lpass-cdc-rx-macro.c 153 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. */
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/io.h>
  8. #include <linux/platform_device.h>
  9. #include <linux/clk.h>
  10. #include <linux/pm_runtime.h>
  11. #include <sound/soc.h>
  12. #include <sound/pcm.h>
  13. #include <sound/pcm_params.h>
  14. #include <sound/soc-dapm.h>
  15. #include <sound/tlv.h>
  16. #include <soc/swr-common.h>
  17. #include <soc/swr-wcd.h>
  18. #include <asoc/msm-cdc-pinctrl.h>
  19. #include "lpass-cdc.h"
  20. #include "lpass-cdc-comp.h"
  21. #include "lpass-cdc-registers.h"
  22. #include "lpass-cdc-clk-rsc.h"
  23. #define AUTO_SUSPEND_DELAY 50 /* delay in msec */
  24. #define LPASS_CDC_RX_MACRO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  25. SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_48000 |\
  26. SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000 |\
  27. SNDRV_PCM_RATE_384000)
  28. /* Fractional Rates */
  29. #define LPASS_CDC_RX_MACRO_FRAC_RATES (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_88200 |\
  30. SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_352800)
  31. #define LPASS_CDC_RX_MACRO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  32. SNDRV_PCM_FMTBIT_S24_LE |\
  33. SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
  34. #define LPASS_CDC_RX_MACRO_ECHO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  35. SNDRV_PCM_RATE_48000)
  36. #define LPASS_CDC_RX_MACRO_ECHO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  37. SNDRV_PCM_FMTBIT_S24_LE |\
  38. SNDRV_PCM_FMTBIT_S24_3LE)
  39. #define SAMPLING_RATE_44P1KHZ 44100
  40. #define SAMPLING_RATE_88P2KHZ 88200
  41. #define SAMPLING_RATE_176P4KHZ 176400
  42. #define SAMPLING_RATE_352P8KHZ 352800
  43. #define LPASS_CDC_RX_MACRO_MAX_OFFSET 0x1000
  44. #define LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT 2
  45. #define RX_SWR_STRING_LEN 80
  46. #define LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX 3
  47. #define LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS 3
  48. #define LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX 5
  49. #define LPASS_CDC_RX_MACRO_FIR_COEFF_MAX 100
  50. #define LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX \
  51. (LPASS_CDC_RX_MACRO_FIR_COEFF_MAX + 1)
  52. /* first value represent number of coefficients in each 100 integer group */
  53. #define LPASS_CDC_RX_MACRO_FIR_FILTER_BYTES \
  54. (sizeof(u32) * LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX)
  55. #define STRING(name) #name
  56. #define LPASS_CDC_RX_MACRO_DAPM_ENUM(name, reg, offset, text) \
  57. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  58. static const struct snd_kcontrol_new name##_mux = \
  59. SOC_DAPM_ENUM(STRING(name), name##_enum)
  60. #define LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(name, reg, offset, text, getname, putname) \
  61. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  62. static const struct snd_kcontrol_new name##_mux = \
  63. SOC_DAPM_ENUM_EXT(STRING(name), name##_enum, getname, putname)
  64. #define LPASS_CDC_RX_MACRO_DAPM_MUX(name, shift, kctl) \
  65. SND_SOC_DAPM_MUX(name, SND_SOC_NOPM, shift, 0, &kctl##_mux)
  66. #define LPASS_CDC_RX_MACRO_RX_PATH_OFFSET \
  67. (LPASS_CDC_RX_RX1_RX_PATH_CTL - LPASS_CDC_RX_RX0_RX_PATH_CTL)
  68. #define LPASS_CDC_RX_MACRO_COMP_OFFSET \
  69. (LPASS_CDC_RX_COMPANDER1_CTL0 - LPASS_CDC_RX_COMPANDER0_CTL0)
  70. #define MAX_IMPED_PARAMS 6
  71. #define LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK 0xf0
  72. #define LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK 0x0f
  73. #define LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK 0x0f
  74. #define LPASS_CDC_RX_MACRO_GAIN_MAX_VAL 0x28
  75. #define LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY 0x0
  76. /* Define macros to increase PA Gain by half */
  77. #define LPASS_CDC_RX_MACRO_MOD_GAIN (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY + 6)
  78. #define COMP_MAX_COEFF 25
  79. struct wcd_imped_val {
  80. u32 imped_val;
  81. u8 index;
  82. };
  83. static const struct wcd_imped_val imped_index[] = {
  84. {4, 0},
  85. {5, 1},
  86. {6, 2},
  87. {7, 3},
  88. {8, 4},
  89. {9, 5},
  90. {10, 6},
  91. {11, 7},
  92. {12, 8},
  93. {13, 9},
  94. };
  95. enum {
  96. HPH_ULP,
  97. HPH_LOHIFI,
  98. HPH_MODE_MAX,
  99. };
  100. static struct comp_coeff_val
  101. comp_coeff_table [HPH_MODE_MAX][COMP_MAX_COEFF] = {
  102. {
  103. {0x40, 0x00},
  104. {0x4C, 0x00},
  105. {0x5A, 0x00},
  106. {0x6B, 0x00},
  107. {0x7F, 0x00},
  108. {0x97, 0x00},
  109. {0xB3, 0x00},
  110. {0xD5, 0x00},
  111. {0xFD, 0x00},
  112. {0x2D, 0x01},
  113. {0x66, 0x01},
  114. {0xA7, 0x01},
  115. {0xF8, 0x01},
  116. {0x57, 0x02},
  117. {0xC7, 0x02},
  118. {0x4B, 0x03},
  119. {0xE9, 0x03},
  120. {0xA3, 0x04},
  121. {0x7D, 0x05},
  122. {0x90, 0x06},
  123. {0xD1, 0x07},
  124. {0x49, 0x09},
  125. {0x00, 0x0B},
  126. {0x01, 0x0D},
  127. {0x59, 0x0F},
  128. },
  129. {
  130. {0x40, 0x00},
  131. {0x4C, 0x00},
  132. {0x5A, 0x00},
  133. {0x6B, 0x00},
  134. {0x80, 0x00},
  135. {0x98, 0x00},
  136. {0xB4, 0x00},
  137. {0xD5, 0x00},
  138. {0xFE, 0x00},
  139. {0x2E, 0x01},
  140. {0x66, 0x01},
  141. {0xA9, 0x01},
  142. {0xF8, 0x01},
  143. {0x56, 0x02},
  144. {0xC4, 0x02},
  145. {0x4F, 0x03},
  146. {0xF0, 0x03},
  147. {0xAE, 0x04},
  148. {0x8B, 0x05},
  149. {0x8E, 0x06},
  150. {0xBC, 0x07},
  151. {0x56, 0x09},
  152. {0x0F, 0x0B},
  153. {0x13, 0x0D},
  154. {0x6F, 0x0F},
  155. },
  156. };
  157. enum {
  158. RX_MODE_ULP,
  159. RX_MODE_LOHIFI,
  160. RX_MODE_EAR,
  161. RX_MODE_MAX
  162. };
  163. static struct lpass_cdc_comp_setting comp_setting_table[RX_MODE_MAX] =
  164. {
  165. {12, -60, 12},
  166. {0, -60, 12},
  167. {12, -36, 12},
  168. };
  169. struct lpass_cdc_rx_macro_reg_mask_val {
  170. u16 reg;
  171. u8 mask;
  172. u8 val;
  173. };
  174. static const struct lpass_cdc_rx_macro_reg_mask_val imped_table[][MAX_IMPED_PARAMS] = {
  175. {
  176. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf2},
  177. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf2},
  178. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  179. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf2},
  180. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf2},
  181. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  182. },
  183. {
  184. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf4},
  185. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf4},
  186. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  187. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf4},
  188. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf4},
  189. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  190. },
  191. {
  192. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf7},
  193. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf7},
  194. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  195. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf7},
  196. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf7},
  197. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  198. },
  199. {
  200. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf9},
  201. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf9},
  202. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  203. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf9},
  204. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf9},
  205. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  206. },
  207. {
  208. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfa},
  209. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfa},
  210. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  211. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfa},
  212. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfa},
  213. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  214. },
  215. {
  216. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfb},
  217. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfb},
  218. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  219. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfb},
  220. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfb},
  221. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  222. },
  223. {
  224. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfc},
  225. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfc},
  226. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  227. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfc},
  228. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfc},
  229. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  230. },
  231. {
  232. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  233. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  234. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  235. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  236. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  237. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  238. },
  239. {
  240. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  241. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  242. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  243. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  244. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  245. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  246. },
  247. };
  248. enum {
  249. INTERP_HPHL,
  250. INTERP_HPHR,
  251. INTERP_AUX,
  252. INTERP_MAX
  253. };
  254. enum {
  255. LPASS_CDC_RX_MACRO_RX0,
  256. LPASS_CDC_RX_MACRO_RX1,
  257. LPASS_CDC_RX_MACRO_RX2,
  258. LPASS_CDC_RX_MACRO_RX3,
  259. LPASS_CDC_RX_MACRO_RX4,
  260. LPASS_CDC_RX_MACRO_RX5,
  261. LPASS_CDC_RX_MACRO_PORTS_MAX
  262. };
  263. enum {
  264. LPASS_CDC_RX_MACRO_COMP1, /* HPH_L */
  265. LPASS_CDC_RX_MACRO_COMP2, /* HPH_R */
  266. LPASS_CDC_RX_MACRO_COMP_MAX
  267. };
  268. enum {
  269. LPASS_CDC_RX_MACRO_EC0_MUX = 0,
  270. LPASS_CDC_RX_MACRO_EC1_MUX,
  271. LPASS_CDC_RX_MACRO_EC2_MUX,
  272. LPASS_CDC_RX_MACRO_EC_MUX_MAX,
  273. };
  274. enum {
  275. INTn_1_INP_SEL_ZERO = 0,
  276. INTn_1_INP_SEL_DEC0,
  277. INTn_1_INP_SEL_DEC1,
  278. INTn_1_INP_SEL_IIR0,
  279. INTn_1_INP_SEL_IIR1,
  280. INTn_1_INP_SEL_RX0,
  281. INTn_1_INP_SEL_RX1,
  282. INTn_1_INP_SEL_RX2,
  283. INTn_1_INP_SEL_RX3,
  284. INTn_1_INP_SEL_RX4,
  285. INTn_1_INP_SEL_RX5,
  286. };
  287. enum {
  288. INTn_2_INP_SEL_ZERO = 0,
  289. INTn_2_INP_SEL_RX0,
  290. INTn_2_INP_SEL_RX1,
  291. INTn_2_INP_SEL_RX2,
  292. INTn_2_INP_SEL_RX3,
  293. INTn_2_INP_SEL_RX4,
  294. INTn_2_INP_SEL_RX5,
  295. };
  296. enum {
  297. INTERP_MAIN_PATH,
  298. INTERP_MIX_PATH,
  299. };
  300. /* Codec supports 2 IIR filters */
  301. enum {
  302. IIR0 = 0,
  303. IIR1,
  304. IIR_MAX,
  305. };
  306. /* Each IIR has 5 Filter Stages */
  307. enum {
  308. BAND1 = 0,
  309. BAND2,
  310. BAND3,
  311. BAND4,
  312. BAND5,
  313. BAND_MAX,
  314. };
  315. #define LPASS_CDC_RX_MACRO_IIR_FILTER_SIZE (sizeof(u32) * BAND_MAX)
  316. struct lpass_cdc_rx_macro_iir_filter_ctl {
  317. unsigned int iir_idx;
  318. unsigned int band_idx;
  319. struct soc_bytes_ext bytes_ext;
  320. };
  321. #define LPASS_CDC_RX_MACRO_IIR_FILTER_CTL(xname, iidx, bidx) \
  322. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  323. .info = lpass_cdc_rx_macro_iir_filter_info, \
  324. .get = lpass_cdc_rx_macro_iir_band_audio_mixer_get, \
  325. .put = lpass_cdc_rx_macro_iir_band_audio_mixer_put, \
  326. .private_value = (unsigned long)&(struct lpass_cdc_rx_macro_iir_filter_ctl) { \
  327. .iir_idx = iidx, \
  328. .band_idx = bidx, \
  329. .bytes_ext = {.max = LPASS_CDC_RX_MACRO_IIR_FILTER_SIZE, }, \
  330. } \
  331. }
  332. /* Codec supports 2 FIR filters Path */
  333. enum {
  334. RX0_PATH = 0,
  335. RX1_PATH,
  336. FIR_PATH_MAX,
  337. };
  338. /* Each RX Path has 2 group of coefficients */
  339. enum {
  340. GRP0 = 0,
  341. GRP1,
  342. GRP_MAX,
  343. };
  344. struct lpass_cdc_rx_macro_fir_filter_ctl {
  345. unsigned int path_idx;
  346. unsigned int grp_idx;
  347. struct soc_bytes_ext bytes_ext;
  348. };
  349. #define LPASS_CDC_RX_MACRO_FIR_FILTER_CTL(xname, pidx, gidx) \
  350. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  351. .info = lpass_cdc_rx_macro_fir_filter_info, \
  352. .get = lpass_cdc_rx_macro_fir_audio_mixer_get, \
  353. .put = lpass_cdc_rx_macro_fir_audio_mixer_put, \
  354. .private_value = (unsigned long)&(struct lpass_cdc_rx_macro_fir_filter_ctl) { \
  355. .path_idx = pidx, \
  356. .grp_idx = gidx, \
  357. .bytes_ext = {.max = LPASS_CDC_RX_MACRO_FIR_FILTER_BYTES, }, \
  358. } \
  359. }
  360. struct lpass_cdc_rx_macro_idle_detect_config {
  361. u8 hph_idle_thr;
  362. u8 hph_idle_detect_en;
  363. };
  364. struct interp_sample_rate {
  365. int sample_rate;
  366. int rate_val;
  367. };
  368. static struct interp_sample_rate sr_val_tbl[] = {
  369. {8000, 0x0}, {16000, 0x1}, {32000, 0x3}, {48000, 0x4}, {96000, 0x5},
  370. {192000, 0x6}, {384000, 0x7}, {44100, 0x9}, {88200, 0xA},
  371. {176400, 0xB}, {352800, 0xC},
  372. };
  373. static int lpass_cdc_rx_macro_core_vote(void *handle, bool enable);
  374. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  375. struct snd_pcm_hw_params *params,
  376. struct snd_soc_dai *dai);
  377. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  378. unsigned int *tx_num, unsigned int *tx_slot,
  379. unsigned int *rx_num, unsigned int *rx_slot);
  380. static int lpass_cdc_rx_macro_mute_stream(struct snd_soc_dai *dai, int mute, int stream);
  381. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  382. struct snd_ctl_elem_value *ucontrol);
  383. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  384. struct snd_ctl_elem_value *ucontrol);
  385. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  386. struct snd_ctl_elem_value *ucontrol);
  387. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  388. int event, int interp_idx);
  389. /* Hold instance to soundwire platform device */
  390. struct rx_swr_ctrl_data {
  391. struct platform_device *rx_swr_pdev;
  392. };
  393. struct rx_swr_ctrl_platform_data {
  394. void *handle; /* holds codec private data */
  395. int (*read)(void *handle, int reg);
  396. int (*write)(void *handle, int reg, int val);
  397. int (*bulk_write)(void *handle, u32 *reg, u32 *val, size_t len);
  398. int (*clk)(void *handle, bool enable);
  399. int (*core_vote)(void *handle, bool enable);
  400. int (*handle_irq)(void *handle,
  401. irqreturn_t (*swrm_irq_handler)(int irq,
  402. void *data),
  403. void *swrm_handle,
  404. int action);
  405. };
  406. enum {
  407. RX_MACRO_AIF_INVALID = 0,
  408. RX_MACRO_AIF1_PB,
  409. RX_MACRO_AIF2_PB,
  410. RX_MACRO_AIF3_PB,
  411. RX_MACRO_AIF4_PB,
  412. RX_MACRO_AIF_ECHO,
  413. RX_MACRO_AIF5_PB,
  414. RX_MACRO_AIF6_PB,
  415. LPASS_CDC_RX_MACRO_MAX_DAIS,
  416. };
  417. enum {
  418. RX_MACRO_AIF1_CAP = 0,
  419. RX_MACRO_AIF2_CAP,
  420. RX_MACRO_AIF3_CAP,
  421. LPASS_CDC_RX_MACRO_MAX_AIF_CAP_DAIS
  422. };
  423. /*
  424. * @dev: rx macro device pointer
  425. * @comp_enabled: compander enable mixer value set
  426. * @prim_int_users: Users of interpolator
  427. * @rx_mclk_users: RX MCLK users count
  428. * @vi_feed_value: VI sense mask
  429. * @swr_clk_lock: to lock swr master clock operations
  430. * @swr_ctrl_data: SoundWire data structure
  431. * @swr_plat_data: Soundwire platform data
  432. * @lpass_cdc_rx_macro_add_child_devices_work: work for adding child devices
  433. * @rx_swr_gpio_p: used by pinctrl API
  434. * @component: codec handle
  435. */
  436. struct lpass_cdc_rx_macro_priv {
  437. struct device *dev;
  438. int comp_enabled[LPASS_CDC_RX_MACRO_COMP_MAX];
  439. /* Main path clock users count */
  440. int main_clk_users[INTERP_MAX];
  441. int rx_port_value[LPASS_CDC_RX_MACRO_PORTS_MAX];
  442. u16 prim_int_users[INTERP_MAX];
  443. int rx_mclk_users;
  444. int swr_clk_users;
  445. bool dapm_mclk_enable;
  446. bool reset_swr;
  447. int clsh_users;
  448. int rx_mclk_cnt;
  449. u8 fir_total_coeff_num[FIR_PATH_MAX];
  450. bool is_native_on;
  451. bool is_ear_mode_on;
  452. bool is_fir_filter_on;
  453. bool is_fir_coeff_written[FIR_PATH_MAX][GRP_MAX];
  454. bool is_fir_capable;
  455. bool dev_up;
  456. bool hph_pwr_mode;
  457. bool hph_hd2_mode;
  458. struct mutex mclk_lock;
  459. struct mutex swr_clk_lock;
  460. struct rx_swr_ctrl_data *swr_ctrl_data;
  461. struct rx_swr_ctrl_platform_data swr_plat_data;
  462. struct work_struct lpass_cdc_rx_macro_add_child_devices_work;
  463. struct device_node *rx_swr_gpio_p;
  464. struct snd_soc_component *component;
  465. unsigned long active_ch_mask[LPASS_CDC_RX_MACRO_MAX_DAIS];
  466. unsigned long active_ch_cnt[LPASS_CDC_RX_MACRO_MAX_DAIS];
  467. u16 bit_width[LPASS_CDC_RX_MACRO_MAX_DAIS];
  468. char __iomem *rx_io_base;
  469. char __iomem *rx_mclk_mode_muxsel;
  470. struct lpass_cdc_rx_macro_idle_detect_config idle_det_cfg;
  471. u8 sidetone_coeff_array[IIR_MAX][BAND_MAX]
  472. [LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX * 4];
  473. /* NOT designed to always reflect the actual hardware value */
  474. u32 fir_coeff_array[FIR_PATH_MAX][GRP_MAX]
  475. [LPASS_CDC_RX_MACRO_FIR_COEFF_MAX];
  476. u32 num_fir_coeff[FIR_PATH_MAX][GRP_MAX];
  477. struct platform_device *pdev_child_devices
  478. [LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX];
  479. int child_count;
  480. int is_softclip_on;
  481. int is_aux_hpf_on;
  482. int softclip_clk_users;
  483. u16 clk_id;
  484. u16 default_clk_id;
  485. struct clk *hifi_fir_clk;
  486. int8_t rx0_gain_val;
  487. int8_t rx1_gain_val;
  488. };
  489. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[];
  490. static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
  491. static const char * const rx_int_mix_mux_text[] = {
  492. "ZERO", "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  493. };
  494. static const char * const rx_prim_mix_text[] = {
  495. "ZERO", "DEC0", "DEC1", "IIR0", "IIR1", "RX0", "RX1", "RX2",
  496. "RX3", "RX4", "RX5"
  497. };
  498. static const char * const rx_sidetone_mix_text[] = {
  499. "ZERO", "SRC0", "SRC1", "SRC_SUM"
  500. };
  501. static const char * const iir_inp_mux_text[] = {
  502. "ZERO", "DEC0", "DEC1", "DEC2", "DEC3",
  503. "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  504. };
  505. static const char * const rx_int_dem_inp_mux_text[] = {
  506. "NORMAL_DSM_OUT", "CLSH_DSM_OUT",
  507. };
  508. static const char * const rx_int0_1_interp_mux_text[] = {
  509. "ZERO", "RX INT0_1 MIX1",
  510. };
  511. static const char * const rx_int1_1_interp_mux_text[] = {
  512. "ZERO", "RX INT1_1 MIX1",
  513. };
  514. static const char * const rx_int2_1_interp_mux_text[] = {
  515. "ZERO", "RX INT2_1 MIX1",
  516. };
  517. static const char * const rx_int0_2_interp_mux_text[] = {
  518. "ZERO", "RX INT0_2 MUX",
  519. };
  520. static const char * const rx_int1_2_interp_mux_text[] = {
  521. "ZERO", "RX INT1_2 MUX",
  522. };
  523. static const char * const rx_int2_2_interp_mux_text[] = {
  524. "ZERO", "RX INT2_2 MUX",
  525. };
  526. static const char *const lpass_cdc_rx_macro_mux_text[] = {
  527. "ZERO", "AIF1_PB", "AIF2_PB", "AIF3_PB", "AIF4_PB"
  528. };
  529. static const char *const lpass_cdc_rx_macro_ear_mode_text[] = {"OFF", "ON"};
  530. static const struct soc_enum lpass_cdc_rx_macro_ear_mode_enum =
  531. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_ear_mode_text);
  532. static const char *const lpass_cdc_rx_macro_hph_hd2_mode_text[] = {"OFF", "ON"};
  533. static const struct soc_enum lpass_cdc_rx_macro_hph_hd2_mode_enum =
  534. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_hd2_mode_text);
  535. static const char *const lpass_cdc_rx_macro_hph_pwr_mode_text[] = {"ULP", "LOHIFI"};
  536. static const struct soc_enum lpass_cdc_rx_macro_hph_pwr_mode_enum =
  537. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_pwr_mode_text);
  538. static const char * const lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text[] = {"OFF", "ON"};
  539. static const struct soc_enum lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum =
  540. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text);
  541. static const char *const lpass_cdc_rx_macro_fir_filter_text[] = {"OFF", "ON"};
  542. static const struct soc_enum lpass_cdc_rx_macro_fir_filter_enum =
  543. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_fir_filter_text);
  544. static const struct snd_kcontrol_new rx_int2_1_vbat_mix_switch[] = {
  545. SOC_DAPM_SINGLE("RX AUX VBAT Enable", SND_SOC_NOPM, 0, 1, 0)
  546. };
  547. static const char * const hph_idle_detect_text[] = {"OFF", "ON"};
  548. static SOC_ENUM_SINGLE_EXT_DECL(hph_idle_detect_enum, hph_idle_detect_text);
  549. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 0,
  550. rx_int_mix_mux_text);
  551. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 0,
  552. rx_int_mix_mux_text);
  553. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 0,
  554. rx_int_mix_mux_text);
  555. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 0,
  556. rx_prim_mix_text);
  557. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 4,
  558. rx_prim_mix_text);
  559. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 4,
  560. rx_prim_mix_text);
  561. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 0,
  562. rx_prim_mix_text);
  563. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 4,
  564. rx_prim_mix_text);
  565. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 4,
  566. rx_prim_mix_text);
  567. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 0,
  568. rx_prim_mix_text);
  569. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 4,
  570. rx_prim_mix_text);
  571. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 4,
  572. rx_prim_mix_text);
  573. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 2,
  574. rx_sidetone_mix_text);
  575. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 4,
  576. rx_sidetone_mix_text);
  577. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 6,
  578. rx_sidetone_mix_text);
  579. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG0, 0,
  580. iir_inp_mux_text);
  581. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG1, 0,
  582. iir_inp_mux_text);
  583. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG2, 0,
  584. iir_inp_mux_text);
  585. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG3, 0,
  586. iir_inp_mux_text);
  587. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG0, 0,
  588. iir_inp_mux_text);
  589. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG1, 0,
  590. iir_inp_mux_text);
  591. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG2, 0,
  592. iir_inp_mux_text);
  593. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG3, 0,
  594. iir_inp_mux_text);
  595. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_interp, SND_SOC_NOPM, 0,
  596. rx_int0_1_interp_mux_text);
  597. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_interp, SND_SOC_NOPM, 0,
  598. rx_int1_1_interp_mux_text);
  599. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_interp, SND_SOC_NOPM, 0,
  600. rx_int2_1_interp_mux_text);
  601. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2_interp, SND_SOC_NOPM, 0,
  602. rx_int0_2_interp_mux_text);
  603. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2_interp, SND_SOC_NOPM, 0,
  604. rx_int1_2_interp_mux_text);
  605. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2_interp, SND_SOC_NOPM, 0,
  606. rx_int2_2_interp_mux_text);
  607. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int0_dem_inp, LPASS_CDC_RX_RX0_RX_PATH_CFG1, 0,
  608. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  609. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  610. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int1_dem_inp, LPASS_CDC_RX_RX1_RX_PATH_CFG1, 0,
  611. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  612. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  613. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx0, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  614. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  615. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx1, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  616. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  617. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx2, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  618. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  619. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx3, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  620. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  621. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx4, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  622. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  623. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx5, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  624. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  625. static const char * const rx_echo_mux_text[] = {
  626. "ZERO", "RX_MIX0", "RX_MIX1", "RX_MIX2"
  627. };
  628. static const struct soc_enum rx_mix_tx2_mux_enum =
  629. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5, 0, 4,
  630. rx_echo_mux_text);
  631. static const struct snd_kcontrol_new rx_mix_tx2_mux =
  632. SOC_DAPM_ENUM("RX MIX TX2_MUX Mux", rx_mix_tx2_mux_enum);
  633. static const struct soc_enum rx_mix_tx1_mux_enum =
  634. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 0, 4,
  635. rx_echo_mux_text);
  636. static const struct snd_kcontrol_new rx_mix_tx1_mux =
  637. SOC_DAPM_ENUM("RX MIX TX1_MUX Mux", rx_mix_tx1_mux_enum);
  638. static const struct soc_enum rx_mix_tx0_mux_enum =
  639. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 4, 4,
  640. rx_echo_mux_text);
  641. static const struct snd_kcontrol_new rx_mix_tx0_mux =
  642. SOC_DAPM_ENUM("RX MIX TX0_MUX Mux", rx_mix_tx0_mux_enum);
  643. static struct snd_soc_dai_ops lpass_cdc_rx_macro_dai_ops = {
  644. .hw_params = lpass_cdc_rx_macro_hw_params,
  645. .get_channel_map = lpass_cdc_rx_macro_get_channel_map,
  646. .mute_stream = lpass_cdc_rx_macro_mute_stream,
  647. };
  648. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[] = {
  649. {
  650. .name = "rx_macro_rx1",
  651. .id = RX_MACRO_AIF1_PB,
  652. .playback = {
  653. .stream_name = "RX_MACRO_AIF1 Playback",
  654. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  655. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  656. .rate_max = 384000,
  657. .rate_min = 8000,
  658. .channels_min = 1,
  659. .channels_max = 2,
  660. },
  661. .ops = &lpass_cdc_rx_macro_dai_ops,
  662. },
  663. {
  664. .name = "rx_macro_rx2",
  665. .id = RX_MACRO_AIF2_PB,
  666. .playback = {
  667. .stream_name = "RX_MACRO_AIF2 Playback",
  668. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  669. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  670. .rate_max = 384000,
  671. .rate_min = 8000,
  672. .channels_min = 1,
  673. .channels_max = 2,
  674. },
  675. .ops = &lpass_cdc_rx_macro_dai_ops,
  676. },
  677. {
  678. .name = "rx_macro_rx3",
  679. .id = RX_MACRO_AIF3_PB,
  680. .playback = {
  681. .stream_name = "RX_MACRO_AIF3 Playback",
  682. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  683. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  684. .rate_max = 384000,
  685. .rate_min = 8000,
  686. .channels_min = 1,
  687. .channels_max = 2,
  688. },
  689. .ops = &lpass_cdc_rx_macro_dai_ops,
  690. },
  691. {
  692. .name = "rx_macro_rx4",
  693. .id = RX_MACRO_AIF4_PB,
  694. .playback = {
  695. .stream_name = "RX_MACRO_AIF4 Playback",
  696. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  697. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  698. .rate_max = 384000,
  699. .rate_min = 8000,
  700. .channels_min = 1,
  701. .channels_max = 2,
  702. },
  703. .ops = &lpass_cdc_rx_macro_dai_ops,
  704. },
  705. {
  706. .name = "rx_macro_echo",
  707. .id = RX_MACRO_AIF_ECHO,
  708. .capture = {
  709. .stream_name = "RX_AIF_ECHO Capture",
  710. .rates = LPASS_CDC_RX_MACRO_ECHO_RATES,
  711. .formats = LPASS_CDC_RX_MACRO_ECHO_FORMATS,
  712. .rate_max = 48000,
  713. .rate_min = 8000,
  714. .channels_min = 1,
  715. .channels_max = 3,
  716. },
  717. .ops = &lpass_cdc_rx_macro_dai_ops,
  718. },
  719. {
  720. .name = "rx_macro_rx5",
  721. .id = RX_MACRO_AIF5_PB,
  722. .playback = {
  723. .stream_name = "RX_MACRO_AIF5 Playback",
  724. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  725. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  726. .rate_max = 384000,
  727. .rate_min = 8000,
  728. .channels_min = 1,
  729. .channels_max = 4,
  730. },
  731. .ops = &lpass_cdc_rx_macro_dai_ops,
  732. },
  733. {
  734. .name = "rx_macro_rx6",
  735. .id = RX_MACRO_AIF6_PB,
  736. .playback = {
  737. .stream_name = "RX_MACRO_AIF6 Playback",
  738. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  739. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  740. .rate_max = 384000,
  741. .rate_min = 8000,
  742. .channels_min = 1,
  743. .channels_max = 4,
  744. },
  745. .ops = &lpass_cdc_rx_macro_dai_ops,
  746. },
  747. };
  748. static int get_impedance_index(int imped)
  749. {
  750. int i = 0;
  751. if (imped < imped_index[i].imped_val) {
  752. pr_debug("%s, detected impedance is less than %d Ohm\n",
  753. __func__, imped_index[i].imped_val);
  754. i = 0;
  755. goto ret;
  756. }
  757. if (imped >= imped_index[ARRAY_SIZE(imped_index) - 1].imped_val) {
  758. pr_debug("%s, detected impedance is greater than %d Ohm\n",
  759. __func__,
  760. imped_index[ARRAY_SIZE(imped_index) - 1].imped_val);
  761. i = ARRAY_SIZE(imped_index) - 1;
  762. goto ret;
  763. }
  764. for (i = 0; i < ARRAY_SIZE(imped_index) - 1; i++) {
  765. if (imped >= imped_index[i].imped_val &&
  766. imped < imped_index[i + 1].imped_val)
  767. break;
  768. }
  769. ret:
  770. pr_debug("%s: selected impedance index = %d\n",
  771. __func__, imped_index[i].index);
  772. return imped_index[i].index;
  773. }
  774. /*
  775. * lpass_cdc_rx_macro_wcd_clsh_imped_config -
  776. * This function updates HPHL and HPHR gain settings
  777. * according to the impedance value.
