Files
android_kernel_samsung_sm86…/asoc/codecs/aqt1000/aqt1000-clsh.c
Meng Wang 43bbb87652 asoc: Update file header to GPL-2.0-only
Update file header to GPL-2.0-only.

Change-Id: Ic1542a3209a5fe73c937a5b36491ede4a451936d
Signed-off-by: Meng Wang <mengw@codeaurora.org>
2018-12-10 14:49:34 +08:00

834 خطوط
23 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <sound/soc.h>
#include "aqt1000-registers.h"
#include "aqt1000-clsh.h"
#define AQT_USLEEP_RANGE 50
#define MAX_IMPED_PARAMS 6
enum aqt_vref_dac_sel {
VREF_N1P9V = 0,
VREF_N1P86V,
VREF_N181V,
VREF_N1P74V,
VREF_N1P7V,
VREF_N0P9V,
VREF_N1P576V,
VREF_N1P827V,
};
enum aqt_vref_ctl {
CONTROLLER = 0,
I2C,
};
enum aqt_hd2_res_div_ctl {
DISCONNECT = 0,
P5_0P35,
P75_0P68,
P82_0P77,
P9_0P87,
};
enum aqt_curr_bias_err_amp {
I_0P25UA = 0,
I_0P5UA,
I_0P75UA,
I_1UA,
I_1P25UA,
I_1P5UA,
I_1P75UA,
I_2UA,
};
static const struct aqt_reg_mask_val imped_table_aqt[][MAX_IMPED_PARAMS] = {
{
{AQT1000_CDC_RX1_RX_VOL_CTL, 0xff, 0xf2},
{AQT1000_CDC_RX1_RX_VOL_MIX_CTL, 0xff, 0xf2},
{AQT1000_CDC_RX1_RX_PATH_SEC1, 0x01, 0x00},
{AQT1000_CDC_RX2_RX_VOL_CTL, 0xff, 0xf2},
{AQT1000_CDC_RX2_RX_VOL_MIX_CTL, 0xff, 0xf2},
{AQT1000_CDC_RX2_RX_PATH_SEC1, 0x01, 0x00},
},
{
{AQT1000_CDC_RX1_RX_VOL_CTL, 0xff, 0xf4},
{AQT1000_CDC_RX1_RX_VOL_MIX_CTL, 0xff, 0xf4},
{AQT1000_CDC_RX1_RX_PATH_SEC1, 0x01, 0x00},
{AQT1000_CDC_RX2_RX_VOL_CTL, 0xff, 0xf4},
{AQT1000_CDC_RX2_RX_VOL_MIX_CTL, 0xff, 0xf4},
{AQT1000_CDC_RX2_RX_PATH_SEC1, 0x01, 0x00},
},
{
{AQT1000_CDC_RX1_RX_VOL_CTL, 0xff, 0xf7},
{AQT1000_CDC_RX1_RX_VOL_MIX_CTL, 0xff, 0xf7},
{AQT1000_CDC_RX1_RX_PATH_SEC1, 0x01, 0x01},
{AQT1000_CDC_RX2_RX_VOL_CTL, 0xff, 0xf7},
{AQT1000_CDC_RX2_RX_VOL_MIX_CTL, 0xff, 0xf7},
{AQT1000_CDC_RX2_RX_PATH_SEC1, 0x01, 0x01},
},
{
{AQT1000_CDC_RX1_RX_VOL_CTL, 0xff, 0xf9},
{AQT1000_CDC_RX1_RX_VOL_MIX_CTL, 0xff, 0xf9},
{AQT1000_CDC_RX1_RX_PATH_SEC1, 0x01, 0x00},
{AQT1000_CDC_RX2_RX_VOL_CTL, 0xff, 0xf9},
{AQT1000_CDC_RX2_RX_VOL_MIX_CTL, 0xff, 0xf9},
{AQT1000_CDC_RX2_RX_PATH_SEC1, 0x01, 0x00},
},
{
{AQT1000_CDC_RX1_RX_VOL_CTL, 0xff, 0xfa},
{AQT1000_CDC_RX1_RX_VOL_MIX_CTL, 0xff, 0xfa},
{AQT1000_CDC_RX1_RX_PATH_SEC1, 0x01, 0x00},
{AQT1000_CDC_RX2_RX_VOL_CTL, 0xff, 0xfa},
{AQT1000_CDC_RX2_RX_VOL_MIX_CTL, 0xff, 0xfa},
