dp_rx.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063
  1. /*
  2. * Copyright (c) 2016-2019 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #ifdef RX_DESC_DEBUG_CHECK
  31. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  32. {
  33. rx_desc->magic = DP_RX_DESC_MAGIC;
  34. rx_desc->nbuf = nbuf;
  35. }
  36. #else
  37. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  38. {
  39. rx_desc->nbuf = nbuf;
  40. }
  41. #endif
  42. #ifdef CONFIG_WIN
  43. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  44. {
  45. return vdev->ap_bridge_enabled;
  46. }
  47. #else
  48. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  49. {
  50. if (vdev->opmode != wlan_op_mode_sta)
  51. return true;
  52. else
  53. return false;
  54. }
  55. #endif
  56. #ifdef ATH_RX_PRI_SAVE
  57. static inline void dp_rx_save_tid_ts(qdf_nbuf_t nbuf, uint8_t tid, bool flag)
  58. {
  59. qdf_nbuf_set_priority(nbuf, tid);
  60. if (qdf_unlikely(flag))
  61. qdf_nbuf_set_timestamp(nbuf);
  62. }
  63. #else
  64. static inline void dp_rx_save_tid_ts(qdf_nbuf_t nbuf, uint8_t tid, bool flag)
  65. {
  66. if (qdf_unlikely(flag)) {
  67. qdf_nbuf_set_priority(nbuf, tid);
  68. qdf_nbuf_set_timestamp(nbuf);
  69. }
  70. }
  71. #endif
  72. /*
  73. * dp_rx_dump_info_and_assert() - dump RX Ring info and Rx Desc info
  74. *
  75. * @soc: core txrx main context
  76. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  77. * @ring_desc: opaque pointer to the RX ring descriptor
  78. * @rx_desc: host rs descriptor
  79. *
  80. * Return: void
  81. */
  82. void dp_rx_dump_info_and_assert(struct dp_soc *soc, void *hal_ring,
  83. void *ring_desc, struct dp_rx_desc *rx_desc)
  84. {
  85. void *hal_soc = soc->hal_soc;
  86. dp_rx_desc_dump(rx_desc);
  87. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  88. hal_srng_dump_ring(hal_soc, hal_ring);
  89. qdf_assert_always(rx_desc->in_use);
  90. }
  91. /*
  92. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  93. * called during dp rx initialization
  94. * and at the end of dp_rx_process.
  95. *
  96. * @soc: core txrx main context
  97. * @mac_id: mac_id which is one of 3 mac_ids
  98. * @dp_rxdma_srng: dp rxdma circular ring
  99. * @rx_desc_pool: Pointer to free Rx descriptor pool
  100. * @num_req_buffers: number of buffer to be replenished
  101. * @desc_list: list of descs if called from dp_rx_process
  102. * or NULL during dp rx initialization or out of buffer
  103. * interrupt.
  104. * @tail: tail of descs list
  105. * Return: return success or failure
  106. */
  107. QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  108. struct dp_srng *dp_rxdma_srng,
  109. struct rx_desc_pool *rx_desc_pool,
  110. uint32_t num_req_buffers,
  111. union dp_rx_desc_list_elem_t **desc_list,
  112. union dp_rx_desc_list_elem_t **tail)
  113. {
  114. uint32_t num_alloc_desc;
  115. uint16_t num_desc_to_free = 0;
  116. struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
  117. uint32_t num_entries_avail;
  118. uint32_t count;
  119. int sync_hw_ptr = 1;
  120. qdf_dma_addr_t paddr;
  121. qdf_nbuf_t rx_netbuf;
  122. void *rxdma_ring_entry;
  123. union dp_rx_desc_list_elem_t *next;
  124. QDF_STATUS ret;
  125. void *rxdma_srng;
  126. rxdma_srng = dp_rxdma_srng->hal_srng;
  127. if (!rxdma_srng) {
  128. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  129. "rxdma srng not initialized");
  130. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  131. return QDF_STATUS_E_FAILURE;
  132. }
  133. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  134. "requested %d buffers for replenish", num_req_buffers);
  135. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  136. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  137. rxdma_srng,
  138. sync_hw_ptr);
  139. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  140. "no of available entries in rxdma ring: %d",
  141. num_entries_avail);
  142. if (!(*desc_list) && (num_entries_avail >
  143. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  144. num_req_buffers = num_entries_avail;
  145. } else if (num_entries_avail < num_req_buffers) {
  146. num_desc_to_free = num_req_buffers - num_entries_avail;
  147. num_req_buffers = num_entries_avail;
  148. }
  149. if (qdf_unlikely(!num_req_buffers)) {
  150. num_desc_to_free = num_req_buffers;
  151. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  152. goto free_descs;
  153. }
  154. /*
  155. * if desc_list is NULL, allocate the descs from freelist
  156. */
  157. if (!(*desc_list)) {
  158. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  159. rx_desc_pool,
  160. num_req_buffers,
  161. desc_list,
  162. tail);
  163. if (!num_alloc_desc) {
  164. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  165. "no free rx_descs in freelist");
  166. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  167. num_req_buffers);
  168. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  169. return QDF_STATUS_E_NOMEM;
  170. }
  171. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  172. "%d rx desc allocated", num_alloc_desc);
  173. num_req_buffers = num_alloc_desc;
  174. }
  175. count = 0;
  176. while (count < num_req_buffers) {
  177. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  178. RX_BUFFER_SIZE,
  179. RX_BUFFER_RESERVATION,
  180. RX_BUFFER_ALIGNMENT,
  181. FALSE);
  182. if (rx_netbuf == NULL) {
  183. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  184. continue;
  185. }
  186. ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
  187. QDF_DMA_BIDIRECTIONAL);
  188. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  189. qdf_nbuf_free(rx_netbuf);
  190. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  191. continue;
  192. }
  193. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  194. /*
  195. * check if the physical address of nbuf->data is
  196. * less then 0x50000000 then free the nbuf and try
  197. * allocating new nbuf. We can try for 100 times.
  198. * this is a temp WAR till we fix it properly.
  199. */
  200. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
  201. if (ret == QDF_STATUS_E_FAILURE) {
  202. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  203. break;
  204. }
  205. count++;
  206. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  207. rxdma_srng);
  208. qdf_assert_always(rxdma_ring_entry);
  209. next = (*desc_list)->next;
  210. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  211. (*desc_list)->rx_desc.in_use = 1;
  212. dp_verbose_debug("rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
  213. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  214. (unsigned long long)paddr,
  215. (*desc_list)->rx_desc.cookie);
  216. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  217. (*desc_list)->rx_desc.cookie,
  218. rx_desc_pool->owner);
  219. *desc_list = next;
  220. }
  221. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  222. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  223. num_req_buffers, num_desc_to_free);
  224. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
  225. (RX_BUFFER_SIZE * num_req_buffers));
  226. free_descs:
  227. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  228. /*
  229. * add any available free desc back to the free list
  230. */
  231. if (*desc_list)
  232. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  233. mac_id, rx_desc_pool);
  234. return QDF_STATUS_SUCCESS;
  235. }
  236. /*
  237. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  238. * pkts to RAW mode simulation to
  239. * decapsulate the pkt.
