hal_api_mon.h 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965
  1. /*
  2. * Copyright (c) 2017 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #ifndef _HAL_API_MON_H_
  19. #define _HAL_API_MON_H_
  20. #include "qdf_types.h"
  21. #include "hal_internal.h"
  22. #define HAL_RX_OFFSET(block, field) block##_##field##_OFFSET
  23. #define HAL_RX_LSB(block, field) block##_##field##_LSB
  24. #define HAL_RX_MASk(block, field) block##_##field##_MASK
  25. #define HAL_RX_GET(_ptr, block, field) \
  26. (((*((volatile uint32_t *)_ptr + (HAL_RX_OFFSET(block, field)>>2))) & \
  27. HAL_RX_MASk(block, field)) >> \
  28. HAL_RX_LSB(block, field))
  29. #define HAL_RX_PHY_DATA_RADAR 0x01
  30. #define HAL_SU_MU_CODING_LDPC 0x01
  31. #define HAL_RX_FCS_LEN (4)
  32. #define KEY_EXTIV 0x20
  33. #define HAL_RX_USER_TLV32_TYPE_OFFSET 0x00000000
  34. #define HAL_RX_USER_TLV32_TYPE_LSB 1
  35. #define HAL_RX_USER_TLV32_TYPE_MASK 0x000003FE
  36. #define HAL_RX_USER_TLV32_LEN_OFFSET 0x00000000
  37. #define HAL_RX_USER_TLV32_LEN_LSB 10
  38. #define HAL_RX_USER_TLV32_LEN_MASK 0x003FFC00
  39. #define HAL_RX_USER_TLV32_USERID_OFFSET 0x00000000
  40. #define HAL_RX_USER_TLV32_USERID_LSB 26
  41. #define HAL_RX_USER_TLV32_USERID_MASK 0xFC000000
  42. #define HAL_ALIGN(x, a) HAL_ALIGN_MASK(x, (a)-1)
  43. #define HAL_ALIGN_MASK(x, mask) (typeof(x))(((uint32)(x) + (mask)) & ~(mask))
  44. #define HAL_RX_TLV32_HDR_SIZE 4
  45. #define HAL_RX_GET_USER_TLV32_TYPE(rx_status_tlv_ptr) \
  46. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  47. HAL_RX_USER_TLV32_TYPE_MASK) >> \
  48. HAL_RX_USER_TLV32_TYPE_LSB)
  49. #define HAL_RX_GET_USER_TLV32_LEN(rx_status_tlv_ptr) \
  50. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  51. HAL_RX_USER_TLV32_LEN_MASK) >> \
  52. HAL_RX_USER_TLV32_LEN_LSB)
  53. #define HAL_RX_GET_USER_TLV32_USERID(rx_status_tlv_ptr) \
  54. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  55. HAL_RX_USER_TLV32_USERID_MASK) >> \
  56. HAL_RX_USER_TLV32_USERID_LSB)
  57. #define HAL_TLV_STATUS_PPDU_NOT_DONE 0
  58. #define HAL_TLV_STATUS_PPDU_DONE 1
  59. #define HAL_TLV_STATUS_BUF_DONE 2
  60. #define HAL_MAX_UL_MU_USERS 8
  61. #define HAL_RX_PKT_TYPE_11A 0
  62. #define HAL_RX_PKT_TYPE_11B 1
  63. #define HAL_RX_PKT_TYPE_11N 2
  64. #define HAL_RX_PKT_TYPE_11AC 3
  65. #define HAL_RX_PKT_TYPE_11AX 4
  66. #define HAL_RX_RECEPTION_TYPE_SU 0
  67. #define HAL_RX_RECEPTION_TYPE_MU_MIMO 1
  68. #define HAL_RX_RECEPTION_TYPE_OFDMA 2
  69. #define HAL_RX_RECEPTION_TYPE_MU_OFDMA 3
  70. /* Multiply rate by 2 to avoid float point
  71. * and get rate in units of 500kbps
  72. */
  73. #define HAL_11B_RATE_0MCS 11*2
  74. #define HAL_11B_RATE_1MCS 5.5*2
  75. #define HAL_11B_RATE_2MCS 2*2
  76. #define HAL_11B_RATE_3MCS 1*2
  77. #define HAL_11B_RATE_4MCS 11*2
  78. #define HAL_11B_RATE_5MCS 5.5*2
  79. #define HAL_11B_RATE_6MCS 2*2
  80. #define HAL_11A_RATE_0MCS 48*2
  81. #define HAL_11A_RATE_1MCS 24*2
  82. #define HAL_11A_RATE_2MCS 12*2
  83. #define HAL_11A_RATE_3MCS 6*2
  84. #define HAL_11A_RATE_4MCS 54*2
  85. #define HAL_11A_RATE_5MCS 36*2
  86. #define HAL_11A_RATE_6MCS 18*2
  87. #define HAL_11A_RATE_7MCS 9*2
  88. #define HE_GI_0_8 0
  89. #define HE_GI_1_6 1
  90. #define HE_GI_3_2 2
  91. #define HE_LTF_1_X 0
  92. #define HE_LTF_2_X 1
  93. #define HE_LTF_4_X 2
  94. #define VHT_SIG_SU_NSS_MASK 0x7
  95. enum {
  96. HAL_HW_RX_DECAP_FORMAT_RAW = 0,
  97. HAL_HW_RX_DECAP_FORMAT_NWIFI,
  98. HAL_HW_RX_DECAP_FORMAT_ETH2,
  99. HAL_HW_RX_DECAP_FORMAT_8023,
  100. };
  101. enum {
  102. DP_PPDU_STATUS_START,
  103. DP_PPDU_STATUS_DONE,
  104. };
  105. static inline
  106. uint32_t HAL_RX_MON_HW_RX_DESC_SIZE(void)
  107. {
  108. /* return the HW_RX_DESC size */
  109. return sizeof(struct rx_pkt_tlvs);
  110. }
  111. static inline
  112. uint8_t *HAL_RX_MON_DEST_GET_DESC(uint8_t *data)
  113. {
  114. return data;
  115. }