{AQT1000_CDC_RX2_RX_PATH_SEC1, 0x01, 0x00},
},
{
{AQT1000_CDC_RX1_RX_VOL_CTL, 0xff, 0xfb},
{AQT1000_CDC_RX1_RX_VOL_MIX_CTL, 0xff, 0xfb},
{AQT1000_CDC_RX1_RX_PATH_SEC1, 0x01, 0x00},
{AQT1000_CDC_RX2_RX_VOL_CTL, 0xff, 0xfb},
{AQT1000_CDC_RX2_RX_VOL_MIX_CTL, 0xff, 0xfb},
{AQT1000_CDC_RX2_RX_PATH_SEC1, 0x01, 0x00},
},
{
{AQT1000_CDC_RX1_RX_VOL_CTL, 0xff, 0xfc},
{AQT1000_CDC_RX1_RX_VOL_MIX_CTL, 0xff, 0xfc},
{AQT1000_CDC_RX1_RX_PATH_SEC1, 0x01, 0x00},
{AQT1000_CDC_RX2_RX_VOL_CTL, 0xff, 0xfc},
{AQT1000_CDC_RX2_RX_VOL_MIX_CTL, 0xff, 0xfc},
{AQT1000_CDC_RX2_RX_PATH_SEC1, 0x01, 0x00},
},
{
{AQT1000_CDC_RX1_RX_VOL_CTL, 0xff, 0xfd},
{AQT1000_CDC_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
{AQT1000_CDC_RX1_RX_PATH_SEC1, 0x01, 0x00},
{AQT1000_CDC_RX2_RX_VOL_CTL, 0xff, 0xfd},
{AQT1000_CDC_RX2_RX_VOL_MIX_CTL, 0xff, 0xfd},
{AQT1000_CDC_RX2_RX_PATH_SEC1, 0x01, 0x00},
},
{
{AQT1000_CDC_RX1_RX_VOL_CTL, 0xff, 0xfd},
{AQT1000_CDC_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
{AQT1000_CDC_RX1_RX_PATH_SEC1, 0x01, 0x01},
{AQT1000_CDC_RX2_RX_VOL_CTL, 0xff, 0xfd},
{AQT1000_CDC_RX2_RX_VOL_MIX_CTL, 0xff, 0xfd},
{AQT1000_CDC_RX2_RX_PATH_SEC1, 0x01, 0x01},
},
};
static const struct aqt_imped_val imped_index[] = {
{4, 0},
{5, 1},
{6, 2},
{7, 3},
{8, 4},
{9, 5},
{10, 6},
{11, 7},
{12, 8},
{13, 9},
};
static void (*clsh_state_fp[NUM_CLSH_STATES])(struct snd_soc_component *,
struct aqt_clsh_cdc_data *,
u8 req_state, bool en, int mode);
static int get_impedance_index(int imped)
{
int i = 0;
if (imped < imped_index[i].imped_val) {
pr_debug("%s, detected impedance is less than 4 Ohm\n",
__func__);
i = 0;
goto ret;
}
if (imped >= imped_index[ARRAY_SIZE(imped_index) - 1].imped_val) {
pr_debug("%s, detected impedance is greater than 12 Ohm\n",
__func__);
i = ARRAY_SIZE(imped_index) - 1;
goto ret;
}
for (i = 0; i < ARRAY_SIZE(imped_index) - 1; i++) {
if (imped >= imped_index[i].imped_val &&
imped < imped_index[i + 1].imped_val)
break;
}
ret:
pr_debug("%s: selected impedance index = %d\n",
__func__, imped_index[i].index);
return imped_index[i].index;
}
/*
* Function: aqt_clsh_imped_config
* Params: component, imped, reset
* Description:
* This function updates HPHL and HPHR gain settings
* according to the impedance value.