  240. *
  241. * @vdev: vdev on which RAW mode is enabled
  242. * @nbuf_list: list of RAW pkts to process
  243. * @peer: peer object from which the pkt is rx
  244. *
  245. * Return: void
  246. */
  247. void
  248. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  249. struct dp_peer *peer)
  250. {
  251. qdf_nbuf_t deliver_list_head = NULL;
  252. qdf_nbuf_t deliver_list_tail = NULL;
  253. qdf_nbuf_t nbuf;
  254. nbuf = nbuf_list;
  255. while (nbuf) {
  256. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  257. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  258. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  259. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  260. /*
  261. * reset the chfrag_start and chfrag_end bits in nbuf cb
  262. * as this is a non-amsdu pkt and RAW mode simulation expects
  263. * these bit s to be 0 for non-amsdu pkt.
  264. */
  265. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  266. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  267. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  268. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  269. }
  270. nbuf = next;
  271. }
  272. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  273. &deliver_list_tail, (struct cdp_peer*) peer);
  274. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  275. }
  276. #ifdef DP_LFR
  277. /*
  278. * In case of LFR, data of a new peer might be sent up
  279. * even before peer is added.
  280. */
  281. static inline struct dp_vdev *
  282. dp_get_vdev_from_peer(struct dp_soc *soc,
  283. uint16_t peer_id,
  284. struct dp_peer *peer,
  285. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  286. {
  287. struct dp_vdev *vdev;
  288. uint8_t vdev_id;
  289. if (unlikely(!peer)) {
  290. if (peer_id != HTT_INVALID_PEER) {
  291. vdev_id = DP_PEER_METADATA_ID_GET(
  292. mpdu_desc_info.peer_meta_data);
  293. QDF_TRACE(QDF_MODULE_ID_DP,
  294. QDF_TRACE_LEVEL_DEBUG,
  295. FL("PeerID %d not found use vdevID %d"),
  296. peer_id, vdev_id);
  297. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  298. vdev_id);
  299. } else {
  300. QDF_TRACE(QDF_MODULE_ID_DP,
  301. QDF_TRACE_LEVEL_DEBUG,
  302. FL("Invalid PeerID %d"),
  303. peer_id);
  304. return NULL;
  305. }
  306. } else {
  307. vdev = peer->vdev;
  308. }
  309. return vdev;
  310. }
  311. #else
  312. static inline struct dp_vdev *
  313. dp_get_vdev_from_peer(struct dp_soc *soc,
  314. uint16_t peer_id,
  315. struct dp_peer *peer,
  316. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  317. {
  318. if (unlikely(!peer)) {
  319. QDF_TRACE(QDF_MODULE_ID_DP,
  320. QDF_TRACE_LEVEL_DEBUG,
  321. FL("Peer not found for peerID %d"),
  322. peer_id);
  323. return NULL;
  324. } else {
  325. return peer->vdev;
  326. }
  327. }
  328. #endif
  329. /**
  330. * dp_rx_da_learn() - Add AST entry based on DA lookup
  331. * This is a WAR for HK 1.0 and will
  332. * be removed in HK 2.0
  333. *
  334. * @soc: core txrx main context
  335. * @rx_tlv_hdr : start address of rx tlvs
  336. * @ta_peer : Transmitter peer entry
  337. * @nbuf : nbuf to retrieve destination mac for which AST will be added
  338. *
  339. */
  340. #ifdef FEATURE_WDS
  341. static void
  342. dp_rx_da_learn(struct dp_soc *soc,
  343. uint8_t *rx_tlv_hdr,
  344. struct dp_peer *ta_peer,
  345. qdf_nbuf_t nbuf)
  346. {
  347. /* For HKv2 DA port learing is not needed */
  348. if (qdf_likely(soc->ast_override_support))
  349. return;
  350. if (qdf_unlikely(!ta_peer))
  351. return;
  352. if (qdf_unlikely(ta_peer->vdev->opmode != wlan_op_mode_ap))
  353. return;
  354. if (!soc->da_war_enabled)
  355. return;
  356. if (qdf_unlikely(!hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
  357. !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  358. dp_peer_add_ast(soc,
  359. ta_peer,
  360. qdf_nbuf_data(nbuf),
  361. CDP_TXRX_AST_TYPE_DA,
  362. IEEE80211_NODE_F_WDS_HM);
  363. }
  364. }
  365. #else
  366. static void
  367. dp_rx_da_learn(struct dp_soc *soc,
  368. uint8_t *rx_tlv_hdr,
  369. struct dp_peer *ta_peer,
  370. qdf_nbuf_t nbuf)
  371. {
  372. }
  373. #endif
  374. /**
  375. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  376. *
  377. * @soc: core txrx main context
  378. * @ta_peer : source peer entry
  379. * @rx_tlv_hdr : start address of rx tlvs
  380. * @nbuf : nbuf that has to be intrabss forwarded
  381. *
  382. * Return: bool: true if it is forwarded else false
  383. */
  384. static bool
  385. dp_rx_intrabss_fwd(struct dp_soc *soc,
  386. struct dp_peer *ta_peer,
  387. uint8_t *rx_tlv_hdr,
  388. qdf_nbuf_t nbuf)
  389. {
  390. uint16_t da_idx;
  391. uint16_t len;
  392. struct dp_peer *da_peer;
  393. struct dp_ast_entry *ast_entry;
  394. qdf_nbuf_t nbuf_copy;
  395. uint8_t tid = qdf_nbuf_get_priority(nbuf);
  396. struct cdp_tid_rx_stats *tid_stats =
  397. &ta_peer->vdev->pdev->stats.tid_stats.tid_rx_stats[tid];
  398. /* check if the destination peer is available in peer table
  399. * and also check if the source peer and destination peer
  400. * belong to the same vap and destination peer is not bss peer.
  401. */
  402. if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
  403. !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  404. da_idx = hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr);
  405. ast_entry = soc->ast_table[da_idx];
  406. if (!ast_entry)
  407. return false;
  408. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  409. ast_entry->is_active = TRUE;
  410. return false;
  411. }
  412. da_peer = ast_entry->peer;
  413. if (!da_peer)
  414. return false;
  415. /* TA peer cannot be same as peer(DA) on which AST is present
  416. * this indicates a change in topology and that AST entries
  417. * are yet to be updated.
  418. */
  419. if (da_peer == ta_peer)
  420. return false;
  421. if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) {
  422. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  423. len = qdf_nbuf_len(nbuf);
  424. /* linearize the nbuf just before we send to
  425. * dp_tx_send()
  426. */
  427. if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf))) {
  428. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  429. return false;
  430. nbuf = qdf_nbuf_unshare(nbuf);
  431. if (!nbuf) {
  432. DP_STATS_INC_PKT(ta_peer,
  433. rx.intra_bss.fail,
  434. 1,
  435. len);
  436. /* return true even though the pkt is
  437. * not forwarded. Basically skb_unshare
  438. * failed and we want to continue with
  439. * next nbuf.
  440. */
  441. tid_stats->fail_cnt[INTRABSS_DROP]++;
  442. return true;
  443. }
  444. }
  445. if (!dp_tx_send(ta_peer->vdev, nbuf)) {
  446. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  447. len);
  448. return true;
  449. } else {
  450. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  451. len);
  452. tid_stats->fail_cnt[INTRABSS_DROP]++;
  453. return false;
  454. }
  455. }
  456. }
  457. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  458. * source, then clone the pkt and send the cloned pkt for
  459. * intra BSS forwarding and original pkt up the network stack
  460. * Note: how do we handle multicast pkts. do we forward
  461. * all multicast pkts as is or let a higher layer module
  462. * like igmpsnoop decide whether to forward or not with
  463. * Mcast enhancement.
