hal_srng.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "hal_api.h"
  20. #include "target_type.h"
  21. #include "wcss_version.h"
  22. #include "qdf_module.h"
  23. #ifdef QCA_WIFI_QCA8074
  24. void hal_qca6290_attach(struct hal_soc *hal);
  25. #endif
  26. #ifdef QCA_WIFI_QCA8074
  27. void hal_qca8074_attach(struct hal_soc *hal);
  28. #endif
  29. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018)
  30. void hal_qca8074v2_attach(struct hal_soc *hal);
  31. #endif
  32. #ifdef QCA_WIFI_QCA6390
  33. void hal_qca6390_attach(struct hal_soc *hal);
  34. #endif
  35. #ifdef QCA_WIFI_QCA6490
  36. void hal_qca6490_attach(struct hal_soc *hal);
  37. #endif
  38. #ifdef QCA_WIFI_QCN9000
  39. void hal_qcn9000_attach(struct hal_soc *hal);
  40. #endif
  41. #ifdef QCA_WIFI_QCN9100
  42. void hal_qcn9100_attach(struct hal_soc *hal);
  43. #endif
  44. #ifdef QCA_WIFI_QCA6750
  45. void hal_qca6750_attach(struct hal_soc *hal);
  46. #endif
  47. #ifdef QCA_WIFI_QCA5018
  48. void hal_qca5018_attach(struct hal_soc *hal);
  49. #endif
  50. #ifdef ENABLE_VERBOSE_DEBUG
  51. bool is_hal_verbose_debug_enabled;
  52. #endif
  53. #ifdef ENABLE_HAL_REG_WR_HISTORY
  54. struct hal_reg_write_fail_history hal_reg_wr_hist;
  55. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  56. uint32_t offset,
  57. uint32_t wr_val, uint32_t rd_val)
  58. {
  59. struct hal_reg_write_fail_entry *record;
  60. int idx;
  61. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  62. HAL_REG_WRITE_HIST_SIZE);
  63. record = &hal_soc->reg_wr_fail_hist->record[idx];
  64. record->timestamp = qdf_get_log_timestamp();
  65. record->reg_offset = offset;
  66. record->write_val = wr_val;
  67. record->read_val = rd_val;
  68. }
  69. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  70. {
  71. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  72. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  73. }
  74. #else
  75. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  76. {
  77. }
  78. #endif
  79. /**
  80. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  81. * @hal: hal_soc data structure
  82. * @ring_type: type enum describing the ring
  83. * @ring_num: which ring of the ring type
  84. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  85. *
  86. * Return: the ring id or -EINVAL if the ring does not exist.
  87. */
  88. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  89. int ring_num, int mac_id)
  90. {
  91. struct hal_hw_srng_config *ring_config =
  92. HAL_SRNG_CONFIG(hal, ring_type);
  93. int ring_id;
  94. if (ring_num >= ring_config->max_rings) {
  95. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  96. "%s: ring_num exceeded maximum no. of supported rings",
  97. __func__);
  98. /* TODO: This is a programming error. Assert if this happens */
  99. return -EINVAL;
  100. }
  101. if (ring_config->lmac_ring) {
  102. ring_id = ring_config->start_ring_id + ring_num +
  103. (mac_id * HAL_MAX_RINGS_PER_LMAC);
  104. } else {
  105. ring_id = ring_config->start_ring_id + ring_num;
  106. }
  107. return ring_id;
  108. }
  109. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  110. {
  111. /* TODO: Should we allocate srng structures dynamically? */
  112. return &(hal->srng_list[ring_id]);
  113. }
  114. #define HP_OFFSET_IN_REG_START 1
  115. #define OFFSET_FROM_HP_TO_TP 4
  116. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  117. int shadow_config_index,
  118. int ring_type,
  119. int ring_num)
  120. {
  121. struct hal_srng *srng;
  122. int ring_id;
  123. struct hal_hw_srng_config *ring_config =
  124. HAL_SRNG_CONFIG(hal_soc, ring_type);
  125. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  126. if (ring_id < 0)
  127. return;
  128. srng = hal_get_srng(hal_soc, ring_id);
  129. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  130. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  131. + hal_soc->dev_base_addr;
  132. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  133. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  134. shadow_config_index);
  135. } else {
  136. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  137. + hal_soc->dev_base_addr;
  138. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  139. srng->u.src_ring.hp_addr,
  140. hal_soc->dev_base_addr, shadow_config_index);
  141. }
  142. }
  143. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  144. void hal_set_one_target_reg_config(struct hal_soc *hal,
  145. uint32_t target_reg_offset,
  146. int list_index)
  147. {
  148. int i = list_index;
  149. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  150. hal->list_shadow_reg_config[i].target_register =
  151. target_reg_offset;
  152. hal->num_generic_shadow_regs_configured++;
  153. }
  154. qdf_export_symbol(hal_set_one_target_reg_config);
  155. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  156. #define MAX_REO_REMAP_SHADOW_REGS 4
  157. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  158. {
  159. uint32_t target_reg_offset;
  160. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  161. int i;
  162. struct hal_hw_srng_config *srng_config =
  163. &hal->hw_srng_table[WBM2SW_RELEASE];
  164. target_reg_offset =
  165. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  166. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  167. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  168. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  169. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  170. }
  171. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  172. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  173. * HAL_IPA_TX_COMP_RING_IDX);
  174. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  175. return QDF_STATUS_SUCCESS;
  176. }
  177. qdf_export_symbol(hal_set_shadow_regs);
  178. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  179. {
  180. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  181. int shadow_config_index = hal->num_shadow_registers_configured;