*/
void aqt_clsh_imped_config(struct snd_soc_component *component,
int imped, bool reset)
{
int i;
int index = 0;
int table_size;
static const struct aqt_reg_mask_val
(*imped_table_ptr)[MAX_IMPED_PARAMS];
table_size = ARRAY_SIZE(imped_table_aqt);
imped_table_ptr = imped_table_aqt;
/* reset = 1, which means request is to reset the register values */
if (reset) {
for (i = 0; i < MAX_IMPED_PARAMS; i++)
snd_soc_component_update_bits(component,
imped_table_ptr[index][i].reg,
imped_table_ptr[index][i].mask, 0);
return;
}
index = get_impedance_index(imped);
if (index >= (ARRAY_SIZE(imped_index) - 1)) {
pr_debug("%s, impedance not in range = %d\n", __func__, imped);
return;
}
if (index >= table_size) {
pr_debug("%s, impedance index not in range = %d\n", __func__,
index);
return;
}
for (i = 0; i < MAX_IMPED_PARAMS; i++)
snd_soc_component_update_bits(component,
imped_table_ptr[index][i].reg,
imped_table_ptr[index][i].mask,
imped_table_ptr[index][i].val);
}
EXPORT_SYMBOL(aqt_clsh_imped_config);
static const char *mode_to_str(int mode)
{
switch (mode) {
case CLS_H_NORMAL:
return "CLS_H_NORMAL";
case CLS_H_HIFI:
return "CLS_H_HIFI";
case CLS_H_LOHIFI:
return "CLS_H_LOHIFI";
case CLS_H_LP:
return "CLS_H_LP";
case CLS_H_ULP:
return "CLS_H_ULP";
case CLS_AB:
return "CLS_AB";
case CLS_AB_HIFI:
return "CLS_AB_HIFI";
default:
return "CLS_H_INVALID";
};
}
static const char *const state_to_str[] = {
[AQT_CLSH_STATE_IDLE] = "STATE_IDLE",
[AQT_CLSH_STATE_HPHL] = "STATE_HPH_L",
[AQT_CLSH_STATE_HPHR] = "STATE_HPH_R",
[AQT_CLSH_STATE_HPH_ST] = "STATE_HPH_ST",
};
static inline void
aqt_enable_clsh_block(struct snd_soc_component *component,
struct aqt_clsh_cdc_data *clsh_d, bool enable)
{
if ((enable && ++clsh_d->clsh_users == 1) ||
(!enable && --clsh_d->clsh_users == 0))
snd_soc_component_update_bits(component, AQT1000_CDC_CLSH_CRC,
0x01, (u8) enable);
if (clsh_d->clsh_users < 0)
clsh_d->clsh_users = 0;
dev_dbg(component->dev, "%s: clsh_users %d, enable %d", __func__,
clsh_d->clsh_users, enable);
}
static inline bool aqt_clsh_enable_status(struct snd_soc_component *component)
{
return snd_soc_component_read32(
component, AQT1000_CDC_CLSH_CRC) & 0x01;
}
static inline int aqt_clsh_get_int_mode(struct aqt_clsh_cdc_data *clsh_d,
int clsh_state)
{
int mode;
if ((clsh_state != AQT_CLSH_STATE_HPHL) &&
(clsh_state != AQT_CLSH_STATE_HPHR))
mode = CLS_NONE;
else
mode = clsh_d->interpolator_modes[ffs(clsh_state)];
return mode;
}
static inline void aqt_clsh_set_int_mode(struct aqt_clsh_cdc_data *clsh_d,
int clsh_state, int mode)
{
if ((clsh_state != AQT_CLSH_STATE_HPHL) &&
(clsh_state != AQT_CLSH_STATE_HPHR))
return;
clsh_d->interpolator_modes[ffs(clsh_state)] = mode;
}
static inline void aqt_clsh_set_buck_mode(struct snd_soc_component *component,
int mode)
{
if (mode == CLS_H_HIFI || mode == CLS_H_LOHIFI ||
mode == CLS_AB_HIFI || mode == CLS_AB)
snd_soc_component_update_bits(component,
AQT1000_ANA_RX_SUPPLIES,
0x08, 0x08); /* set to HIFI */
else
snd_soc_component_update_bits(component,
AQT1000_ANA_RX_SUPPLIES,
0x08, 0x00); /* set to default */
}