  464. */
  465. else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  466. !ta_peer->bss_peer))) {
  467. nbuf_copy = qdf_nbuf_copy(nbuf);
  468. if (!nbuf_copy)
  469. return false;
  470. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  471. len = qdf_nbuf_len(nbuf_copy);
  472. if (dp_tx_send(ta_peer->vdev, nbuf_copy)) {
  473. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  474. tid_stats->fail_cnt[INTRABSS_DROP]++;
  475. qdf_nbuf_free(nbuf_copy);
  476. } else {
  477. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  478. tid_stats->intrabss_cnt++;
  479. }
  480. }
  481. /* return false as we have to still send the original pkt
  482. * up the stack
  483. */
  484. return false;
  485. }
  486. #ifdef MESH_MODE_SUPPORT
  487. /**
  488. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  489. *
  490. * @vdev: DP Virtual device handle
  491. * @nbuf: Buffer pointer
  492. * @rx_tlv_hdr: start of rx tlv header
  493. * @peer: pointer to peer
  494. *
  495. * This function allocated memory for mesh receive stats and fill the
  496. * required stats. Stores the memory address in skb cb.
  497. *
  498. * Return: void
  499. */
  500. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  501. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  502. {
  503. struct mesh_recv_hdr_s *rx_info = NULL;
  504. uint32_t pkt_type;
  505. uint32_t nss;
  506. uint32_t rate_mcs;
  507. uint32_t bw;
  508. /* fill recv mesh stats */
  509. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  510. /* upper layers are resposible to free this memory */
  511. if (rx_info == NULL) {
  512. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  513. "Memory allocation failed for mesh rx stats");
  514. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  515. return;
  516. }
  517. rx_info->rs_flags = MESH_RXHDR_VER1;
  518. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  519. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  520. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  521. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  522. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  523. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  524. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  525. if (vdev->osif_get_key)
  526. vdev->osif_get_key(vdev->osif_vdev,
  527. &rx_info->rs_decryptkey[0],
  528. &peer->mac_addr.raw[0],
  529. rx_info->rs_keyix);
  530. }
  531. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  532. rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  533. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  534. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  535. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  536. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  537. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  538. (bw << 24);
  539. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  540. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  541. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  542. rx_info->rs_flags,
  543. rx_info->rs_rssi,
  544. rx_info->rs_channel,
  545. rx_info->rs_ratephy1,
  546. rx_info->rs_keyix);
  547. }
  548. /**
  549. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  550. *
  551. * @vdev: DP Virtual device handle
  552. * @nbuf: Buffer pointer
  553. * @rx_tlv_hdr: start of rx tlv header
  554. *
  555. * This checks if the received packet is matching any filter out
  556. * catogery and and drop the packet if it matches.
  557. *
  558. * Return: status(0 indicates drop, 1 indicate to no drop)
  559. */
  560. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  561. uint8_t *rx_tlv_hdr)
  562. {
  563. union dp_align_mac_addr mac_addr;
  564. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  565. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  566. if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
  567. return QDF_STATUS_SUCCESS;
  568. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  569. if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  570. return QDF_STATUS_SUCCESS;
  571. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  572. if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
  573. && !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  574. return QDF_STATUS_SUCCESS;
  575. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  576. if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
  577. &mac_addr.raw[0]))
  578. return QDF_STATUS_E_FAILURE;
  579. if (!qdf_mem_cmp(&mac_addr.raw[0],
  580. &vdev->mac_addr.raw[0],
  581. DP_MAC_ADDR_LEN))
  582. return QDF_STATUS_SUCCESS;
  583. }
  584. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  585. if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
  586. &mac_addr.raw[0]))
  587. return QDF_STATUS_E_FAILURE;
  588. if (!qdf_mem_cmp(&mac_addr.raw[0],
  589. &vdev->mac_addr.raw[0],
  590. DP_MAC_ADDR_LEN))
  591. return QDF_STATUS_SUCCESS;
  592. }
  593. }
  594. return QDF_STATUS_E_FAILURE;
  595. }
  596. #else
  597. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  598. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  599. {
  600. }
  601. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  602. uint8_t *rx_tlv_hdr)
  603. {
  604. return QDF_STATUS_E_FAILURE;
  605. }
  606. #endif
  607. #ifdef CONFIG_WIN
  608. /**
  609. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  610. * clients
  611. * @pdev: DP pdev handle
  612. * @rx_pkt_hdr: Rx packet Header
  613. *
  614. * return: dp_vdev*
  615. */
  616. static
  617. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  618. uint8_t *rx_pkt_hdr)
  619. {
  620. struct ieee80211_frame *wh;
  621. struct dp_neighbour_peer *peer = NULL;
  622. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  623. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  624. return NULL;
  625. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  626. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  627. neighbour_peer_list_elem) {
  628. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  629. wh->i_addr2, DP_MAC_ADDR_LEN) == 0) {
  630. QDF_TRACE(
  631. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  632. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  633. peer->neighbour_peers_macaddr.raw[0],
  634. peer->neighbour_peers_macaddr.raw[1],
  635. peer->neighbour_peers_macaddr.raw[2],
  636. peer->neighbour_peers_macaddr.raw[3],
  637. peer->neighbour_peers_macaddr.raw[4],
  638. peer->neighbour_peers_macaddr.raw[5]);
  639. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  640. return pdev->monitor_vdev;
  641. }
  642. }
  643. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  644. return NULL;
  645. }
  646. /**
  647. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  648. * @soc: DP SOC handle
  649. * @mpdu: mpdu for which peer is invalid
  650. *
  651. * return: integer type
  652. */
  653. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  654. {
  655. struct dp_invalid_peer_msg msg;
  656. struct dp_vdev *vdev = NULL;
  657. struct dp_pdev *pdev = NULL;
  658. struct ieee80211_frame *wh;
  659. uint8_t i;
  660. qdf_nbuf_t curr_nbuf, next_nbuf;
  661. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  662. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  663. if (!HAL_IS_DECAP_FORMAT_RAW(rx_tlv_hdr)) {
  664. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  665. "Drop decapped frames");
  666. goto free;
  667. }
  668. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  669. if (!DP_FRAME_IS_DATA(wh)) {
  670. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  671. "NAWDS valid only for data frames");
  672. goto free;
  673. }
  674. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  675. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  676. "Invalid nbuf length");
  677. goto free;
  678. }
  679. for (i = 0; i < MAX_PDEV_CNT; i++) {
  680. pdev = soc->pdev_list[i];
  681. if (!pdev) {
  682. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  683. "PDEV not found");
  684. continue;
  685. }
  686. if (pdev->filter_neighbour_peers) {
  687. /* Next Hop scenario not yet handle */
  688. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  689. if (vdev) {
  690. dp_rx_mon_deliver(soc, i,
  691. pdev->invalid_peer_head_msdu,
  692. pdev->invalid_peer_tail_msdu);
  693. pdev->invalid_peer_head_msdu = NULL;
  694. pdev->invalid_peer_tail_msdu = NULL;
  695. return 0;
  696. }
  697. }
  698. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  699. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  700. DP_MAC_ADDR_LEN) == 0) {
  701. goto out;
  702. }
  703. }
  704. }
  705. if (!vdev) {
  706. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  707. "VDEV not found");
  708. goto free;
  709. }
  710. out:
  711. msg.wh = wh;
  712. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  713. msg.nbuf = mpdu;
  714. msg.vdev_id = vdev->vdev_id;
  715. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  716. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->ctrl_pdev,
  717. &msg);
  718. free:
  719. /* Drop and free packet */
  720. curr_nbuf = mpdu;
  721. while (curr_nbuf) {
  722. next_nbuf = qdf_nbuf_next(curr_nbuf);
  723. qdf_nbuf_free(curr_nbuf);
  724. curr_nbuf = next_nbuf;
  725. }
  726. return 0;
  727. }
  728. /**
  729. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  730. * @soc: DP SOC handle
  731. * @mpdu: mpdu for which peer is invalid
  732. * @mpdu_done: if an mpdu is completed
  733. *
  734. * return: integer type
  735. */
  736. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  737. qdf_nbuf_t mpdu, bool mpdu_done)
  738. {