  778. *
  779. * @component: codec pointer handle
  780. * @imped: impedance value of HPHL/R
  781. * @reset: bool variable to reset registers when teardown
  782. */
  783. static void lpass_cdc_rx_macro_wcd_clsh_imped_config(struct snd_soc_component *component,
  784. int imped, bool reset)
  785. {
  786. int i;
  787. int index = 0;
  788. int table_size;
  789. static const struct lpass_cdc_rx_macro_reg_mask_val
  790. (*imped_table_ptr)[MAX_IMPED_PARAMS];
  791. table_size = ARRAY_SIZE(imped_table);
  792. imped_table_ptr = imped_table;
  793. /* reset = 1, which means request is to reset the register values */
  794. if (reset) {
  795. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  796. snd_soc_component_update_bits(component,
  797. imped_table_ptr[index][i].reg,
  798. imped_table_ptr[index][i].mask, 0);
  799. return;
  800. }
  801. index = get_impedance_index(imped);
  802. if (index >= (ARRAY_SIZE(imped_index) - 1)) {
  803. pr_debug("%s, impedance not in range = %d\n", __func__, imped);
  804. return;
  805. }
  806. if (index >= table_size) {
  807. pr_debug("%s, impedance index not in range = %d\n", __func__,
  808. index);
  809. return;
  810. }
  811. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  812. snd_soc_component_update_bits(component,
  813. imped_table_ptr[index][i].reg,
  814. imped_table_ptr[index][i].mask,
  815. imped_table_ptr[index][i].val);
  816. }
  817. static bool lpass_cdc_rx_macro_get_data(struct snd_soc_component *component,
  818. struct device **rx_dev,
  819. struct lpass_cdc_rx_macro_priv **rx_priv,
  820. const char *func_name)
  821. {
  822. *rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  823. if (!(*rx_dev)) {
  824. dev_err_ratelimited(component->dev,
  825. "%s: null device for macro!\n", func_name);
  826. return false;
  827. }
  828. *rx_priv = dev_get_drvdata((*rx_dev));
  829. if (!(*rx_priv)) {
  830. dev_err_ratelimited(component->dev,
  831. "%s: priv is null for macro!\n", func_name);
  832. return false;
  833. }
  834. if (!(*rx_priv)->component) {
  835. dev_err_ratelimited(component->dev,
  836. "%s: rx_priv component is not initialized!\n", func_name);
  837. return false;
  838. }
  839. return true;
  840. }
  841. static int lpass_cdc_rx_macro_set_port_map(struct snd_soc_component *component,
  842. u32 usecase, u32 size, void *data)
  843. {
  844. struct device *rx_dev = NULL;
  845. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  846. struct swrm_port_config port_cfg;
  847. int ret = 0;
  848. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  849. return -EINVAL;
  850. memset(&port_cfg, 0, sizeof(port_cfg));
  851. port_cfg.uc = usecase;
  852. port_cfg.size = size;
  853. port_cfg.params = data;
  854. if (rx_priv->swr_ctrl_data)
  855. ret = swrm_wcd_notify(
  856. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  857. SWR_SET_PORT_MAP, &port_cfg);
  858. return ret;
  859. }
  860. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  861. struct snd_ctl_elem_value *ucontrol)
  862. {
  863. struct snd_soc_dapm_widget *widget =
  864. snd_soc_dapm_kcontrol_widget(kcontrol);
  865. struct snd_soc_component *component =
  866. snd_soc_dapm_to_component(widget->dapm);
  867. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  868. unsigned int val = 0;
  869. unsigned short look_ahead_dly_reg =
  870. LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  871. val = ucontrol->value.enumerated.item[0];
  872. if (val >= e->items)
  873. return -EINVAL;
  874. dev_dbg(component->dev, "%s: wname: %s, val: 0x%x\n", __func__,
  875. widget->name, val);
  876. if (e->reg == LPASS_CDC_RX_RX0_RX_PATH_CFG1)
  877. look_ahead_dly_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  878. else if (e->reg == LPASS_CDC_RX_RX1_RX_PATH_CFG1)
  879. look_ahead_dly_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  880. /* Set Look Ahead Delay */
  881. snd_soc_component_update_bits(component, look_ahead_dly_reg,
  882. 0x08, (val ? 0x08 : 0x00));
  883. /* Set DEM INP Select */
  884. return snd_soc_dapm_put_enum_double(kcontrol, ucontrol);
  885. }
  886. static int lpass_cdc_rx_macro_set_prim_interpolator_rate(struct snd_soc_dai *dai,
  887. u8 rate_reg_val,
  888. u32 sample_rate)
  889. {
  890. u8 int_1_mix1_inp = 0;
  891. u32 j = 0, port = 0;
  892. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  893. u16 int_fs_reg = 0;
  894. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  895. u8 inp0_sel = 0, inp1_sel = 0, inp2_sel = 0;
  896. struct snd_soc_component *component = dai->component;
  897. struct device *rx_dev = NULL;
  898. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  899. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  900. return -EINVAL;
  901. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  902. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  903. int_1_mix1_inp = port;
  904. if ((int_1_mix1_inp < LPASS_CDC_RX_MACRO_RX0) ||
  905. (int_1_mix1_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  906. pr_err_ratelimited("%s: Invalid RX port, Dai ID is %d\n",
  907. __func__, dai->id);
  908. return -EINVAL;
  909. }
  910. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0;
  911. /*
  912. * Loop through all interpolator MUX inputs and find out
  913. * to which interpolator input, the rx port
  914. * is connected
  915. */
  916. for (j = 0; j < INTERP_MAX; j++) {
  917. int_mux_cfg1 = int_mux_cfg0 + 4;
  918. int_mux_cfg0_val = snd_soc_component_read(
  919. component, int_mux_cfg0);
  920. int_mux_cfg1_val = snd_soc_component_read(
  921. component, int_mux_cfg1);
  922. inp0_sel = int_mux_cfg0_val & 0x0F;
  923. inp1_sel = (int_mux_cfg0_val >> 4) & 0x0F;
  924. inp2_sel = (int_mux_cfg1_val >> 4) & 0x0F;
  925. if ((inp0_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  926. (inp1_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  927. (inp2_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0)) {
  928. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  929. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * j;
  930. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_1\n",
  931. __func__, dai->id, j);
  932. pr_debug("%s: set INT%u_1 sample rate to %u\n",
  933. __func__, j, sample_rate);
  934. /* sample_rate is in Hz */
  935. snd_soc_component_update_bits(component,
  936. int_fs_reg,
  937. 0x0F, rate_reg_val);
  938. }
  939. int_mux_cfg0 += 8;
  940. }
  941. }
  942. return 0;
  943. }
  944. static int lpass_cdc_rx_macro_set_mix_interpolator_rate(struct snd_soc_dai *dai,
  945. u8 rate_reg_val,
  946. u32 sample_rate)
  947. {
  948. u8 int_2_inp = 0;
  949. u32 j = 0, port = 0;
  950. u16 int_mux_cfg1 = 0, int_fs_reg = 0;
  951. u8 int_mux_cfg1_val = 0;
  952. struct snd_soc_component *component = dai->component;
  953. struct device *rx_dev = NULL;
  954. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  955. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  956. return -EINVAL;
  957. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  958. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  959. int_2_inp = port;
  960. if ((int_2_inp < LPASS_CDC_RX_MACRO_RX0) ||
  961. (int_2_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  962. pr_err_ratelimited("%s: Invalid RX port, Dai ID is %d\n",
  963. __func__, dai->id);
  964. return -EINVAL;
  965. }
  966. int_mux_cfg1 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1;
  967. for (j = 0; j < INTERP_MAX; j++) {
  968. int_mux_cfg1_val = snd_soc_component_read(
  969. component, int_mux_cfg1) &
  970. 0x0F;
  971. if (int_mux_cfg1_val == int_2_inp +
  972. INTn_2_INP_SEL_RX0) {
  973. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  974. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * j;
  975. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_2\n",
  976. __func__, dai->id, j);
  977. pr_debug("%s: set INT%u_2 sample rate to %u\n",
  978. __func__, j, sample_rate);
  979. snd_soc_component_update_bits(
  980. component, int_fs_reg,
  981. 0x0F, rate_reg_val);
  982. }
  983. int_mux_cfg1 += 8;
  984. }
  985. }
  986. return 0;
  987. }
  988. static bool lpass_cdc_rx_macro_is_fractional_sample_rate(u32 sample_rate)
  989. {
  990. switch (sample_rate) {
  991. case SAMPLING_RATE_44P1KHZ:
  992. case SAMPLING_RATE_88P2KHZ:
  993. case SAMPLING_RATE_176P4KHZ:
  994. case SAMPLING_RATE_352P8KHZ:
  995. return true;
  996. default:
  997. return false;
  998. }
  999. return false;
  1000. }
  1001. static int lpass_cdc_rx_macro_set_interpolator_rate(struct snd_soc_dai *dai,
  1002. u32 sample_rate)
  1003. {
  1004. struct snd_soc_component *component = dai->component;
  1005. int rate_val = 0;
  1006. int i = 0, ret = 0;
  1007. struct device *rx_dev = NULL;
  1008. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1009. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1010. return -EINVAL;
  1011. for (i = 0; i < ARRAY_SIZE(sr_val_tbl); i++) {
  1012. if (sample_rate == sr_val_tbl[i].sample_rate) {
  1013. rate_val = sr_val_tbl[i].rate_val;
  1014. if (lpass_cdc_rx_macro_is_fractional_sample_rate(sample_rate))
  1015. rx_priv->is_native_on = true;
  1016. else
  1017. rx_priv->is_native_on = false;
  1018. break;
  1019. }
  1020. }
  1021. if ((i == ARRAY_SIZE(sr_val_tbl)) || (rate_val < 0)) {
  1022. dev_err(component->dev, "%s: Unsupported sample rate: %d\n",
  1023. __func__, sample_rate);
  1024. return -EINVAL;
  1025. }
  1026. ret = lpass_cdc_rx_macro_set_prim_interpolator_rate(dai, (u8)rate_val, sample_rate);
  1027. if (ret)
  1028. return ret;
  1029. ret = lpass_cdc_rx_macro_set_mix_interpolator_rate(dai, (u8)rate_val, sample_rate);
  1030. if (ret)
  1031. return ret;
  1032. return ret;
  1033. }
  1034. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  1035. struct snd_pcm_hw_params *params,
  1036. struct snd_soc_dai *dai)
  1037. {
  1038. struct snd_soc_component *component = dai->component;
  1039. int ret = 0;
  1040. struct device *rx_dev = NULL;
  1041. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1042. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1043. return -EINVAL;
  1044. dev_dbg(component->dev,
  1045. "%s: dai_name = %s DAI-ID %x rate %d num_ch %d\n", __func__,
  1046. dai->name, dai->id, params_rate(params),
  1047. params_channels(params));
  1048. switch (substream->stream) {
  1049. case SNDRV_PCM_STREAM_PLAYBACK:
  1050. ret = lpass_cdc_rx_macro_set_interpolator_rate(dai, params_rate(params));
  1051. if (ret) {
  1052. pr_err_ratelimited("%s: cannot set sample rate: %u\n",
  1053. __func__, params_rate(params));
  1054. return ret;
  1055. }
  1056. rx_priv->bit_width[dai->id] = params_width(params);
  1057. break;
  1058. case SNDRV_PCM_STREAM_CAPTURE:
  1059. default:
  1060. break;
  1061. }
  1062. return 0;
  1063. }
  1064. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  1065. unsigned int *tx_num, unsigned int *tx_slot,
  1066. unsigned int *rx_num, unsigned int *rx_slot)
  1067. {
  1068. struct snd_soc_component *component = dai->component;
  1069. struct device *rx_dev = NULL;
  1070. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1071. unsigned int temp = 0, ch_mask = 0;
  1072. u16 val = 0, mask = 0, cnt = 0, i = 0;
  1073. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1074. return -EINVAL;
  1075. switch (dai->id) {
  1076. case RX_MACRO_AIF1_PB:
  1077. case RX_MACRO_AIF2_PB:
  1078. case RX_MACRO_AIF3_PB:
  1079. case RX_MACRO_AIF4_PB:
  1080. for_each_set_bit(temp, &rx_priv->active_ch_mask[dai->id],
  1081. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  1082. ch_mask |= (1 << temp);
  1083. if (++i == LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT)
  1084. break;
  1085. }
  1086. /*
  1087. * CDC_DMA_RX_0 port drives RX0/RX1 -- ch_mask 0x1/0x2/0x3
  1088. * CDC_DMA_RX_1 port drives RX2/RX3 -- ch_mask 0x1/0x2/0x3
  1089. * CDC_DMA_RX_2 port drives RX4 -- ch_mask 0x1
  1090. * CDC_DMA_RX_3 port drives RX5 -- ch_mask 0x1
  1091. * AIFn can pair to any CDC_DMA_RX_n port.