static inline void aqt_clsh_set_flyback_mode(
struct snd_soc_component *component, int mode)
{
if (mode == CLS_H_HIFI || mode == CLS_H_LOHIFI ||
mode == CLS_AB_HIFI || mode == CLS_AB)
snd_soc_component_update_bits(component,
AQT1000_ANA_RX_SUPPLIES,
0x04, 0x04); /* set to HIFI */
else
snd_soc_component_update_bits(component,
AQT1000_ANA_RX_SUPPLIES,
0x04, 0x00); /* set to Default */
}
static inline void aqt_clsh_gm3_boost_disable(
struct snd_soc_component *component, int mode)
{
if (mode == CLS_H_HIFI || mode == CLS_H_LOHIFI ||
mode == CLS_AB_HIFI || mode == CLS_AB) {
snd_soc_component_update_bits(component,
AQT1000_HPH_CNP_WG_CTL,
0x80, 0x0); /* disable GM3 Boost */
snd_soc_component_update_bits(component,
AQT1000_FLYBACK_VNEG_CTRL_4,
0xF0, 0x80);
} else {
snd_soc_component_update_bits(component,
AQT1000_HPH_CNP_WG_CTL,
0x80, 0x80); /* set to Default */
snd_soc_component_update_bits(component,
AQT1000_FLYBACK_VNEG_CTRL_4,
0xF0, 0x70);
}
}
static inline void aqt_clsh_flyback_dac_ctl(
struct snd_soc_component *component, int vref)
{
snd_soc_component_update_bits(component,
AQT1000_FLYBACK_VNEGDAC_CTRL_2,
0xE0, (vref << 5));
}
static inline void aqt_clsh_mode_vref_ctl(struct snd_soc_component *component,
int vref_ctl)
{
if (vref_ctl == I2C) {
snd_soc_component_update_bits(component, AQT1000_CLASSH_MODE_3,
0x02, 0x02);
snd_soc_component_update_bits(component, AQT1000_CLASSH_MODE_2,
0xFF, 0x1C);
} else {
snd_soc_component_update_bits(component, AQT1000_CLASSH_MODE_2,
0xFF, 0x3A);
snd_soc_component_update_bits(component, AQT1000_CLASSH_MODE_3,
0x02, 0x00);
}
}
static inline void aqt_clsh_buck_current_bias_ctl(
struct snd_soc_component *component, bool enable)
{
if (enable) {
snd_soc_component_update_bits(component,
AQT1000_BUCK_5V_IBIAS_CTL_4,
0x70, (I_2UA << 4));
snd_soc_component_update_bits(component,
AQT1000_BUCK_5V_IBIAS_CTL_4,
0x07, I_0P25UA);
snd_soc_component_update_bits(component,
AQT1000_BUCK_5V_CTRL_CCL_2,
0x3F, 0x3F);
} else {
snd_soc_component_update_bits(component,
AQT1000_BUCK_5V_IBIAS_CTL_4,
0x70, (I_1UA << 4));
snd_soc_component_update_bits(component,
AQT1000_BUCK_5V_IBIAS_CTL_4,
0x07, I_1UA);
snd_soc_component_update_bits(component,
AQT1000_BUCK_5V_CTRL_CCL_2,
0x3F, 0x20);
}
}
static inline void aqt_clsh_rdac_hd2_ctl(struct snd_soc_component *component,
u8 hd2_div_ctl, u8 state)
{
u16 reg = 0;
if (state == AQT_CLSH_STATE_HPHL)
reg = AQT1000_HPH_NEW_INT_RDAC_HD2_CTL_L;
else if (state == AQT_CLSH_STATE_HPHR)
reg = AQT1000_HPH_NEW_INT_RDAC_HD2_CTL_R;
else
dev_err(component->dev, "%s: Invalid state: %d\n",
__func__, state);
if (!reg)
snd_soc_component_update_bits(component, reg,
0x0F, hd2_div_ctl);
}
static inline void aqt_clsh_force_iq_ctl(struct snd_soc_component *component,
int mode)
{
if (mode == CLS_H_LOHIFI || mode == CLS_AB) {
snd_soc_component_update_bits(component,
AQT1000_HPH_NEW_INT_PA_MISC2,
0x20, 0x20);
snd_soc_component_update_bits(component,
AQT1000_RX_BIAS_HPH_LOWPOWER,
0xF0, 0xC0);
snd_soc_component_update_bits(component,
AQT1000_HPH_PA_CTL1,
0x0E, 0x02);
} else {
snd_soc_component_update_bits(component,