  182. int i;
  183. int num_regs = hal->num_generic_shadow_regs_configured;
  184. for (i = 0; i < num_regs; i++) {
  185. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  186. hal->shadow_config[shadow_config_index].addr =
  187. hal->list_shadow_reg_config[i].target_register;
  188. hal->list_shadow_reg_config[i].shadow_config_index =
  189. shadow_config_index;
  190. hal->list_shadow_reg_config[i].va =
  191. SHADOW_REGISTER(shadow_config_index) +
  192. (uint64_t)hal->dev_base_addr;
  193. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  194. hal->shadow_config[shadow_config_index].addr,
  195. SHADOW_REGISTER(shadow_config_index),
  196. shadow_config_index);
  197. shadow_config_index++;
  198. hal->num_shadow_registers_configured++;
  199. }
  200. return QDF_STATUS_SUCCESS;
  201. }
  202. qdf_export_symbol(hal_construct_shadow_regs);
  203. #endif
  204. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  205. int ring_type,
  206. int ring_num)
  207. {
  208. uint32_t target_register;
  209. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  210. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  211. int shadow_config_index = hal->num_shadow_registers_configured;
  212. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  213. QDF_ASSERT(0);
  214. return QDF_STATUS_E_RESOURCES;
  215. }
  216. hal->num_shadow_registers_configured++;
  217. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  218. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  219. *ring_num);
  220. /* if the ring is a dst ring, we need to shadow the tail pointer */
  221. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  222. target_register += OFFSET_FROM_HP_TO_TP;
  223. hal->shadow_config[shadow_config_index].addr = target_register;
  224. /* update hp/tp addr in the hal_soc structure*/
  225. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  226. ring_num);
  227. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  228. target_register,
  229. SHADOW_REGISTER(shadow_config_index),
  230. shadow_config_index,
  231. ring_type, ring_num);
  232. return QDF_STATUS_SUCCESS;
  233. }
  234. qdf_export_symbol(hal_set_one_shadow_config);
  235. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  236. {
  237. int ring_type, ring_num;
  238. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  239. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  240. struct hal_hw_srng_config *srng_config =
  241. &hal->hw_srng_table[ring_type];
  242. if (ring_type == CE_SRC ||
  243. ring_type == CE_DST ||
  244. ring_type == CE_DST_STATUS)
  245. continue;
  246. if (srng_config->lmac_ring)
  247. continue;
  248. for (ring_num = 0; ring_num < srng_config->max_rings;
  249. ring_num++)
  250. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  251. }
  252. return QDF_STATUS_SUCCESS;
  253. }
  254. qdf_export_symbol(hal_construct_srng_shadow_regs);
  255. void hal_get_shadow_config(void *hal_soc,
  256. struct pld_shadow_reg_v2_cfg **shadow_config,
  257. int *num_shadow_registers_configured)
  258. {
  259. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  260. *shadow_config = hal->shadow_config;
  261. *num_shadow_registers_configured =
  262. hal->num_shadow_registers_configured;
  263. }
  264. qdf_export_symbol(hal_get_shadow_config);
  265. static void hal_validate_shadow_register(struct hal_soc *hal,
  266. uint32_t *destination,
  267. uint32_t *shadow_address)
  268. {
  269. unsigned int index;
  270. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  271. int destination_ba_offset =
  272. ((char *)destination) - (char *)hal->dev_base_addr;
  273. index = shadow_address - shadow_0_offset;
  274. if (index >= MAX_SHADOW_REGISTERS) {
  275. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  276. "%s: index %x out of bounds", __func__, index);
  277. goto error;
  278. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  279. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  280. "%s: sanity check failure, expected %x, found %x",
  281. __func__, destination_ba_offset,
  282. hal->shadow_config[index].addr);
  283. goto error;
  284. }
  285. return;
  286. error:
  287. qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  288. hal->dev_base_addr, destination, shadow_address,
  289. shadow_0_offset, index);
  290. QDF_BUG(0);
  291. return;
  292. }
  293. static void hal_target_based_configure(struct hal_soc *hal)
  294. {
  295. /**
  296. * Indicate Initialization of srngs to avoid force wake
  297. * as umac power collapse is not enabled yet
  298. */
  299. hal->init_phase = true;
  300. switch (hal->target_type) {
  301. #ifdef QCA_WIFI_QCA6290
  302. case TARGET_TYPE_QCA6290:
  303. hal->use_register_windowing = true;
  304. hal_qca6290_attach(hal);
  305. break;
  306. #endif
  307. #ifdef QCA_WIFI_QCA6390
  308. case TARGET_TYPE_QCA6390:
  309. hal->use_register_windowing = true;
  310. hal_qca6390_attach(hal);
  311. break;
  312. #endif
  313. #ifdef QCA_WIFI_QCA6490
  314. case TARGET_TYPE_QCA6490:
  315. hal->use_register_windowing = true;
  316. hal_qca6490_attach(hal);
  317. hal->init_phase = false;
  318. break;
  319. #endif
  320. #ifdef QCA_WIFI_QCA6750
  321. case TARGET_TYPE_QCA6750:
  322. hal->use_register_windowing = true;
  323. hal->static_window_map = true;
  324. hal_qca6750_attach(hal);
  325. break;
  326. #endif
  327. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  328. case TARGET_TYPE_QCA8074:
  329. hal_qca8074_attach(hal);
  330. break;
  331. #endif
  332. #if defined(QCA_WIFI_QCA8074V2)
  333. case TARGET_TYPE_QCA8074V2:
  334. hal_qca8074v2_attach(hal);
  335. break;
  336. #endif
  337. #if defined(QCA_WIFI_QCA6018)
  338. case TARGET_TYPE_QCA6018:
  339. hal_qca8074v2_attach(hal);
  340. break;
  341. #endif
  342. #if defined(QCA_WIFI_QCN9100)
  343. case TARGET_TYPE_QCN9100:
  344. hal->use_register_windowing = true;
  345. /*
  346. * Static window map is enabled for qcn9000 to use 2mb bar
  347. * size and use multiple windows to write into registers.