  1092. * In general, below convention is used::
  1093. * CDC_DMA_RX_0(AIF1)/CDC_DMA_RX_1(AIF2)/
  1094. * CDC_DMA_RX_2(AIF3)/CDC_DMA_RX_3(AIF4)
  1095. * Above is reflected in machine driver BE dailink
  1096. */
  1097. if (ch_mask & 0x0C)
  1098. ch_mask = ch_mask >> 2;
  1099. if ((ch_mask & 0x10) || (ch_mask & 0x20))
  1100. ch_mask = 0x1;
  1101. *rx_slot = ch_mask;
  1102. *rx_num = rx_priv->active_ch_cnt[dai->id];
  1103. dev_dbg(rx_priv->dev,
  1104. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d active_mask: 0x%x\n",
  1105. __func__, dai->id, *rx_slot, *rx_num, rx_priv->active_ch_mask[dai->id]);
  1106. break;
  1107. case RX_MACRO_AIF5_PB:
  1108. *rx_slot = 0x1;
  1109. *rx_num = 0x01;
  1110. dev_dbg(rx_priv->dev,
  1111. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1112. __func__, dai->id, *rx_slot, *rx_num);
  1113. break;
  1114. case RX_MACRO_AIF6_PB:
  1115. *rx_slot = 0x1;
  1116. *rx_num = 0x01;
  1117. dev_dbg(rx_priv->dev,
  1118. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1119. __func__, dai->id, *rx_slot, *rx_num);
  1120. break;
  1121. case RX_MACRO_AIF_ECHO:
  1122. val = snd_soc_component_read(component,
  1123. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  1124. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK) {
  1125. mask |= 0x1;
  1126. cnt++;
  1127. }
  1128. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK) {
  1129. mask |= 0x2;
  1130. cnt++;
  1131. }
  1132. val = snd_soc_component_read(component,
  1133. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  1134. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK) {
  1135. mask |= 0x4;
  1136. cnt++;
  1137. }
  1138. *tx_slot = mask;
  1139. *tx_num = cnt;
  1140. break;
  1141. default:
  1142. dev_err_ratelimited(rx_dev, "%s: Invalid AIF\n", __func__);
  1143. break;
  1144. }
  1145. return 0;
  1146. }
  1147. static int lpass_cdc_rx_macro_mute_stream(struct snd_soc_dai *dai, int mute, int stream)
  1148. {
  1149. struct snd_soc_component *component = dai->component;
  1150. struct device *rx_dev = NULL;
  1151. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1152. uint16_t j = 0, reg = 0, mix_reg = 0, dsm_reg = 0;
  1153. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1154. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1155. if (mute)
  1156. return 0;
  1157. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1158. return -EINVAL;
  1159. switch (dai->id) {
  1160. case RX_MACRO_AIF1_PB:
  1161. case RX_MACRO_AIF2_PB:
  1162. case RX_MACRO_AIF3_PB:
  1163. case RX_MACRO_AIF4_PB:
  1164. for (j = 0; j < INTERP_MAX; j++) {
  1165. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  1166. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1167. mix_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  1168. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1169. dsm_reg = LPASS_CDC_RX_RX0_RX_PATH_DSM_CTL +
  1170. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1171. if (j == INTERP_AUX)
  1172. dsm_reg = LPASS_CDC_RX_RX2_RX_PATH_DSM_CTL;
  1173. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0 + j * 8;
  1174. int_mux_cfg1 = int_mux_cfg0 + 4;
  1175. int_mux_cfg0_val = snd_soc_component_read(component,
  1176. int_mux_cfg0);
  1177. int_mux_cfg1_val = snd_soc_component_read(component,
  1178. int_mux_cfg1);
  1179. if (snd_soc_component_read(component, dsm_reg) & 0x01) {
  1180. if (int_mux_cfg0_val || (int_mux_cfg1_val & 0xF0))
  1181. snd_soc_component_update_bits(component,
  1182. reg, 0x20, 0x20);
  1183. if (int_mux_cfg1_val & 0x0F) {
  1184. snd_soc_component_update_bits(component,
  1185. reg, 0x20, 0x20);
  1186. snd_soc_component_update_bits(component,
  1187. mix_reg, 0x20, 0x20);
  1188. }
  1189. }
  1190. }
  1191. break;
  1192. default:
  1193. break;
  1194. }
  1195. return 0;
  1196. }
  1197. static int lpass_cdc_rx_macro_mclk_enable(
  1198. struct lpass_cdc_rx_macro_priv *rx_priv,
  1199. bool mclk_enable, bool dapm)
  1200. {
  1201. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  1202. int ret = 0;
  1203. if (regmap == NULL) {
  1204. dev_err_ratelimited(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  1205. return -EINVAL;
  1206. }
  1207. dev_dbg(rx_priv->dev, "%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  1208. __func__, mclk_enable, dapm, rx_priv->rx_mclk_users);
  1209. mutex_lock(&rx_priv->mclk_lock);
  1210. if (mclk_enable) {
  1211. if (rx_priv->rx_mclk_users == 0) {
  1212. if (rx_priv->is_native_on)
  1213. rx_priv->clk_id = RX_CORE_CLK;
  1214. ret = lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1215. if (ret < 0) {
  1216. dev_err_ratelimited(rx_priv->dev,
  1217. "%s: rx request core vote failed\n",
  1218. __func__);
  1219. goto exit;
  1220. }
  1221. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1222. rx_priv->default_clk_id,
  1223. rx_priv->clk_id,
  1224. true);
  1225. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1226. if (ret < 0) {
  1227. dev_err_ratelimited(rx_priv->dev,
  1228. "%s: rx request clock enable failed\n",
  1229. __func__);
  1230. goto exit;
  1231. }
  1232. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1233. true);
  1234. regcache_mark_dirty(regmap);
  1235. regcache_sync_region(regmap,
  1236. RX_START_OFFSET,
  1237. RX_MAX_OFFSET);
  1238. regmap_update_bits(regmap,
  1239. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1240. 0x01, 0x01);
  1241. regmap_update_bits(regmap,
  1242. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1243. 0x02, 0x02);
  1244. regmap_update_bits(regmap,
  1245. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1246. 0x02, 0x00);
  1247. regmap_update_bits(regmap,
  1248. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1249. 0x01, 0x01);
  1250. }
  1251. rx_priv->rx_mclk_users++;
  1252. } else {
  1253. if (rx_priv->rx_mclk_users <= 0) {
  1254. dev_err_ratelimited(rx_priv->dev, "%s: clock already disabled\n",
  1255. __func__);
  1256. rx_priv->rx_mclk_users = 0;
  1257. goto exit;
  1258. }
  1259. rx_priv->rx_mclk_users--;
  1260. if (rx_priv->rx_mclk_users == 0) {
  1261. regmap_update_bits(regmap,
  1262. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1263. 0x01, 0x00);
  1264. regmap_update_bits(regmap,
  1265. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1266. 0x02, 0x02);
  1267. regmap_update_bits(regmap,
  1268. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1269. 0x02, 0x00);
  1270. regmap_update_bits(regmap,
  1271. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1272. 0x01, 0x00);
  1273. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1274. false);
  1275. ret = lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1276. if (ret < 0) {
  1277. dev_err_ratelimited(rx_priv->dev,
  1278. "%s: rx request core vote failed\n",
  1279. __func__);
  1280. }
  1281. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1282. rx_priv->default_clk_id,
  1283. rx_priv->clk_id,
  1284. false);
  1285. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1286. rx_priv->clk_id = rx_priv->default_clk_id;
  1287. }
  1288. }
  1289. exit:
  1290. trace_printk("%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  1291. __func__, mclk_enable, dapm, rx_priv->rx_mclk_users);
  1292. mutex_unlock(&rx_priv->mclk_lock);
  1293. return ret;
  1294. }
  1295. static int lpass_cdc_rx_macro_mclk_event(struct snd_soc_dapm_widget *w,
  1296. struct snd_kcontrol *kcontrol, int event)
  1297. {
  1298. struct snd_soc_component *component =
  1299. snd_soc_dapm_to_component(w->dapm);
  1300. int ret = 0;
  1301. struct device *rx_dev = NULL;
  1302. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1303. int mclk_freq = MCLK_FREQ;
  1304. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1305. return -EINVAL;
  1306. dev_dbg(rx_dev, "%s: event = %d\n", __func__, event);
  1307. switch (event) {
  1308. case SND_SOC_DAPM_PRE_PMU:
  1309. if (rx_priv->is_native_on)
  1310. mclk_freq = MCLK_FREQ_NATIVE;
  1311. if (rx_priv->swr_ctrl_data)
  1312. swrm_wcd_notify(
  1313. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1314. SWR_CLK_FREQ, &mclk_freq);
  1315. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  1316. if (ret)
  1317. rx_priv->dapm_mclk_enable = false;
  1318. else
  1319. rx_priv->dapm_mclk_enable = true;
  1320. break;
  1321. case SND_SOC_DAPM_POST_PMD:
  1322. if (rx_priv->dapm_mclk_enable)
  1323. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  1324. break;
  1325. default:
  1326. dev_err_ratelimited(rx_priv->dev,
  1327. "%s: invalid DAPM event %d\n", __func__, event);
  1328. ret = -EINVAL;
  1329. }
  1330. return ret;
  1331. }
  1332. static int lpass_cdc_rx_macro_event_handler(struct snd_soc_component *component,
  1333. u16 event, u32 data)
  1334. {
  1335. u16 reg = 0, reg_mix = 0, rx_idx = 0, mute = 0x0, val = 0;
  1336. struct device *rx_dev = NULL;
  1337. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1338. int ret = 0;
  1339. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1340. return -EINVAL;
  1341. switch (event) {
  1342. case LPASS_CDC_MACRO_EVT_RX_MUTE:
  1343. rx_idx = data >> 0x10;
  1344. mute = data & 0xffff;
  1345. val = mute ? 0x10 : 0x00;
  1346. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (rx_idx *
  1347. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1348. reg_mix = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL + (rx_idx *
  1349. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1350. snd_soc_component_update_bits(component, reg,
  1351. 0x10, val);
  1352. snd_soc_component_update_bits(component, reg_mix,
  1353. 0x10, val);
  1354. break;
  1355. case LPASS_CDC_MACRO_EVT_RX_COMPANDER_SOFT_RST:
  1356. rx_idx = data >> 0x10;
  1357. if (rx_idx == INTERP_AUX)
  1358. goto done;
  1359. reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1360. (rx_idx * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1361. snd_soc_component_write(component, reg,
  1362. snd_soc_component_read(component, reg));
  1363. break;
  1364. case LPASS_CDC_MACRO_EVT_IMPED_TRUE:
  1365. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, true);
  1366. break;
  1367. case LPASS_CDC_MACRO_EVT_IMPED_FALSE:
  1368. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, false);
  1369. break;
  1370. case LPASS_CDC_MACRO_EVT_SSR_DOWN:
  1371. trace_printk("%s, enter SSR down\n", __func__);
  1372. rx_priv->dev_up = false;
  1373. if (rx_priv->swr_ctrl_data) {
  1374. swrm_wcd_notify(
  1375. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1376. SWR_DEVICE_SSR_DOWN, NULL);
  1377. }
  1378. if ((!pm_runtime_enabled(rx_dev) ||
  1379. !pm_runtime_suspended(rx_dev))) {
  1380. ret = lpass_cdc_runtime_suspend(rx_dev);
  1381. if (!ret) {
  1382. pm_runtime_disable(rx_dev);
  1383. pm_runtime_set_suspended(rx_dev);
  1384. pm_runtime_enable(rx_dev);
  1385. }
  1386. }
  1387. break;
  1388. case LPASS_CDC_MACRO_EVT_PRE_SSR_UP:
  1389. ret = lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1390. if (ret < 0) {
  1391. dev_err_ratelimited(rx_priv->dev,
  1392. "%s: rx request core vote failed\n",
  1393. __func__);
  1394. break;
  1395. }
  1396. /* enable&disable RX_CORE_CLK to reset GFMUX reg */
  1397. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1398. rx_priv->default_clk_id,
  1399. RX_CORE_CLK, true);
  1400. if (ret < 0)
  1401. dev_err_ratelimited(rx_priv->dev,
  1402. "%s, failed to enable clk, ret:%d\n",
  1403. __func__, ret);
  1404. else
  1405. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1406. rx_priv->default_clk_id,
  1407. RX_CORE_CLK, false);
  1408. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1409. break;
  1410. case LPASS_CDC_MACRO_EVT_SSR_UP:
  1411. trace_printk("%s, enter SSR up\n", __func__);
  1412. rx_priv->dev_up = true;
  1413. /* reset swr after ssr/pdr */
  1414. rx_priv->reset_swr = true;
  1415. if (rx_priv->swr_ctrl_data)
  1416. swrm_wcd_notify(
  1417. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1418. SWR_DEVICE_SSR_UP, NULL);
  1419. break;
  1420. case LPASS_CDC_MACRO_EVT_CLK_RESET:
  1421. lpass_cdc_rsc_clk_reset(rx_dev, RX_CORE_CLK);
  1422. lpass_cdc_rsc_clk_reset(rx_dev, RX_TX_CORE_CLK);
  1423. break;
  1424. case LPASS_CDC_MACRO_EVT_RX_PA_GAIN_UPDATE:
  1425. rx_priv->rx0_gain_val = snd_soc_component_read(component,
  1426. LPASS_CDC_RX_RX0_RX_VOL_CTL);
  1427. rx_priv->rx1_gain_val = snd_soc_component_read(component,
  1428. LPASS_CDC_RX_RX1_RX_VOL_CTL);
  1429. if (data) {
  1430. /* Reduce gain by half only if its greater than -6DB */
  1431. if ((rx_priv->rx0_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1432. && (rx_priv->rx0_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1433. snd_soc_component_update_bits(component,
  1434. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1435. (rx_priv->rx0_gain_val -
  1436. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1437. if ((rx_priv->rx1_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1438. && (rx_priv->rx1_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1439. snd_soc_component_update_bits(component,
  1440. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1441. (rx_priv->rx1_gain_val -
  1442. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1443. }
  1444. else {
  1445. /* Reset gain value to default */
  1446. if ((rx_priv->rx0_gain_val >=
  1447. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1448. (rx_priv->rx0_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1449. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1450. snd_soc_component_update_bits(component,
  1451. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1452. (rx_priv->rx0_gain_val +
  1453. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1454. if ((rx_priv->rx1_gain_val >=
  1455. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1456. (rx_priv->rx1_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1457. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1458. snd_soc_component_update_bits(component,
  1459. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1460. (rx_priv->rx1_gain_val +
  1461. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1462. }
  1463. break;
  1464. case LPASS_CDC_MACRO_EVT_HPHL_HD2_ENABLE:
  1465. /* Enable hd2 config for hphl*/
  1466. snd_soc_component_update_bits(component,
  1467. LPASS_CDC_RX_RX0_RX_PATH_CFG0, 0x04, data);
  1468. break;
  1469. case LPASS_CDC_MACRO_EVT_HPHR_HD2_ENABLE:
  1470. /* Enable hd2 config for hphr*/
  1471. snd_soc_component_update_bits(component,
  1472. LPASS_CDC_RX_RX1_RX_PATH_CFG0, 0x04, data);
  1473. break;
  1474. }
  1475. done:
  1476. return ret;
  1477. }
  1478. static int lpass_cdc_rx_macro_find_playback_dai_id_for_port(int port_id,
  1479. struct lpass_cdc_rx_macro_priv *rx_priv)
  1480. {
  1481. int i = 0;
  1482. for (i = RX_MACRO_AIF1_PB; i < LPASS_CDC_RX_MACRO_MAX_DAIS; i++) {
  1483. if (test_bit(port_id, &rx_priv->active_ch_mask[i]))
  1484. return i;
  1485. }
  1486. return -EINVAL;
  1487. }
  1488. static int lpass_cdc_rx_macro_set_idle_detect_thr(struct snd_soc_component *component,
  1489. struct lpass_cdc_rx_macro_priv *rx_priv,
  1490. int interp, int path_type)
  1491. {
  1492. int port_id[4] = { 0, 0, 0, 0 };
  1493. int *port_ptr = NULL;
  1494. int num_ports = 0;
  1495. int bit_width = 0, i = 0;
  1496. int mux_reg = 0, mux_reg_val = 0;
  1497. int dai_id = 0, idle_thr = 0;
  1498. if ((interp != INTERP_HPHL) && (interp != INTERP_HPHR))
  1499. return 0;
  1500. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  1501. return 0;
  1502. port_ptr = &port_id[0];
  1503. num_ports = 0;
  1504. /*
  1505. * Read interpolator MUX input registers and find
  1506. * which cdc_dma port is connected and store the port
  1507. * numbers in port_id array.
  1508. */
  1509. if (path_type == INTERP_MIX_PATH) {
  1510. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1 +
  1511. 2 * interp;
  1512. mux_reg_val = snd_soc_component_read(component, mux_reg) &
  1513. 0x0f;
  1514. if ((mux_reg_val >= INTn_2_INP_SEL_RX0) &&
  1515. (mux_reg_val <= INTn_2_INP_SEL_RX5)) {
  1516. *port_ptr++ = mux_reg_val - 1;
  1517. num_ports++;
  1518. }
  1519. }
  1520. if (path_type == INTERP_MAIN_PATH) {
  1521. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0 +
  1522. 2 * (interp - 1);
  1523. mux_reg_val = snd_soc_component_read(component, mux_reg) &
  1524. 0x0f;
  1525. i = LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS;
  1526. while (i) {
  1527. if ((mux_reg_val >= INTn_1_INP_SEL_RX0) &&
  1528. (mux_reg_val <= INTn_1_INP_SEL_RX5)) {
  1529. *port_ptr++ = mux_reg_val -
  1530. INTn_1_INP_SEL_RX0;
  1531. num_ports++;
  1532. }
  1533. mux_reg_val =
  1534. (snd_soc_component_read(component, mux_reg) &
  1535. 0xf0) >> 4;
  1536. mux_reg += 1;
  1537. i--;
  1538. }
  1539. }
  1540. dev_dbg(component->dev, "%s: num_ports: %d, ports[%d %d %d %d]\n",
  1541. __func__, num_ports, port_id[0], port_id[1],
  1542. port_id[2], port_id[3]);
  1543. i = 0;
  1544. while (num_ports) {
  1545. dai_id = lpass_cdc_rx_macro_find_playback_dai_id_for_port(port_id[i++],
  1546. rx_priv);
  1547. if ((dai_id >= 0) && (dai_id < LPASS_CDC_RX_MACRO_MAX_DAIS)) {
  1548. dev_dbg(component->dev, "%s: dai_id: %d bit_width: %d\n",
  1549. __func__, dai_id,
  1550. rx_priv->bit_width[dai_id]);
  1551. if (rx_priv->bit_width[dai_id] > bit_width)
  1552. bit_width = rx_priv->bit_width[dai_id];
  1553. }
  1554. num_ports--;
  1555. }
  1556. switch (bit_width) {
  1557. case 16:
  1558. idle_thr = 0xff; /* F16 */
  1559. break;
  1560. case 24:
  1561. case 32:
  1562. idle_thr = 0x03; /* F22 */
  1563. break;
  1564. default:
  1565. idle_thr = 0x00;
  1566. break;
  1567. }
  1568. dev_dbg(component->dev, "%s: (new) idle_thr: %d, (cur) idle_thr: %d\n",
  1569. __func__, idle_thr, rx_priv->idle_det_cfg.hph_idle_thr);
  1570. if ((rx_priv->idle_det_cfg.hph_idle_thr == 0) ||
  1571. (idle_thr < rx_priv->idle_det_cfg.hph_idle_thr)) {
  1572. snd_soc_component_write(component,
  1573. LPASS_CDC_RX_IDLE_DETECT_CFG3, idle_thr);
  1574. rx_priv->idle_det_cfg.hph_idle_thr = idle_thr;
  1575. }
  1576. return 0;
  1577. }
  1578. static int lpass_cdc_rx_macro_enable_mix_path(struct snd_soc_dapm_widget *w,
  1579. struct snd_kcontrol *kcontrol, int event)
  1580. {
  1581. struct snd_soc_component *component =
  1582. snd_soc_dapm_to_component(w->dapm);
  1583. u16 gain_reg = 0, mix_reg = 0;
  1584. struct device *rx_dev = NULL;
  1585. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1586. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1587. return -EINVAL;
  1588. if (w->shift >= INTERP_MAX) {
  1589. dev_err_ratelimited(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1590. __func__, w->shift, w->name);
  1591. return -EINVAL;
  1592. }
  1593. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL +
  1594. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1595. mix_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  1596. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1597. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1598. switch (event) {
  1599. case SND_SOC_DAPM_PRE_PMU:
  1600. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1601. INTERP_MIX_PATH);
  1602. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1603. break;
  1604. case SND_SOC_DAPM_POST_PMU:
  1605. snd_soc_component_write(component, gain_reg,
  1606. snd_soc_component_read(component, gain_reg));
  1607. break;
  1608. case SND_SOC_DAPM_POST_PMD:
  1609. /* Clk Disable */
  1610. snd_soc_component_update_bits(component, mix_reg, 0x20, 0x00);
  1611. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1612. /* Reset enable and disable */
  1613. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x40);
  1614. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x00);
  1615. break;
  1616. }
  1617. return 0;
  1618. }
  1619. static bool lpass_cdc_rx_macro_adie_lb(struct snd_soc_component *component,
  1620. int interp_idx)
  1621. {
  1622. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1623. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1624. u8 int_n_inp0 = 0, int_n_inp1 = 0, int_n_inp2 = 0;
  1625. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0 + interp_idx * 8;
  1626. int_mux_cfg1 = int_mux_cfg0 + 4;
  1627. int_mux_cfg0_val = snd_soc_component_read(component, int_mux_cfg0);
  1628. int_mux_cfg1_val = snd_soc_component_read(component, int_mux_cfg1);
  1629. int_n_inp0 = int_mux_cfg0_val & 0x0F;
  1630. if (int_n_inp0 == INTn_1_INP_SEL_DEC0 ||
  1631. int_n_inp0 == INTn_1_INP_SEL_DEC1 ||
  1632. int_n_inp0 == INTn_1_INP_SEL_IIR0 ||
  1633. int_n_inp0 == INTn_1_INP_SEL_IIR1)
  1634. return true;
  1635. int_n_inp1 = int_mux_cfg0_val >> 4;
  1636. if (int_n_inp1 == INTn_1_INP_SEL_DEC0 ||
  1637. int_n_inp1 == INTn_1_INP_SEL_DEC1 ||
  1638. int_n_inp1 == INTn_1_INP_SEL_IIR0 ||
  1639. int_n_inp1 == INTn_1_INP_SEL_IIR1)
  1640. return true;
  1641. int_n_inp2 = int_mux_cfg1_val >> 4;
  1642. if (int_n_inp2 == INTn_1_INP_SEL_DEC0 ||
  1643. int_n_inp2 == INTn_1_INP_SEL_DEC1 ||
  1644. int_n_inp2 == INTn_1_INP_SEL_IIR0 ||
  1645. int_n_inp2 == INTn_1_INP_SEL_IIR1)
  1646. return true;
  1647. return false;
  1648. }
  1649. static int lpass_cdc_rx_macro_enable_main_path(struct snd_soc_dapm_widget *w,
  1650. struct snd_kcontrol *kcontrol,
  1651. int event)
  1652. {
  1653. struct snd_soc_component *component =
  1654. snd_soc_dapm_to_component(w->dapm);
  1655. u16 gain_reg = 0;
  1656. u16 reg = 0;
  1657. struct device *rx_dev = NULL;
  1658. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1659. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1660. return -EINVAL;
  1661. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1662. if (w->shift >= INTERP_MAX) {
  1663. dev_err_ratelimited(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1664. __func__, w->shift, w->name);
  1665. return -EINVAL;
  1666. }
  1667. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (w->shift *
  1668. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1669. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_CTL + (w->shift *
  1670. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1671. switch (event) {
  1672. case SND_SOC_DAPM_PRE_PMU:
  1673. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1674. INTERP_MAIN_PATH);
  1675. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1676. if (lpass_cdc_rx_macro_adie_lb(component, w->shift))
  1677. snd_soc_component_update_bits(component,
  1678. reg, 0x20, 0x20);
  1679. break;
  1680. case SND_SOC_DAPM_POST_PMU:
  1681. snd_soc_component_write(component, gain_reg,
  1682. snd_soc_component_read(component, gain_reg));
  1683. break;
  1684. case SND_SOC_DAPM_POST_PMD:
  1685. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1686. break;
  1687. }
  1688. return 0;
  1689. }
  1690. static void lpass_cdc_rx_macro_droop_setting(struct snd_soc_component *component,
  1691. int interp_n, int event)
  1692. {
  1693. u8 pcm_rate = 0, val = 0;
  1694. u16 rx0_path_ctl_reg = 0, rx_path_cfg3_reg = 0;
  1695. rx_path_cfg3_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG3 +
  1696. (interp_n * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1697. rx0_path_ctl_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  1698. (interp_n * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1699. pcm_rate = (snd_soc_component_read(component, rx0_path_ctl_reg)
  1700. & 0x0F);
  1701. if (pcm_rate < 0x06)
  1702. val = 0x03;
  1703. else if (pcm_rate < 0x08)
  1704. val = 0x01;
  1705. else if (pcm_rate < 0x0B)
  1706. val = 0x02;
  1707. else
  1708. val = 0x00;
  1709. if (SND_SOC_DAPM_EVENT_ON(event))
  1710. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1711. 0x03, val);
  1712. if (SND_SOC_DAPM_EVENT_OFF(event))
  1713. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1714. 0x03, 0x03);
  1715. }
  1716. static int lpass_cdc_rx_macro_config_compander(struct snd_soc_component *component,
  1717. struct lpass_cdc_rx_macro_priv *rx_priv,
  1718. int interp_n, int event)
  1719. {
  1720. int comp = 0;
  1721. u16 comp_ctl0_reg = 0, comp_ctl8_reg = 0, rx_path_cfg0_reg = 0;
  1722. u16 comp_coeff_lsb_reg = 0, comp_coeff_msb_reg = 0;
  1723. u16 mode = rx_priv->hph_pwr_mode;
  1724. /* AUX does not have compander */
  1725. if (interp_n == INTERP_AUX)
  1726. return 0;
  1727. comp = interp_n;
  1728. if (!rx_priv->comp_enabled[comp])
  1729. return 0;
  1730. if (rx_priv->is_ear_mode_on && interp_n == INTERP_HPHL)
  1731. mode = RX_MODE_EAR;
  1732. if (interp_n == INTERP_HPHL) {
  1733. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_LSB;
  1734. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_MSB;
  1735. } else if (interp_n == INTERP_HPHR) {
  1736. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_LSB;
  1737. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_MSB;
  1738. } else {
  1739. /* compander coefficients are loaded only for hph path */
  1740. return 0;
  1741. }