AQT1000_HPH_NEW_INT_PA_MISC2,
0x20, 0x0);
snd_soc_component_update_bits(component,
AQT1000_RX_BIAS_HPH_LOWPOWER,
0xF0, 0x80);
snd_soc_component_update_bits(component,
AQT1000_HPH_PA_CTL1,
0x0E, 0x06);
}
}
static void aqt_clsh_buck_ctrl(struct snd_soc_component *component,
struct aqt_clsh_cdc_data *clsh_d,
int mode,
bool enable)
{
/* enable/disable buck */
if ((enable && (++clsh_d->buck_users == 1)) ||
(!enable && (--clsh_d->buck_users == 0)))
snd_soc_component_update_bits(component,
AQT1000_ANA_RX_SUPPLIES,
(1 << 7), (enable << 7));
dev_dbg(component->dev, "%s: buck_users %d, enable %d, mode: %s",
__func__, clsh_d->buck_users, enable, mode_to_str(mode));
/*
* 500us sleep is required after buck enable/disable
* as per HW requirement
*/
usleep_range(500, 500 + AQT_USLEEP_RANGE);
}
static void aqt_clsh_flyback_ctrl(struct snd_soc_component *component,
struct aqt_clsh_cdc_data *clsh_d,
int mode,
bool enable)
{
/* enable/disable flyback */
if ((enable && (++clsh_d->flyback_users == 1)) ||
(!enable && (--clsh_d->flyback_users == 0))) {
snd_soc_component_update_bits(component,
AQT1000_ANA_RX_SUPPLIES,
(1 << 6), (enable << 6));
/* 100usec delay is needed as per HW requirement */
usleep_range(100, 110);
}
dev_dbg(component->dev, "%s: flyback_users %d, enable %d, mode: %s",
__func__, clsh_d->flyback_users, enable, mode_to_str(mode));
/*
* 500us sleep is required after flyback enable/disable
* as per HW requirement
*/
usleep_range(500, 500 + AQT_USLEEP_RANGE);
}
static void aqt_clsh_set_hph_mode(struct snd_soc_component *component,
int mode)
{
u8 val = 0;
u8 gain = 0;
u8 res_val = VREF_FILT_R_0OHM;
u8 ipeak = DELTA_I_50MA;
switch (mode) {
case CLS_H_NORMAL:
res_val = VREF_FILT_R_50KOHM;
val = 0x00;
gain = DAC_GAIN_0DB;
ipeak = DELTA_I_50MA;
break;
case CLS_AB:
val = 0x00;
gain = DAC_GAIN_0DB;
ipeak = DELTA_I_50MA;
break;
case CLS_AB_HIFI:
val = 0x08;
break;
case CLS_H_HIFI:
val = 0x08;
gain = DAC_GAIN_M0P2DB;
ipeak = DELTA_I_50MA;
break;
case CLS_H_LOHIFI:
val = 0x00;
break;
case CLS_H_ULP:
val = 0x0C;
break;
case CLS_H_LP:
val = 0x04;
ipeak = DELTA_I_30MA;
break;
default:
return;
};
if (mode == CLS_H_LOHIFI || mode == CLS_AB)
val = 0x04;
snd_soc_component_update_bits(component, AQT1000_ANA_HPH, 0x0C, val);
}
static void aqt_clsh_set_buck_regulator_mode(
struct snd_soc_component *component, int mode)
{
snd_soc_component_update_bits(component, AQT1000_ANA_RX_SUPPLIES,
0x02, 0x00);
}
static void aqt_clsh_state_hph_st(struct snd_soc_component *component,
struct aqt_clsh_cdc_data *clsh_d,
u8 req_state, bool is_enable, int mode)
{
dev_dbg(component->dev, "%s: mode: %s, %s\n", __func__,
mode_to_str(mode),
is_enable ? "enable" : "disable");
if (mode == CLS_AB || mode == CLS_AB_HIFI)
return;
if (is_enable) {
if (req_state == AQT_CLSH_STATE_HPHL)
snd_soc_component_update_bits(component,
AQT1000_CDC_RX1_RX_PATH_CFG0,
0x40, 0x40);
if (req_state == AQT_CLSH_STATE_HPHR)
snd_soc_component_update_bits(component,
AQT1000_CDC_RX2_RX_PATH_CFG0,
0x40, 0x40);
} else {
if (req_state == AQT_CLSH_STATE_HPHL)
snd_soc_component_update_bits(component,