  739. /* Only trigger the process when mpdu is completed */
  740. if (mpdu_done)
  741. dp_rx_process_invalid_peer(soc, mpdu);
  742. }
  743. #else
  744. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  745. {
  746. qdf_nbuf_t curr_nbuf, next_nbuf;
  747. struct dp_pdev *pdev;
  748. uint8_t i;
  749. struct dp_vdev *vdev = NULL;
  750. struct ieee80211_frame *wh;
  751. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  752. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  753. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  754. if (!DP_FRAME_IS_DATA(wh)) {
  755. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  756. "only for data frames");
  757. goto free;
  758. }
  759. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  760. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  761. "Invalid nbuf length");
  762. goto free;
  763. }
  764. for (i = 0; i < MAX_PDEV_CNT; i++) {
  765. pdev = soc->pdev_list[i];
  766. if (!pdev) {
  767. QDF_TRACE(QDF_MODULE_ID_DP,
  768. QDF_TRACE_LEVEL_ERROR,
  769. "PDEV not found");
  770. continue;
  771. }
  772. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  773. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  774. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  775. DP_MAC_ADDR_LEN) == 0) {
  776. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  777. goto out;
  778. }
  779. }
  780. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  781. }
  782. if (NULL == vdev) {
  783. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  784. "VDEV not found");
  785. goto free;
  786. }
  787. out:
  788. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  789. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  790. free:
  791. /* reset the head and tail pointers */
  792. for (i = 0; i < MAX_PDEV_CNT; i++) {
  793. pdev = soc->pdev_list[i];
  794. if (!pdev) {
  795. QDF_TRACE(QDF_MODULE_ID_DP,
  796. QDF_TRACE_LEVEL_ERROR,
  797. "PDEV not found");
  798. continue;
  799. }
  800. pdev->invalid_peer_head_msdu = NULL;
  801. pdev->invalid_peer_tail_msdu = NULL;
  802. }
  803. /* Drop and free packet */
  804. curr_nbuf = mpdu;
  805. while (curr_nbuf) {
  806. next_nbuf = qdf_nbuf_next(curr_nbuf);
  807. qdf_nbuf_free(curr_nbuf);
  808. curr_nbuf = next_nbuf;
  809. }
  810. return 0;
  811. }
  812. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  813. qdf_nbuf_t mpdu, bool mpdu_done)
  814. {
  815. /* Process the nbuf */
  816. dp_rx_process_invalid_peer(soc, mpdu);
  817. }
  818. #endif
  819. #ifdef RECEIVE_OFFLOAD
  820. /**
  821. * dp_rx_print_offload_info() - Print offload info from RX TLV
  822. * @rx_tlv: RX TLV for which offload information is to be printed
  823. *
  824. * Return: None
  825. */
  826. static void dp_rx_print_offload_info(uint8_t *rx_tlv)
  827. {
  828. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  829. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  830. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  831. dp_verbose_debug("chksum 0x%x", HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
  832. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  833. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  834. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  835. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  836. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  837. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  838. dp_verbose_debug("---------------------------------------------------------");
  839. }
  840. /**
  841. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  842. * @soc: DP SOC handle
  843. * @rx_tlv: RX TLV received for the msdu
  844. * @msdu: msdu for which GRO info needs to be filled
  845. *
  846. * Return: None
  847. */
  848. static
  849. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  850. qdf_nbuf_t msdu)
  851. {
  852. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  853. return;
  854. /* Filling up RX offload info only for TCP packets */
  855. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  856. return;
  857. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  858. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  859. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  860. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  861. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  862. HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
  863. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  864. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  865. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  866. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  867. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  868. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  869. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  870. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  871. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  872. HAL_RX_TLV_GET_IPV6(rx_tlv);
  873. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  874. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  875. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  876. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  877. dp_rx_print_offload_info(rx_tlv);
  878. }
  879. #else
  880. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  881. qdf_nbuf_t msdu)
  882. {
  883. }
  884. #endif /* RECEIVE_OFFLOAD */
  885. /**
  886. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  887. *
  888. * @nbuf: pointer to msdu.
  889. * @mpdu_len: mpdu length
  890. *
  891. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  892. */
  893. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  894. {
  895. bool last_nbuf;
  896. if (*mpdu_len > (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  897. qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
  898. last_nbuf = false;
  899. } else {
  900. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  901. last_nbuf = true;
  902. }
  903. *mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  904. return last_nbuf;
  905. }
  906. /**
  907. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  908. * multiple nbufs.
  909. * @nbuf: pointer to the first msdu of an amsdu.
  910. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  911. *
  912. *
  913. * This function implements the creation of RX frag_list for cases
  914. * where an MSDU is spread across multiple nbufs.
  915. *
  916. * Return: returns the head nbuf which contains complete frag_list.
  917. */
  918. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
  919. {
  920. qdf_nbuf_t parent, next, frag_list;
  921. uint16_t frag_list_len = 0;
  922. uint16_t mpdu_len;
  923. bool last_nbuf;
  924. mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  925. /*
  926. * this is a case where the complete msdu fits in one single nbuf.
  927. * in this case HW sets both start and end bit and we only need to
  928. * reset these bits for RAW mode simulator to decap the pkt
  929. */
  930. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  931. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  932. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  933. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  934. return nbuf;
  935. }
  936. /*
  937. * This is a case where we have multiple msdus (A-MSDU) spread across
  938. * multiple nbufs. here we create a fraglist out of these nbufs.
  939. *
  940. * the moment we encounter a nbuf with continuation bit set we
  941. * know for sure we have an MSDU which is spread across multiple
  942. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  943. */
  944. parent = nbuf;
  945. frag_list = nbuf->next;
  946. nbuf = nbuf->next;
  947. /*
  948. * set the start bit in the first nbuf we encounter with continuation
  949. * bit set. This has the proper mpdu length set as it is the first
  950. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  951. * nbufs will form the frag_list of the parent nbuf.
  952. */
  953. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  954. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  955. /*
  956. * this is where we set the length of the fragments which are
  957. * associated to the parent nbuf. We iterate through the frag_list
  958. * till we hit the last_nbuf of the list.
  959. */
  960. do {
  961. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  962. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  963. frag_list_len += qdf_nbuf_len(nbuf);
  964. if (last_nbuf) {
  965. next = nbuf->next;
  966. nbuf->next = NULL;
  967. break;
  968. }
  969. nbuf = nbuf->next;
  970. } while (!last_nbuf);
  971. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  972. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  973. parent->next = next;
  974. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  975. return parent;
  976. }
  977. /**
  978. * dp_rx_compute_delay() - Compute and fill in all timestamps
  979. * to pass in correct fields
  980. *
  981. * @vdev: pdev handle
  982. * @tx_desc: tx descriptor
  983. * @tid: tid value
  984. * Return: none
  985. */
  986. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  987. {
  988. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  989. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  990. uint8_t tid = qdf_nbuf_get_priority(nbuf);
  991. uint32_t interframe_delay =
  992. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  993. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  994. CDP_DELAY_STATS_REAP_STACK);
  995. /*
  996. * Update interframe delay stats calculated at deliver_data_ol point.