  1742. comp_ctl0_reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1743. (comp * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1744. comp_ctl8_reg = LPASS_CDC_RX_COMPANDER0_CTL8 +
  1745. (comp * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1746. rx_path_cfg0_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0 +
  1747. (comp * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1748. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1749. lpass_cdc_load_compander_coeff(component,
  1750. comp_coeff_lsb_reg, comp_coeff_msb_reg,
  1751. comp_coeff_table[rx_priv->hph_pwr_mode],
  1752. COMP_MAX_COEFF);
  1753. lpass_cdc_update_compander_setting(component,
  1754. comp_ctl8_reg,
  1755. &comp_setting_table[mode]);
  1756. /* Enable Compander Clock */
  1757. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1758. 0x01, 0x01);
  1759. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1760. 0x02, 0x02);
  1761. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1762. 0x02, 0x00);
  1763. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1764. 0x02, 0x02);
  1765. }
  1766. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1767. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1768. 0x04, 0x04);
  1769. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1770. 0x02, 0x00);
  1771. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1772. 0x01, 0x00);
  1773. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1774. 0x04, 0x00);
  1775. }
  1776. return 0;
  1777. }
  1778. static void lpass_cdc_rx_macro_enable_softclip_clk(struct snd_soc_component *component,
  1779. struct lpass_cdc_rx_macro_priv *rx_priv,
  1780. bool enable)
  1781. {
  1782. if (enable) {
  1783. if (rx_priv->softclip_clk_users == 0)
  1784. snd_soc_component_update_bits(component,
  1785. LPASS_CDC_RX_SOFTCLIP_CRC,
  1786. 0x01, 0x01);
  1787. rx_priv->softclip_clk_users++;
  1788. } else {
  1789. rx_priv->softclip_clk_users--;
  1790. if (rx_priv->softclip_clk_users == 0)
  1791. snd_soc_component_update_bits(component,
  1792. LPASS_CDC_RX_SOFTCLIP_CRC,
  1793. 0x01, 0x00);
  1794. }
  1795. }
  1796. static int lpass_cdc_rx_macro_config_softclip(struct snd_soc_component *component,
  1797. struct lpass_cdc_rx_macro_priv *rx_priv,
  1798. int event)
  1799. {
  1800. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1801. __func__, event, rx_priv->is_softclip_on);
  1802. if (!rx_priv->is_softclip_on)
  1803. return 0;
  1804. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1805. /* Enable Softclip clock */
  1806. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  1807. /* Enable Softclip control */
  1808. snd_soc_component_update_bits(component,
  1809. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x01);
  1810. }
  1811. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1812. snd_soc_component_update_bits(component,
  1813. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x00);
  1814. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  1815. }
  1816. return 0;
  1817. }
  1818. static int lpass_cdc_rx_macro_config_aux_hpf(struct snd_soc_component *component,
  1819. struct lpass_cdc_rx_macro_priv *rx_priv,
  1820. int event)
  1821. {
  1822. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1823. __func__, event, rx_priv->is_aux_hpf_on);
  1824. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1825. /* Update Aux HPF control */
  1826. if (!rx_priv->is_aux_hpf_on)
  1827. snd_soc_component_update_bits(component,
  1828. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x00);
  1829. }
  1830. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1831. /* Reset to default (HPF=ON) */
  1832. snd_soc_component_update_bits(component,
  1833. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x04);
  1834. }
  1835. return 0;
  1836. }
  1837. static inline void
  1838. lpass_cdc_rx_macro_enable_clsh_block(struct lpass_cdc_rx_macro_priv *rx_priv, bool enable)
  1839. {
  1840. if ((enable && ++rx_priv->clsh_users == 1) ||
  1841. (!enable && --rx_priv->clsh_users == 0))
  1842. snd_soc_component_update_bits(rx_priv->component,
  1843. LPASS_CDC_RX_CLSH_CRC, 0x01,
  1844. (u8) enable);
  1845. if (rx_priv->clsh_users < 0)
  1846. rx_priv->clsh_users = 0;
  1847. dev_dbg(rx_priv->dev, "%s: clsh_users %d, enable %d", __func__,
  1848. rx_priv->clsh_users, enable);
  1849. }
  1850. static int lpass_cdc_rx_macro_config_classh(struct snd_soc_component *component,
  1851. struct lpass_cdc_rx_macro_priv *rx_priv,
  1852. int interp_n, int event)
  1853. {
  1854. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1855. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, false);
  1856. return 0;
  1857. }
  1858. if (!SND_SOC_DAPM_EVENT_ON(event))
  1859. return 0;
  1860. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, true);
  1861. if (interp_n == INTERP_HPHL ||
  1862. interp_n == INTERP_HPHR) {
  1863. /*
  1864. * These K1 values depend on the Headphone Impedance
  1865. * For now it is assumed to be 16 ohm
  1866. */
  1867. snd_soc_component_update_bits(component,
  1868. LPASS_CDC_RX_CLSH_K1_LSB,
  1869. 0xFF, 0xC0);
  1870. snd_soc_component_update_bits(component,
  1871. LPASS_CDC_RX_CLSH_K1_MSB,
  1872. 0x0F, 0x00);
  1873. }
  1874. switch (interp_n) {
  1875. case INTERP_HPHL:
  1876. if (rx_priv->is_ear_mode_on)
  1877. snd_soc_component_update_bits(component,
  1878. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1879. 0x3F, 0x39);
  1880. else
  1881. snd_soc_component_update_bits(component,
  1882. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1883. 0x3F, 0x1C);
  1884. snd_soc_component_update_bits(component,
  1885. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1886. 0x07, 0x00);
  1887. snd_soc_component_update_bits(component,
  1888. LPASS_CDC_RX_RX0_RX_PATH_CFG0,
  1889. 0x40, 0x40);
  1890. break;
  1891. case INTERP_HPHR:
  1892. if (rx_priv->is_ear_mode_on)
  1893. snd_soc_component_update_bits(component,
  1894. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1895. 0x3F, 0x39);
  1896. else
  1897. snd_soc_component_update_bits(component,
  1898. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1899. 0x3F, 0x1C);
  1900. snd_soc_component_update_bits(component,
  1901. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1902. 0x07, 0x00);
  1903. snd_soc_component_update_bits(component,
  1904. LPASS_CDC_RX_RX1_RX_PATH_CFG0,
  1905. 0x40, 0x40);
  1906. break;
  1907. case INTERP_AUX:
  1908. snd_soc_component_update_bits(component,
  1909. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1910. 0x08, 0x08);
  1911. snd_soc_component_update_bits(component,
  1912. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1913. 0x10, 0x10);
  1914. break;
  1915. }
  1916. return 0;
  1917. }
  1918. static void lpass_cdc_rx_macro_hd2_control(struct snd_soc_component *component,
  1919. u16 interp_idx, int event)
  1920. {
  1921. u16 hd2_scale_reg = 0;
  1922. u16 hd2_enable_reg = 0;
  1923. switch (interp_idx) {
  1924. case INTERP_HPHL:
  1925. hd2_scale_reg = LPASS_CDC_RX_RX0_RX_PATH_SEC3;
  1926. hd2_enable_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  1927. break;
  1928. case INTERP_HPHR:
  1929. hd2_scale_reg = LPASS_CDC_RX_RX1_RX_PATH_SEC3;
  1930. hd2_enable_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  1931. break;
  1932. }
  1933. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  1934. snd_soc_component_update_bits(component, hd2_scale_reg,
  1935. 0x3C, 0x14);
  1936. snd_soc_component_update_bits(component, hd2_enable_reg,
  1937. 0x04, 0x04);
  1938. }
  1939. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  1940. snd_soc_component_update_bits(component, hd2_enable_reg,
  1941. 0x04, 0x00);
  1942. snd_soc_component_update_bits(component, hd2_scale_reg,
  1943. 0x3C, 0x00);
  1944. }
  1945. }
  1946. static int lpass_cdc_rx_macro_hph_idle_detect_get(struct snd_kcontrol *kcontrol,
  1947. struct snd_ctl_elem_value *ucontrol)
  1948. {
  1949. struct snd_soc_component *component =
  1950. snd_soc_kcontrol_component(kcontrol);
  1951. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1952. struct device *rx_dev = NULL;
  1953. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1954. return -EINVAL;
  1955. ucontrol->value.integer.value[0] =
  1956. rx_priv->idle_det_cfg.hph_idle_detect_en;
  1957. return 0;
  1958. }
  1959. static int lpass_cdc_rx_macro_hph_idle_detect_put(struct snd_kcontrol *kcontrol,
  1960. struct snd_ctl_elem_value *ucontrol)
  1961. {
  1962. struct snd_soc_component *component =
  1963. snd_soc_kcontrol_component(kcontrol);
  1964. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1965. struct device *rx_dev = NULL;
  1966. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1967. return -EINVAL;
  1968. rx_priv->idle_det_cfg.hph_idle_detect_en =
  1969. ucontrol->value.integer.value[0];
  1970. return 0;
  1971. }
  1972. static int lpass_cdc_rx_macro_get_compander(struct snd_kcontrol *kcontrol,
  1973. struct snd_ctl_elem_value *ucontrol)
  1974. {
  1975. struct snd_soc_component *component =
  1976. snd_soc_kcontrol_component(kcontrol);
  1977. int comp = ((struct soc_multi_mixer_control *)
  1978. kcontrol->private_value)->shift;
  1979. struct device *rx_dev = NULL;
  1980. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1981. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1982. return -EINVAL;
  1983. ucontrol->value.integer.value[0] = rx_priv->comp_enabled[comp];
  1984. return 0;
  1985. }
  1986. static int lpass_cdc_rx_macro_set_compander(struct snd_kcontrol *kcontrol,
  1987. struct snd_ctl_elem_value *ucontrol)
  1988. {
  1989. struct snd_soc_component *component =
  1990. snd_soc_kcontrol_component(kcontrol);
  1991. int comp = ((struct soc_multi_mixer_control *)
  1992. kcontrol->private_value)->shift;
  1993. int value = ucontrol->value.integer.value[0];
  1994. struct device *rx_dev = NULL;
  1995. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1996. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1997. return -EINVAL;
  1998. dev_dbg(component->dev, "%s: Compander %d enable current %d, new %d\n",
  1999. __func__, comp + 1, rx_priv->comp_enabled[comp], value);
  2000. rx_priv->comp_enabled[comp] = value;
  2001. return 0;
  2002. }
  2003. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  2004. struct snd_ctl_elem_value *ucontrol)
  2005. {
  2006. struct snd_soc_dapm_widget *widget =
  2007. snd_soc_dapm_kcontrol_widget(kcontrol);
  2008. struct snd_soc_component *component =
  2009. snd_soc_dapm_to_component(widget->dapm);
  2010. struct device *rx_dev = NULL;
  2011. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2012. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2013. return -EINVAL;
  2014. ucontrol->value.integer.value[0] =
  2015. rx_priv->rx_port_value[widget->shift];
  2016. return 0;
  2017. }
  2018. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  2019. struct snd_ctl_elem_value *ucontrol)
  2020. {
  2021. struct snd_soc_dapm_widget *widget =
  2022. snd_soc_dapm_kcontrol_widget(kcontrol);
  2023. struct snd_soc_component *component =
  2024. snd_soc_dapm_to_component(widget->dapm);
  2025. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  2026. struct snd_soc_dapm_update *update = NULL;
  2027. u32 rx_port_value = ucontrol->value.integer.value[0];
  2028. u32 aif_rst = 0;
  2029. struct device *rx_dev = NULL;
  2030. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2031. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2032. return -EINVAL;
  2033. aif_rst = rx_priv->rx_port_value[widget->shift];
  2034. if (!rx_port_value) {
  2035. if (aif_rst == 0) {
  2036. dev_err_ratelimited(rx_dev, "%s:AIF reset already\n", __func__);
  2037. return 0;
  2038. }
  2039. if (aif_rst > RX_MACRO_AIF4_PB) {
  2040. dev_err_ratelimited(rx_dev, "%s: Invalid AIF reset\n", __func__);
  2041. return 0;
  2042. }
  2043. }
  2044. rx_priv->rx_port_value[widget->shift] = rx_port_value;
  2045. dev_dbg(rx_dev, "%s: mux input: %d, mux output: %d, aif_rst: %d\n",
  2046. __func__, rx_port_value, widget->shift, aif_rst);
  2047. switch (rx_port_value) {
  2048. case 0:
  2049. if (rx_priv->active_ch_cnt[aif_rst]) {
  2050. clear_bit(widget->shift,
  2051. &rx_priv->active_ch_mask[aif_rst]);
  2052. rx_priv->active_ch_cnt[aif_rst]--;
  2053. }
  2054. break;
  2055. case 1:
  2056. case 2:
  2057. case 3:
  2058. case 4:
  2059. set_bit(widget->shift,
  2060. &rx_priv->active_ch_mask[rx_port_value]);
  2061. rx_priv->active_ch_cnt[rx_port_value]++;
  2062. break;
  2063. default:
  2064. dev_err_ratelimited(component->dev,
  2065. "%s:Invalid AIF_ID for LPASS_CDC_RX_MACRO MUX %d\n",
  2066. __func__, rx_port_value);
  2067. goto err;
  2068. }
  2069. snd_soc_dapm_mux_update_power(widget->dapm, kcontrol,
  2070. rx_port_value, e, update);
  2071. return 0;
  2072. err:
  2073. return -EINVAL;
  2074. }
  2075. static int lpass_cdc_rx_macro_get_ear_mode(struct snd_kcontrol *kcontrol,
  2076. struct snd_ctl_elem_value *ucontrol)
  2077. {
  2078. struct snd_soc_component *component =
  2079. snd_soc_kcontrol_component(kcontrol);
  2080. struct device *rx_dev = NULL;
  2081. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2082. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2083. return -EINVAL;
  2084. ucontrol->value.integer.value[0] = rx_priv->is_ear_mode_on;
  2085. return 0;
  2086. }
  2087. static int lpass_cdc_rx_macro_put_ear_mode(struct snd_kcontrol *kcontrol,
  2088. struct snd_ctl_elem_value *ucontrol)
  2089. {
  2090. struct snd_soc_component *component =
  2091. snd_soc_kcontrol_component(kcontrol);
  2092. struct device *rx_dev = NULL;
  2093. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2094. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2095. return -EINVAL;
  2096. rx_priv->is_ear_mode_on =
  2097. (!ucontrol->value.integer.value[0] ? false : true);
  2098. return 0;
  2099. }
  2100. static int lpass_cdc_rx_macro_get_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2101. struct snd_ctl_elem_value *ucontrol)
  2102. {
  2103. struct snd_soc_component *component =
  2104. snd_soc_kcontrol_component(kcontrol);
  2105. struct device *rx_dev = NULL;
  2106. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2107. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2108. return -EINVAL;
  2109. ucontrol->value.integer.value[0] = rx_priv->hph_hd2_mode;
  2110. return 0;
  2111. }
  2112. static int lpass_cdc_rx_macro_put_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2113. struct snd_ctl_elem_value *ucontrol)
  2114. {
  2115. struct snd_soc_component *component =
  2116. snd_soc_kcontrol_component(kcontrol);
  2117. struct device *rx_dev = NULL;
  2118. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2119. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2120. return -EINVAL;
  2121. rx_priv->hph_hd2_mode = ucontrol->value.integer.value[0];
  2122. return 0;
  2123. }
  2124. static int lpass_cdc_rx_macro_get_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2125. struct snd_ctl_elem_value *ucontrol)
  2126. {
  2127. struct snd_soc_component *component =
  2128. snd_soc_kcontrol_component(kcontrol);
  2129. struct device *rx_dev = NULL;
  2130. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2131. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2132. return -EINVAL;
  2133. ucontrol->value.integer.value[0] = rx_priv->hph_pwr_mode;
  2134. return 0;
  2135. }
  2136. static int lpass_cdc_rx_macro_put_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2137. struct snd_ctl_elem_value *ucontrol)
  2138. {
  2139. struct snd_soc_component *component =
  2140. snd_soc_kcontrol_component(kcontrol);
  2141. struct device *rx_dev = NULL;
  2142. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2143. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2144. return -EINVAL;
  2145. rx_priv->hph_pwr_mode = ucontrol->value.integer.value[0];
  2146. return 0;
  2147. }
  2148. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get(struct snd_kcontrol *kcontrol,
  2149. struct snd_ctl_elem_value *ucontrol)
  2150. {
  2151. struct snd_soc_component *component =
  2152. snd_soc_kcontrol_component(kcontrol);
  2153. ucontrol->value.integer.value[0] =
  2154. ((snd_soc_component_read(
  2155. component, LPASS_CDC_RX_BCL_VBAT_CFG) & 0x04) ?
  2156. 1 : 0);
  2157. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2158. ucontrol->value.integer.value[0]);
  2159. return 0;
  2160. }
  2161. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put(struct snd_kcontrol *kcontrol,
  2162. struct snd_ctl_elem_value *ucontrol)
  2163. {
  2164. struct snd_soc_component *component =
  2165. snd_soc_kcontrol_component(kcontrol);
  2166. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2167. ucontrol->value.integer.value[0]);
  2168. /* Set Vbat register configuration for GSM mode bit based on value */
  2169. if (ucontrol->value.integer.value[0])
  2170. snd_soc_component_update_bits(component,
  2171. LPASS_CDC_RX_BCL_VBAT_CFG,
  2172. 0x04, 0x04);
  2173. else
  2174. snd_soc_component_update_bits(component,
  2175. LPASS_CDC_RX_BCL_VBAT_CFG,
  2176. 0x04, 0x00);
  2177. return 0;
  2178. }
  2179. static int lpass_cdc_rx_macro_soft_clip_enable_get(struct snd_kcontrol *kcontrol,
  2180. struct snd_ctl_elem_value *ucontrol)
  2181. {
  2182. struct snd_soc_component *component =
  2183. snd_soc_kcontrol_component(kcontrol);
  2184. struct device *rx_dev = NULL;
  2185. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2186. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2187. return -EINVAL;
  2188. ucontrol->value.integer.value[0] = rx_priv->is_softclip_on;
  2189. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2190. __func__, ucontrol->value.integer.value[0]);
  2191. return 0;
  2192. }
  2193. static int lpass_cdc_rx_macro_soft_clip_enable_put(struct snd_kcontrol *kcontrol,
  2194. struct snd_ctl_elem_value *ucontrol)
  2195. {
  2196. struct snd_soc_component *component =
  2197. snd_soc_kcontrol_component(kcontrol);
  2198. struct device *rx_dev = NULL;
  2199. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2200. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2201. return -EINVAL;
  2202. rx_priv->is_softclip_on = ucontrol->value.integer.value[0];
  2203. dev_dbg(component->dev, "%s: soft clip enable = %d\n", __func__,
  2204. rx_priv->is_softclip_on);
  2205. return 0;
  2206. }
  2207. static int lpass_cdc_rx_macro_aux_hpf_mode_get(struct snd_kcontrol *kcontrol,
  2208. struct snd_ctl_elem_value *ucontrol)
  2209. {
  2210. struct snd_soc_component *component =
  2211. snd_soc_kcontrol_component(kcontrol);
  2212. struct device *rx_dev = NULL;
  2213. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2214. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2215. return -EINVAL;
  2216. ucontrol->value.integer.value[0] = rx_priv->is_aux_hpf_on;
  2217. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2218. __func__, ucontrol->value.integer.value[0]);
  2219. return 0;
  2220. }
  2221. static int lpass_cdc_rx_macro_aux_hpf_mode_put(struct snd_kcontrol *kcontrol,
  2222. struct snd_ctl_elem_value *ucontrol)
  2223. {
  2224. struct snd_soc_component *component =
  2225. snd_soc_kcontrol_component(kcontrol);
  2226. struct device *rx_dev = NULL;
  2227. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2228. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2229. return -EINVAL;
  2230. rx_priv->is_aux_hpf_on = ucontrol->value.integer.value[0];
  2231. dev_dbg(component->dev, "%s: aux hpf enable = %d\n", __func__,
  2232. rx_priv->is_aux_hpf_on);
  2233. return 0;
  2234. }
  2235. static int lpass_cdc_rx_macro_enable_vbat(struct snd_soc_dapm_widget *w,
  2236. struct snd_kcontrol *kcontrol,
  2237. int event)
  2238. {
  2239. struct snd_soc_component *component =
  2240. snd_soc_dapm_to_component(w->dapm);
  2241. struct device *rx_dev = NULL;
  2242. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2243. dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
  2244. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2245. return -EINVAL;
  2246. switch (event) {
  2247. case SND_SOC_DAPM_PRE_PMU:
  2248. /* Enable clock for VBAT block */
  2249. snd_soc_component_update_bits(component,
  2250. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x10);
  2251. /* Enable VBAT block */
  2252. snd_soc_component_update_bits(component,
  2253. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x01);
  2254. /* Update interpolator with 384K path */
  2255. snd_soc_component_update_bits(component,
  2256. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x80, 0x80);
  2257. /* Update DSM FS rate */
  2258. snd_soc_component_update_bits(component,
  2259. LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x02, 0x02);
  2260. /* Use attenuation mode */
  2261. snd_soc_component_update_bits(component,
  2262. LPASS_CDC_RX_BCL_VBAT_CFG, 0x02, 0x00);
  2263. /* BCL block needs softclip clock to be enabled */
  2264. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  2265. /* Enable VBAT at channel level */
  2266. snd_soc_component_update_bits(component,
  2267. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x02, 0x02);
  2268. /* Set the ATTK1 gain */
  2269. snd_soc_component_update_bits(component,
  2270. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2271. 0xFF, 0xFF);
  2272. snd_soc_component_update_bits(component,
  2273. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2274. 0xFF, 0x03);
  2275. snd_soc_component_update_bits(component,
  2276. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2277. 0xFF, 0x00);
  2278. /* Set the ATTK2 gain */
  2279. snd_soc_component_update_bits(component,
  2280. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2281. 0xFF, 0xFF);
  2282. snd_soc_component_update_bits(component,
  2283. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2284. 0xFF, 0x03);
  2285. snd_soc_component_update_bits(component,
  2286. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2287. 0xFF, 0x00);
  2288. /* Set the ATTK3 gain */
  2289. snd_soc_component_update_bits(component,
  2290. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2291. 0xFF, 0xFF);
  2292. snd_soc_component_update_bits(component,
  2293. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2294. 0xFF, 0x03);
  2295. snd_soc_component_update_bits(component,
  2296. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2297. 0xFF, 0x00);
  2298. /* Enable CB decode block clock */
  2299. snd_soc_component_update_bits(component,
  2300. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x01);
  2301. /* Enable BCL path */
  2302. snd_soc_component_update_bits(component,
  2303. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL2, 0x01, 0x01);
  2304. /* Request for BCL data */
  2305. snd_soc_component_update_bits(component,
  2306. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x01);
  2307. break;
  2308. case SND_SOC_DAPM_POST_PMD:
  2309. snd_soc_component_update_bits(component,
  2310. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x00);
  2311. snd_soc_component_update_bits(component,
  2312. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL2, 0x01, 0x00);
  2313. snd_soc_component_update_bits(component,
  2314. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x00);
  2315. snd_soc_component_update_bits(component,
  2316. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2317. 0x80, 0x00);
  2318. snd_soc_component_update_bits(component,
  2319. LPASS_CDC_RX_RX2_RX_PATH_SEC7,
  2320. 0x02, 0x00);
  2321. snd_soc_component_update_bits(component,
  2322. LPASS_CDC_RX_BCL_VBAT_CFG,
  2323. 0x02, 0x02);
  2324. snd_soc_component_update_bits(component,
  2325. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2326. 0x02, 0x00);
  2327. snd_soc_component_update_bits(component,
  2328. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2329. 0xFF, 0x00);
  2330. snd_soc_component_update_bits(component,
  2331. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2332. 0xFF, 0x00);
  2333. snd_soc_component_update_bits(component,
  2334. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2335. 0xFF, 0x00);
  2336. snd_soc_component_update_bits(component,
  2337. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2338. 0xFF, 0x00);
  2339. snd_soc_component_update_bits(component,
  2340. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2341. 0xFF, 0x00);
  2342. snd_soc_component_update_bits(component,
  2343. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2344. 0xFF, 0x00);
  2345. snd_soc_component_update_bits(component,
  2346. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2347. 0xFF, 0x00);
  2348. snd_soc_component_update_bits(component,
  2349. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2350. 0xFF, 0x00);
  2351. snd_soc_component_update_bits(component,
  2352. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2353. 0xFF, 0x00);