  116. static inline
  117. uint32_t HAL_RX_DESC_GET_MPDU_LENGTH_ERR(void *hw_desc_addr)
  118. {
  119. struct rx_attention *rx_attn;
  120. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  121. rx_attn = &rx_desc->attn_tlv.rx_attn;
  122. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, MPDU_LENGTH_ERR);
  123. }
  124. static inline
  125. uint32_t HAL_RX_DESC_GET_MPDU_FCS_ERR(void *hw_desc_addr)
  126. {
  127. struct rx_attention *rx_attn;
  128. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  129. rx_attn = &rx_desc->attn_tlv.rx_attn;
  130. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, FCS_ERR);
  131. }
  132. static inline
  133. uint32_t
  134. HAL_RX_DESC_GET_DECAP_FORMAT(void *hw_desc_addr) {
  135. struct rx_msdu_start *rx_msdu_start;
  136. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  137. rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
  138. return HAL_RX_GET(rx_msdu_start, RX_MSDU_START_2, DECAP_FORMAT);
  139. }
  140. static inline
  141. uint8_t *
  142. HAL_RX_DESC_GET_80211_HDR(void *hw_desc_addr) {
  143. uint8_t *rx_pkt_hdr;
  144. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  145. rx_pkt_hdr = &rx_desc->pkt_hdr_tlv.rx_pkt_hdr[0];
  146. return rx_pkt_hdr;
  147. }
  148. static inline
  149. uint32_t HAL_RX_MON_HW_DESC_GET_PPDUID_GET(void *hw_desc_addr)
  150. {
  151. struct rx_mpdu_info *rx_mpdu_info;
  152. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  153. rx_mpdu_info =
  154. &rx_desc->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  155. return HAL_RX_GET(rx_mpdu_info, RX_MPDU_INFO_0, PHY_PPDU_ID);
  156. }
  157. /* TODO: Move all Rx descriptor functions to hal_rx.h to avoid duplication */
  158. static inline
  159. uint32_t hal_rx_desc_is_first_msdu(void *hw_desc_addr)
  160. {
  161. struct rx_pkt_tlvs *rx_tlvs = (struct rx_pkt_tlvs *)hw_desc_addr;
  162. struct rx_msdu_end *msdu_end = &rx_tlvs->msdu_end_tlv.rx_msdu_end;
  163. return HAL_RX_GET(msdu_end, RX_MSDU_END_5, FIRST_MSDU);
  164. }
  165. #define HAL_RX_BUFFER_ADDR_31_0_GET(buff_addr_info) \
  166. (_HAL_MS((*_OFFSET_TO_WORD_PTR(buff_addr_info, \
  167. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_OFFSET)), \
  168. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_MASK, \
  169. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_LSB))
  170. #define HAL_RX_REO_ENT_BUFFER_ADDR_39_32_GET(reo_ent_desc) \
  171. (HAL_RX_BUFFER_ADDR_39_32_GET(& \
  172. (((struct reo_entrance_ring *)reo_ent_desc) \
  173. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  174. #define HAL_RX_REO_ENT_BUFFER_ADDR_31_0_GET(reo_ent_desc) \
  175. (HAL_RX_BUFFER_ADDR_31_0_GET(& \
  176. (((struct reo_entrance_ring *)reo_ent_desc) \
  177. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  178. #define HAL_RX_REO_ENT_BUF_COOKIE_GET(reo_ent_desc) \
  179. (HAL_RX_BUF_COOKIE_GET(& \
  180. (((struct reo_entrance_ring *)reo_ent_desc) \
  181. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  182. /**
  183. * hal_rx_reo_ent_buf_paddr_get: Gets the physical address and
  184. * cookie from the REO entrance ring element
  185. *
  186. * @ hal_rx_desc_cookie: Opaque cookie pointer used by HAL to get to
  187. * the current descriptor
  188. * @ buf_info: structure to return the buffer information
  189. * @ msdu_cnt: pointer to msdu count in MPDU
  190. * Return: void
  191. */
  192. static inline
  193. void hal_rx_reo_ent_buf_paddr_get(void *rx_desc,
  194. struct hal_buf_info *buf_info,
  195. void **pp_buf_addr_info,
  196. uint32_t *msdu_cnt
  197. )
  198. {
  199. struct reo_entrance_ring *reo_ent_ring =
  200. (struct reo_entrance_ring *)rx_desc;
  201. struct buffer_addr_info *buf_addr_info;
  202. struct rx_mpdu_desc_info *rx_mpdu_desc_info_details;
  203. uint32_t loop_cnt;
  204. rx_mpdu_desc_info_details =
  205. &reo_ent_ring->reo_level_mpdu_frame_info.rx_mpdu_desc_info_details;