  348. */
  349. hal->static_window_map = true;
  350. hal_qcn9100_attach(hal);
  351. break;
  352. #endif
  353. #ifdef QCA_WIFI_QCN9000
  354. case TARGET_TYPE_QCN9000:
  355. hal->use_register_windowing = true;
  356. /*
  357. * Static window map is enabled for qcn9000 to use 2mb bar
  358. * size and use multiple windows to write into registers.
  359. */
  360. hal->static_window_map = true;
  361. hal_qcn9000_attach(hal);
  362. break;
  363. #endif
  364. #ifdef QCA_WIFI_QCA5018
  365. case TARGET_TYPE_QCA5018:
  366. hal->use_register_windowing = true;
  367. hal->static_window_map = true;
  368. hal_qca5018_attach(hal);
  369. break;
  370. #endif
  371. default:
  372. break;
  373. }
  374. }
  375. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  376. {
  377. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  378. struct hif_target_info *tgt_info =
  379. hif_get_target_info_handle(hal_soc->hif_handle);
  380. return tgt_info->target_type;
  381. }
  382. qdf_export_symbol(hal_get_target_type);
  383. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  384. #ifdef MEMORY_DEBUG
  385. /*
  386. * Length of the queue(array) used to hold delayed register writes.
  387. * Must be a multiple of 2.
  388. */
  389. #define HAL_REG_WRITE_QUEUE_LEN 128
  390. #else
  391. #define HAL_REG_WRITE_QUEUE_LEN 32
  392. #endif
  393. /**
  394. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  395. * @hal: hal_soc pointer
  396. *
  397. * Return: true if throughput is high, else false.
  398. */
  399. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  400. {
  401. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  402. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  403. }
  404. /**
  405. * hal_process_reg_write_q_elem() - process a regiter write queue element
  406. * @hal: hal_soc pointer
  407. * @q_elem: pointer to hal regiter write queue element
  408. *
  409. * Return: The value which was written to the address
  410. */
  411. static uint32_t
  412. hal_process_reg_write_q_elem(struct hal_soc *hal,
  413. struct hal_reg_write_q_elem *q_elem)
  414. {
  415. struct hal_srng *srng = q_elem->srng;
  416. uint32_t write_val;
  417. SRNG_LOCK(&srng->lock);
  418. srng->reg_write_in_progress = false;
  419. srng->wstats.dequeues++;
  420. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  421. q_elem->dequeue_val = srng->u.src_ring.hp;
  422. hal_write_address_32_mb(hal,
  423. srng->u.src_ring.hp_addr,
  424. srng->u.src_ring.hp, false);
  425. write_val = srng->u.src_ring.hp;
  426. } else {
  427. q_elem->dequeue_val = srng->u.dst_ring.tp;
  428. hal_write_address_32_mb(hal,
  429. srng->u.dst_ring.tp_addr,
  430. srng->u.dst_ring.tp, false);
  431. write_val = srng->u.dst_ring.tp;
  432. }
  433. q_elem->valid = 0;
  434. SRNG_UNLOCK(&srng->lock);
  435. return write_val;
  436. }
  437. /**
  438. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  439. * @hal: hal_soc pointer
  440. * @delay: delay in us
  441. *
  442. * Return: None
  443. */
  444. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  445. uint64_t delay_us)
  446. {
  447. uint32_t *hist;
  448. hist = hal->stats.wstats.sched_delay;
  449. if (delay_us < 100)
  450. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  451. else if (delay_us < 1000)
  452. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  453. else if (delay_us < 5000)
  454. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  455. else
  456. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  457. }
  458. /**
  459. * hal_reg_write_work() - Worker to process delayed writes
  460. * @arg: hal_soc pointer
  461. *
  462. * Return: None
  463. */
  464. static void hal_reg_write_work(void *arg)
  465. {
  466. int32_t q_depth, write_val;
  467. struct hal_soc *hal = arg;
  468. struct hal_reg_write_q_elem *q_elem;
  469. uint64_t delta_us;
  470. uint8_t ring_id;
  471. uint32_t *addr;
  472. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  473. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  474. /* Make sure q_elem consistent in the memory for multi-cores */
  475. qdf_rmb();
  476. if (!q_elem->valid)
  477. return;
  478. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  479. if (q_depth > hal->stats.wstats.max_q_depth)
  480. hal->stats.wstats.max_q_depth = q_depth;
  481. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  482. hal->stats.wstats.prevent_l1_fails++;
  483. return;
  484. }
  485. while (true) {
  486. qdf_rmb();
  487. if (!q_elem->valid)
  488. break;
  489. q_elem->dequeue_time = qdf_get_log_timestamp();
  490. ring_id = q_elem->srng->ring_id;
  491. addr = q_elem->addr;
  492. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  493. q_elem->enqueue_time);
  494. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  495. hal->stats.wstats.dequeues++;