  997. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  998. * interframe delay will not be calculate correctly for 1st frame.
  999. * On the other side, this will help in avoiding extra per packet check
  1000. * of vdev->prev_rx_deliver_tstamp.
  1001. */
  1002. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  1003. CDP_DELAY_STATS_RX_INTERFRAME);
  1004. vdev->prev_rx_deliver_tstamp = current_ts;
  1005. }
  1006. static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
  1007. struct dp_peer *peer,
  1008. qdf_nbuf_t nbuf_head,
  1009. qdf_nbuf_t nbuf_tail)
  1010. {
  1011. struct cdp_tid_rx_stats *stats = NULL;
  1012. uint8_t tid = 0;
  1013. /*
  1014. * highly unlikely to have a vdev without a registered rx
  1015. * callback function. if so let us free the nbuf_list.
  1016. */
  1017. if (qdf_unlikely(!vdev->osif_rx)) {
  1018. qdf_nbuf_t nbuf;
  1019. do {
  1020. nbuf = nbuf_head;
  1021. nbuf_head = nbuf_head->next;
  1022. tid = qdf_nbuf_get_priority(nbuf);
  1023. stats = &vdev->pdev->stats.tid_stats.tid_rx_stats[tid];
  1024. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1025. stats->delivered_to_stack--;
  1026. qdf_nbuf_free(nbuf);
  1027. } while (nbuf_head);
  1028. return;
  1029. }
  1030. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1031. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1032. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1033. &nbuf_tail, (struct cdp_peer *) peer);
  1034. }
  1035. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1036. }
  1037. /**
  1038. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1039. * @nbuf: pointer to the first msdu of an amsdu.
  1040. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1041. *
  1042. * The ipsumed field of the skb is set based on whether HW validated the
  1043. * IP/TCP/UDP checksum.
  1044. *
  1045. * Return: void
  1046. */
  1047. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1048. qdf_nbuf_t nbuf,
  1049. uint8_t *rx_tlv_hdr)
  1050. {
  1051. qdf_nbuf_rx_cksum_t cksum = {0};
  1052. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1053. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1054. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1055. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1056. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1057. } else {
  1058. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1059. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1060. }
  1061. }
  1062. /**
  1063. * dp_rx_msdu_stats_update() - update per msdu stats.
  1064. * @soc: core txrx main context
  1065. * @nbuf: pointer to the first msdu of an amsdu.
  1066. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1067. * @peer: pointer to the peer object.
  1068. * @ring_id: reo dest ring number on which pkt is reaped.
  1069. *
  1070. * update all the per msdu stats for that nbuf.
  1071. * Return: void
  1072. */
  1073. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1074. qdf_nbuf_t nbuf,
  1075. uint8_t *rx_tlv_hdr,
  1076. struct dp_peer *peer,
  1077. uint8_t ring_id)
  1078. {
  1079. bool is_ampdu, is_not_amsdu;
  1080. uint16_t peer_id;
  1081. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1082. struct dp_vdev *vdev = peer->vdev;
  1083. qdf_ether_header_t *eh;
  1084. uint16_t msdu_len = qdf_nbuf_len(nbuf);
  1085. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1086. hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr));
  1087. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1088. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1089. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1090. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1091. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1092. if (qdf_unlikely(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  1093. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1094. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1095. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1096. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1097. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1098. }
  1099. }
  1100. /*
  1101. * currently we can return from here as we have similar stats
  1102. * updated at per ppdu level instead of msdu level
  1103. */
  1104. if (!soc->process_rx_status)
  1105. return;
  1106. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1107. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1108. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1109. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1110. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1111. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_tlv_hdr);
  1112. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1113. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1114. rx_tlv_hdr);
  1115. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1116. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1117. DP_STATS_INC(peer, rx.bw[bw], 1);
  1118. DP_STATS_INC(peer, rx.nss[nss], 1);
  1119. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1120. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1121. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1122. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1123. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1124. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1125. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1126. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1127. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1128. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1129. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1130. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1131. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1132. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1133. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1134. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1135. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1136. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1137. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1138. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1139. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1140. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1141. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1142. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1143. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1144. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1145. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1146. if ((soc->process_rx_status) &&
  1147. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1148. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1149. if (!vdev->pdev)
  1150. return;
  1151. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1152. &peer->stats, peer_id,
  1153. UPDATE_PEER_STATS,
  1154. vdev->pdev->pdev_id);
  1155. #endif
  1156. }
  1157. }
  1158. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1159. void *rx_tlv_hdr)
  1160. {
  1161. if ((hal_rx_msdu_end_sa_is_valid_get(rx_tlv_hdr) &&
  1162. (hal_rx_msdu_end_sa_idx_get(rx_tlv_hdr) >
  1163. wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1164. (hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
  1165. (hal_rx_msdu_end_da_idx_get(soc->hal_soc,
  1166. rx_tlv_hdr) >
  1167. wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1168. return false;
  1169. return true;
  1170. }
  1171. #ifdef WDS_VENDOR_EXTENSION
  1172. int dp_wds_rx_policy_check(
  1173. uint8_t *rx_tlv_hdr,
  1174. struct dp_vdev *vdev,
  1175. struct dp_peer *peer,
  1176. int rx_mcast
  1177. )
  1178. {
  1179. struct dp_peer *bss_peer;
  1180. int fr_ds, to_ds, rx_3addr, rx_4addr;
  1181. int rx_policy_ucast, rx_policy_mcast;
  1182. if (vdev->opmode == wlan_op_mode_ap) {
  1183. TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
  1184. if (bss_peer->bss_peer) {
  1185. /* if wds policy check is not enabled on this vdev, accept all frames */
  1186. if (!bss_peer->wds_ecm.wds_rx_filter) {
  1187. return 1;
  1188. }
  1189. break;
  1190. }
  1191. }
  1192. rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
  1193. rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
  1194. } else { /* sta mode */
  1195. if (!peer->wds_ecm.wds_rx_filter) {
  1196. return 1;
  1197. }
  1198. rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
  1199. rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
  1200. }
  1201. /* ------------------------------------------------
  1202. * self
  1203. * peer- rx rx-
  1204. * wds ucast mcast dir policy accept note
  1205. * ------------------------------------------------
  1206. * 1 1 0 11 x1 1 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
  1207. * 1 1 0 01 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1208. * 1 1 0 10 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1209. * 1 1 0 00 x1 0 bad frame, won't see it
  1210. * 1 0 1 11 1x 1 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
  1211. * 1 0 1 01 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1212. * 1 0 1 10 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1213. * 1 0 1 00 1x 0 bad frame, won't see it
  1214. * 1 1 0 11 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1215. * 1 1 0 01 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1216. * 1 1 0 10 x0 1 AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
  1217. * 1 1 0 00 x0 0 bad frame, won't see it
  1218. * 1 0 1 11 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1219. * 1 0 1 01 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1220. * 1 0 1 10 0x 1 AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
  1221. * 1 0 1 00 0x 0 bad frame, won't see it
  1222. *
  1223. * 0 x x 11 xx 0 we only accept td-ds Rx frames from non-wds peers in mode.