  206. *msdu_cnt = HAL_RX_GET(rx_mpdu_desc_info_details,
  207. RX_MPDU_DESC_INFO_0, MSDU_COUNT);
  208. loop_cnt = HAL_RX_GET(reo_ent_ring, REO_ENTRANCE_RING_7, LOOPING_COUNT);
  209. buf_addr_info =
  210. &reo_ent_ring->reo_level_mpdu_frame_info.msdu_link_desc_addr_info;
  211. buf_info->paddr =
  212. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  213. ((uint64_t)
  214. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  215. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  216. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  217. "[%s][%d] ReoAddr=%pK, addrInfo=%pK, paddr=0x%llx, loopcnt=%d\n",
  218. __func__, __LINE__, reo_ent_ring, buf_addr_info,
  219. (unsigned long long)buf_info->paddr, loop_cnt);
  220. *pp_buf_addr_info = (void *)buf_addr_info;
  221. }
  222. static inline
  223. void hal_rx_mon_next_link_desc_get(void *rx_msdu_link_desc,
  224. struct hal_buf_info *buf_info, void **pp_buf_addr_info)
  225. {
  226. struct rx_msdu_link *msdu_link =
  227. (struct rx_msdu_link *)rx_msdu_link_desc;
  228. struct buffer_addr_info *buf_addr_info;
  229. buf_addr_info = &msdu_link->next_msdu_link_desc_addr_info;
  230. buf_info->paddr =
  231. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  232. ((uint64_t)
  233. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  234. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  235. *pp_buf_addr_info = (void *)buf_addr_info;
  236. }
  237. /**
  238. * hal_rx_msdu_link_desc_set: Retrieves MSDU Link Descriptor to WBM
  239. *
  240. * @ soc : HAL version of the SOC pointer
  241. * @ src_srng_desc : void pointer to the WBM Release Ring descriptor
  242. * @ buf_addr_info : void pointer to the buffer_addr_info
  243. *
  244. * Return: void
  245. */
  246. static inline void hal_rx_mon_msdu_link_desc_set(struct hal_soc *soc,
  247. void *src_srng_desc, void *buf_addr_info)
  248. {
  249. struct buffer_addr_info *wbm_srng_buffer_addr_info =
  250. (struct buffer_addr_info *)src_srng_desc;
  251. uint64_t paddr;
  252. struct buffer_addr_info *p_buffer_addr_info =
  253. (struct buffer_addr_info *)buf_addr_info;
  254. paddr =
  255. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  256. ((uint64_t)
  257. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  258. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  259. "[%s][%d] src_srng_desc=%pK, buf_addr=0x%llx, cookie=0x%llx\n",
  260. __func__, __LINE__, src_srng_desc, (unsigned long long)paddr,
  261. (unsigned long long)p_buffer_addr_info->sw_buffer_cookie);
  262. /* Structure copy !!! */
  263. *wbm_srng_buffer_addr_info =
  264. *((struct buffer_addr_info *)buf_addr_info);
  265. }
  266. static inline
  267. uint32 hal_get_rx_msdu_link_desc_size(void)
  268. {
  269. return sizeof(struct rx_msdu_link);
  270. }
  271. enum {
  272. HAL_PKT_TYPE_OFDM = 0,
  273. HAL_PKT_TYPE_CCK,
  274. HAL_PKT_TYPE_HT,
  275. HAL_PKT_TYPE_VHT,
  276. HAL_PKT_TYPE_HE,
  277. };
  278. enum {
  279. HAL_SGI_0_8_US,
  280. HAL_SGI_0_4_US,
  281. HAL_SGI_1_6_US,
  282. HAL_SGI_3_2_US,
  283. };
  284. enum {
  285. HAL_FULL_RX_BW_20,
  286. HAL_FULL_RX_BW_40,
  287. HAL_FULL_RX_BW_80,
  288. HAL_FULL_RX_BW_160,
  289. };
  290. enum {
  291. HAL_RX_TYPE_SU,
  292. HAL_RX_TYPE_MU_MIMO,
  293. HAL_RX_TYPE_MU_OFDMA,
  294. HAL_RX_TYPE_MU_OFDMA_MIMO,
  295. };
  296. /**
  297. * hal_rx_mon_hw_desc_get_mpdu_status: Retrieve MPDU status
  298. *
  299. * @ hw_desc_addr: Start address of Rx HW TLVs
  300. * @ rs: Status for monitor mode
  301. *
  302. * Return: void
  303. */
  304. static inline
  305. void hal_rx_mon_hw_desc_get_mpdu_status(void *hw_desc_addr,
  306. struct mon_rx_status *rs)
  307. {
  308. struct rx_msdu_start *rx_msdu_start;
  309. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  310. uint32_t reg_value;
  311. static uint32_t sgi_hw_to_cdp[] = {
  312. CDP_SGI_0_8_US,
  313. CDP_SGI_0_4_US,
  314. CDP_SGI_1_6_US,
  315. CDP_SGI_3_2_US,