  496. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  497. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  498. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  499. hal->read_idx, ring_id, addr, write_val, delta_us);
  500. qdf_atomic_dec(&hal->active_work_cnt);
  501. hal->read_idx = (hal->read_idx + 1) &
  502. (HAL_REG_WRITE_QUEUE_LEN - 1);
  503. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  504. }
  505. hif_allow_link_low_power_states(hal->hif_handle);
  506. }
  507. /**
  508. * hal_flush_reg_write_work() - flush all writes from regiter write queue
  509. * @arg: hal_soc pointer
  510. *
  511. * Return: None
  512. */
  513. static inline void hal_flush_reg_write_work(struct hal_soc *hal)
  514. {
  515. qdf_cancel_work(&hal->reg_write_work);
  516. qdf_flush_work(&hal->reg_write_work);
  517. qdf_flush_workqueue(0, hal->reg_write_wq);
  518. }
  519. /**
  520. * hal_reg_write_enqueue() - enqueue register writes into kworker
  521. * @hal_soc: hal_soc pointer
  522. * @srng: srng pointer
  523. * @addr: iomem address of regiter
  524. * @value: value to be written to iomem address
  525. *
  526. * This function executes from within the SRNG LOCK
  527. *
  528. * Return: None
  529. */
  530. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  531. struct hal_srng *srng,
  532. void __iomem *addr,
  533. uint32_t value)
  534. {
  535. struct hal_reg_write_q_elem *q_elem;
  536. uint32_t write_idx;
  537. if (srng->reg_write_in_progress) {
  538. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  539. srng->ring_id, addr, value);
  540. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  541. srng->wstats.coalesces++;
  542. return;
  543. }
  544. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  545. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  546. q_elem = &hal_soc->reg_write_queue[write_idx];
  547. if (q_elem->valid) {
  548. hal_err("queue full");
  549. QDF_BUG(0);
  550. return;
  551. }
  552. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  553. srng->wstats.enqueues++;
  554. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  555. q_elem->srng = srng;
  556. q_elem->addr = addr;
  557. q_elem->enqueue_val = value;
  558. q_elem->enqueue_time = qdf_get_log_timestamp();
  559. /*
  560. * Before the valid flag is set to true, all the other
  561. * fields in the q_elem needs to be updated in memory.
  562. * Else there is a chance that the dequeuing worker thread
  563. * might read stale entries and process incorrect srng.
  564. */
  565. qdf_wmb();
  566. q_elem->valid = true;
  567. /*
  568. * After all other fields in the q_elem has been updated
  569. * in memory successfully, the valid flag needs to be updated
  570. * in memory in time too.
  571. * Else there is a chance that the dequeuing worker thread
  572. * might read stale valid flag and the work will be bypassed
  573. * for this round. And if there is no other work scheduled
  574. * later, this hal register writing won't be updated any more.
  575. */
  576. qdf_wmb();
  577. srng->reg_write_in_progress = true;
  578. qdf_atomic_inc(&hal_soc->active_work_cnt);
  579. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  580. write_idx, srng->ring_id, addr, value);
  581. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  582. &hal_soc->reg_write_work);
  583. }
  584. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  585. struct hal_srng *srng,
  586. void __iomem *addr,
  587. uint32_t value)
  588. {
  589. if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
  590. hal_is_reg_write_tput_level_high(hal_soc)) {
  591. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  592. srng->wstats.direct++;
  593. hal_write_address_32_mb(hal_soc, addr, value, false);
  594. } else {
  595. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  596. }
  597. }
  598. /**
  599. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  600. * @hal_soc: hal_soc pointer
  601. *
  602. * Initialize main data structures to process register writes in a delayed
  603. * workqueue.
  604. *
  605. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  606. */
  607. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  608. {
  609. hal->reg_write_wq =
  610. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  611. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  612. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  613. sizeof(*hal->reg_write_queue));
  614. if (!hal->reg_write_queue) {
  615. hal_err("unable to allocate memory");
  616. QDF_BUG(0);
  617. return QDF_STATUS_E_NOMEM;
  618. }
  619. /* Initial value of indices */
  620. hal->read_idx = 0;
  621. qdf_atomic_set(&hal->write_idx, -1);
  622. return QDF_STATUS_SUCCESS;
  623. }
  624. /**
  625. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  626. * @hal_soc: hal_soc pointer
  627. *
  628. * De-initialize main data structures to process register writes in a delayed
  629. * workqueue.