  1224. * 0 x x 01 xx 1
  1225. * 0 x x 10 xx 0
  1226. * 0 x x 00 xx 0 bad frame, won't see it
  1227. * ------------------------------------------------
  1228. */
  1229. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  1230. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  1231. rx_3addr = fr_ds ^ to_ds;
  1232. rx_4addr = fr_ds & to_ds;
  1233. if (vdev->opmode == wlan_op_mode_ap) {
  1234. if ((!peer->wds_enabled && rx_3addr && to_ds) ||
  1235. (peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1236. (peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1237. return 1;
  1238. }
  1239. } else { /* sta mode */
  1240. if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1241. (rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1242. return 1;
  1243. }
  1244. }
  1245. return 0;
  1246. }
  1247. #else
  1248. int dp_wds_rx_policy_check(
  1249. uint8_t *rx_tlv_hdr,
  1250. struct dp_vdev *vdev,
  1251. struct dp_peer *peer,
  1252. int rx_mcast
  1253. )
  1254. {
  1255. return 1;
  1256. }
  1257. #endif
  1258. /**
  1259. * dp_rx_process() - Brain of the Rx processing functionality
  1260. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1261. * @soc: core txrx main context
  1262. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1263. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  1264. * @quota: No. of units (packets) that can be serviced in one shot.
  1265. *
  1266. * This function implements the core of Rx functionality. This is
  1267. * expected to handle only non-error frames.
  1268. *
  1269. * Return: uint32_t: No. of elements processed
  1270. */
  1271. uint32_t dp_rx_process(struct dp_intr *int_ctx, void *hal_ring,
  1272. uint8_t reo_ring_num, uint32_t quota)
  1273. {
  1274. void *hal_soc;
  1275. void *ring_desc;
  1276. struct dp_rx_desc *rx_desc = NULL;
  1277. qdf_nbuf_t nbuf, next;
  1278. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
  1279. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
  1280. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  1281. uint32_t l2_hdr_offset = 0;
  1282. uint16_t msdu_len = 0;
  1283. uint16_t peer_id;
  1284. struct dp_peer *peer = NULL;
  1285. struct dp_vdev *vdev = NULL;
  1286. uint32_t pkt_len = 0;
  1287. struct hal_rx_mpdu_desc_info mpdu_desc_info = { 0 };
  1288. struct hal_rx_msdu_desc_info msdu_desc_info = { 0 };
  1289. enum hal_reo_error_status error;
  1290. uint32_t peer_mdata;
  1291. uint8_t *rx_tlv_hdr;
  1292. uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
  1293. uint8_t mac_id = 0;
  1294. struct dp_pdev *pdev;
  1295. struct dp_pdev *rx_pdev;
  1296. struct dp_srng *dp_rxdma_srng;
  1297. struct rx_desc_pool *rx_desc_pool;
  1298. struct dp_soc *soc = int_ctx->soc;
  1299. uint8_t ring_id = 0;
  1300. uint8_t core_id = 0;
  1301. qdf_nbuf_t nbuf_head = NULL;
  1302. qdf_nbuf_t nbuf_tail = NULL;
  1303. qdf_nbuf_t deliver_list_head = NULL;
  1304. qdf_nbuf_t deliver_list_tail = NULL;
  1305. int32_t tid = 0;
  1306. uint32_t dst_num_valid = 0;
  1307. struct cdp_tid_rx_stats *tid_stats;
  1308. DP_HIST_INIT();
  1309. /* Debug -- Remove later */
  1310. qdf_assert(soc && hal_ring);
  1311. hal_soc = soc->hal_soc;
  1312. /* Debug -- Remove later */
  1313. qdf_assert(hal_soc);
  1314. hif_pm_runtime_mark_last_busy(soc->osdev->dev);
  1315. if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
  1316. /*
  1317. * Need API to convert from hal_ring pointer to
  1318. * Ring Type / Ring Id combo
  1319. */
  1320. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1321. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1322. FL("HAL RING Access Failed -- %pK"), hal_ring);
  1323. hal_srng_access_end(hal_soc, hal_ring);
  1324. goto done;
  1325. }
  1326. /*
  1327. * start reaping the buffers from reo ring and queue
  1328. * them in per vdev queue.
  1329. * Process the received pkts in a different per vdev loop.
  1330. */
  1331. while (qdf_likely(quota)) {
  1332. ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
  1333. /*
  1334. * in case HW has updated hp after we cached the hp
  1335. * ring_desc can be NULL even there are entries
  1336. * available in the ring. Update the cached_hp
  1337. * and reap the buffers available to read complete
  1338. * mpdu in one reap
  1339. *
  1340. * This is needed for RAW mode we have to read all
  1341. * msdus corresponding to amsdu in one reap to create
  1342. * SG list properly but due to mismatch in cached_hp
  1343. * and actual hp sometimes we are unable to read
  1344. * complete mpdu in one reap.
  1345. */
  1346. if (qdf_unlikely(!ring_desc)) {
  1347. dst_num_valid = hal_srng_dst_num_valid(hal_soc,
  1348. hal_ring,
  1349. true);
  1350. if (dst_num_valid) {
  1351. DP_STATS_INC(soc, rx.hp_oos, 1);
  1352. hal_srng_access_end_unlocked(hal_soc,
  1353. hal_ring);
  1354. continue;
  1355. } else {
  1356. break;
  1357. }
  1358. }
  1359. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1360. ring_id = hal_srng_ring_id_get(hal_ring);
  1361. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1362. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1363. FL("HAL RING 0x%pK:error %d"), hal_ring, error);
  1364. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1365. /* Don't know how to deal with this -- assert */
  1366. qdf_assert(0);
  1367. }
  1368. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1369. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1370. qdf_assert(rx_desc);
  1371. /*
  1372. * this is a unlikely scenario where the host is reaping
  1373. * a descriptor which it already reaped just a while ago
  1374. * but is yet to replenish it back to HW.
  1375. * In this case host will dump the last 128 descriptors
  1376. * including the software descriptor rx_desc and assert.
  1377. */
  1378. if (qdf_unlikely(!rx_desc->in_use)) {
  1379. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  1380. dp_rx_dump_info_and_assert(soc, hal_ring,
  1381. ring_desc, rx_desc);
  1382. }
  1383. rx_bufs_reaped[rx_desc->pool_id]++;
  1384. /* TODO */
  1385. /*
  1386. * Need a separate API for unmapping based on
  1387. * phyiscal address
  1388. */
  1389. qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
  1390. QDF_DMA_BIDIRECTIONAL);
  1391. core_id = smp_processor_id();
  1392. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  1393. /* Get MPDU DESC info */
  1394. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  1395. hal_rx_mpdu_peer_meta_data_set(qdf_nbuf_data(rx_desc->nbuf),
  1396. mpdu_desc_info.peer_meta_data);
  1397. /* Get MSDU DESC info */
  1398. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  1399. /*
  1400. * save msdu flags first, last and continuation msdu in
  1401. * nbuf->cb
  1402. */
  1403. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  1404. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  1405. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  1406. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  1407. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1408. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  1409. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  1410. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1411. /*
  1412. * if continuation bit is set then we have MSDU spread
  1413. * across multiple buffers, let us not decrement quota
  1414. * till we reap all buffers of that MSDU.