  316. };
  317. rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
  318. rs->ant_signal_db = HAL_RX_GET(rx_msdu_start,
  319. RX_MSDU_START_5, USER_RSSI);
  320. rs->is_stbc = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, STBC);
  321. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, SGI);
  322. rs->sgi = sgi_hw_to_cdp[reg_value];
  323. #if !defined(QCA_WIFI_QCA6290_11AX)
  324. rs->nr_ant = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, NSS);
  325. #endif
  326. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, PKT_TYPE);
  327. switch (reg_value) {
  328. case HAL_RX_PKT_TYPE_11N:
  329. rs->ht_flags = 1;
  330. break;
  331. case HAL_RX_PKT_TYPE_11AC:
  332. rs->vht_flags = 1;
  333. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5,
  334. RECEIVE_BANDWIDTH);
  335. rs->vht_flag_values2 = reg_value;
  336. break;
  337. case HAL_RX_PKT_TYPE_11AX:
  338. rs->he_flags = 1;
  339. break;
  340. default:
  341. break;
  342. }
  343. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, RECEPTION_TYPE);
  344. rs->beamformed = (reg_value == HAL_RX_RECEPTION_TYPE_MU_MIMO) ? 1 : 0;
  345. /* TODO: rs->beamformed should be set for SU beamforming also */
  346. }
  347. struct hal_rx_ppdu_user_info {
  348. };
  349. struct hal_rx_ppdu_common_info {
  350. uint32_t ppdu_id;
  351. uint32_t last_ppdu_id;
  352. uint32_t ppdu_timestamp;
  353. };
  354. struct hal_rx_ppdu_info {
  355. struct hal_rx_ppdu_common_info com_info;
  356. struct hal_rx_ppdu_user_info user_info[HAL_MAX_UL_MU_USERS];
  357. struct mon_rx_status rx_status;
  358. uint8_t *first_msdu_payload;
  359. };
  360. static inline uint32_t
  361. hal_get_rx_status_buf_size(void) {
  362. /* RX status buffer size is hard coded for now */
  363. return 2048;
  364. }
  365. static inline uint8_t*
  366. hal_rx_status_get_next_tlv(uint8_t *rx_tlv) {
  367. uint32_t tlv_len, tlv_tag;
  368. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
  369. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  370. /* The actual length of PPDU_END is the combined lenght of many PHY
  371. * TLVs that follow. Skip the TLV header and
  372. * rx_rxpcu_classification_overview that follows the header to get to
  373. * next TLV.
  374. */
  375. if (tlv_tag == WIFIRX_PPDU_END_E)
  376. tlv_len = sizeof(struct rx_rxpcu_classification_overview);
  377. return (uint8_t *)(((unsigned long)(rx_tlv + tlv_len +
  378. HAL_RX_TLV32_HDR_SIZE + 3)) & (~((unsigned long)3)));
  379. }
  380. static inline uint32_t
  381. hal_rx_status_get_tlv_info(void *rx_tlv, struct hal_rx_ppdu_info *ppdu_info)
  382. {
  383. uint32_t tlv_tag, user_id, tlv_len, value;
  384. uint8_t group_id = 0;
  385. uint16_t he_gi = 0;
  386. uint16_t he_ltf = 0;
  387. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  388. user_id = HAL_RX_GET_USER_TLV32_USERID(rx_tlv);
  389. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
  390. rx_tlv = (uint8_t *) rx_tlv + HAL_RX_TLV32_HDR_SIZE;
  391. switch (tlv_tag) {
  392. case WIFIRX_PPDU_START_E:
  393. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  394. "[%s][%d] ppdu_start_e len=%d\n",
  395. __func__, __LINE__, tlv_len);
  396. ppdu_info->com_info.ppdu_id =
  397. HAL_RX_GET(rx_tlv, RX_PPDU_START_0,
  398. PHY_PPDU_ID);
  399. /* TODO: Ensure channel number is set in PHY meta data */
  400. ppdu_info->rx_status.chan_freq =
  401. HAL_RX_GET(rx_tlv, RX_PPDU_START_1,
  402. SW_PHY_META_DATA);
  403. ppdu_info->com_info.ppdu_timestamp =
  404. HAL_RX_GET(rx_tlv, RX_PPDU_START_2,
  405. PPDU_START_TIMESTAMP);
  406. break;
  407. case WIFIRX_PPDU_START_USER_INFO_E:
  408. break;
  409. case WIFIRX_PPDU_END_E:
  410. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  411. "[%s][%d] ppdu_end_e len=%d\n",
  412. __func__, __LINE__, tlv_len);
  413. /* This is followed by sub-TLVs of PPDU_END */
  414. ppdu_info->rx_status.duration =