  630. *
  631. * Return: None
  632. */
  633. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  634. {
  635. hal_flush_reg_write_work(hal);
  636. qdf_destroy_workqueue(0, hal->reg_write_wq);
  637. qdf_mem_free(hal->reg_write_queue);
  638. }
  639. static inline
  640. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  641. char *buf, qdf_size_t size)
  642. {
  643. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  644. srng->wstats.enqueues, srng->wstats.dequeues,
  645. srng->wstats.coalesces, srng->wstats.direct);
  646. return buf;
  647. }
  648. /* bytes for local buffer */
  649. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  650. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  651. {
  652. struct hal_srng *srng;
  653. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  654. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  655. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  656. hal_debug("SW2TCL1: %s",
  657. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  658. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  659. hal_debug("WBM2SW0: %s",
  660. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  661. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  662. hal_debug("REO2SW1: %s",
  663. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  664. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  665. hal_debug("REO2SW2: %s",
  666. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  667. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  668. hal_debug("REO2SW3: %s",
  669. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  670. }
  671. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  672. {
  673. uint32_t *hist;
  674. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  675. hist = hal->stats.wstats.sched_delay;
  676. hal_debug("enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  677. qdf_atomic_read(&hal->stats.wstats.enqueues),
  678. hal->stats.wstats.dequeues,
  679. qdf_atomic_read(&hal->stats.wstats.coalesces),
  680. qdf_atomic_read(&hal->stats.wstats.direct),
  681. qdf_atomic_read(&hal->stats.wstats.q_depth),
  682. hal->stats.wstats.max_q_depth,
  683. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  684. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  685. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  686. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  687. }
  688. int hal_get_reg_write_pending_work(void *hal_soc)
  689. {
  690. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  691. return qdf_atomic_read(&hal->active_work_cnt);
  692. }
  693. #else
  694. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  695. {
  696. return QDF_STATUS_SUCCESS;
  697. }
  698. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  699. {
  700. }
  701. #endif
  702. /**
  703. * hal_attach - Initialize HAL layer
  704. * @hif_handle: Opaque HIF handle
  705. * @qdf_dev: QDF device
  706. *
  707. * Return: Opaque HAL SOC handle
  708. * NULL on failure (if given ring is not available)
  709. *
  710. * This function should be called as part of HIF initialization (for accessing
  711. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  712. *
  713. */
  714. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  715. {
  716. struct hal_soc *hal;
  717. int i;
  718. hal = qdf_mem_malloc(sizeof(*hal));
  719. if (!hal) {
  720. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  721. "%s: hal_soc allocation failed", __func__);
  722. goto fail0;
  723. }
  724. hal->hif_handle = hif_handle;
  725. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  726. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  727. hal->qdf_dev = qdf_dev;
  728. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  729. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  730. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  731. if (!hal->shadow_rdptr_mem_paddr) {
  732. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  733. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  734. __func__);
  735. goto fail1;
  736. }
  737. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  738. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  739. hal->shadow_wrptr_mem_vaddr =
  740. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  741. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  742. &(hal->shadow_wrptr_mem_paddr));
  743. if (!hal->shadow_wrptr_mem_vaddr) {
  744. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  745. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  746. __func__);
  747. goto fail2;
  748. }
  749. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  750. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  751. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  752. hal->srng_list[i].initialized = 0;
  753. hal->srng_list[i].ring_id = i;
  754. }
  755. qdf_spinlock_create(&hal->register_access_lock);
  756. hal->register_window = 0;
  757. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  758. hal_target_based_configure(hal);
  759. hal_reg_write_fail_history_init(hal);
  760. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  761. qdf_atomic_init(&hal->active_work_cnt);
  762. hal_delayed_reg_write_init(hal);
  763. return (void *)hal;
  764. fail2:
  765. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  766. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  767. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  768. fail1:
  769. qdf_mem_free(hal);
  770. fail0:
  771. return NULL;
  772. }
  773. qdf_export_symbol(hal_attach);
  774. /**
  775. * hal_mem_info - Retrieve hal memory base address
  776. *
  777. * @hal_soc: Opaque HAL SOC handle
  778. * @mem: pointer to structure to be updated with hal mem info
  779. */
  780. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  781. {
  782. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  783. mem->dev_base_addr = (void *)hal->dev_base_addr;
  784. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  785. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  786. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  787. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  788. hif_read_phy_mem_base((void *)hal->hif_handle,
  789. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  790. return;
  791. }
  792. qdf_export_symbol(hal_get_meminfo);
  793. /**
  794. * hal_detach - Detach HAL layer
  795. * @hal_soc: HAL SOC handle
  796. *
  797. * Return: Opaque HAL SOC handle
  798. * NULL on failure (if given ring is not available)
  799. *