  2354. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  2355. snd_soc_component_update_bits(component,
  2356. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x00);
  2357. snd_soc_component_update_bits(component,
  2358. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x00);
  2359. break;
  2360. default:
  2361. dev_err_ratelimited(rx_dev, "%s: Invalid event %d\n", __func__, event);
  2362. break;
  2363. }
  2364. return 0;
  2365. }
  2366. static void lpass_cdc_rx_macro_idle_detect_control(struct snd_soc_component *component,
  2367. struct lpass_cdc_rx_macro_priv *rx_priv,
  2368. int interp, int event)
  2369. {
  2370. int reg = 0, mask = 0, val = 0;
  2371. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  2372. return;
  2373. if (interp == INTERP_HPHL) {
  2374. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2375. mask = 0x01;
  2376. val = 0x01;
  2377. }
  2378. if (interp == INTERP_HPHR) {
  2379. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2380. mask = 0x02;
  2381. val = 0x02;
  2382. }
  2383. if (reg && SND_SOC_DAPM_EVENT_ON(event))
  2384. snd_soc_component_update_bits(component, reg, mask, val);
  2385. if (reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2386. snd_soc_component_update_bits(component, reg, mask, 0x00);
  2387. rx_priv->idle_det_cfg.hph_idle_thr = 0;
  2388. snd_soc_component_write(component,
  2389. LPASS_CDC_RX_IDLE_DETECT_CFG3, 0x0);
  2390. }
  2391. }
  2392. static void lpass_cdc_rx_macro_hphdelay_lutbypass(struct snd_soc_component *component,
  2393. struct lpass_cdc_rx_macro_priv *rx_priv,
  2394. u16 interp_idx, int event)
  2395. {
  2396. u16 hph_lut_bypass_reg = 0;
  2397. u16 hph_comp_ctrl7 = 0;
  2398. switch (interp_idx) {
  2399. case INTERP_HPHL:
  2400. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHL_COMP_LUT;
  2401. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER0_CTL7;
  2402. break;
  2403. case INTERP_HPHR:
  2404. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHR_COMP_LUT;
  2405. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER1_CTL7;
  2406. break;
  2407. default:
  2408. break;
  2409. }
  2410. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  2411. if (interp_idx == INTERP_HPHL) {
  2412. if (rx_priv->is_ear_mode_on)
  2413. snd_soc_component_update_bits(component,
  2414. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2415. 0x02, 0x02);
  2416. else
  2417. snd_soc_component_update_bits(component,
  2418. hph_lut_bypass_reg,
  2419. 0x80, 0x80);
  2420. } else {
  2421. snd_soc_component_update_bits(component,
  2422. hph_lut_bypass_reg,
  2423. 0x80, 0x80);
  2424. }
  2425. if (rx_priv->hph_pwr_mode)
  2426. snd_soc_component_update_bits(component,
  2427. hph_comp_ctrl7,
  2428. 0x20, 0x00);
  2429. }
  2430. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2431. snd_soc_component_update_bits(component,
  2432. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2433. 0x02, 0x00);
  2434. snd_soc_component_update_bits(component, hph_lut_bypass_reg,
  2435. 0x80, 0x00);
  2436. snd_soc_component_update_bits(component, hph_comp_ctrl7,
  2437. 0x20, 0x20);
  2438. }
  2439. }
  2440. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  2441. int event, int interp_idx)
  2442. {
  2443. u16 main_reg = 0, dsm_reg = 0, rx_cfg2_reg = 0;
  2444. struct device *rx_dev = NULL;
  2445. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2446. if (!component) {
  2447. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2448. return -EINVAL;
  2449. }
  2450. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2451. return -EINVAL;
  2452. main_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2453. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2454. dsm_reg = LPASS_CDC_RX_RX0_RX_PATH_DSM_CTL +
  2455. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2456. if (interp_idx == INTERP_AUX)
  2457. dsm_reg = LPASS_CDC_RX_RX2_RX_PATH_DSM_CTL;
  2458. rx_cfg2_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG2 +
  2459. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2460. if (SND_SOC_DAPM_EVENT_ON(event)) {
  2461. if (rx_priv->main_clk_users[interp_idx] == 0) {
  2462. /* Main path PGA mute enable */
  2463. snd_soc_component_update_bits(component, main_reg,
  2464. 0x10, 0x10);
  2465. snd_soc_component_update_bits(component, dsm_reg,
  2466. 0x01, 0x01);
  2467. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2468. 0x03, 0x03);
  2469. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2470. interp_idx, event);
  2471. if (rx_priv->hph_hd2_mode)
  2472. lpass_cdc_rx_macro_hd2_control(
  2473. component, interp_idx, event);
  2474. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2475. interp_idx, event);
  2476. lpass_cdc_rx_macro_droop_setting(component,
  2477. interp_idx, event);
  2478. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2479. interp_idx, event);
  2480. if (interp_idx == INTERP_AUX) {
  2481. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2482. event);
  2483. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2484. event);
  2485. }
  2486. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2487. interp_idx, event);
  2488. }
  2489. rx_priv->main_clk_users[interp_idx]++;
  2490. }
  2491. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  2492. rx_priv->main_clk_users[interp_idx]--;
  2493. if (rx_priv->main_clk_users[interp_idx] <= 0) {
  2494. rx_priv->main_clk_users[interp_idx] = 0;
  2495. /* Main path PGA mute enable */
  2496. snd_soc_component_update_bits(component, main_reg,
  2497. 0x10, 0x10);
  2498. /* Clk Disable */
  2499. snd_soc_component_update_bits(component, dsm_reg,
  2500. 0x01, 0x00);
  2501. snd_soc_component_update_bits(component, main_reg,
  2502. 0x20, 0x00);
  2503. /* Reset enable and disable */
  2504. snd_soc_component_update_bits(component, main_reg,
  2505. 0x40, 0x40);
  2506. snd_soc_component_update_bits(component, main_reg,
  2507. 0x40, 0x00);
  2508. /* Reset rate to 48K*/
  2509. snd_soc_component_update_bits(component, main_reg,
  2510. 0x0F, 0x04);
  2511. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2512. 0x03, 0x00);
  2513. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2514. interp_idx, event);
  2515. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2516. interp_idx, event);
  2517. if (interp_idx == INTERP_AUX) {
  2518. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2519. event);
  2520. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2521. event);
  2522. }
  2523. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2524. interp_idx, event);
  2525. if (rx_priv->hph_hd2_mode)
  2526. lpass_cdc_rx_macro_hd2_control(component, interp_idx,
  2527. event);
  2528. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2529. interp_idx, event);
  2530. }
  2531. }
  2532. dev_dbg(component->dev, "%s event %d main_clk_users %d\n",
  2533. __func__, event, rx_priv->main_clk_users[interp_idx]);
  2534. return rx_priv->main_clk_users[interp_idx];
  2535. }
  2536. static int lpass_cdc_rx_macro_enable_rx_path_clk(struct snd_soc_dapm_widget *w,
  2537. struct snd_kcontrol *kcontrol, int event)
  2538. {
  2539. struct snd_soc_component *component =
  2540. snd_soc_dapm_to_component(w->dapm);
  2541. u16 sidetone_reg = 0, fs_reg = 0;
  2542. dev_dbg(component->dev, "%s %d %d\n", __func__, event, w->shift);
  2543. sidetone_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG1 +
  2544. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2545. fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2546. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2547. switch (event) {
  2548. case SND_SOC_DAPM_PRE_PMU:
  2549. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2550. snd_soc_component_update_bits(component, sidetone_reg,
  2551. 0x10, 0x10);
  2552. snd_soc_component_update_bits(component, fs_reg,
  2553. 0x20, 0x20);
  2554. break;
  2555. case SND_SOC_DAPM_POST_PMD:
  2556. snd_soc_component_update_bits(component, sidetone_reg,
  2557. 0x10, 0x00);
  2558. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2559. break;
  2560. default:
  2561. break;
  2562. };
  2563. return 0;
  2564. }
  2565. static void lpass_cdc_rx_macro_restore_iir_coeff(struct lpass_cdc_rx_macro_priv *rx_priv, int iir_idx,
  2566. int band_idx)
  2567. {
  2568. u16 reg_add = 0, coeff_idx = 0, idx = 0;
  2569. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  2570. if (regmap == NULL) {
  2571. dev_err_ratelimited(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  2572. return;
  2573. }
  2574. regmap_write(regmap,
  2575. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2576. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2577. reg_add = LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx;
  2578. /* 5 coefficients per band and 4 writes per coefficient */
  2579. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2580. coeff_idx++) {
  2581. /* Four 8 bit values(one 32 bit) per coefficient */
  2582. regmap_write(regmap, reg_add,
  2583. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2584. regmap_write(regmap, reg_add,
  2585. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2586. regmap_write(regmap, reg_add,
  2587. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2588. regmap_write(regmap, reg_add,
  2589. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2590. }
  2591. }
  2592. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2593. struct snd_ctl_elem_value *ucontrol)
  2594. {
  2595. struct snd_soc_component *component =
  2596. snd_soc_kcontrol_component(kcontrol);
  2597. int iir_idx = ((struct soc_multi_mixer_control *)
  2598. kcontrol->private_value)->reg;
  2599. int band_idx = ((struct soc_multi_mixer_control *)
  2600. kcontrol->private_value)->shift;
  2601. /* IIR filter band registers are at integer multiples of 0x80 */
  2602. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2603. ucontrol->value.integer.value[0] = (
  2604. snd_soc_component_read(component, iir_reg) &
  2605. (1 << band_idx)) != 0;
  2606. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2607. iir_idx, band_idx,
  2608. (uint32_t)ucontrol->value.integer.value[0]);
  2609. return 0;
  2610. }
  2611. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2612. struct snd_ctl_elem_value *ucontrol)
  2613. {
  2614. struct snd_soc_component *component =
  2615. snd_soc_kcontrol_component(kcontrol);
  2616. int iir_idx = ((struct soc_multi_mixer_control *)
  2617. kcontrol->private_value)->reg;
  2618. int band_idx = ((struct soc_multi_mixer_control *)
  2619. kcontrol->private_value)->shift;
  2620. bool iir_band_en_status = 0;
  2621. int value = ucontrol->value.integer.value[0];
  2622. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2623. struct device *rx_dev = NULL;
  2624. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2625. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2626. return -EINVAL;
  2627. lpass_cdc_rx_macro_restore_iir_coeff(rx_priv, iir_idx, band_idx);
  2628. /* Mask first 5 bits, 6-8 are reserved */
  2629. snd_soc_component_update_bits(component, iir_reg, (1 << band_idx),
  2630. (value << band_idx));
  2631. iir_band_en_status = ((snd_soc_component_read(component, iir_reg) &
  2632. (1 << band_idx)) != 0);
  2633. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2634. iir_idx, band_idx, iir_band_en_status);
  2635. return 0;
  2636. }
  2637. static uint32_t get_iir_band_coeff(struct snd_soc_component *component,
  2638. int iir_idx, int band_idx,
  2639. int coeff_idx)
  2640. {
  2641. uint32_t value = 0;
  2642. /* Address does not automatically update if reading */
  2643. snd_soc_component_write(component,
  2644. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2645. ((band_idx * BAND_MAX + coeff_idx)
  2646. * sizeof(uint32_t)) & 0x7F);
  2647. value |= snd_soc_component_read(component,
  2648. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx));
  2649. snd_soc_component_write(component,
  2650. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2651. ((band_idx * BAND_MAX + coeff_idx)
  2652. * sizeof(uint32_t) + 1) & 0x7F);
  2653. value |= (snd_soc_component_read(component,
  2654. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2655. 0x80 * iir_idx)) << 8);
  2656. snd_soc_component_write(component,
  2657. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2658. ((band_idx * BAND_MAX + coeff_idx)
  2659. * sizeof(uint32_t) + 2) & 0x7F);
  2660. value |= (snd_soc_component_read(component,
  2661. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2662. 0x80 * iir_idx)) << 16);
  2663. snd_soc_component_write(component,
  2664. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2665. ((band_idx * BAND_MAX + coeff_idx)
  2666. * sizeof(uint32_t) + 3) & 0x7F);
  2667. /* Mask bits top 2 bits since they are reserved */
  2668. value |= ((snd_soc_component_read(component,
  2669. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2670. 0x80 * iir_idx)) & 0x3F) << 24);
  2671. return value;
  2672. }
  2673. static int lpass_cdc_rx_macro_iir_filter_info(struct snd_kcontrol *kcontrol,
  2674. struct snd_ctl_elem_info *ucontrol)
  2675. {
  2676. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2677. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2678. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2679. ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
  2680. ucontrol->count = params->max;
  2681. return 0;
  2682. }
  2683. static int lpass_cdc_rx_macro_iir_band_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2684. struct snd_ctl_elem_value *ucontrol)
  2685. {
  2686. struct snd_soc_component *component =
  2687. snd_soc_kcontrol_component(kcontrol);
  2688. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2689. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2690. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2691. int iir_idx = ctl->iir_idx;
  2692. int band_idx = ctl->band_idx;
  2693. u32 coeff[BAND_MAX];
  2694. int coeff_idx = 0;
  2695. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2696. coeff_idx++) {
  2697. coeff[coeff_idx] =
  2698. get_iir_band_coeff(component, iir_idx, band_idx, coeff_idx);
  2699. }
  2700. memcpy(ucontrol->value.bytes.data, &coeff[0], params->max);
  2701. dev_dbg(component->dev, "%s: IIR #%d band #%d b0 = 0x%x\n"
  2702. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2703. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2704. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2705. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2706. __func__, iir_idx, band_idx, coeff[0],
  2707. __func__, iir_idx, band_idx, coeff[1],
  2708. __func__, iir_idx, band_idx, coeff[2],
  2709. __func__, iir_idx, band_idx, coeff[3],
  2710. __func__, iir_idx, band_idx, coeff[4]);
  2711. return 0;
  2712. }
  2713. static void set_iir_band_coeff(struct snd_soc_component *component,
  2714. int iir_idx, int band_idx,
  2715. uint32_t value)
  2716. {
  2717. snd_soc_component_write(component,
  2718. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2719. (value & 0xFF));
  2720. snd_soc_component_write(component,
  2721. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2722. (value >> 8) & 0xFF);
  2723. snd_soc_component_write(component,
  2724. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2725. (value >> 16) & 0xFF);
  2726. /* Mask top 2 bits, 7-8 are reserved */
  2727. snd_soc_component_write(component,
  2728. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2729. (value >> 24) & 0x3F);
  2730. }
  2731. static int lpass_cdc_rx_macro_iir_band_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2732. struct snd_ctl_elem_value *ucontrol)
  2733. {
  2734. struct snd_soc_component *component =
  2735. snd_soc_kcontrol_component(kcontrol);
  2736. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2737. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2738. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2739. int iir_idx = ctl->iir_idx;
  2740. int band_idx = ctl->band_idx;
  2741. u32 coeff[BAND_MAX];
  2742. int coeff_idx, idx = 0;
  2743. struct device *rx_dev = NULL;
  2744. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2745. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2746. return -EINVAL;
  2747. memcpy(&coeff[0], ucontrol->value.bytes.data, params->max);
  2748. /*
  2749. * Mask top bit it is reserved
  2750. * Updates addr automatically for each B2 write
  2751. */
  2752. snd_soc_component_write(component,
  2753. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2754. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2755. /* Store the coefficients in sidetone coeff array */
  2756. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2757. coeff_idx++) {
  2758. uint32_t value = coeff[coeff_idx];
  2759. set_iir_band_coeff(component, iir_idx, band_idx, value);
  2760. /* Four 8 bit values(one 32 bit) per coefficient */
  2761. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2762. (value & 0xFF);
  2763. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2764. (value >> 8) & 0xFF;
  2765. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2766. (value >> 16) & 0xFF;
  2767. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2768. (value >> 24) & 0xFF;
  2769. }
  2770. pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n"
  2771. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2772. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2773. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2774. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2775. __func__, iir_idx, band_idx,
  2776. get_iir_band_coeff(component, iir_idx, band_idx, 0),
  2777. __func__, iir_idx, band_idx,
  2778. get_iir_band_coeff(component, iir_idx, band_idx, 1),
  2779. __func__, iir_idx, band_idx,
  2780. get_iir_band_coeff(component, iir_idx, band_idx, 2),
  2781. __func__, iir_idx, band_idx,
  2782. get_iir_band_coeff(component, iir_idx, band_idx, 3),
  2783. __func__, iir_idx, band_idx,
  2784. get_iir_band_coeff(component, iir_idx, band_idx, 4));
  2785. return 0;
  2786. }
  2787. static int lpass_cdc_rx_macro_set_iir_gain(struct snd_soc_dapm_widget *w,
  2788. struct snd_kcontrol *kcontrol, int event)
  2789. {
  2790. struct snd_soc_component *component =
  2791. snd_soc_dapm_to_component(w->dapm);
  2792. dev_dbg(component->dev, "%s: event = %d\n", __func__, event);
  2793. switch (event) {
  2794. case SND_SOC_DAPM_POST_PMU: /* fall through */
  2795. case SND_SOC_DAPM_PRE_PMD:
  2796. if (strnstr(w->name, "IIR0", sizeof("IIR0"))) {
  2797. snd_soc_component_write(component,
  2798. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL,
  2799. snd_soc_component_read(component,
  2800. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL));
  2801. snd_soc_component_write(component,
  2802. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL,
  2803. snd_soc_component_read(component,
  2804. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL));
  2805. snd_soc_component_write(component,
  2806. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL,
  2807. snd_soc_component_read(component,
  2808. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL));
  2809. snd_soc_component_write(component,
  2810. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL,
  2811. snd_soc_component_read(component,
  2812. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL));
  2813. } else {
  2814. snd_soc_component_write(component,
  2815. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL,
  2816. snd_soc_component_read(component,
  2817. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL));
  2818. snd_soc_component_write(component,
  2819. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL,
  2820. snd_soc_component_read(component,
  2821. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL));
  2822. snd_soc_component_write(component,
  2823. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL,
  2824. snd_soc_component_read(component,
  2825. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL));
  2826. snd_soc_component_write(component,
  2827. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL,
  2828. snd_soc_component_read(component,
  2829. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL));
  2830. }
  2831. break;
  2832. }
  2833. return 0;
  2834. }
  2835. static int lpass_cdc_rx_macro_fir_filter_enable_get(struct snd_kcontrol *kcontrol,
  2836. struct snd_ctl_elem_value *ucontrol)
  2837. {
  2838. struct snd_soc_component *component =
  2839. snd_soc_kcontrol_component(kcontrol);
  2840. struct device *rx_dev = NULL;
  2841. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2842. if (!component) {
  2843. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2844. return -EINVAL;
  2845. }
  2846. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2847. return -EINVAL;
  2848. ucontrol->value.bytes.data[0] = (unsigned char)rx_priv->is_fir_filter_on;
  2849. return 0;
  2850. }
  2851. static int lpass_cdc_rx_macro_fir_filter_enable_put(struct snd_kcontrol *kcontrol,
  2852. struct snd_ctl_elem_value *ucontrol)
  2853. {
  2854. struct snd_soc_component *component =
  2855. snd_soc_kcontrol_component(kcontrol);
  2856. struct device *rx_dev = NULL;
  2857. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2858. int ret = 0;
  2859. if (!component) {
  2860. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2861. return -EINVAL;
  2862. }
  2863. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2864. return -EINVAL;
  2865. if (!rx_priv->hifi_fir_clk) {
  2866. dev_dbg(rx_priv->dev, "%s: Undefined HIFI FIR Clock.\n",
  2867. __func__);
  2868. return 0;
  2869. }
  2870. if (!rx_priv->is_fir_capable) {
  2871. dev_dbg(rx_priv->dev, "%s: HIFI FIR is not supported.\n",
  2872. __func__);
  2873. return 0;
  2874. }
  2875. rx_priv->is_fir_filter_on =
  2876. (!ucontrol->value.bytes.data[0] ? false : true);
  2877. dev_dbg(rx_priv->dev, "%s:is_fir_filter_on=%d\n",
  2878. __func__, rx_priv->is_fir_filter_on);
  2879. if (rx_priv->is_fir_filter_on) {
  2880. ret = clk_prepare_enable(rx_priv->hifi_fir_clk);
  2881. if (ret < 0) {
  2882. dev_err_ratelimited(rx_priv->dev, "%s:hifi_fir_clk enable failed\n",
  2883. __func__);
  2884. return ret;
  2885. }
  2886. snd_soc_component_write(component, LPASS_CDC_RX_RX0_RX_FIR_CFG,
  2887. rx_priv->fir_total_coeff_num[RX0_PATH]);
  2888. dev_dbg(component->dev, "%s: HIFI FIR Path:%d total coefficients"
  2889. " number written: %d.\n",
  2890. __func__, RX0_PATH,
  2891. rx_priv->fir_total_coeff_num[RX0_PATH]);
  2892. snd_soc_component_write(component, LPASS_CDC_RX_RX1_RX_FIR_CFG,
  2893. rx_priv->fir_total_coeff_num[RX1_PATH]);
  2894. dev_dbg(component->dev, "%s: HIFI FIR Path:%d total coefficients"
  2895. " number written: %d.\n",
  2896. __func__, RX1_PATH,
  2897. rx_priv->fir_total_coeff_num[RX1_PATH]);
  2898. /* Enable HIFI_FEAT_EN bit */
  2899. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x01);
  2900. /* Enable FIR_CLK_EN */
  2901. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_PATH_CTL, 0x80, 0x80);
  2902. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_PATH_CTL, 0x80, 0x80);
  2903. /* Start the FIR filter */
  2904. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_FIR_CTL, 0x0D, 0x05);
  2905. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_FIR_CTL, 0x0D, 0x05);
  2906. } else {
  2907. /* Stop the FIR filter */
  2908. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_FIR_CTL, 0x0D, 0x00);
  2909. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_FIR_CTL, 0x0D, 0x00);
  2910. /* Disable FIR_CLK_EN */
  2911. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_PATH_CTL, 0x80, 0x00);
  2912. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_PATH_CTL, 0x80, 0x00);
  2913. /* Disable HIFI_FEAT_EN bit */
  2914. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x00);
  2915. clk_disable_unprepare(rx_priv->hifi_fir_clk);
  2916. }
  2917. return 0;
  2918. }
  2919. static int lpass_cdc_rx_macro_fir_filter_info(struct snd_kcontrol *kcontrol,
  2920. struct snd_ctl_elem_info *ucontrol)
  2921. {
  2922. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  2923. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  2924. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2925. ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
  2926. ucontrol->count = params->max;
  2927. return 0;
  2928. }
  2929. static int lpass_cdc_rx_macro_fir_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2930. struct snd_ctl_elem_value *ucontrol)
  2931. {
  2932. struct snd_soc_component *component =
  2933. snd_soc_kcontrol_component(kcontrol);
  2934. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  2935. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  2936. unsigned int path_idx = ctl->path_idx;
  2937. unsigned int grp_idx = ctl->grp_idx;
  2938. u32 num_coeff_grp = 0;
  2939. u32 readArray[LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX];
  2940. unsigned int coeff_idx = 0, array_idx = 0;