  1415. */
  1416. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1417. quota -= 1;
  1418. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1419. &tail[rx_desc->pool_id],
  1420. rx_desc);
  1421. }
  1422. done:
  1423. hal_srng_access_end(hal_soc, hal_ring);
  1424. if (nbuf_tail)
  1425. QDF_NBUF_CB_RX_FLUSH_IND(nbuf_tail) = 1;
  1426. /* Update histogram statistics by looping through pdev's */
  1427. DP_RX_HIST_STATS_PER_PDEV();
  1428. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1429. /*
  1430. * continue with next mac_id if no pkts were reaped
  1431. * from that pool
  1432. */
  1433. if (!rx_bufs_reaped[mac_id])
  1434. continue;
  1435. pdev = soc->pdev_list[mac_id];
  1436. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1437. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1438. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1439. rx_desc_pool, rx_bufs_reaped[mac_id],
  1440. &head[mac_id], &tail[mac_id]);
  1441. }
  1442. /* Peer can be NULL is case of LFR */
  1443. if (qdf_likely(peer != NULL))
  1444. vdev = NULL;
  1445. /*
  1446. * BIG loop where each nbuf is dequeued from global queue,
  1447. * processed and queued back on a per vdev basis. These nbufs
  1448. * are sent to stack as and when we run out of nbufs
  1449. * or a new nbuf dequeued from global queue has a different
  1450. * vdev when compared to previous nbuf.
  1451. */
  1452. nbuf = nbuf_head;
  1453. while (nbuf) {
  1454. next = nbuf->next;
  1455. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1456. /* Get TID from first msdu per MPDU, save to skb->priority */
  1457. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  1458. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc,
  1459. rx_tlv_hdr);
  1460. /*
  1461. * Check if DMA completed -- msdu_done is the last bit
  1462. * to be written
  1463. */
  1464. rx_pdev = soc->pdev_list[rx_desc->pool_id];
  1465. dp_rx_save_tid_ts(nbuf, tid, rx_pdev->delay_stats_flag);
  1466. tid_stats = &rx_pdev->stats.tid_stats.tid_rx_stats[tid];
  1467. if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  1468. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1469. FL("MSDU DONE failure"));
  1470. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  1471. QDF_TRACE_LEVEL_INFO);
  1472. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  1473. qdf_assert(0);
  1474. }
  1475. tid_stats->msdu_cnt++;
  1476. if (qdf_unlikely(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  1477. tid_stats->mcast_msdu_cnt++;
  1478. if (qdf_nbuf_is_bcast_pkt(nbuf))
  1479. tid_stats->bcast_msdu_cnt++;
  1480. }
  1481. peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr);
  1482. peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1483. peer = dp_peer_find_by_id(soc, peer_id);
  1484. if (peer) {
  1485. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  1486. qdf_dp_trace_set_track(nbuf, QDF_RX);
  1487. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  1488. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  1489. QDF_NBUF_RX_PKT_DATA_TRACK;
  1490. }
  1491. rx_bufs_used++;
  1492. if (deliver_list_head && peer && (vdev != peer->vdev)) {
  1493. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1494. deliver_list_tail);
  1495. deliver_list_head = NULL;
  1496. deliver_list_tail = NULL;
  1497. }
  1498. if (qdf_likely(peer != NULL)) {
  1499. vdev = peer->vdev;
  1500. } else {
  1501. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1502. qdf_nbuf_len(nbuf));
  1503. tid_stats->fail_cnt[INVALID_PEER_VDEV]++;
  1504. qdf_nbuf_free(nbuf);
  1505. nbuf = next;
  1506. continue;
  1507. }
  1508. if (qdf_unlikely(vdev == NULL)) {
  1509. tid_stats->fail_cnt[INVALID_PEER_VDEV]++;
  1510. qdf_nbuf_free(nbuf);
  1511. nbuf = next;
  1512. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  1513. dp_peer_unref_del_find_by_id(peer);
  1514. continue;
  1515. }
  1516. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  1517. /*
  1518. * First IF condition:
  1519. * 802.11 Fragmented pkts are reinjected to REO
  1520. * HW block as SG pkts and for these pkts we only
  1521. * need to pull the RX TLVS header length.
  1522. * Second IF condition:
  1523. * The below condition happens when an MSDU is spread
  1524. * across multiple buffers. This can happen in two cases
  1525. * 1. The nbuf size is smaller then the received msdu.
  1526. * ex: we have set the nbuf size to 2048 during
  1527. * nbuf_alloc. but we received an msdu which is
  1528. * 2304 bytes in size then this msdu is spread
  1529. * across 2 nbufs.
  1530. *
  1531. * 2. AMSDUs when RAW mode is enabled.
  1532. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  1533. * across 1st nbuf and 2nd nbuf and last MSDU is
  1534. * spread across 2nd nbuf and 3rd nbuf.
  1535. *
  1536. * for these scenarios let us create a skb frag_list and
  1537. * append these buffers till the last MSDU of the AMSDU
  1538. * Third condition:
  1539. * This is the most likely case, we receive 802.3 pkts
  1540. * decapsulated by HW, here we need to set the pkt length.
  1541. */
  1542. if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf)))
  1543. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1544. else if (qdf_unlikely(vdev->rx_decap_type ==
  1545. htt_cmn_pkt_type_raw)) {
  1546. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  1547. nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
  1548. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  1549. DP_STATS_INC_PKT(peer, rx.raw, 1,
  1550. msdu_len);
  1551. next = nbuf->next;
  1552. } else {
  1553. l2_hdr_offset =
  1554. hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
  1555. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  1556. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1557. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1558. qdf_nbuf_pull_head(nbuf,
  1559. RX_PKT_TLVS_LEN +
  1560. l2_hdr_offset);
  1561. }
  1562. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer,
  1563. hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  1564. QDF_TRACE(QDF_MODULE_ID_DP,
  1565. QDF_TRACE_LEVEL_ERROR,
  1566. FL("Policy Check Drop pkt"));
  1567. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  1568. /* Drop & free packet */
  1569. qdf_nbuf_free(nbuf);
  1570. /* Statistics */
  1571. nbuf = next;
  1572. dp_peer_unref_del_find_by_id(peer);
  1573. continue;
  1574. }
  1575. if (qdf_unlikely(peer && peer->bss_peer)) {
  1576. QDF_TRACE(QDF_MODULE_ID_DP,
  1577. QDF_TRACE_LEVEL_ERROR,
  1578. FL("received pkt with same src MAC"));
  1579. tid_stats->fail_cnt[MEC_DROP]++;
  1580. DP_STATS_INC_PKT(peer, rx.mec_drop, 1, msdu_len);
  1581. /* Drop & free packet */
  1582. qdf_nbuf_free(nbuf);
  1583. /* Statistics */
  1584. nbuf = next;
  1585. dp_peer_unref_del_find_by_id(peer);
  1586. continue;
  1587. }
  1588. if (qdf_unlikely(peer && (peer->nawds_enabled == true) &&
  1589. (hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr)) &&
  1590. (hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) == false))) {
  1591. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  1592. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  1593. qdf_nbuf_free(nbuf);
  1594. nbuf = next;
  1595. dp_peer_unref_del_find_by_id(peer);
  1596. continue;
  1597. }
  1598. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  1599. dp_set_rx_queue(nbuf, ring_id);
  1600. /*
  1601. * HW structures call this L3 header padding --
  1602. * even though this is actually the offset from
  1603. * the buffer beginning where the L2 header
  1604. * begins.