  800. * This function should be called as part of HIF initialization (for accessing
  801. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  802. *
  803. */
  804. extern void hal_detach(void *hal_soc)
  805. {
  806. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  807. hal_delayed_reg_write_deinit(hal);
  808. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  809. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  810. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  811. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  812. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  813. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  814. qdf_minidump_remove(hal);
  815. qdf_mem_free(hal);
  816. return;
  817. }
  818. qdf_export_symbol(hal_detach);
  819. /**
  820. * hal_ce_dst_setup - Initialize CE destination ring registers
  821. * @hal_soc: HAL SOC handle
  822. * @srng: SRNG ring pointer
  823. */
  824. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  825. int ring_num)
  826. {
  827. uint32_t reg_val = 0;
  828. uint32_t reg_addr;
  829. struct hal_hw_srng_config *ring_config =
  830. HAL_SRNG_CONFIG(hal, CE_DST);
  831. /* set DEST_MAX_LENGTH according to ce assignment */
  832. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_ADDR(
  833. ring_config->reg_start[R0_INDEX] +
  834. (ring_num * ring_config->reg_size[R0_INDEX]));
  835. reg_val = HAL_REG_READ(hal, reg_addr);
  836. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  837. reg_val |= srng->u.dst_ring.max_buffer_length &
  838. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  839. HAL_REG_WRITE(hal, reg_addr, reg_val);
  840. if (srng->prefetch_timer) {
  841. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  842. ring_config->reg_start[R0_INDEX] +
  843. (ring_num * ring_config->reg_size[R0_INDEX]));
  844. reg_val = HAL_REG_READ(hal, reg_addr);
  845. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  846. reg_val |= srng->prefetch_timer;
  847. HAL_REG_WRITE(hal, reg_addr, reg_val);
  848. reg_val = HAL_REG_READ(hal, reg_addr);
  849. }
  850. }
  851. /**
  852. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  853. * @hal: HAL SOC handle
  854. * @read: boolean value to indicate if read or write
  855. * @ix0: pointer to store IX0 reg value
  856. * @ix1: pointer to store IX1 reg value
  857. * @ix2: pointer to store IX2 reg value
  858. * @ix3: pointer to store IX3 reg value
  859. */
  860. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  861. uint32_t *ix0, uint32_t *ix1,
  862. uint32_t *ix2, uint32_t *ix3)
  863. {
  864. uint32_t reg_offset;
  865. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  866. if (read) {
  867. if (ix0) {
  868. reg_offset =
  869. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  870. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  871. *ix0 = HAL_REG_READ(hal, reg_offset);
  872. }
  873. if (ix1) {
  874. reg_offset =
  875. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  876. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  877. *ix1 = HAL_REG_READ(hal, reg_offset);
  878. }
  879. if (ix2) {
  880. reg_offset =
  881. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  882. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  883. *ix2 = HAL_REG_READ(hal, reg_offset);
  884. }
  885. if (ix3) {
  886. reg_offset =
  887. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  888. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  889. *ix3 = HAL_REG_READ(hal, reg_offset);
  890. }
  891. } else {
  892. if (ix0) {
  893. reg_offset =
  894. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  895. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  896. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  897. *ix0, true);
  898. }
  899. if (ix1) {
  900. reg_offset =
  901. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  902. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  903. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  904. *ix1, true);
  905. }
  906. if (ix2) {
  907. reg_offset =
  908. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  909. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  910. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  911. *ix2, true);
  912. }
  913. if (ix3) {
  914. reg_offset =
  915. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  916. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  917. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  918. *ix3, true);
  919. }
  920. }
  921. }
  922. /**
  923. * hal_srng_dst_set_hp_paddr() - Set physical address to dest ring head pointer
  924. * @srng: sring pointer
  925. * @paddr: physical address
  926. */
  927. void hal_srng_dst_set_hp_paddr(struct hal_srng *srng,
  928. uint64_t paddr)
  929. {
  930. SRNG_DST_REG_WRITE(srng, HP_ADDR_LSB,
  931. paddr & 0xffffffff);
  932. SRNG_DST_REG_WRITE(srng, HP_ADDR_MSB,
  933. paddr >> 32);
  934. }
  935. /**
  936. * hal_srng_dst_init_hp() - Initialize destination ring head
  937. * pointer
  938. * @hal_soc: hal_soc handle
  939. * @srng: sring pointer
  940. * @vaddr: virtual address
  941. */
  942. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  943. struct hal_srng *srng,
  944. uint32_t *vaddr)
  945. {
  946. uint32_t reg_offset;
  947. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  948. if (!srng)
  949. return;
  950. srng->u.dst_ring.hp_addr = vaddr;
  951. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  952. HAL_REG_WRITE_CONFIRM_RETRY(
  953. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  954. if (vaddr) {
  955. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  956. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  957. "hp_addr=%pK, cached_hp=%d, hp=%d",
  958. (void *)srng->u.dst_ring.hp_addr,
  959. srng->u.dst_ring.cached_hp,
  960. *srng->u.dst_ring.hp_addr);
  961. }
  962. }
  963. /**
  964. * hal_srng_hw_init - Private function to initialize SRNG HW
  965. * @hal_soc: HAL SOC handle
  966. * @srng: SRNG ring pointer
  967. */
  968. static inline void hal_srng_hw_init(struct hal_soc *hal,
  969. struct hal_srng *srng)
  970. {
  971. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  972. hal_srng_src_hw_init(hal, srng);
  973. else
  974. hal_srng_dst_hw_init(hal, srng);
  975. }
  976. #ifdef CONFIG_SHADOW_V2
  977. #define ignore_shadow false
  978. #define CHECK_SHADOW_REGISTERS true
  979. #else
  980. #define ignore_shadow true
  981. #define CHECK_SHADOW_REGISTERS false
  982. #endif
  983. /**
  984. * hal_srng_setup - Initialize HW SRNG ring.