  2941. unsigned int copy_size;
  2942. struct device *rx_dev = NULL;
  2943. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2944. if (!component) {
  2945. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2946. return -EINVAL;
  2947. }
  2948. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2949. return -EINVAL;
  2950. if (path_idx >= FIR_PATH_MAX) {
  2951. dev_err_ratelimited(rx_priv->dev, "%s: path_idx:%d is invalid\n",
  2952. __func__, path_idx);
  2953. return -EINVAL;
  2954. }
  2955. if (grp_idx >= GRP_MAX) {
  2956. dev_err_ratelimited(rx_priv->dev, "%s: grp_idx:%d is invalid\n",
  2957. __func__, grp_idx);
  2958. return -EINVAL;
  2959. }
  2960. num_coeff_grp = rx_priv->num_fir_coeff[path_idx][grp_idx];
  2961. readArray[array_idx++] = num_coeff_grp;
  2962. for (coeff_idx = 0; coeff_idx < num_coeff_grp; coeff_idx++) {
  2963. readArray[array_idx++] =
  2964. rx_priv->fir_coeff_array[path_idx][grp_idx][coeff_idx];
  2965. }
  2966. copy_size = array_idx;
  2967. memcpy(ucontrol->value.bytes.data, &readArray[0], sizeof(readArray[0]) * copy_size);
  2968. return 0;
  2969. }
  2970. static int set_fir_filter_coeff(struct snd_soc_component *component,
  2971. struct lpass_cdc_rx_macro_priv *rx_priv,
  2972. unsigned int path_idx)
  2973. {
  2974. int grp_idx = 0, coeff_idx = 0;
  2975. unsigned int ret = 0;
  2976. unsigned int max_coeff_num, num_coeff_grp;
  2977. unsigned int path_ctl_addr = 0, wdata0_addr = 0, coeff_addr = 0;
  2978. unsigned int fir_ctl_addr = 0;
  2979. bool all_coeff_written = true;
  2980. switch (path_idx) {
  2981. case RX0_PATH:
  2982. path_ctl_addr = LPASS_CDC_RX_RX0_RX_PATH_CTL;
  2983. wdata0_addr = LPASS_CDC_RX_RX0_RX_FIR_COEFF_WDATA0;
  2984. coeff_addr = LPASS_CDC_RX_RX0_RX_FIR_COEFF_ADDR;
  2985. fir_ctl_addr = LPASS_CDC_RX_RX0_RX_FIR_CTL;
  2986. break;
  2987. case RX1_PATH:
  2988. path_ctl_addr = LPASS_CDC_RX_RX1_RX_PATH_CTL;
  2989. wdata0_addr = LPASS_CDC_RX_RX1_RX_FIR_COEFF_WDATA0;
  2990. coeff_addr = LPASS_CDC_RX_RX1_RX_FIR_COEFF_ADDR;
  2991. fir_ctl_addr = LPASS_CDC_RX_RX1_RX_FIR_CTL;
  2992. break;
  2993. default:
  2994. dev_err_ratelimited(rx_priv->dev,
  2995. "%s: inavlid FIR ID: %d\n", __func__, path_idx);
  2996. ret = -EINVAL;
  2997. goto exit;
  2998. }
  2999. max_coeff_num = LPASS_CDC_RX_MACRO_FIR_COEFF_MAX;
  3000. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++)
  3001. all_coeff_written = all_coeff_written &&
  3002. rx_priv->is_fir_coeff_written[path_idx][grp_idx];
  3003. if (all_coeff_written)
  3004. goto exit;
  3005. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, false);
  3006. if (ret < 0) {
  3007. dev_err_ratelimited(rx_priv->dev, "%s:rx_macro_mclk enable failed\n",
  3008. __func__);
  3009. goto exit;
  3010. }
  3011. ret = clk_prepare_enable(rx_priv->hifi_fir_clk);
  3012. if (ret < 0) {
  3013. dev_err_ratelimited(rx_priv->dev, "%s:hifi_fir_clk enable failed\n",
  3014. __func__);
  3015. goto disable_mclk_block;
  3016. }
  3017. /* Enable HIFI_FEAT_EN bit */
  3018. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x01);
  3019. /* Enable FIR_CLK_EN, datapath reset */
  3020. snd_soc_component_update_bits(component, path_ctl_addr, 0xC0, 0xC0);
  3021. /* Enable FIR_CLK_EN, Release Reset */
  3022. snd_soc_component_update_bits(component, path_ctl_addr, 0xC0, 0x80);
  3023. /* wait for data ram initialization after enabling clock */
  3024. usleep_range(10, 11);
  3025. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++) {
  3026. unsigned int coeff_idx_start = 0, array_idx = 0;
  3027. /* Skip if this group is written and no futher update */
  3028. if (rx_priv->is_fir_coeff_written[path_idx][grp_idx])
  3029. continue;
  3030. num_coeff_grp = rx_priv->num_fir_coeff[path_idx][grp_idx];
  3031. if (num_coeff_grp > max_coeff_num) {
  3032. dev_err_ratelimited(rx_priv->dev,
  3033. "%s: inavlid number of RX_FIR coefficients:%d"
  3034. " in path:%d, group:%d\n",
  3035. __func__, num_coeff_grp, path_idx, grp_idx);
  3036. ret = -EINVAL;
  3037. goto disable_FIR;
  3038. }
  3039. coeff_idx_start = grp_idx * max_coeff_num;
  3040. for (coeff_idx = coeff_idx_start;
  3041. coeff_idx < coeff_idx_start + num_coeff_grp / 2 * 2;
  3042. coeff_idx += 2) {
  3043. unsigned int addr_offset = coeff_idx / 2;
  3044. /* First coefficient in pair */
  3045. u32 value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3046. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3047. __func__, coeff_idx, value);
  3048. snd_soc_component_write(component, wdata0_addr,
  3049. value & 0xFF);
  3050. snd_soc_component_write(component, wdata0_addr + 0x4,
  3051. (value >> 8) & 0xFF);
  3052. snd_soc_component_write(component, wdata0_addr + 0x8,
  3053. (value >> 16) & 0xFF);
  3054. snd_soc_component_write(component, wdata0_addr + 0xC,
  3055. (value >> 24) & 0xFF);
  3056. /* Second coefficient in pair */
  3057. value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3058. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3059. __func__, coeff_idx, value);
  3060. snd_soc_component_write(component, wdata0_addr + 0x10,
  3061. value & 0xFF);
  3062. snd_soc_component_write(component, wdata0_addr + 0x14,
  3063. (value >> 8) & 0xFF);
  3064. snd_soc_component_write(component, wdata0_addr + 0x18,
  3065. (value >> 16) & 0xFF);
  3066. snd_soc_component_write(component, wdata0_addr + 0x1C,
  3067. (value >> 24) & 0xFF);
  3068. snd_soc_component_write(component, coeff_addr, addr_offset);
  3069. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x02);
  3070. usleep_range(13, 15);
  3071. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x00);
  3072. }
  3073. /* odd number of coefficients in this group, handle last one */
  3074. if (num_coeff_grp % 2 != 0) {
  3075. int addr_offset = coeff_idx / 2;
  3076. /* First coefficient in pair */
  3077. u32 value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3078. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3079. __func__, coeff_idx, value);
  3080. snd_soc_component_write(component, wdata0_addr,
  3081. value & 0xFF);
  3082. snd_soc_component_write(component, wdata0_addr + 0x4,
  3083. (value >> 8) & 0xFF);
  3084. snd_soc_component_write(component, wdata0_addr + 0x8,
  3085. (value >> 16) & 0xFF);
  3086. snd_soc_component_write(component, wdata0_addr + 0xC,
  3087. (value >> 24) & 0xFF);
  3088. /* Second coefficient in pair */
  3089. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3090. __func__, coeff_idx, 0x0);
  3091. snd_soc_component_write(component, wdata0_addr + 0x10, 0x0);
  3092. snd_soc_component_write(component, wdata0_addr + 0x14, 0x0);
  3093. snd_soc_component_write(component, wdata0_addr + 0x18, 0x0);
  3094. snd_soc_component_write(component, wdata0_addr + 0x1C, 0x0);
  3095. snd_soc_component_write(component, coeff_addr, addr_offset);
  3096. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x02);
  3097. usleep_range(13, 15);
  3098. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x00);
  3099. }
  3100. rx_priv->is_fir_coeff_written[path_idx][grp_idx] = true;
  3101. dev_dbg(component->dev, "%s: HIFI FIR Path:%d Group:%d coefficients"
  3102. " updated.\n",
  3103. __func__, path_idx, grp_idx);
  3104. }
  3105. disable_FIR:
  3106. /* disable FIR_CLK_EN */
  3107. snd_soc_component_update_bits(component, path_ctl_addr, 0x80, 0x00);
  3108. /* Disable HIFI_FEAT_EN bit */
  3109. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x00);
  3110. clk_disable_unprepare(rx_priv->hifi_fir_clk);
  3111. disable_mclk_block:
  3112. lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, false);
  3113. exit:
  3114. return ret;
  3115. }
  3116. static int lpass_cdc_rx_macro_fir_audio_mixer_put(struct snd_kcontrol *kcontrol,
  3117. struct snd_ctl_elem_value *ucontrol)
  3118. {
  3119. struct snd_soc_component *component =
  3120. snd_soc_kcontrol_component(kcontrol);
  3121. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  3122. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  3123. unsigned int path_idx = ctl->path_idx;
  3124. unsigned int grp_idx = ctl->grp_idx;
  3125. u32 ele_size = 0, num_coeff_grp = 0;
  3126. u32 coeff[LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX];
  3127. int ret = 0;
  3128. unsigned int stored_total_num = 0;
  3129. unsigned int grp_iidx = 0, coeff_idx = 0, array_idx = 0;
  3130. struct device *rx_dev = NULL;
  3131. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3132. if (!component) {
  3133. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3134. return -EINVAL;
  3135. }
  3136. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3137. return -EINVAL;
  3138. if (path_idx >= FIR_PATH_MAX) {
  3139. dev_err_ratelimited(rx_priv->dev, "%s: path_idx:%d is invalid\n",
  3140. __func__, path_idx);
  3141. return -EINVAL;
  3142. }
  3143. if (grp_idx >= GRP_MAX) {
  3144. dev_err_ratelimited(rx_priv->dev, "%s: grp_idx:%d is invalid\n",
  3145. __func__, grp_idx);
  3146. return -EINVAL;
  3147. }
  3148. if (!rx_priv->hifi_fir_clk) {
  3149. dev_dbg(rx_priv->dev, "%s: Undefined HIFI FIR Clock.\n",
  3150. __func__);
  3151. return 0;
  3152. }
  3153. if (!rx_priv->is_fir_capable) {
  3154. dev_dbg(rx_priv->dev, "%s: HIFI FIR is not supported.\n",
  3155. __func__);
  3156. return 0;
  3157. }
  3158. ele_size = sizeof(coeff[0]);
  3159. memcpy(&coeff[0], ucontrol->value.bytes.data, ele_size);
  3160. num_coeff_grp = coeff[0];
  3161. dev_dbg(rx_priv->dev, "%s: bytes.data: path:%d, grp:%d, num_coeff_grp:%d\n",
  3162. __func__, path_idx, grp_idx, num_coeff_grp);
  3163. if (num_coeff_grp > LPASS_CDC_RX_MACRO_FIR_COEFF_MAX) {
  3164. dev_err_ratelimited(rx_priv->dev,
  3165. "%s: inavlid number of RX_FIR coefficients:%d in path:%d, group:%d\n",
  3166. __func__, num_coeff_grp, path_idx, grp_idx);
  3167. rx_priv->num_fir_coeff[path_idx][grp_idx] = 0;
  3168. return -EINVAL;
  3169. } else {
  3170. rx_priv->num_fir_coeff[path_idx][grp_idx] = num_coeff_grp;
  3171. }
  3172. memcpy(&coeff[1], &(ucontrol->value.bytes.data[ele_size]), ele_size * num_coeff_grp);
  3173. /* Store the coefficients in FIR coeff array */
  3174. array_idx = 1;
  3175. for (coeff_idx = 0; coeff_idx < num_coeff_grp; coeff_idx++)
  3176. rx_priv->fir_coeff_array[path_idx][grp_idx][coeff_idx] = coeff[array_idx++];
  3177. /* Clear the written flag so this group is ready to be written */
  3178. rx_priv->is_fir_coeff_written[path_idx][grp_idx] = false;
  3179. stored_total_num = 0;
  3180. for (grp_iidx = 0; grp_iidx < GRP_MAX; grp_iidx++) {
  3181. stored_total_num += rx_priv->num_fir_coeff[path_idx][grp_iidx];
  3182. }
  3183. /* Only write coeffs if total num matches, otherwise delay the write */
  3184. if (rx_priv->fir_total_coeff_num[path_idx] == stored_total_num)
  3185. ret = set_fir_filter_coeff(component, rx_priv, path_idx);
  3186. return ret;
  3187. }
  3188. static int lpass_cdc_rx_macro_fir_coeff_num_get(struct snd_kcontrol *kcontrol,
  3189. struct snd_ctl_elem_value *ucontrol)
  3190. {
  3191. struct snd_soc_component *component =
  3192. snd_soc_kcontrol_component(kcontrol);
  3193. unsigned int path_idx = ((struct soc_multi_mixer_control *)
  3194. kcontrol->private_value)->shift;
  3195. struct device *rx_dev = NULL;
  3196. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3197. if (!component) {
  3198. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3199. return -EINVAL;
  3200. }
  3201. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3202. return -EINVAL;
  3203. if (path_idx >= FIR_PATH_MAX) {
  3204. dev_err_ratelimited(rx_priv->dev, "%s: path_idx:%d is invalid\n",
  3205. __func__, path_idx);
  3206. return -EINVAL;
  3207. }
  3208. ucontrol->value.bytes.data[0] = rx_priv->fir_total_coeff_num[path_idx];
  3209. return 0;
  3210. }
  3211. static int lpass_cdc_rx_macro_fir_coeff_num_put(struct snd_kcontrol *kcontrol,
  3212. struct snd_ctl_elem_value *ucontrol)
  3213. {
  3214. struct snd_soc_component *component =
  3215. snd_soc_kcontrol_component(kcontrol);
  3216. unsigned int path_idx = ((struct soc_multi_mixer_control *)
  3217. kcontrol->private_value)->shift;
  3218. u8 fir_total_coeff_num = ucontrol->value.bytes.data[0];
  3219. struct device *rx_dev = NULL;
  3220. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3221. unsigned int ret = 0;
  3222. unsigned int grp_idx, stored_total_num;
  3223. if (!component) {
  3224. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3225. return -EINVAL;
  3226. }
  3227. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3228. return -EINVAL;
  3229. if (fir_total_coeff_num > LPASS_CDC_RX_MACRO_FIR_COEFF_MAX * GRP_MAX) {
  3230. dev_err_ratelimited(rx_priv->dev,
  3231. "%s: inavlid total number of RX_FIR coefficients:%d"
  3232. " in path:%d\n",
  3233. __func__, fir_total_coeff_num, path_idx);
  3234. rx_priv->fir_total_coeff_num[path_idx] = 0;
  3235. return -EINVAL;
  3236. } else {
  3237. rx_priv->fir_total_coeff_num[path_idx] = fir_total_coeff_num;
  3238. }
  3239. dev_dbg(component->dev, "%s: HIFI FIR Path:%d total coefficients"
  3240. " number updated in private data: %d.\n",
  3241. __func__, path_idx, fir_total_coeff_num);
  3242. stored_total_num = 0;
  3243. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++)
  3244. stored_total_num += rx_priv->num_fir_coeff[path_idx][grp_idx];
  3245. if (fir_total_coeff_num == stored_total_num)
  3246. ret = set_fir_filter_coeff(component, rx_priv, path_idx);
  3247. return ret;
  3248. }
  3249. static const struct snd_kcontrol_new lpass_cdc_rx_macro_snd_controls[] = {
  3250. SOC_SINGLE_S8_TLV("RX_RX0 Digital Volume",
  3251. LPASS_CDC_RX_RX0_RX_VOL_CTL,
  3252. -84, 40, digital_gain),
  3253. SOC_SINGLE_S8_TLV("RX_RX1 Digital Volume",
  3254. LPASS_CDC_RX_RX1_RX_VOL_CTL,
  3255. -84, 40, digital_gain),
  3256. SOC_SINGLE_S8_TLV("RX_RX2 Digital Volume",
  3257. LPASS_CDC_RX_RX2_RX_VOL_CTL,
  3258. -84, 40, digital_gain),
  3259. SOC_SINGLE_S8_TLV("RX_RX0 Mix Digital Volume",
  3260. LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL,
  3261. -84, 40, digital_gain),
  3262. SOC_SINGLE_S8_TLV("RX_RX1 Mix Digital Volume",
  3263. LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL,
  3264. -84, 40, digital_gain),
  3265. SOC_SINGLE_S8_TLV("RX_RX2 Mix Digital Volume",
  3266. LPASS_CDC_RX_RX2_RX_VOL_MIX_CTL,
  3267. -84, 40, digital_gain),
  3268. SOC_SINGLE_EXT("RX_COMP1 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP1, 1, 0,
  3269. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  3270. SOC_SINGLE_EXT("RX_COMP2 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP2, 1, 0,
  3271. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  3272. SOC_SINGLE_EXT("RX0 FIR Coeff Num", SND_SOC_NOPM, RX0_PATH,
  3273. (LPASS_CDC_RX_MACRO_FIR_COEFF_MAX * GRP_MAX), 0,
  3274. lpass_cdc_rx_macro_fir_coeff_num_get, lpass_cdc_rx_macro_fir_coeff_num_put),
  3275. SOC_SINGLE_EXT("RX1 FIR Coeff Num", SND_SOC_NOPM, RX1_PATH,
  3276. (LPASS_CDC_RX_MACRO_FIR_COEFF_MAX * GRP_MAX), 0,
  3277. lpass_cdc_rx_macro_fir_coeff_num_get, lpass_cdc_rx_macro_fir_coeff_num_put),
  3278. SOC_ENUM_EXT("HPH Idle Detect", hph_idle_detect_enum,
  3279. lpass_cdc_rx_macro_hph_idle_detect_get, lpass_cdc_rx_macro_hph_idle_detect_put),
  3280. SOC_ENUM_EXT("RX_EAR Mode", lpass_cdc_rx_macro_ear_mode_enum,
  3281. lpass_cdc_rx_macro_get_ear_mode, lpass_cdc_rx_macro_put_ear_mode),
  3282. SOC_ENUM_EXT("RX_FIR Filter", lpass_cdc_rx_macro_fir_filter_enum,
  3283. lpass_cdc_rx_macro_fir_filter_enable_get, lpass_cdc_rx_macro_fir_filter_enable_put),
  3284. SOC_ENUM_EXT("RX_HPH HD2 Mode", lpass_cdc_rx_macro_hph_hd2_mode_enum,
  3285. lpass_cdc_rx_macro_get_hph_hd2_mode, lpass_cdc_rx_macro_put_hph_hd2_mode),
  3286. SOC_ENUM_EXT("RX_HPH_PWR_MODE", lpass_cdc_rx_macro_hph_pwr_mode_enum,
  3287. lpass_cdc_rx_macro_get_hph_pwr_mode, lpass_cdc_rx_macro_put_hph_pwr_mode),
  3288. SOC_ENUM_EXT("RX_GSM mode Enable", lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum,
  3289. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get,
  3290. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put),
  3291. SOC_SINGLE_EXT("RX_Softclip Enable", SND_SOC_NOPM, 0, 1, 0,
  3292. lpass_cdc_rx_macro_soft_clip_enable_get,
  3293. lpass_cdc_rx_macro_soft_clip_enable_put),
  3294. SOC_SINGLE_EXT("AUX_HPF Enable", SND_SOC_NOPM, 0, 1, 0,
  3295. lpass_cdc_rx_macro_aux_hpf_mode_get,
  3296. lpass_cdc_rx_macro_aux_hpf_mode_put),
  3297. SOC_SINGLE_S8_TLV("IIR0 INP0 Volume",
  3298. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL, -84, 40,
  3299. digital_gain),
  3300. SOC_SINGLE_S8_TLV("IIR0 INP1 Volume",
  3301. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL, -84, 40,
  3302. digital_gain),
  3303. SOC_SINGLE_S8_TLV("IIR0 INP2 Volume",
  3304. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL, -84, 40,
  3305. digital_gain),
  3306. SOC_SINGLE_S8_TLV("IIR0 INP3 Volume",
  3307. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL, -84, 40,
  3308. digital_gain),
  3309. SOC_SINGLE_S8_TLV("IIR1 INP0 Volume",
  3310. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL, -84, 40,
  3311. digital_gain),
  3312. SOC_SINGLE_S8_TLV("IIR1 INP1 Volume",
  3313. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL, -84, 40,
  3314. digital_gain),
  3315. SOC_SINGLE_S8_TLV("IIR1 INP2 Volume",
  3316. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL, -84, 40,
  3317. digital_gain),
  3318. SOC_SINGLE_S8_TLV("IIR1 INP3 Volume",
  3319. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL, -84, 40,
  3320. digital_gain),
  3321. SOC_SINGLE_EXT("IIR0 Enable Band1", IIR0, BAND1, 1, 0,
  3322. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3323. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3324. SOC_SINGLE_EXT("IIR0 Enable Band2", IIR0, BAND2, 1, 0,
  3325. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3326. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3327. SOC_SINGLE_EXT("IIR0 Enable Band3", IIR0, BAND3, 1, 0,
  3328. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3329. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3330. SOC_SINGLE_EXT("IIR0 Enable Band4", IIR0, BAND4, 1, 0,
  3331. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3332. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3333. SOC_SINGLE_EXT("IIR0 Enable Band5", IIR0, BAND5, 1, 0,
  3334. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3335. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3336. SOC_SINGLE_EXT("IIR1 Enable Band1", IIR1, BAND1, 1, 0,
  3337. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3338. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3339. SOC_SINGLE_EXT("IIR1 Enable Band2", IIR1, BAND2, 1, 0,
  3340. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3341. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3342. SOC_SINGLE_EXT("IIR1 Enable Band3", IIR1, BAND3, 1, 0,
  3343. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3344. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3345. SOC_SINGLE_EXT("IIR1 Enable Band4", IIR1, BAND4, 1, 0,
  3346. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3347. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3348. SOC_SINGLE_EXT("IIR1 Enable Band5", IIR1, BAND5, 1, 0,
  3349. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3350. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3351. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band1", IIR0, BAND1),
  3352. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band2", IIR0, BAND2),
  3353. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band3", IIR0, BAND3),
  3354. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band4", IIR0, BAND4),
  3355. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band5", IIR0, BAND5),
  3356. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band1", IIR1, BAND1),
  3357. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band2", IIR1, BAND2),
  3358. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band3", IIR1, BAND3),
  3359. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band4", IIR1, BAND4),
  3360. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band5", IIR1, BAND5),
  3361. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX0 FIR Coeff Group0", RX0_PATH, GRP0),
  3362. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX0 FIR Coeff Group1", RX0_PATH, GRP1),
  3363. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX1 FIR Coeff Group0", RX1_PATH, GRP0),
  3364. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX1 FIR Coeff Group1", RX1_PATH, GRP1),
  3365. };
  3366. static int lpass_cdc_rx_macro_enable_echo(struct snd_soc_dapm_widget *w,
  3367. struct snd_kcontrol *kcontrol,
  3368. int event)
  3369. {
  3370. struct snd_soc_component *component =
  3371. snd_soc_dapm_to_component(w->dapm);
  3372. struct device *rx_dev = NULL;
  3373. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3374. u16 val = 0, ec_hq_reg = 0;
  3375. int ec_tx = 0;
  3376. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3377. return -EINVAL;
  3378. dev_dbg(rx_dev, "%s %d %s\n", __func__, event, w->name);
  3379. val = snd_soc_component_read(component,
  3380. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  3381. if (!(strcmp(w->name, "RX MIX TX0 MUX")))
  3382. ec_tx = ((val & 0xf0) >> 0x4) - 1;
  3383. else if (!(strcmp(w->name, "RX MIX TX1 MUX")))
  3384. ec_tx = (val & 0x0f) - 1;
  3385. val = snd_soc_component_read(component,
  3386. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  3387. if (!(strcmp(w->name, "RX MIX TX2 MUX")))
  3388. ec_tx = (val & 0x0f) - 1;
  3389. if (ec_tx < 0 || (ec_tx >= LPASS_CDC_RX_MACRO_EC_MUX_MAX)) {
  3390. dev_err_ratelimited(rx_dev, "%s: EC mix control not set correctly\n",
  3391. __func__);
  3392. return -EINVAL;
  3393. }
  3394. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_PATH_CTL +
  3395. 0x40 * ec_tx;
  3396. snd_soc_component_update_bits(component, ec_hq_reg, 0x01, 0x01);
  3397. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_CFG0 +
  3398. 0x40 * ec_tx;
  3399. /* default set to 48k */
  3400. snd_soc_component_update_bits(component, ec_hq_reg, 0x1E, 0x08);
  3401. return 0;
  3402. }
  3403. static const struct snd_soc_dapm_widget lpass_cdc_rx_macro_dapm_widgets[] = {
  3404. SND_SOC_DAPM_AIF_IN("RX AIF1 PB", "RX_MACRO_AIF1 Playback", 0,
  3405. SND_SOC_NOPM, 0, 0),
  3406. SND_SOC_DAPM_AIF_IN("RX AIF2 PB", "RX_MACRO_AIF2 Playback", 0,
  3407. SND_SOC_NOPM, 0, 0),
  3408. SND_SOC_DAPM_AIF_IN("RX AIF3 PB", "RX_MACRO_AIF3 Playback", 0,
  3409. SND_SOC_NOPM, 0, 0),
  3410. SND_SOC_DAPM_AIF_IN("RX AIF4 PB", "RX_MACRO_AIF4 Playback", 0,
  3411. SND_SOC_NOPM, 0, 0),
  3412. SND_SOC_DAPM_AIF_OUT("RX AIF_ECHO", "RX_AIF_ECHO Capture", 0,
  3413. SND_SOC_NOPM, 0, 0),
  3414. SND_SOC_DAPM_AIF_IN("RX AIF5 PB", "RX_MACRO_AIF5 Playback", 0,
  3415. SND_SOC_NOPM, 0, 0),
  3416. SND_SOC_DAPM_AIF_IN("RX AIF6 PB", "RX_MACRO_AIF6 Playback", 0,
  3417. SND_SOC_NOPM, 0, 0),
  3418. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX0 MUX", LPASS_CDC_RX_MACRO_RX0, lpass_cdc_rx_macro_rx0),
  3419. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX1 MUX", LPASS_CDC_RX_MACRO_RX1, lpass_cdc_rx_macro_rx1),
  3420. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX2 MUX", LPASS_CDC_RX_MACRO_RX2, lpass_cdc_rx_macro_rx2),
  3421. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX3 MUX", LPASS_CDC_RX_MACRO_RX3, lpass_cdc_rx_macro_rx3),
  3422. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX4 MUX", LPASS_CDC_RX_MACRO_RX4, lpass_cdc_rx_macro_rx4),
  3423. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX5 MUX", LPASS_CDC_RX_MACRO_RX5, lpass_cdc_rx_macro_rx5),
  3424. SND_SOC_DAPM_MIXER("RX_RX0", SND_SOC_NOPM, 0, 0, NULL, 0),
  3425. SND_SOC_DAPM_MIXER("RX_RX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3426. SND_SOC_DAPM_MIXER("RX_RX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3427. SND_SOC_DAPM_MIXER("RX_RX3", SND_SOC_NOPM, 0, 0, NULL, 0),
  3428. SND_SOC_DAPM_MIXER("RX_RX4", SND_SOC_NOPM, 0, 0, NULL, 0),
  3429. SND_SOC_DAPM_MIXER("RX_RX5", SND_SOC_NOPM, 0, 0, NULL, 0),
  3430. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP0 MUX", 0, iir0_inp0),
  3431. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP1 MUX", 0, iir0_inp1),
  3432. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP2 MUX", 0, iir0_inp2),
  3433. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP3 MUX", 0, iir0_inp3),
  3434. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP0 MUX", 0, iir1_inp0),
  3435. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP1 MUX", 0, iir1_inp1),
  3436. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP2 MUX", 0, iir1_inp2),
  3437. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP3 MUX", 0, iir1_inp3),
  3438. SND_SOC_DAPM_MUX_E("RX MIX TX0 MUX", SND_SOC_NOPM,
  3439. LPASS_CDC_RX_MACRO_EC0_MUX, 0,
  3440. &rx_mix_tx0_mux, lpass_cdc_rx_macro_enable_echo,
  3441. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3442. SND_SOC_DAPM_MUX_E("RX MIX TX1 MUX", SND_SOC_NOPM,