  1605. */
  1606. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1607. FL("rxhash: flow id toeplitz: 0x%x"),
  1608. hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
  1609. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer, ring_id);
  1610. if (qdf_unlikely(vdev->mesh_vdev)) {
  1611. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  1612. == QDF_STATUS_SUCCESS) {
  1613. QDF_TRACE(QDF_MODULE_ID_DP,
  1614. QDF_TRACE_LEVEL_INFO_MED,
  1615. FL("mesh pkt filtered"));
  1616. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  1617. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  1618. 1);
  1619. qdf_nbuf_free(nbuf);
  1620. nbuf = next;
  1621. dp_peer_unref_del_find_by_id(peer);
  1622. continue;
  1623. }
  1624. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  1625. }
  1626. #ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
  1627. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1628. "p_id %d msdu_len %d hdr_off %d",
  1629. peer_id, msdu_len, l2_hdr_offset);
  1630. print_hex_dump(KERN_ERR,
  1631. "\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
  1632. qdf_nbuf_data(nbuf), 128, false);
  1633. #endif /* NAPIER_EMULATION */
  1634. if (qdf_likely(vdev->rx_decap_type ==
  1635. htt_cmn_pkt_type_ethernet) &&
  1636. qdf_likely(!vdev->mesh_vdev)) {
  1637. /* WDS Destination Address Learning */
  1638. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  1639. /* Due to HW issue, sometimes we see that the sa_idx
  1640. * and da_idx are invalid with sa_valid and da_valid
  1641. * bits set
  1642. *
  1643. * in this case we also see that value of
  1644. * sa_sw_peer_id is set as 0
  1645. *
  1646. * Drop the packet if sa_idx and da_idx OOB or
  1647. * sa_sw_peerid is 0
  1648. */
  1649. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr)) {
  1650. qdf_nbuf_free(nbuf);
  1651. nbuf = next;
  1652. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  1653. continue;
  1654. }
  1655. /* WDS Source Port Learning */
  1656. if (vdev->wds_enabled)
  1657. dp_rx_wds_srcport_learn(soc, rx_tlv_hdr,
  1658. peer, nbuf);
  1659. /* Intrabss-fwd */
  1660. if (dp_rx_check_ap_bridge(vdev))
  1661. if (dp_rx_intrabss_fwd(soc,
  1662. peer,
  1663. rx_tlv_hdr,
  1664. nbuf)) {
  1665. nbuf = next;
  1666. dp_peer_unref_del_find_by_id(peer);
  1667. tid_stats->intrabss_cnt++;
  1668. continue; /* Get next desc */
  1669. }
  1670. }
  1671. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf);
  1672. qdf_nbuf_cb_update_peer_local_id(nbuf, peer->local_id);
  1673. DP_RX_LIST_APPEND(deliver_list_head,
  1674. deliver_list_tail,
  1675. nbuf);
  1676. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  1677. qdf_nbuf_len(nbuf));
  1678. tid_stats->delivered_to_stack++;
  1679. nbuf = next;
  1680. dp_peer_unref_del_find_by_id(peer);
  1681. }
  1682. if (deliver_list_head)
  1683. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1684. deliver_list_tail);
  1685. return rx_bufs_used; /* Assume no scale factor for now */
  1686. }
  1687. /**
  1688. * dp_rx_detach() - detach dp rx
  1689. * @pdev: core txrx pdev context
  1690. *
  1691. * This function will detach DP RX into main device context
  1692. * will free DP Rx resources.
  1693. *
  1694. * Return: void
  1695. */
  1696. void
  1697. dp_rx_pdev_detach(struct dp_pdev *pdev)
  1698. {
  1699. uint8_t pdev_id = pdev->pdev_id;
  1700. struct dp_soc *soc = pdev->soc;
  1701. struct rx_desc_pool *rx_desc_pool;
  1702. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1703. if (rx_desc_pool->pool_size != 0) {
  1704. if (!dp_is_soc_reinit(soc))
  1705. dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
  1706. else
  1707. dp_rx_desc_nbuf_pool_free(soc, rx_desc_pool);
  1708. }
  1709. return;
  1710. }
  1711. /**
  1712. * dp_rx_attach() - attach DP RX
  1713. * @pdev: core txrx pdev context
  1714. *
  1715. * This function will attach a DP RX instance into the main
  1716. * device (SOC) context. Will allocate dp rx resource and
  1717. * initialize resources.
  1718. *
  1719. * Return: QDF_STATUS_SUCCESS: success
  1720. * QDF_STATUS_E_RESOURCES: Error return
  1721. */
  1722. QDF_STATUS
  1723. dp_rx_pdev_attach(struct dp_pdev *pdev)
  1724. {
  1725. uint8_t pdev_id = pdev->pdev_id;
  1726. struct dp_soc *soc = pdev->soc;
  1727. uint32_t rxdma_entries;
  1728. union dp_rx_desc_list_elem_t *desc_list = NULL;
  1729. union dp_rx_desc_list_elem_t *tail = NULL;
  1730. struct dp_srng *dp_rxdma_srng;
  1731. struct rx_desc_pool *rx_desc_pool;
  1732. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  1733. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  1734. "nss-wifi<4> skip Rx refil %d", pdev_id);
  1735. return QDF_STATUS_SUCCESS;
  1736. }
  1737. pdev = soc->pdev_list[pdev_id];
  1738. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1739. rxdma_entries = dp_rxdma_srng->num_entries;
  1740. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  1741. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1742. dp_rx_desc_pool_alloc(soc, pdev_id,
  1743. DP_RX_DESC_ALLOC_MULTIPLIER * rxdma_entries,
  1744. rx_desc_pool);
  1745. rx_desc_pool->owner = DP_WBM2SW_RBM;
  1746. /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
  1747. dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool,
  1748. 0, &desc_list, &tail);
  1749. return QDF_STATUS_SUCCESS;
  1750. }
  1751. /*
  1752. * dp_rx_nbuf_prepare() - prepare RX nbuf
  1753. * @soc: core txrx main context
  1754. * @pdev: core txrx pdev context
  1755. *
  1756. * This function alloc & map nbuf for RX dma usage, retry it if failed
  1757. * until retry times reaches max threshold or succeeded.
  1758. *
  1759. * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
  1760. */
  1761. qdf_nbuf_t
  1762. dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
  1763. {
  1764. uint8_t *buf;
  1765. int32_t nbuf_retry_count;
  1766. QDF_STATUS ret;
  1767. qdf_nbuf_t nbuf = NULL;
  1768. for (nbuf_retry_count = 0; nbuf_retry_count <
  1769. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
  1770. nbuf_retry_count++) {
  1771. /* Allocate a new skb */
  1772. nbuf = qdf_nbuf_alloc(soc->osdev,
  1773. RX_BUFFER_SIZE,
  1774. RX_BUFFER_RESERVATION,
  1775. RX_BUFFER_ALIGNMENT,
  1776. FALSE);
  1777. if (nbuf == NULL) {
  1778. DP_STATS_INC(pdev,
  1779. replenish.nbuf_alloc_fail, 1);
  1780. continue;
  1781. }
  1782. buf = qdf_nbuf_data(nbuf);
  1783. memset(buf, 0, RX_BUFFER_SIZE);
  1784. ret = qdf_nbuf_map_single(soc->osdev, nbuf,
  1785. QDF_DMA_BIDIRECTIONAL);
  1786. /* nbuf map failed */
  1787. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  1788. qdf_nbuf_free(nbuf);
  1789. DP_STATS_INC(pdev, replenish.map_err, 1);
  1790. continue;
  1791. }
  1792. /* qdf_nbuf alloc and map succeeded */
  1793. break;
  1794. }
  1795. /* qdf_nbuf still alloc or map failed */
  1796. if (qdf_unlikely(nbuf_retry_count >=
  1797. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
  1798. return NULL;
  1799. return nbuf;
  1800. }