  985. * @hal_soc: Opaque HAL SOC handle
  986. * @ring_type: one of the types from hal_ring_type
  987. * @ring_num: Ring number if there are multiple rings of same type (staring
  988. * from 0)
  989. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  990. * @ring_params: SRNG ring params in hal_srng_params structure.
  991. * Callers are expected to allocate contiguous ring memory of size
  992. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  993. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  994. * hal_srng_params structure. Ring base address should be 8 byte aligned
  995. * and size of each ring entry should be queried using the API
  996. * hal_srng_get_entrysize
  997. *
  998. * Return: Opaque pointer to ring on success
  999. * NULL on failure (if given ring is not available)
  1000. */
  1001. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1002. int mac_id, struct hal_srng_params *ring_params)
  1003. {
  1004. int ring_id;
  1005. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1006. struct hal_srng *srng;
  1007. struct hal_hw_srng_config *ring_config =
  1008. HAL_SRNG_CONFIG(hal, ring_type);
  1009. void *dev_base_addr;
  1010. int i;
  1011. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1012. if (ring_id < 0)
  1013. return NULL;
  1014. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1015. srng = hal_get_srng(hal_soc, ring_id);
  1016. if (srng->initialized) {
  1017. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1018. return NULL;
  1019. }
  1020. dev_base_addr = hal->dev_base_addr;
  1021. srng->ring_id = ring_id;
  1022. srng->ring_dir = ring_config->ring_dir;
  1023. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1024. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1025. srng->entry_size = ring_config->entry_size;
  1026. srng->num_entries = ring_params->num_entries;
  1027. srng->ring_size = srng->num_entries * srng->entry_size;
  1028. srng->ring_size_mask = srng->ring_size - 1;
  1029. srng->msi_addr = ring_params->msi_addr;
  1030. srng->msi_data = ring_params->msi_data;
  1031. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1032. srng->intr_batch_cntr_thres_entries =
  1033. ring_params->intr_batch_cntr_thres_entries;
  1034. srng->prefetch_timer = ring_params->prefetch_timer;
  1035. srng->hal_soc = hal_soc;
  1036. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1037. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1038. + (ring_num * ring_config->reg_size[i]);
  1039. }
  1040. /* Zero out the entire ring memory */
  1041. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1042. srng->num_entries) << 2);
  1043. srng->flags = ring_params->flags;
  1044. #ifdef BIG_ENDIAN_HOST
  1045. /* TODO: See if we should we get these flags from caller */
  1046. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1047. srng->flags |= HAL_SRNG_MSI_SWAP;
  1048. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1049. #endif
  1050. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1051. srng->u.src_ring.hp = 0;
  1052. srng->u.src_ring.reap_hp = srng->ring_size -
  1053. srng->entry_size;
  1054. srng->u.src_ring.tp_addr =
  1055. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1056. srng->u.src_ring.low_threshold =
  1057. ring_params->low_threshold * srng->entry_size;
  1058. if (ring_config->lmac_ring) {
  1059. /* For LMAC rings, head pointer updates will be done
  1060. * through FW by writing to a shared memory location
  1061. */
  1062. srng->u.src_ring.hp_addr =
  1063. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1064. HAL_SRNG_LMAC1_ID_START]);
  1065. srng->flags |= HAL_SRNG_LMAC_RING;
  1066. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1067. srng->u.src_ring.hp_addr =
  1068. hal_get_window_address(hal,
  1069. SRNG_SRC_ADDR(srng, HP));
  1070. if (CHECK_SHADOW_REGISTERS) {
  1071. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1072. QDF_TRACE_LEVEL_ERROR,
  1073. "%s: Ring (%d, %d) missing shadow config",
  1074. __func__, ring_type, ring_num);
  1075. }
  1076. } else {
  1077. hal_validate_shadow_register(hal,
  1078. SRNG_SRC_ADDR(srng, HP),
  1079. srng->u.src_ring.hp_addr);
  1080. }
  1081. } else {
  1082. /* During initialization loop count in all the descriptors
  1083. * will be set to zero, and HW will set it to 1 on completing
  1084. * descriptor update in first loop, and increments it by 1 on
  1085. * subsequent loops (loop count wraps around after reaching
  1086. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1087. * loop count in descriptors updated by HW (to be processed
  1088. * by SW).