  415. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_8,
  416. RX_PPDU_DURATION);
  417. break;
  418. case WIFIRXPCU_PPDU_END_INFO_E:
  419. ppdu_info->rx_status.tsft =
  420. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_1,
  421. WB_TIMESTAMP_UPPER_32);
  422. ppdu_info->rx_status.tsft = (ppdu_info->rx_status.tsft << 32) |
  423. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_0,
  424. WB_TIMESTAMP_LOWER_32);
  425. break;
  426. case WIFIRX_PPDU_END_USER_STATS_E:
  427. {
  428. unsigned long tid = 0;
  429. ppdu_info->rx_status.ast_index =
  430. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_4,
  431. AST_INDEX);
  432. tid = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_12,
  433. RECEIVED_QOS_DATA_TID_BITMAP);
  434. ppdu_info->rx_status.tid = qdf_find_first_bit(&tid, sizeof(tid)*8);
  435. ppdu_info->rx_status.tcp_msdu_count =
  436. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  437. TCP_MSDU_COUNT) +
  438. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  439. TCP_ACK_MSDU_COUNT);
  440. ppdu_info->rx_status.udp_msdu_count =
  441. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  442. UDP_MSDU_COUNT);
  443. ppdu_info->rx_status.other_msdu_count =
  444. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  445. OTHER_MSDU_COUNT);
  446. ppdu_info->rx_status.first_data_seq_ctrl =
  447. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  448. DATA_SEQUENCE_CONTROL_INFO_VALID);
  449. ppdu_info->rx_status.preamble_type =
  450. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  451. HT_CONTROL_FIELD_PKT_TYPE);
  452. break;
  453. }
  454. case WIFIRX_PPDU_END_USER_STATS_EXT_E:
  455. break;
  456. case WIFIRX_PPDU_END_STATUS_DONE_E:
  457. return HAL_TLV_STATUS_PPDU_DONE;
  458. case WIFIDUMMY_E:
  459. return HAL_TLV_STATUS_BUF_DONE;
  460. case WIFIPHYRX_HT_SIG_E:
  461. {
  462. uint8_t *ht_sig_info = (uint8_t *)rx_tlv +
  463. HAL_RX_OFFSET(PHYRX_HT_SIG_0,
  464. HT_SIG_INFO_PHYRX_HT_SIG_INFO_DETAILS);
  465. value = HAL_RX_GET(ht_sig_info, HT_SIG_INFO_1,
  466. FEC_CODING);
  467. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  468. 1 : 0;
  469. ppdu_info->rx_status.mcs = HAL_RX_GET(ht_sig_info,
  470. HT_SIG_INFO_0, MCS);
  471. ppdu_info->rx_status.bw = HAL_RX_GET(ht_sig_info,
  472. HT_SIG_INFO_0, CBW);
  473. break;
  474. }
  475. case WIFIPHYRX_L_SIG_B_E:
  476. {
  477. uint8_t *l_sig_b_info = (uint8_t *)rx_tlv +
  478. HAL_RX_OFFSET(PHYRX_L_SIG_B_0,
  479. L_SIG_B_INFO_PHYRX_L_SIG_B_INFO_DETAILS);
  480. value = HAL_RX_GET(l_sig_b_info, L_SIG_B_INFO_0, RATE);
  481. switch (value) {
  482. case 1:
  483. ppdu_info->rx_status.rate = HAL_11B_RATE_3MCS;
  484. break;
  485. case 2:
  486. ppdu_info->rx_status.rate = HAL_11B_RATE_2MCS;
  487. break;
  488. case 3:
  489. ppdu_info->rx_status.rate = HAL_11B_RATE_1MCS;
  490. break;
  491. case 4:
  492. ppdu_info->rx_status.rate = HAL_11B_RATE_0MCS;
  493. break;
  494. case 5:
  495. ppdu_info->rx_status.rate = HAL_11B_RATE_6MCS;
  496. break;
  497. case 6:
  498. ppdu_info->rx_status.rate = HAL_11B_RATE_5MCS;
  499. break;
  500. case 7:
  501. ppdu_info->rx_status.rate = HAL_11B_RATE_4MCS;
  502. break;
  503. default:
  504. break;
  505. }
  506. break;
  507. }
  508. case WIFIPHYRX_L_SIG_A_E:
  509. {
  510. uint8_t *l_sig_a_info = (uint8_t *)rx_tlv +
  511. HAL_RX_OFFSET(PHYRX_L_SIG_A_0,
  512. L_SIG_A_INFO_PHYRX_L_SIG_A_INFO_DETAILS);
  513. value = HAL_RX_GET(l_sig_a_info, L_SIG_A_INFO_0, RATE);
  514. switch (value) {
  515. case 8:
  516. ppdu_info->rx_status.rate = HAL_11A_RATE_0MCS;
  517. break;
  518. case 9:
  519. ppdu_info->rx_status.rate = HAL_11A_RATE_1MCS;
  520. break;
  521. case 10:
  522. ppdu_info->rx_status.rate = HAL_11A_RATE_2MCS;
  523. break;
  524. case 11:
  525. ppdu_info->rx_status.rate = HAL_11A_RATE_3MCS;
  526. break;
  527. case 12:
  528. ppdu_info->rx_status.rate = HAL_11A_RATE_4MCS;
  529. break;