  3443. LPASS_CDC_RX_MACRO_EC1_MUX, 0,
  3444. &rx_mix_tx1_mux, lpass_cdc_rx_macro_enable_echo,
  3445. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3446. SND_SOC_DAPM_MUX_E("RX MIX TX2 MUX", SND_SOC_NOPM,
  3447. LPASS_CDC_RX_MACRO_EC2_MUX, 0,
  3448. &rx_mix_tx2_mux, lpass_cdc_rx_macro_enable_echo,
  3449. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3450. SND_SOC_DAPM_MIXER_E("IIR0", LPASS_CDC_RX_SIDETONE_IIR0_IIR_PATH_CTL,
  3451. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  3452. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  3453. SND_SOC_DAPM_MIXER_E("IIR1", LPASS_CDC_RX_SIDETONE_IIR1_IIR_PATH_CTL,
  3454. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  3455. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  3456. SND_SOC_DAPM_MIXER("SRC0", LPASS_CDC_RX_SIDETONE_SRC0_ST_SRC_PATH_CTL,
  3457. 4, 0, NULL, 0),
  3458. SND_SOC_DAPM_MIXER("SRC1", LPASS_CDC_RX_SIDETONE_SRC1_ST_SRC_PATH_CTL,
  3459. 4, 0, NULL, 0),
  3460. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0 DEM MUX", 0, rx_int0_dem_inp),
  3461. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1 DEM MUX", 0, rx_int1_dem_inp),
  3462. SND_SOC_DAPM_MUX_E("RX INT0_2 MUX", SND_SOC_NOPM, INTERP_HPHL, 0,
  3463. &rx_int0_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3464. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3465. SND_SOC_DAPM_POST_PMD),
  3466. SND_SOC_DAPM_MUX_E("RX INT1_2 MUX", SND_SOC_NOPM, INTERP_HPHR, 0,
  3467. &rx_int1_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3468. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3469. SND_SOC_DAPM_POST_PMD),
  3470. SND_SOC_DAPM_MUX_E("RX INT2_2 MUX", SND_SOC_NOPM, INTERP_AUX, 0,
  3471. &rx_int2_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3472. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3473. SND_SOC_DAPM_POST_PMD),
  3474. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP0", 0, rx_int0_1_mix_inp0),
  3475. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP1", 0, rx_int0_1_mix_inp1),
  3476. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP2", 0, rx_int0_1_mix_inp2),
  3477. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP0", 0, rx_int1_1_mix_inp0),
  3478. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP1", 0, rx_int1_1_mix_inp1),
  3479. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP2", 0, rx_int1_1_mix_inp2),
  3480. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP0", 0, rx_int2_1_mix_inp0),
  3481. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP1", 0, rx_int2_1_mix_inp1),
  3482. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP2", 0, rx_int2_1_mix_inp2),
  3483. SND_SOC_DAPM_MUX_E("RX INT0_1 INTERP", SND_SOC_NOPM, INTERP_HPHL, 0,
  3484. &rx_int0_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3485. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3486. SND_SOC_DAPM_POST_PMD),
  3487. SND_SOC_DAPM_MUX_E("RX INT1_1 INTERP", SND_SOC_NOPM, INTERP_HPHR, 0,
  3488. &rx_int1_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3489. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3490. SND_SOC_DAPM_POST_PMD),
  3491. SND_SOC_DAPM_MUX_E("RX INT2_1 INTERP", SND_SOC_NOPM, INTERP_AUX, 0,
  3492. &rx_int2_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3493. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3494. SND_SOC_DAPM_POST_PMD),
  3495. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_2 INTERP", 0, rx_int0_2_interp),
  3496. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_2 INTERP", 0, rx_int1_2_interp),
  3497. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_2 INTERP", 0, rx_int2_2_interp),
  3498. SND_SOC_DAPM_MIXER("RX INT0_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3499. SND_SOC_DAPM_MIXER("RX INT0 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3500. SND_SOC_DAPM_MIXER("RX INT1_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3501. SND_SOC_DAPM_MIXER("RX INT1 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3502. SND_SOC_DAPM_MIXER("RX INT2_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3503. SND_SOC_DAPM_MIXER("RX INT2 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3504. SND_SOC_DAPM_MUX_E("RX INT0 MIX2 INP", SND_SOC_NOPM, INTERP_HPHL,
  3505. 0, &rx_int0_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3506. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3507. SND_SOC_DAPM_MUX_E("RX INT1 MIX2 INP", SND_SOC_NOPM, INTERP_HPHR,
  3508. 0, &rx_int1_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3509. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3510. SND_SOC_DAPM_MUX_E("RX INT2 MIX2 INP", SND_SOC_NOPM, INTERP_AUX,
  3511. 0, &rx_int2_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3512. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3513. SND_SOC_DAPM_MIXER_E("RX INT2_1 VBAT", SND_SOC_NOPM,
  3514. 0, 0, rx_int2_1_vbat_mix_switch,
  3515. ARRAY_SIZE(rx_int2_1_vbat_mix_switch),
  3516. lpass_cdc_rx_macro_enable_vbat,
  3517. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3518. SND_SOC_DAPM_MIXER("RX INT0 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3519. SND_SOC_DAPM_MIXER("RX INT1 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3520. SND_SOC_DAPM_MIXER("RX INT2 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3521. SND_SOC_DAPM_OUTPUT("HPHL_OUT"),
  3522. SND_SOC_DAPM_OUTPUT("HPHR_OUT"),
  3523. SND_SOC_DAPM_OUTPUT("AUX_OUT"),
  3524. SND_SOC_DAPM_OUTPUT("PCM_OUT"),
  3525. SND_SOC_DAPM_INPUT("RX_TX DEC0_INP"),
  3526. SND_SOC_DAPM_INPUT("RX_TX DEC1_INP"),
  3527. SND_SOC_DAPM_INPUT("RX_TX DEC2_INP"),
  3528. SND_SOC_DAPM_INPUT("RX_TX DEC3_INP"),
  3529. SND_SOC_DAPM_SUPPLY_S("RX_MCLK", 0, SND_SOC_NOPM, 0, 0,
  3530. lpass_cdc_rx_macro_mclk_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3531. };
  3532. static const struct snd_soc_dapm_route rx_audio_map[] = {
  3533. {"RX AIF1 PB", NULL, "RX_MCLK"},
  3534. {"RX AIF2 PB", NULL, "RX_MCLK"},
  3535. {"RX AIF3 PB", NULL, "RX_MCLK"},
  3536. {"RX AIF4 PB", NULL, "RX_MCLK"},
  3537. {"RX AIF6 PB", NULL, "RX_MCLK"},
  3538. {"PCM_OUT", NULL, "RX AIF6 PB"},
  3539. {"RX_MACRO RX0 MUX", "AIF1_PB", "RX AIF1 PB"},
  3540. {"RX_MACRO RX1 MUX", "AIF1_PB", "RX AIF1 PB"},
  3541. {"RX_MACRO RX2 MUX", "AIF1_PB", "RX AIF1 PB"},
  3542. {"RX_MACRO RX3 MUX", "AIF1_PB", "RX AIF1 PB"},
  3543. {"RX_MACRO RX4 MUX", "AIF1_PB", "RX AIF1 PB"},
  3544. {"RX_MACRO RX5 MUX", "AIF1_PB", "RX AIF1 PB"},
  3545. {"RX_MACRO RX0 MUX", "AIF2_PB", "RX AIF2 PB"},
  3546. {"RX_MACRO RX1 MUX", "AIF2_PB", "RX AIF2 PB"},
  3547. {"RX_MACRO RX2 MUX", "AIF2_PB", "RX AIF2 PB"},
  3548. {"RX_MACRO RX3 MUX", "AIF2_PB", "RX AIF2 PB"},
  3549. {"RX_MACRO RX4 MUX", "AIF2_PB", "RX AIF2 PB"},
  3550. {"RX_MACRO RX5 MUX", "AIF2_PB", "RX AIF2 PB"},
  3551. {"RX_MACRO RX0 MUX", "AIF3_PB", "RX AIF3 PB"},
  3552. {"RX_MACRO RX1 MUX", "AIF3_PB", "RX AIF3 PB"},
  3553. {"RX_MACRO RX2 MUX", "AIF3_PB", "RX AIF3 PB"},
  3554. {"RX_MACRO RX3 MUX", "AIF3_PB", "RX AIF3 PB"},
  3555. {"RX_MACRO RX4 MUX", "AIF3_PB", "RX AIF3 PB"},
  3556. {"RX_MACRO RX5 MUX", "AIF3_PB", "RX AIF3 PB"},
  3557. {"RX_MACRO RX0 MUX", "AIF4_PB", "RX AIF4 PB"},
  3558. {"RX_MACRO RX1 MUX", "AIF4_PB", "RX AIF4 PB"},
  3559. {"RX_MACRO RX2 MUX", "AIF4_PB", "RX AIF4 PB"},
  3560. {"RX_MACRO RX3 MUX", "AIF4_PB", "RX AIF4 PB"},
  3561. {"RX_MACRO RX4 MUX", "AIF4_PB", "RX AIF4 PB"},
  3562. {"RX_MACRO RX5 MUX", "AIF4_PB", "RX AIF4 PB"},
  3563. {"RX_RX0", NULL, "RX_MACRO RX0 MUX"},
  3564. {"RX_RX1", NULL, "RX_MACRO RX1 MUX"},
  3565. {"RX_RX2", NULL, "RX_MACRO RX2 MUX"},
  3566. {"RX_RX3", NULL, "RX_MACRO RX3 MUX"},
  3567. {"RX_RX4", NULL, "RX_MACRO RX4 MUX"},
  3568. {"RX_RX5", NULL, "RX_MACRO RX5 MUX"},
  3569. {"RX INT0_1 MIX1 INP0", "RX0", "RX_RX0"},
  3570. {"RX INT0_1 MIX1 INP0", "RX1", "RX_RX1"},
  3571. {"RX INT0_1 MIX1 INP0", "RX2", "RX_RX2"},
  3572. {"RX INT0_1 MIX1 INP0", "RX3", "RX_RX3"},
  3573. {"RX INT0_1 MIX1 INP0", "RX4", "RX_RX4"},
  3574. {"RX INT0_1 MIX1 INP0", "RX5", "RX_RX5"},
  3575. {"RX INT0_1 MIX1 INP0", "IIR0", "IIR0"},
  3576. {"RX INT0_1 MIX1 INP0", "IIR1", "IIR1"},
  3577. {"RX INT0_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3578. {"RX INT0_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3579. {"RX INT0_1 MIX1 INP1", "RX0", "RX_RX0"},
  3580. {"RX INT0_1 MIX1 INP1", "RX1", "RX_RX1"},
  3581. {"RX INT0_1 MIX1 INP1", "RX2", "RX_RX2"},
  3582. {"RX INT0_1 MIX1 INP1", "RX3", "RX_RX3"},
  3583. {"RX INT0_1 MIX1 INP1", "RX4", "RX_RX4"},
  3584. {"RX INT0_1 MIX1 INP1", "RX5", "RX_RX5"},
  3585. {"RX INT0_1 MIX1 INP1", "IIR0", "IIR0"},
  3586. {"RX INT0_1 MIX1 INP1", "IIR1", "IIR1"},
  3587. {"RX INT0_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3588. {"RX INT0_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3589. {"RX INT0_1 MIX1 INP2", "RX0", "RX_RX0"},
  3590. {"RX INT0_1 MIX1 INP2", "RX1", "RX_RX1"},
  3591. {"RX INT0_1 MIX1 INP2", "RX2", "RX_RX2"},
  3592. {"RX INT0_1 MIX1 INP2", "RX3", "RX_RX3"},
  3593. {"RX INT0_1 MIX1 INP2", "RX4", "RX_RX4"},
  3594. {"RX INT0_1 MIX1 INP2", "RX5", "RX_RX5"},
  3595. {"RX INT0_1 MIX1 INP2", "IIR0", "IIR0"},
  3596. {"RX INT0_1 MIX1 INP2", "IIR1", "IIR1"},
  3597. {"RX INT0_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3598. {"RX INT0_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3599. {"RX INT1_1 MIX1 INP0", "RX0", "RX_RX0"},
  3600. {"RX INT1_1 MIX1 INP0", "RX1", "RX_RX1"},
  3601. {"RX INT1_1 MIX1 INP0", "RX2", "RX_RX2"},
  3602. {"RX INT1_1 MIX1 INP0", "RX3", "RX_RX3"},
  3603. {"RX INT1_1 MIX1 INP0", "RX4", "RX_RX4"},
  3604. {"RX INT1_1 MIX1 INP0", "RX5", "RX_RX5"},
  3605. {"RX INT1_1 MIX1 INP0", "IIR0", "IIR0"},
  3606. {"RX INT1_1 MIX1 INP0", "IIR1", "IIR1"},
  3607. {"RX INT1_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3608. {"RX INT1_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3609. {"RX INT1_1 MIX1 INP1", "RX0", "RX_RX0"},
  3610. {"RX INT1_1 MIX1 INP1", "RX1", "RX_RX1"},
  3611. {"RX INT1_1 MIX1 INP1", "RX2", "RX_RX2"},
  3612. {"RX INT1_1 MIX1 INP1", "RX3", "RX_RX3"},
  3613. {"RX INT1_1 MIX1 INP1", "RX4", "RX_RX4"},
  3614. {"RX INT1_1 MIX1 INP1", "RX5", "RX_RX5"},
  3615. {"RX INT1_1 MIX1 INP1", "IIR0", "IIR0"},
  3616. {"RX INT1_1 MIX1 INP1", "IIR1", "IIR1"},
  3617. {"RX INT1_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3618. {"RX INT1_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3619. {"RX INT1_1 MIX1 INP2", "RX0", "RX_RX0"},
  3620. {"RX INT1_1 MIX1 INP2", "RX1", "RX_RX1"},
  3621. {"RX INT1_1 MIX1 INP2", "RX2", "RX_RX2"},
  3622. {"RX INT1_1 MIX1 INP2", "RX3", "RX_RX3"},
  3623. {"RX INT1_1 MIX1 INP2", "RX4", "RX_RX4"},
  3624. {"RX INT1_1 MIX1 INP2", "RX5", "RX_RX5"},
  3625. {"RX INT1_1 MIX1 INP2", "IIR0", "IIR0"},
  3626. {"RX INT1_1 MIX1 INP2", "IIR1", "IIR1"},
  3627. {"RX INT1_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3628. {"RX INT1_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3629. {"RX INT2_1 MIX1 INP0", "RX0", "RX_RX0"},
  3630. {"RX INT2_1 MIX1 INP0", "RX1", "RX_RX1"},
  3631. {"RX INT2_1 MIX1 INP0", "RX2", "RX_RX2"},
  3632. {"RX INT2_1 MIX1 INP0", "RX3", "RX_RX3"},
  3633. {"RX INT2_1 MIX1 INP0", "RX4", "RX_RX4"},
  3634. {"RX INT2_1 MIX1 INP0", "RX5", "RX_RX5"},
  3635. {"RX INT2_1 MIX1 INP0", "IIR0", "IIR0"},
  3636. {"RX INT2_1 MIX1 INP0", "IIR1", "IIR1"},
  3637. {"RX INT2_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3638. {"RX INT2_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3639. {"RX INT2_1 MIX1 INP1", "RX0", "RX_RX0"},
  3640. {"RX INT2_1 MIX1 INP1", "RX1", "RX_RX1"},
  3641. {"RX INT2_1 MIX1 INP1", "RX2", "RX_RX2"},
  3642. {"RX INT2_1 MIX1 INP1", "RX3", "RX_RX3"},
  3643. {"RX INT2_1 MIX1 INP1", "RX4", "RX_RX4"},
  3644. {"RX INT2_1 MIX1 INP1", "RX5", "RX_RX5"},
  3645. {"RX INT2_1 MIX1 INP1", "IIR0", "IIR0"},
  3646. {"RX INT2_1 MIX1 INP1", "IIR1", "IIR1"},
  3647. {"RX INT2_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3648. {"RX INT2_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3649. {"RX INT2_1 MIX1 INP2", "RX0", "RX_RX0"},
  3650. {"RX INT2_1 MIX1 INP2", "RX1", "RX_RX1"},
  3651. {"RX INT2_1 MIX1 INP2", "RX2", "RX_RX2"},
  3652. {"RX INT2_1 MIX1 INP2", "RX3", "RX_RX3"},
  3653. {"RX INT2_1 MIX1 INP2", "RX4", "RX_RX4"},
  3654. {"RX INT2_1 MIX1 INP2", "RX5", "RX_RX5"},
  3655. {"RX INT2_1 MIX1 INP2", "IIR0", "IIR0"},
  3656. {"RX INT2_1 MIX1 INP2", "IIR1", "IIR1"},
  3657. {"RX INT2_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3658. {"RX INT2_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3659. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP0"},
  3660. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP1"},
  3661. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP2"},
  3662. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP0"},
  3663. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP1"},
  3664. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP2"},
  3665. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP0"},
  3666. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP1"},
  3667. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP2"},
  3668. {"RX MIX TX0 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3669. {"RX MIX TX0 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3670. {"RX MIX TX0 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3671. {"RX MIX TX1 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3672. {"RX MIX TX1 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3673. {"RX MIX TX1 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3674. {"RX MIX TX2 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3675. {"RX MIX TX2 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3676. {"RX MIX TX2 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3677. {"RX AIF_ECHO", NULL, "RX MIX TX0 MUX"},
  3678. {"RX AIF_ECHO", NULL, "RX MIX TX1 MUX"},
  3679. {"RX AIF_ECHO", NULL, "RX MIX TX2 MUX"},
  3680. {"RX AIF_ECHO", NULL, "RX_MCLK"},
  3681. /* Mixing path INT0 */
  3682. {"RX INT0_2 MUX", "RX0", "RX_RX0"},
  3683. {"RX INT0_2 MUX", "RX1", "RX_RX1"},
  3684. {"RX INT0_2 MUX", "RX2", "RX_RX2"},
  3685. {"RX INT0_2 MUX", "RX3", "RX_RX3"},
  3686. {"RX INT0_2 MUX", "RX4", "RX_RX4"},
  3687. {"RX INT0_2 MUX", "RX5", "RX_RX5"},
  3688. {"RX INT0_2 INTERP", NULL, "RX INT0_2 MUX"},
  3689. {"RX INT0 SEC MIX", NULL, "RX INT0_2 INTERP"},
  3690. /* Mixing path INT1 */
  3691. {"RX INT1_2 MUX", "RX0", "RX_RX0"},
  3692. {"RX INT1_2 MUX", "RX1", "RX_RX1"},
  3693. {"RX INT1_2 MUX", "RX2", "RX_RX2"},
  3694. {"RX INT1_2 MUX", "RX3", "RX_RX3"},
  3695. {"RX INT1_2 MUX", "RX4", "RX_RX4"},
  3696. {"RX INT1_2 MUX", "RX5", "RX_RX5"},
  3697. {"RX INT1_2 INTERP", NULL, "RX INT1_2 MUX"},
  3698. {"RX INT1 SEC MIX", NULL, "RX INT1_2 INTERP"},
  3699. /* Mixing path INT2 */
  3700. {"RX INT2_2 MUX", "RX0", "RX_RX0"},
  3701. {"RX INT2_2 MUX", "RX1", "RX_RX1"},
  3702. {"RX INT2_2 MUX", "RX2", "RX_RX2"},
  3703. {"RX INT2_2 MUX", "RX3", "RX_RX3"},
  3704. {"RX INT2_2 MUX", "RX4", "RX_RX4"},
  3705. {"RX INT2_2 MUX", "RX5", "RX_RX5"},
  3706. {"RX INT2_2 INTERP", NULL, "RX INT2_2 MUX"},
  3707. {"RX INT2 SEC MIX", NULL, "RX INT2_2 INTERP"},
  3708. {"RX INT0_1 INTERP", NULL, "RX INT0_1 MIX1"},
  3709. {"RX INT0 SEC MIX", NULL, "RX INT0_1 INTERP"},
  3710. {"RX INT0 MIX2", NULL, "RX INT0 SEC MIX"},
  3711. {"RX INT0 MIX2", NULL, "RX INT0 MIX2 INP"},
  3712. {"RX INT0 DEM MUX", "CLSH_DSM_OUT", "RX INT0 MIX2"},
  3713. {"HPHL_OUT", NULL, "RX INT0 DEM MUX"},
  3714. {"HPHL_OUT", NULL, "RX_MCLK"},
  3715. {"RX INT1_1 INTERP", NULL, "RX INT1_1 MIX1"},
  3716. {"RX INT1 SEC MIX", NULL, "RX INT1_1 INTERP"},
  3717. {"RX INT1 MIX2", NULL, "RX INT1 SEC MIX"},
  3718. {"RX INT1 MIX2", NULL, "RX INT1 MIX2 INP"},
  3719. {"RX INT1 DEM MUX", "CLSH_DSM_OUT", "RX INT1 MIX2"},
  3720. {"HPHR_OUT", NULL, "RX INT1 DEM MUX"},
  3721. {"HPHR_OUT", NULL, "RX_MCLK"},
  3722. {"RX INT2_1 INTERP", NULL, "RX INT2_1 MIX1"},
  3723. {"RX INT2_1 VBAT", "RX AUX VBAT Enable", "RX INT2_1 INTERP"},
  3724. {"RX INT2 SEC MIX", NULL, "RX INT2_1 VBAT"},
  3725. {"RX INT2 SEC MIX", NULL, "RX INT2_1 INTERP"},
  3726. {"RX INT2 MIX2", NULL, "RX INT2 SEC MIX"},
  3727. {"RX INT2 MIX2", NULL, "RX INT2 MIX2 INP"},
  3728. {"AUX_OUT", NULL, "RX INT2 MIX2"},
  3729. {"AUX_OUT", NULL, "RX_MCLK"},
  3730. {"IIR0", NULL, "RX_MCLK"},
  3731. {"IIR0", NULL, "IIR0 INP0 MUX"},
  3732. {"IIR0 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3733. {"IIR0 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3734. {"IIR0 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3735. {"IIR0 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3736. {"IIR0 INP0 MUX", "RX0", "RX_RX0"},
  3737. {"IIR0 INP0 MUX", "RX1", "RX_RX1"},
  3738. {"IIR0 INP0 MUX", "RX2", "RX_RX2"},
  3739. {"IIR0 INP0 MUX", "RX3", "RX_RX3"},
  3740. {"IIR0 INP0 MUX", "RX4", "RX_RX4"},
  3741. {"IIR0 INP0 MUX", "RX5", "RX_RX5"},
  3742. {"IIR0", NULL, "IIR0 INP1 MUX"},
  3743. {"IIR0 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3744. {"IIR0 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3745. {"IIR0 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3746. {"IIR0 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3747. {"IIR0 INP1 MUX", "RX0", "RX_RX0"},
  3748. {"IIR0 INP1 MUX", "RX1", "RX_RX1"},
  3749. {"IIR0 INP1 MUX", "RX2", "RX_RX2"},
  3750. {"IIR0 INP1 MUX", "RX3", "RX_RX3"},
  3751. {"IIR0 INP1 MUX", "RX4", "RX_RX4"},
  3752. {"IIR0 INP1 MUX", "RX5", "RX_RX5"},
  3753. {"IIR0", NULL, "IIR0 INP2 MUX"},
  3754. {"IIR0 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3755. {"IIR0 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3756. {"IIR0 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3757. {"IIR0 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3758. {"IIR0 INP2 MUX", "RX0", "RX_RX0"},
  3759. {"IIR0 INP2 MUX", "RX1", "RX_RX1"},
  3760. {"IIR0 INP2 MUX", "RX2", "RX_RX2"},
  3761. {"IIR0 INP2 MUX", "RX3", "RX_RX3"},
  3762. {"IIR0 INP2 MUX", "RX4", "RX_RX4"},
  3763. {"IIR0 INP2 MUX", "RX5", "RX_RX5"},
  3764. {"IIR0", NULL, "IIR0 INP3 MUX"},
  3765. {"IIR0 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3766. {"IIR0 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3767. {"IIR0 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3768. {"IIR0 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3769. {"IIR0 INP3 MUX", "RX0", "RX_RX0"},
  3770. {"IIR0 INP3 MUX", "RX1", "RX_RX1"},
  3771. {"IIR0 INP3 MUX", "RX2", "RX_RX2"},
  3772. {"IIR0 INP3 MUX", "RX3", "RX_RX3"},
  3773. {"IIR0 INP3 MUX", "RX4", "RX_RX4"},
  3774. {"IIR0 INP3 MUX", "RX5", "RX_RX5"},
  3775. {"IIR1", NULL, "RX_MCLK"},
  3776. {"IIR1", NULL, "IIR1 INP0 MUX"},
  3777. {"IIR1 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3778. {"IIR1 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3779. {"IIR1 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3780. {"IIR1 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3781. {"IIR1 INP0 MUX", "RX0", "RX_RX0"},
  3782. {"IIR1 INP0 MUX", "RX1", "RX_RX1"},
  3783. {"IIR1 INP0 MUX", "RX2", "RX_RX2"},
  3784. {"IIR1 INP0 MUX", "RX3", "RX_RX3"},
  3785. {"IIR1 INP0 MUX", "RX4", "RX_RX4"},
  3786. {"IIR1 INP0 MUX", "RX5", "RX_RX5"},
  3787. {"IIR1", NULL, "IIR1 INP1 MUX"},
  3788. {"IIR1 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3789. {"IIR1 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3790. {"IIR1 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3791. {"IIR1 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3792. {"IIR1 INP1 MUX", "RX0", "RX_RX0"},
  3793. {"IIR1 INP1 MUX", "RX1", "RX_RX1"},
  3794. {"IIR1 INP1 MUX", "RX2", "RX_RX2"},
  3795. {"IIR1 INP1 MUX", "RX3", "RX_RX3"},
  3796. {"IIR1 INP1 MUX", "RX4", "RX_RX4"},
  3797. {"IIR1 INP1 MUX", "RX5", "RX_RX5"},
  3798. {"IIR1", NULL, "IIR1 INP2 MUX"},
  3799. {"IIR1 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3800. {"IIR1 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3801. {"IIR1 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3802. {"IIR1 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3803. {"IIR1 INP2 MUX", "RX0", "RX_RX0"},
  3804. {"IIR1 INP2 MUX", "RX1", "RX_RX1"},
  3805. {"IIR1 INP2 MUX", "RX2", "RX_RX2"},
  3806. {"IIR1 INP2 MUX", "RX3", "RX_RX3"},
  3807. {"IIR1 INP2 MUX", "RX4", "RX_RX4"},
  3808. {"IIR1 INP2 MUX", "RX5", "RX_RX5"},
  3809. {"IIR1", NULL, "IIR1 INP3 MUX"},
  3810. {"IIR1 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3811. {"IIR1 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3812. {"IIR1 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3813. {"IIR1 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3814. {"IIR1 INP3 MUX", "RX0", "RX_RX0"},
  3815. {"IIR1 INP3 MUX", "RX1", "RX_RX1"},
  3816. {"IIR1 INP3 MUX", "RX2", "RX_RX2"},
  3817. {"IIR1 INP3 MUX", "RX3", "RX_RX3"},
  3818. {"IIR1 INP3 MUX", "RX4", "RX_RX4"},
  3819. {"IIR1 INP3 MUX", "RX5", "RX_RX5"},
  3820. {"SRC0", NULL, "IIR0"},
  3821. {"SRC1", NULL, "IIR1"},
  3822. {"RX INT0 MIX2 INP", "SRC0", "SRC0"},
  3823. {"RX INT0 MIX2 INP", "SRC1", "SRC1"},
  3824. {"RX INT1 MIX2 INP", "SRC0", "SRC0"},
  3825. {"RX INT1 MIX2 INP", "SRC1", "SRC1"},
  3826. {"RX INT2 MIX2 INP", "SRC0", "SRC0"},
  3827. {"RX INT2 MIX2 INP", "SRC1", "SRC1"},
  3828. };
  3829. static int lpass_cdc_rx_macro_core_vote(void *handle, bool enable)
  3830. {
  3831. int rc = 0;
  3832. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3833. if (rx_priv == NULL) {
  3834. pr_err_ratelimited("%s: rx priv data is NULL\n", __func__);
  3835. return -EINVAL;
  3836. }
  3837. if (enable) {
  3838. pm_runtime_get_sync(rx_priv->dev);
  3839. if (lpass_cdc_check_core_votes(rx_priv->dev))
  3840. rc = 0;
  3841. else
  3842. rc = -ENOTSYNC;
  3843. } else {
  3844. pm_runtime_put_autosuspend(rx_priv->dev);
  3845. pm_runtime_mark_last_busy(rx_priv->dev);
  3846. }
  3847. return rc;
  3848. }
  3849. static int rx_swrm_clock(void *handle, bool enable)
  3850. {
  3851. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3852. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  3853. int ret = 0;
  3854. if (regmap == NULL) {
  3855. dev_err_ratelimited(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  3856. return -EINVAL;
  3857. }
  3858. mutex_lock(&rx_priv->swr_clk_lock);
  3859. trace_printk("%s: swrm clock %s\n",
  3860. __func__, (enable ? "enable" : "disable"));
  3861. dev_dbg(rx_priv->dev, "%s: swrm clock %s\n",
  3862. __func__, (enable ? "enable" : "disable"));
  3863. if (enable) {
  3864. pm_runtime_get_sync(rx_priv->dev);
  3865. if (rx_priv->swr_clk_users == 0) {
  3866. ret = msm_cdc_pinctrl_select_active_state(
  3867. rx_priv->rx_swr_gpio_p);
  3868. if (ret < 0) {
  3869. dev_err_ratelimited(rx_priv->dev,
  3870. "%s: rx swr pinctrl enable failed\n",
  3871. __func__);
  3872. pm_runtime_mark_last_busy(rx_priv->dev);
  3873. pm_runtime_put_autosuspend(rx_priv->dev);
  3874. goto exit;
  3875. }
  3876. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  3877. if (ret < 0) {
  3878. msm_cdc_pinctrl_select_sleep_state(
  3879. rx_priv->rx_swr_gpio_p);
  3880. dev_err_ratelimited(rx_priv->dev,
  3881. "%s: rx request clock enable failed\n",
  3882. __func__);
  3883. pm_runtime_mark_last_busy(rx_priv->dev);
  3884. pm_runtime_put_autosuspend(rx_priv->dev);
  3885. goto exit;
  3886. }
  3887. if (rx_priv->reset_swr)
  3888. regmap_update_bits(regmap,
  3889. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3890. 0x02, 0x02);
  3891. regmap_update_bits(regmap,
  3892. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3893. 0x01, 0x01);
  3894. if (rx_priv->reset_swr)
  3895. regmap_update_bits(regmap,
  3896. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3897. 0x02, 0x00);
  3898. rx_priv->reset_swr = false;
  3899. }
  3900. pm_runtime_mark_last_busy(rx_priv->dev);
  3901. pm_runtime_put_autosuspend(rx_priv->dev);
  3902. rx_priv->swr_clk_users++;
  3903. } else {
  3904. if (rx_priv->swr_clk_users <= 0) {
  3905. dev_err_ratelimited(rx_priv->dev,
  3906. "%s: rx swrm clock users already reset\n",
  3907. __func__);
  3908. rx_priv->swr_clk_users = 0;
  3909. goto exit;
  3910. }
  3911. rx_priv->swr_clk_users--;
  3912. if (rx_priv->swr_clk_users == 0) {
  3913. regmap_update_bits(regmap,
  3914. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3915. 0x01, 0x00);
  3916. lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  3917. ret = msm_cdc_pinctrl_select_sleep_state(
  3918. rx_priv->rx_swr_gpio_p);
  3919. if (ret < 0) {
  3920. dev_err_ratelimited(rx_priv->dev,
  3921. "%s: rx swr pinctrl disable failed\n",
  3922. __func__);
  3923. goto exit;
  3924. }
  3925. }
  3926. }
  3927. trace_printk("%s: swrm clock users %d\n",
  3928. __func__, rx_priv->swr_clk_users);
  3929. dev_dbg(rx_priv->dev, "%s: swrm clock users %d\n",
  3930. __func__, rx_priv->swr_clk_users);
  3931. exit:
  3932. mutex_unlock(&rx_priv->swr_clk_lock);
  3933. return ret;
  3934. }
  3935. /**
  3936. * lpass_cdc_rx_set_fir_capability - Set RX HIFI FIR Filter capability
  3937. *
  3938. * @component: Codec component ptr.