  1089. */
  1090. srng->u.dst_ring.loop_cnt = 1;
  1091. srng->u.dst_ring.tp = 0;
  1092. srng->u.dst_ring.hp_addr =
  1093. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1094. if (ring_config->lmac_ring) {
  1095. /* For LMAC rings, tail pointer updates will be done
  1096. * through FW by writing to a shared memory location
  1097. */
  1098. srng->u.dst_ring.tp_addr =
  1099. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1100. HAL_SRNG_LMAC1_ID_START]);
  1101. srng->flags |= HAL_SRNG_LMAC_RING;
  1102. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1103. srng->u.dst_ring.tp_addr =
  1104. hal_get_window_address(hal,
  1105. SRNG_DST_ADDR(srng, TP));
  1106. if (CHECK_SHADOW_REGISTERS) {
  1107. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1108. QDF_TRACE_LEVEL_ERROR,
  1109. "%s: Ring (%d, %d) missing shadow config",
  1110. __func__, ring_type, ring_num);
  1111. }
  1112. } else {
  1113. hal_validate_shadow_register(hal,
  1114. SRNG_DST_ADDR(srng, TP),
  1115. srng->u.dst_ring.tp_addr);
  1116. }
  1117. }
  1118. if (!(ring_config->lmac_ring)) {
  1119. hal_srng_hw_init(hal, srng);
  1120. if (ring_type == CE_DST) {
  1121. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1122. hal_ce_dst_setup(hal, srng, ring_num);
  1123. }
  1124. }
  1125. SRNG_LOCK_INIT(&srng->lock);
  1126. srng->srng_event = 0;
  1127. srng->initialized = true;
  1128. return (void *)srng;
  1129. }
  1130. qdf_export_symbol(hal_srng_setup);
  1131. /**
  1132. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1133. * @hal_soc: Opaque HAL SOC handle
  1134. * @hal_srng: Opaque HAL SRNG pointer
  1135. */
  1136. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1137. {
  1138. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1139. SRNG_LOCK_DESTROY(&srng->lock);
  1140. srng->initialized = 0;
  1141. }
  1142. qdf_export_symbol(hal_srng_cleanup);
  1143. /**
  1144. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1145. * @hal_soc: Opaque HAL SOC handle
  1146. * @ring_type: one of the types from hal_ring_type
  1147. *
  1148. */
  1149. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1150. {
  1151. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1152. struct hal_hw_srng_config *ring_config =
  1153. HAL_SRNG_CONFIG(hal, ring_type);
  1154. return ring_config->entry_size << 2;
  1155. }
  1156. qdf_export_symbol(hal_srng_get_entrysize);
  1157. /**
  1158. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1159. * @hal_soc: Opaque HAL SOC handle
  1160. * @ring_type: one of the types from hal_ring_type
  1161. *
  1162. * Return: Maximum number of entries for the given ring_type
  1163. */
  1164. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1165. {
  1166. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1167. struct hal_hw_srng_config *ring_config =
  1168. HAL_SRNG_CONFIG(hal, ring_type);
  1169. return ring_config->max_size / ring_config->entry_size;
  1170. }
  1171. qdf_export_symbol(hal_srng_max_entries);
  1172. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1173. {
  1174. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1175. struct hal_hw_srng_config *ring_config =
  1176. HAL_SRNG_CONFIG(hal, ring_type);
  1177. return ring_config->ring_dir;
  1178. }
  1179. /**
  1180. * hal_srng_dump - Dump ring status
  1181. * @srng: hal srng pointer
  1182. */
  1183. void hal_srng_dump(struct hal_srng *srng)
  1184. {
  1185. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1186. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1187. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1188. srng->u.src_ring.hp,
  1189. srng->u.src_ring.reap_hp,
  1190. *srng->u.src_ring.tp_addr,
  1191. srng->u.src_ring.cached_tp);
  1192. } else {
  1193. hal_debug("=== DST RING %d ===", srng->ring_id);
  1194. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1195. srng->u.dst_ring.tp,
  1196. *srng->u.dst_ring.hp_addr,
  1197. srng->u.dst_ring.cached_hp,
  1198. srng->u.dst_ring.loop_cnt);
  1199. }
  1200. }
  1201. /**
  1202. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1203. *
  1204. * @hal_soc: Opaque HAL SOC handle
  1205. * @hal_ring: Ring pointer (Source or Destination ring)
  1206. * @ring_params: SRNG parameters will be returned through this structure
  1207. */
  1208. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1209. hal_ring_handle_t hal_ring_hdl,
  1210. struct hal_srng_params *ring_params)
  1211. {
  1212. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1213. int i =0;
  1214. ring_params->ring_id = srng->ring_id;
  1215. ring_params->ring_dir = srng->ring_dir;
  1216. ring_params->entry_size = srng->entry_size;
  1217. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1218. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1219. ring_params->num_entries = srng->num_entries;
  1220. ring_params->msi_addr = srng->msi_addr;
  1221. ring_params->msi_data = srng->msi_data;
  1222. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1223. ring_params->intr_batch_cntr_thres_entries =
  1224. srng->intr_batch_cntr_thres_entries;
  1225. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1226. ring_params->flags = srng->flags;
  1227. ring_params->ring_id = srng->ring_id;
  1228. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1229. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1230. }
  1231. qdf_export_symbol(hal_get_srng_params);
  1232. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1233. uint32_t low_threshold)
  1234. {
  1235. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1236. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1237. }
  1238. qdf_export_symbol(hal_set_low_threshold);
  1239. #ifdef FORCE_WAKE
  1240. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1241. {
  1242. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1243. hal_soc->init_phase = init_phase;
  1244. }
  1245. #endif /* FORCE_WAKE */