL;
  2594. return nbuf;
  2595. }
  2596. #ifdef DP_RX_SPECIAL_FRAME_NEED
  2597. bool dp_rx_deliver_special_frame(struct dp_soc *soc, struct dp_peer *peer,
  2598. qdf_nbuf_t nbuf, uint32_t frame_mask,
  2599. uint8_t *rx_tlv_hdr)
  2600. {
  2601. uint32_t l2_hdr_offset = 0;
  2602. uint16_t msdu_len = 0;
  2603. uint32_t skip_len;
  2604. l2_hdr_offset =
  2605. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2606. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2607. skip_len = l2_hdr_offset;
  2608. } else {
  2609. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2610. skip_len = l2_hdr_offset + RX_PKT_TLVS_LEN;
  2611. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  2612. }
  2613. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2614. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  2615. qdf_nbuf_pull_head(nbuf, skip_len);
  2616. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  2617. qdf_nbuf_set_exc_frame(nbuf, 1);
  2618. dp_rx_deliver_to_stack(soc, peer->vdev, peer,
  2619. nbuf, NULL);
  2620. return true;
  2621. }
  2622. return false;
  2623. }
  2624. #endif