  3939. * @capable: if the target have RX HIFI FIR available.
  3940. *
  3941. * Set RX HIFI FIR capability, stored the capability into RX macro private data.
  3942. */
  3943. int lpass_cdc_rx_set_fir_capability(struct snd_soc_component *component, bool capable)
  3944. {
  3945. struct device *rx_dev = NULL;
  3946. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3947. if (!component) {
  3948. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3949. return -EINVAL;
  3950. }
  3951. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3952. return -EINVAL;
  3953. rx_priv->is_fir_capable = capable;
  3954. return 0;
  3955. }
  3956. EXPORT_SYMBOL(lpass_cdc_rx_set_fir_capability);
  3957. static const struct lpass_cdc_rx_macro_reg_mask_val
  3958. lpass_cdc_rx_macro_reg_init[] = {
  3959. {LPASS_CDC_RX_RX0_RX_PATH_SEC7, 0x07, 0x02},
  3960. {LPASS_CDC_RX_RX1_RX_PATH_SEC7, 0x07, 0x02},
  3961. {LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x07, 0x02},
  3962. {LPASS_CDC_RX_RX0_RX_PATH_CFG3, 0x03, 0x02},
  3963. {LPASS_CDC_RX_RX1_RX_PATH_CFG3, 0x03, 0x02},
  3964. {LPASS_CDC_RX_RX2_RX_PATH_CFG3, 0x03, 0x02},
  3965. };
  3966. static int lpass_cdc_rx_macro_init(struct snd_soc_component *component)
  3967. {
  3968. struct snd_soc_dapm_context *dapm =
  3969. snd_soc_component_get_dapm(component);
  3970. int ret = 0;
  3971. struct device *rx_dev = NULL;
  3972. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3973. int i;
  3974. rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  3975. if (!rx_dev) {
  3976. dev_err(component->dev,
  3977. "%s: null device for macro!\n", __func__);
  3978. return -EINVAL;
  3979. }
  3980. rx_priv = dev_get_drvdata(rx_dev);
  3981. if (!rx_priv) {
  3982. dev_err(component->dev,
  3983. "%s: priv is null for macro!\n", __func__);
  3984. return -EINVAL;
  3985. }
  3986. ret = snd_soc_dapm_new_controls(dapm, lpass_cdc_rx_macro_dapm_widgets,
  3987. ARRAY_SIZE(lpass_cdc_rx_macro_dapm_widgets));
  3988. if (ret < 0) {
  3989. dev_err(rx_dev, "%s: failed to add controls\n", __func__);
  3990. return ret;
  3991. }
  3992. ret = snd_soc_dapm_add_routes(dapm, rx_audio_map,
  3993. ARRAY_SIZE(rx_audio_map));
  3994. if (ret < 0) {
  3995. dev_err(rx_dev, "%s: failed to add routes\n", __func__);
  3996. return ret;
  3997. }
  3998. ret = snd_soc_dapm_new_widgets(dapm->card);
  3999. if (ret < 0) {
  4000. dev_err(rx_dev, "%s: failed to add widgets\n", __func__);
  4001. return ret;
  4002. }
  4003. ret = snd_soc_add_component_controls(component, lpass_cdc_rx_macro_snd_controls,
  4004. ARRAY_SIZE(lpass_cdc_rx_macro_snd_controls));
  4005. if (ret < 0) {
  4006. dev_err(rx_dev, "%s: failed to add snd_ctls\n", __func__);
  4007. return ret;
  4008. }
  4009. rx_priv->dev_up = true;
  4010. rx_priv->rx0_gain_val = 0;
  4011. rx_priv->rx1_gain_val = 0;
  4012. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF1 Playback");
  4013. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF2 Playback");
  4014. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF3 Playback");
  4015. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF4 Playback");
  4016. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF5 Playback");
  4017. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF6 Playback");
  4018. snd_soc_dapm_ignore_suspend(dapm, "HPHL_OUT");
  4019. snd_soc_dapm_ignore_suspend(dapm, "HPHR_OUT");
  4020. snd_soc_dapm_ignore_suspend(dapm, "AUX_OUT");
  4021. snd_soc_dapm_ignore_suspend(dapm, "PCM_OUT");
  4022. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC0_INP");
  4023. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC1_INP");
  4024. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC2_INP");
  4025. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC3_INP");
  4026. snd_soc_dapm_sync(dapm);
  4027. for (i = 0; i < ARRAY_SIZE(lpass_cdc_rx_macro_reg_init); i++)
  4028. snd_soc_component_update_bits(component,
  4029. lpass_cdc_rx_macro_reg_init[i].reg,
  4030. lpass_cdc_rx_macro_reg_init[i].mask,
  4031. lpass_cdc_rx_macro_reg_init[i].val);
  4032. rx_priv->component = component;
  4033. return 0;
  4034. }
  4035. static int lpass_cdc_rx_macro_deinit(struct snd_soc_component *component)
  4036. {
  4037. struct device *rx_dev = NULL;
  4038. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4039. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  4040. return -EINVAL;
  4041. rx_priv->component = NULL;
  4042. return 0;
  4043. }
  4044. static void lpass_cdc_rx_macro_add_child_devices(struct work_struct *work)
  4045. {
  4046. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4047. struct platform_device *pdev = NULL;
  4048. struct device_node *node = NULL;
  4049. struct rx_swr_ctrl_data *swr_ctrl_data = NULL, *temp = NULL;
  4050. int ret = 0;
  4051. u16 count = 0, ctrl_num = 0;
  4052. struct rx_swr_ctrl_platform_data *platdata = NULL;
  4053. char plat_dev_name[RX_SWR_STRING_LEN] = "";
  4054. bool rx_swr_master_node = false;
  4055. rx_priv = container_of(work, struct lpass_cdc_rx_macro_priv,
  4056. lpass_cdc_rx_macro_add_child_devices_work);
  4057. if (!rx_priv) {
  4058. pr_err("%s: Memory for rx_priv does not exist\n",
  4059. __func__);
  4060. return;
  4061. }
  4062. if (!rx_priv->dev) {
  4063. pr_err("%s: RX device does not exist\n", __func__);
  4064. return;
  4065. }
  4066. if(!rx_priv->dev->of_node) {
  4067. dev_err(rx_priv->dev,
  4068. "%s: DT node for RX dev does not exist\n", __func__);
  4069. return;
  4070. }
  4071. platdata = &rx_priv->swr_plat_data;
  4072. rx_priv->child_count = 0;
  4073. for_each_available_child_of_node(rx_priv->dev->of_node, node) {
  4074. rx_swr_master_node = false;
  4075. if (strnstr(node->name, "rx_swr_master",
  4076. strlen("rx_swr_master")) != NULL)
  4077. rx_swr_master_node = true;
  4078. if(rx_swr_master_node)
  4079. strlcpy(plat_dev_name, "rx_swr_ctrl",
  4080. (RX_SWR_STRING_LEN - 1));
  4081. else
  4082. strlcpy(plat_dev_name, node->name,
  4083. (RX_SWR_STRING_LEN - 1));
  4084. pdev = platform_device_alloc(plat_dev_name, -1);
  4085. if (!pdev) {
  4086. dev_err(rx_priv->dev, "%s: pdev memory alloc failed\n",
  4087. __func__);
  4088. ret = -ENOMEM;
  4089. goto err;
  4090. }
  4091. pdev->dev.parent = rx_priv->dev;
  4092. pdev->dev.of_node = node;
  4093. if (rx_swr_master_node) {
  4094. ret = platform_device_add_data(pdev, platdata,
  4095. sizeof(*platdata));
  4096. if (ret) {
  4097. dev_err(&pdev->dev,
  4098. "%s: cannot add plat data ctrl:%d\n",
  4099. __func__, ctrl_num);
  4100. goto fail_pdev_add;
  4101. }
  4102. temp = krealloc(swr_ctrl_data,
  4103. (ctrl_num + 1) * sizeof(
  4104. struct rx_swr_ctrl_data),
  4105. GFP_KERNEL);
  4106. if (!temp) {
  4107. ret = -ENOMEM;
  4108. goto fail_pdev_add;
  4109. }
  4110. swr_ctrl_data = temp;
  4111. swr_ctrl_data[ctrl_num].rx_swr_pdev = pdev;
  4112. ctrl_num++;
  4113. dev_dbg(&pdev->dev,
  4114. "%s: Adding soundwire ctrl device(s)\n",
  4115. __func__);
  4116. rx_priv->swr_ctrl_data = swr_ctrl_data;
  4117. }
  4118. ret = platform_device_add(pdev);
  4119. if (ret) {
  4120. dev_err(&pdev->dev,
  4121. "%s: Cannot add platform device\n",
  4122. __func__);
  4123. goto fail_pdev_add;
  4124. }
  4125. if (rx_priv->child_count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX)
  4126. rx_priv->pdev_child_devices[
  4127. rx_priv->child_count++] = pdev;
  4128. else
  4129. goto err;
  4130. }
  4131. return;
  4132. fail_pdev_add:
  4133. for (count = 0; count < rx_priv->child_count; count++)
  4134. platform_device_put(rx_priv->pdev_child_devices[count]);
  4135. err:
  4136. return;
  4137. }
  4138. static void lpass_cdc_rx_macro_init_ops(struct macro_ops *ops, char __iomem *rx_io_base)
  4139. {
  4140. memset(ops, 0, sizeof(struct macro_ops));
  4141. ops->init = lpass_cdc_rx_macro_init;
  4142. ops->exit = lpass_cdc_rx_macro_deinit;
  4143. ops->io_base = rx_io_base;
  4144. ops->dai_ptr = lpass_cdc_rx_macro_dai;
  4145. ops->num_dais = ARRAY_SIZE(lpass_cdc_rx_macro_dai);
  4146. ops->event_handler = lpass_cdc_rx_macro_event_handler;
  4147. ops->set_port_map = lpass_cdc_rx_macro_set_port_map;
  4148. }
  4149. static int lpass_cdc_rx_macro_probe(struct platform_device *pdev)
  4150. {
  4151. struct macro_ops ops = {0};
  4152. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4153. u32 rx_base_addr = 0, muxsel = 0;
  4154. char __iomem *rx_io_base = NULL, *muxsel_io = NULL;
  4155. int ret = 0;
  4156. u32 default_clk_id = 0;
  4157. struct clk *hifi_fir_clk = NULL;
  4158. u32 is_used_rx_swr_gpio = 1;
  4159. const char *is_used_rx_swr_gpio_dt = "qcom,is-used-swr-gpio";
  4160. if (!lpass_cdc_is_va_macro_registered(&pdev->dev)) {
  4161. dev_err(&pdev->dev,
  4162. "%s: va-macro not registered yet, defer\n", __func__);
  4163. return -EPROBE_DEFER;
  4164. }
  4165. rx_priv = devm_kzalloc(&pdev->dev, sizeof(struct lpass_cdc_rx_macro_priv),
  4166. GFP_KERNEL);
  4167. if (!rx_priv)
  4168. return -ENOMEM;
  4169. rx_priv->dev = &pdev->dev;
  4170. ret = of_property_read_u32(pdev->dev.of_node, "reg",
  4171. &rx_base_addr);
  4172. if (ret) {
  4173. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4174. __func__, "reg");
  4175. return ret;
  4176. }
  4177. ret = of_property_read_u32(pdev->dev.of_node, "qcom,rx_mclk_mode_muxsel",
  4178. &muxsel);
  4179. if (ret) {
  4180. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4181. __func__, "reg");
  4182. return ret;
  4183. }
  4184. ret = of_property_read_u32(pdev->dev.of_node, "qcom,default-clk-id",
  4185. &default_clk_id);
  4186. if (ret) {
  4187. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4188. __func__, "qcom,default-clk-id");
  4189. default_clk_id = RX_CORE_CLK;
  4190. }
  4191. if (of_find_property(pdev->dev.of_node, is_used_rx_swr_gpio_dt,
  4192. NULL)) {
  4193. ret = of_property_read_u32(pdev->dev.of_node,
  4194. is_used_rx_swr_gpio_dt,
  4195. &is_used_rx_swr_gpio);
  4196. if (ret) {
  4197. dev_err(&pdev->dev, "%s: error reading %s in dt\n",
  4198. __func__, is_used_rx_swr_gpio_dt);
  4199. is_used_rx_swr_gpio = 1;
  4200. }
  4201. }
  4202. rx_priv->rx_swr_gpio_p = of_parse_phandle(pdev->dev.of_node,
  4203. "qcom,rx-swr-gpios", 0);
  4204. if (!rx_priv->rx_swr_gpio_p && is_used_rx_swr_gpio) {
  4205. dev_err(&pdev->dev, "%s: swr_gpios handle not provided!\n",
  4206. __func__);
  4207. return -EINVAL;
  4208. }
  4209. if (msm_cdc_pinctrl_get_state(rx_priv->rx_swr_gpio_p) < 0 &&
  4210. is_used_rx_swr_gpio) {
  4211. dev_err(&pdev->dev, "%s: failed to get swr pin state\n",
  4212. __func__);
  4213. return -EPROBE_DEFER;
  4214. }
  4215. msm_cdc_pinctrl_set_wakeup_capable(
  4216. rx_priv->rx_swr_gpio_p, false);
  4217. rx_io_base = devm_ioremap(&pdev->dev, rx_base_addr,
  4218. LPASS_CDC_RX_MACRO_MAX_OFFSET);
  4219. if (!rx_io_base) {
  4220. dev_err(&pdev->dev, "%s: ioremap failed\n", __func__);
  4221. return -ENOMEM;
  4222. }
  4223. rx_priv->rx_io_base = rx_io_base;
  4224. muxsel_io = devm_ioremap(&pdev->dev, muxsel, 0x4);
  4225. if (!muxsel_io) {
  4226. dev_err(&pdev->dev, "%s: ioremap failed for muxsel\n",
  4227. __func__);
  4228. return -ENOMEM;
  4229. }
  4230. rx_priv->rx_mclk_mode_muxsel = muxsel_io;
  4231. rx_priv->reset_swr = true;
  4232. INIT_WORK(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work,
  4233. lpass_cdc_rx_macro_add_child_devices);
  4234. rx_priv->swr_plat_data.handle = (void *) rx_priv;
  4235. rx_priv->swr_plat_data.read = NULL;
  4236. rx_priv->swr_plat_data.write = NULL;
  4237. rx_priv->swr_plat_data.bulk_write = NULL;
  4238. rx_priv->swr_plat_data.clk = rx_swrm_clock;
  4239. rx_priv->swr_plat_data.core_vote = lpass_cdc_rx_macro_core_vote;
  4240. rx_priv->swr_plat_data.handle_irq = NULL;
  4241. rx_priv->clk_id = default_clk_id;
  4242. rx_priv->default_clk_id = default_clk_id;
  4243. ops.clk_id_req = rx_priv->clk_id;
  4244. ops.default_clk_id = default_clk_id;
  4245. hifi_fir_clk = devm_clk_get(&pdev->dev, "rx_mclk2_2x_clk");
  4246. if (IS_ERR(hifi_fir_clk)) {
  4247. ret = PTR_ERR(hifi_fir_clk);
  4248. dev_dbg(&pdev->dev, "%s: clk get %s failed %d\n",
  4249. __func__, "rx_mclk2_2x_clk", ret);
  4250. hifi_fir_clk = NULL;
  4251. }
  4252. rx_priv->hifi_fir_clk = hifi_fir_clk;
  4253. rx_priv->is_aux_hpf_on = 1;
  4254. dev_set_drvdata(&pdev->dev, rx_priv);
  4255. mutex_init(&rx_priv->mclk_lock);
  4256. mutex_init(&rx_priv->swr_clk_lock);
  4257. lpass_cdc_rx_macro_init_ops(&ops, rx_io_base);
  4258. ret = lpass_cdc_register_macro(&pdev->dev, RX_MACRO, &ops);
  4259. if (ret) {
  4260. dev_err(&pdev->dev,
  4261. "%s: register macro failed\n", __func__);
  4262. goto err_reg_macro;
  4263. }
  4264. pm_runtime_set_autosuspend_delay(&pdev->dev, AUTO_SUSPEND_DELAY);
  4265. pm_runtime_use_autosuspend(&pdev->dev);
  4266. pm_runtime_set_suspended(&pdev->dev);
  4267. pm_suspend_ignore_children(&pdev->dev, true);
  4268. pm_runtime_enable(&pdev->dev);
  4269. schedule_work(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work);
  4270. return 0;
  4271. err_reg_macro:
  4272. mutex_destroy(&rx_priv->mclk_lock);
  4273. mutex_destroy(&rx_priv->swr_clk_lock);
  4274. return ret;
  4275. }
  4276. static int lpass_cdc_rx_macro_remove(struct platform_device *pdev)
  4277. {
  4278. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4279. u16 count = 0;
  4280. rx_priv = dev_get_drvdata(&pdev->dev);
  4281. if (!rx_priv)
  4282. return -EINVAL;
  4283. for (count = 0; count < rx_priv->child_count &&
  4284. count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX; count++)
  4285. platform_device_unregister(rx_priv->pdev_child_devices[count]);
  4286. pm_runtime_disable(&pdev->dev);
  4287. pm_runtime_set_suspended(&pdev->dev);
  4288. lpass_cdc_unregister_macro(&pdev->dev, RX_MACRO);
  4289. mutex_destroy(&rx_priv->mclk_lock);
  4290. mutex_destroy(&rx_priv->swr_clk_lock);
  4291. kfree(rx_priv->swr_ctrl_data);
  4292. return 0;
  4293. }
  4294. static const struct of_device_id lpass_cdc_rx_macro_dt_match[] = {
  4295. {.compatible = "qcom,lpass-cdc-rx-macro"},
  4296. {}
  4297. };
  4298. static const struct dev_pm_ops lpass_cdc_dev_pm_ops = {
  4299. SET_SYSTEM_SLEEP_PM_OPS(
  4300. pm_runtime_force_suspend,
  4301. pm_runtime_force_resume
  4302. )
  4303. SET_RUNTIME_PM_OPS(
  4304. lpass_cdc_runtime_suspend,
  4305. lpass_cdc_runtime_resume,
  4306. NULL
  4307. )
  4308. };
  4309. static struct platform_driver lpass_cdc_rx_macro_driver = {
  4310. .driver = {
  4311. .name = "lpass_cdc_rx_macro",
  4312. .owner = THIS_MODULE,
  4313. .pm = &lpass_cdc_dev_pm_ops,
  4314. .of_match_table = lpass_cdc_rx_macro_dt_match,
  4315. .suppress_bind_attrs = true,
  4316. },
  4317. .probe = lpass_cdc_rx_macro_probe,
  4318. .remove = lpass_cdc_rx_macro_remove,
  4319. };
  4320. module_platform_driver(lpass_cdc_rx_macro_driver);
  4321. MODULE_DESCRIPTION("RX macro driver");
  4322. MODULE_LICENSE("GPL v2");