  530. case 13:
  531. ppdu_info->rx_status.rate = HAL_11A_RATE_5MCS;
  532. break;
  533. case 14:
  534. ppdu_info->rx_status.rate = HAL_11A_RATE_6MCS;
  535. break;
  536. case 15:
  537. ppdu_info->rx_status.rate = HAL_11A_RATE_7MCS;
  538. break;
  539. default:
  540. break;
  541. }
  542. break;
  543. }
  544. case WIFIPHYRX_VHT_SIG_A_E:
  545. {
  546. uint8_t *vht_sig_a_info = (uint8_t *)rx_tlv +
  547. HAL_RX_OFFSET(PHYRX_VHT_SIG_A_0,
  548. VHT_SIG_A_INFO_PHYRX_VHT_SIG_A_INFO_DETAILS);
  549. value = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_1,
  550. SU_MU_CODING);
  551. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  552. 1 : 0;
  553. group_id = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_0, GROUP_ID);
  554. ppdu_info->rx_status.vht_flag_values5 = group_id;
  555. ppdu_info->rx_status.mcs = HAL_RX_GET(vht_sig_a_info,
  556. VHT_SIG_A_INFO_1, MCS);
  557. #if !defined(QCA_WIFI_QCA6290_11AX)
  558. value = HAL_RX_GET(vht_sig_a_info,
  559. VHT_SIG_A_INFO_0, N_STS);
  560. ppdu_info->rx_status.nss = ((value & VHT_SIG_SU_NSS_MASK) + 1);
  561. #else
  562. ppdu_info->rx_status.nss = 0;
  563. #endif
  564. ppdu_info->rx_status.vht_flag_values3[0] =
  565. (((ppdu_info->rx_status.mcs) << 4)
  566. | ppdu_info->rx_status.nss);
  567. ppdu_info->rx_status.bw = HAL_RX_GET(vht_sig_a_info,
  568. VHT_SIG_A_INFO_0, BANDWIDTH);
  569. break;
  570. }
  571. case WIFIPHYRX_HE_SIG_A_SU_E:
  572. {
  573. uint8_t *he_sig_a_su_info = (uint8_t *)rx_tlv +
  574. HAL_RX_OFFSET(PHYRX_HE_SIG_A_SU_0,
  575. HE_SIG_A_SU_INFO_PHYRX_HE_SIG_A_SU_INFO_DETAILS);
  576. ppdu_info->rx_status.he_flags = 1;
  577. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  578. FORMAT_INDICATION);
  579. if (value == 0) {
  580. ppdu_info->rx_status.he_data1 =
  581. QDF_MON_STATUS_HE_TRIG_FORMAT_TYPE;
  582. } else {
  583. ppdu_info->rx_status.he_data1 =
  584. QDF_MON_STATUS_HE_SU_OR_EXT_SU_FORMAT_TYPE;
  585. }
  586. /*data1*/
  587. ppdu_info->rx_status.he_data1 |=
  588. QDF_MON_STATUS_HE_BSS_COLOR_KNOWN |
  589. QDF_MON_STATUS_HE_BEAM_CHANGE_KNOWN |
  590. QDF_MON_STATUS_HE_DL_UL_KNOWN |
  591. QDF_MON_STATUS_HE_MCS_KNOWN |
  592. QDF_MON_STATUS_HE_DCM_KNOWN |
  593. QDF_MON_STATUS_HE_CODING_KNOWN |
  594. QDF_MON_STATUS_HE_LDPC_EXTRA_SYMBOL_KNOWN |
  595. QDF_MON_STATUS_HE_STBC_KNOWN |
  596. QDF_MON_STATUS_HE_DATA_BW_RU_KNOWN |
  597. QDF_MON_STATUS_HE_DOPPLER_KNOWN;
  598. /*data2*/
  599. ppdu_info->rx_status.he_data2 =
  600. QDF_MON_STATUS_HE_GI_KNOWN;
  601. ppdu_info->rx_status.he_data2 =
  602. QDF_MON_STATUS_TXBF_KNOWN |
  603. QDF_MON_STATUS_PE_DISAMBIGUITY_KNOWN |
  604. QDF_MON_STATUS_TXOP_KNOWN |
  605. QDF_MON_STATUS_LTF_SYMBOLS_KNOWN |
  606. QDF_MON_STATUS_PRE_FEC_PADDING_KNOWN |
  607. QDF_MON_STATUS_MIDABLE_PERIODICITY_KNOWN;
  608. /*data3*/
  609. value = HAL_RX_GET(he_sig_a_su_info,
  610. HE_SIG_A_SU_INFO_0, BSS_COLOR_ID);
  611. ppdu_info->rx_status.he_data3 = value;
  612. value = HAL_RX_GET(he_sig_a_su_info,
  613. HE_SIG_A_SU_INFO_0, BEAM_CHANGE);
  614. value = value << QDF_MON_STATUS_BEAM_CHANGE_SHIFT;
  615. ppdu_info->rx_status.he_data3 |= value;
  616. value = HAL_RX_GET(he_sig_a_su_info,
  617. HE_SIG_A_SU_INFO_0, DL_UL_FLAG);
  618. value = value << QDF_MON_STATUS_DL_UL_SHIFT;
  619. ppdu_info->rx_status.he_data3 |= value;
  620. value = HAL_RX_GET(he_sig_a_su_info,
  621. HE_SIG_A_SU_INFO_0, TRANSMIT_MCS);
  622. value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
  623. ppdu_info->rx_status.he_data3 |= value;
  624. value = HAL_RX_GET(he_sig_a_su_info,
  625. HE_SIG_A_SU_INFO_0, DCM);
  626. value = value << QDF_MON_STATUS_DCM_SHIFT;
  627. ppdu_info->rx_status.he_data3 |= value;
  628. value = HAL_RX_GET(he_sig_a_su_info,
  629. HE_SIG_A_SU_INFO_1, CODING);
  630. value = value << QDF_MON_STATUS_CODING_SHIFT;
  631. ppdu_info->rx_status.he_data3 |= value;
  632. value = HAL_RX_GET(he_sig_a_su_info,
  633. HE_SIG_A_SU_INFO_1,
  634. LDPC_EXTRA_SYMBOL);
  635. value = value << QDF_MON_STATUS_LDPC_EXTRA_SYMBOL_SHIFT;
  636. ppdu_info->rx_status.he_data3 |= value;
  637. value = HAL_RX_GET(he_sig_a_su_info,
  638. HE_SIG_A_SU_INFO_1, STBC);
  639. value = value << QDF_MON_STATUS_STBC_SHIFT;
  640. ppdu_info->rx_status.he_data3 |= value;
  641. /*data4*/
  642. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  643. SPATIAL_REUSE);
  644. ppdu_info->rx_status.he_data4 = value;
  645. /*data5*/
  646. value = HAL_RX_GET(he_sig_a_su_info,
  647. HE_SIG_A_SU_INFO_0, TRANSMIT_BW);
  648. ppdu_info->rx_status.he_data5 = value;
  649. value = HAL_RX_GET(he_sig_a_su_info,
  650. HE_SIG_A_SU_INFO_0, CP_LTF_SIZE);
  651. switch (value) {
  652. case 0:
  653. he_gi = HE_GI_0_8;
  654. he_ltf = HE_LTF_1_X;
  655. break;
  656. case 1:
  657. he_gi = HE_GI_0_8;
  658. he_ltf = HE_LTF_2_X;
  659. break;
  660. case 2:
  661. he_gi = HE_GI_1_6;
  662. he_ltf = HE_LTF_2_X;
  663. break;
  664. case 3:
  665. he_gi = HE_GI_3_2;
  666. he_ltf = HE_LTF_4_X;
  667. break;
  668. }
  669. value = he_gi << QDF_MON_STATUS_GI_SHIFT;
  670. ppdu_info->rx_status.he_data5 |= value;
  671. value = he_ltf << QDF_MON_STATUS_HE_LTF_SHIFT;
  672. ppdu_info->rx_status.he_data5 |= value;
  673. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  674. PACKET_EXTENSION_A_FACTOR);
  675. value = value << QDF_MON_STATUS_PRE_FEC_PAD_SHIFT;
  676. ppdu_info->rx_status.he_data5 |= value;
  677. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1, TXBF);
  678. value = value << QDF_MON_STATUS_TXBF_SHIFT;
  679. ppdu_info->rx_status.he_data5 |= value;
  680. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  681. PACKET_EXTENSION_PE_DISAMBIGUITY);
  682. value = value << QDF_MON_STATUS_PE_DISAMBIGUITY_SHIFT;
  683. ppdu_info->rx_status.he_data5 |= value;
  684. /*data6*/
  685. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0, NSTS);
  686. value++;
  687. ppdu_info->rx_status.he_data6 = value;
  688. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  689. DOPPLER_INDICATION);
  690. value = value << QDF_MON_STATUS_DOPPLER_SHIFT;
  691. ppdu_info->rx_status.he_data6 |= value;
  692. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  693. TXOP_DURATION);
  694. value = value << QDF_MON_STATUS_TXOP_SHIFT;
  695. ppdu_info->rx_status.he_data6 |= value;
  696. break;
  697. }
  698. case WIFIPHYRX_HE_SIG_A_MU_DL_E:
  699. ppdu_info->rx_status.he_sig_A1 =
  700. *((uint32_t *)((uint8_t *)rx_tlv +
  701. HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_0,
  702. HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS)));
  703. ppdu_info->rx_status.he_sig_A1 |=
  704. QDF_MON_STATUS_HE_SIG_A1_HE_FORMAT_MU;
  705. ppdu_info->rx_status.he_sig_A1_known =
  706. QDF_MON_STATUS_HE_SIG_A1_MU_KNOWN_ALL;
  707. ppdu_info->rx_status.he_sig_A2 =
  708. *((uint32_t *)((uint8_t *)rx_tlv +
  709. HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_1,
  710. HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS)));
  711. ppdu_info->rx_status.he_sig_A2_known =
  712. QDF_MON_STATUS_HE_SIG_A2_MU_KNOWN_ALL;
  713. break;
  714. case WIFIPHYRX_HE_SIG_B1_MU_E:
  715. {
  716. uint8_t *he_sig_b1_mu_info = (uint8_t *)rx_tlv +
  717. *((uint32_t *)((uint8_t *)rx_tlv +
  718. HAL_RX_OFFSET(PHYRX_HE_SIG_B1_MU_0,
  719. HE_SIG_B1_MU_INFO_PHYRX_HE_SIG_B1_MU_INFO_DETAILS)));
  720. ppdu_info->rx_status.he_sig_b_common_RU[0] =
  721. HAL_RX_GET(he_sig_b1_mu_info, HE_SIG_B1_MU_INFO_0,
  722. RU_ALLOCATION);
  723. ppdu_info->rx_status.he_sig_b_common_known =
  724. QDF_MON_STATUS_HE_SIG_B_COMMON_KNOWN_RU0;
  725. /* TODO: Check on the availability of other fields in
  726. * sig_b_common
  727. */
  728. break;
  729. }
  730. case WIFIPHYRX_HE_SIG_B2_MU_E:
  731. ppdu_info->rx_status.he_sig_b_user =
  732. *((uint32_t *)((uint8_t *)rx_tlv +
  733. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_MU_0,
  734. HE_SIG_B2_MU_INFO_PHYRX_HE_SIG_B2_MU_INFO_DETAILS)));
  735. ppdu_info->rx_status.he_sig_b_user_known =
  736. QDF_MON_STATUS_HE_SIG_B_USER_KNOWN_SIG_B_ALL;
  737. break;
  738. case WIFIPHYRX_HE_SIG_B2_OFDMA_E:
  739. ppdu_info->rx_status.he_sig_b_user =
  740. *((uint32_t *)((uint8_t *)rx_tlv +
  741. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_OFDMA_0,
  742. HE_SIG_B2_OFDMA_INFO_PHYRX_HE_SIG_B2_OFDMA_INFO_DETAILS)));
  743. ppdu_info->rx_status.he_sig_b_user_known =
  744. QDF_MON_STATUS_HE_SIG_B_USER_KNOWN_SIG_B_ALL;
  745. break;
  746. case WIFIPHYRX_RSSI_LEGACY_E:
  747. {
  748. uint8_t *rssi_info_tlv = (uint8_t *)rx_tlv +
  749. HAL_RX_OFFSET(PHYRX_RSSI_LEGACY_3,
  750. RECEIVE_RSSI_INFO_PRE_RSSI_INFO_DETAILS);
  751. ppdu_info->rx_status.rssi_comb = HAL_RX_GET(rx_tlv,
  752. PHYRX_RSSI_LEGACY_35, RSSI_COMB);
  753. ppdu_info->rx_status.bw = HAL_RX_GET(rx_tlv,
  754. #if !defined(QCA_WIFI_QCA6290_11AX)
  755. PHYRX_RSSI_LEGACY_35, RECEIVE_BANDWIDTH);
  756. #else
  757. PHYRX_RSSI_LEGACY_0, RECEIVE_BANDWIDTH);
  758. #endif
  759. ppdu_info->rx_status.preamble_type = HAL_RX_GET(rx_tlv,
  760. PHYRX_RSSI_LEGACY_0, RECEPTION_TYPE);
  761. ppdu_info->rx_status.he_re = 0;
  762. value = HAL_RX_GET(rssi_info_tlv,
  763. RECEIVE_RSSI_INFO_0, RSSI_PRI20_CHAIN0);
  764. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  765. "RSSI_PRI20_CHAIN0: %d\n", value);
  766. value = HAL_RX_GET(rssi_info_tlv,
  767. RECEIVE_RSSI_INFO_0, RSSI_EXT20_CHAIN0);
  768. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  769. "RSSI_EXT20_CHAIN0: %d\n", value);
  770. value = HAL_RX_GET(rssi_info_tlv,
  771. RECEIVE_RSSI_INFO_0, RSSI_EXT40_LOW20_CHAIN0);
  772. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  773. "RSSI_EXT40_LOW20_CHAIN0: %d\n", value);
  774. value = HAL_RX_GET(rssi_info_tlv,
  775. RECEIVE_RSSI_INFO_0, RSSI_EXT40_HIGH20_CHAIN0);
  776. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  777. "RSSI_EXT40_HIGH20_CHAIN0: %d\n", value);
  778. value = HAL_RX_GET(rssi_info_tlv,
  779. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW20_CHAIN0);
  780. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  781. "RSSI_EXT80_LOW20_CHAIN0: %d\n", value);
  782. value = HAL_RX_GET(rssi_info_tlv,
  783. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW_HIGH20_CHAIN0);
  784. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  785. "RSSI_EXT80_LOW_HIGH20_CHAIN0: %d\n", value);
  786. value = HAL_RX_GET(rssi_info_tlv,
  787. RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH_LOW20_CHAIN0);
  788. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  789. "RSSI_EXT80_HIGH_LOW20_CHAIN0: %d\n", value);
  790. value = HAL_RX_GET(rssi_info_tlv,
  791. RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH20_CHAIN0);
  792. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  793. "RSSI_EXT80_HIGH20_CHAIN0: %d\n", value);
  794. break;
  795. }
  796. case WIFIRX_HEADER_E:
  797. ppdu_info->first_msdu_payload = rx_tlv;
  798. break;
  799. case 0:
  800. return HAL_TLV_STATUS_PPDU_DONE;
  801. default:
  802. break;
  803. }
  804. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  805. "%s TLV type: %d, TLV len:%d\n",
  806. __func__, tlv_tag, tlv_len);
  807. return HAL_TLV_STATUS_PPDU_NOT_DONE;
  808. }
  809. static inline
  810. uint32_t hal_get_rx_status_done_tlv_size(void *hal_soc)
  811. {
  812. return HAL_RX_TLV32_HDR_SIZE;
  813. }
  814. static inline QDF_STATUS
  815. hal_get_rx_status_done(uint8_t *rx_tlv)
  816. {
  817. uint32_t tlv_tag;
  818. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  819. if (tlv_tag == WIFIRX_STATUS_BUFFER_DONE_E)
  820. return QDF_STATUS_SUCCESS;
  821. else
  822. return QDF_STATUS_E_EMPTY;
  823. }
  824. static inline QDF_STATUS
  825. hal_clear_rx_status_done(uint8_t *rx_tlv)
  826. {
  827. *(uint32_t *)rx_tlv = 0;
  828. return QDF_STATUS_SUCCESS;
  829. }
  830. #endif