AQT1000_CDC_RX1_RX_PATH_CFG0,
0x40, 0x00);
if (req_state == AQT_CLSH_STATE_HPHR)
snd_soc_component_update_bits(component,
AQT1000_CDC_RX2_RX_PATH_CFG0,
0x40, 0x00);
}
}
static void aqt_clsh_state_hph_r(struct snd_soc_component *component,
struct aqt_clsh_cdc_data *clsh_d,
u8 req_state, bool is_enable, int mode)
{
dev_dbg(component->dev, "%s: mode: %s, %s\n", __func__,
mode_to_str(mode),
is_enable ? "enable" : "disable");
if (mode == CLS_H_NORMAL) {
dev_err(component->dev, "%s: Normal mode not applicable for hph_r\n",
__func__);
return;
}
if (is_enable) {
if (mode != CLS_AB && mode != CLS_AB_HIFI) {
aqt_enable_clsh_block(component, clsh_d, true);
/*
* These K1 values depend on the Headphone Impedance
* For now it is assumed to be 16 ohm
*/
snd_soc_component_update_bits(component,
AQT1000_CDC_CLSH_K1_MSB,
0x0F, 0x00);
snd_soc_component_update_bits(component,
AQT1000_CDC_CLSH_K1_LSB,
0xFF, 0xC0);
snd_soc_component_update_bits(component,
AQT1000_CDC_RX2_RX_PATH_CFG0,
0x40, 0x40);
}
aqt_clsh_set_buck_regulator_mode(component, mode);
aqt_clsh_set_flyback_mode(component, mode);
aqt_clsh_gm3_boost_disable(component, mode);
aqt_clsh_flyback_dac_ctl(component, VREF_N0P9V);
aqt_clsh_mode_vref_ctl(component, I2C);
aqt_clsh_force_iq_ctl(component, mode);
aqt_clsh_rdac_hd2_ctl(component, P82_0P77, req_state);
aqt_clsh_flyback_ctrl(component, clsh_d, mode, true);
aqt_clsh_flyback_dac_ctl(component, VREF_N1P827V);
aqt_clsh_set_buck_mode(component, mode);
aqt_clsh_buck_ctrl(component, clsh_d, mode, true);
aqt_clsh_mode_vref_ctl(component, CONTROLLER);
aqt_clsh_buck_current_bias_ctl(component, true);
aqt_clsh_set_hph_mode(component, mode);
} else {
aqt_clsh_set_hph_mode(component, CLS_H_NORMAL);
aqt_clsh_buck_current_bias_ctl(component, false);
if (mode != CLS_AB && mode != CLS_AB_HIFI) {
snd_soc_component_update_bits(component,
AQT1000_CDC_RX2_RX_PATH_CFG0,
0x40, 0x00);
aqt_enable_clsh_block(component, clsh_d, false);
}
/* buck and flyback set to default mode and disable */
aqt_clsh_buck_ctrl(component, clsh_d, CLS_H_NORMAL, false);
aqt_clsh_flyback_ctrl(component, clsh_d, CLS_H_NORMAL, false);
aqt_clsh_rdac_hd2_ctl(component, P5_0P35, req_state);
aqt_clsh_force_iq_ctl(component, CLS_H_NORMAL);
aqt_clsh_gm3_boost_disable(component, CLS_H_NORMAL);
aqt_clsh_set_flyback_mode(component, CLS_H_NORMAL);
aqt_clsh_set_buck_mode(component, CLS_H_NORMAL);
aqt_clsh_set_buck_regulator_mode(component, CLS_H_NORMAL);
}
}
static void aqt_clsh_state_hph_l(struct snd_soc_component *component,
struct aqt_clsh_cdc_data *clsh_d,
u8 req_state, bool is_enable, int mode)
{
dev_dbg(component->dev, "%s: mode: %s, %s\n", __func__,
mode_to_str(mode), is_enable ? "enable" : "disable");
if (mode == CLS_H_NORMAL) {
dev_err(component->dev, "%s: Normal mode not applicable for hph_l\n",
__func__);
return;
}
if (is_enable) {
if (mode != CLS_AB && mode != CLS_AB_HIFI) {
aqt_enable_clsh_block(component, clsh_d, true);
/*
* These K1 values depend on the Headphone Impedance
* For now it is assumed to be 16 ohm
*/
snd_soc_component_update_bits(component,
AQT1000_CDC_CLSH_K1_MSB,
0x0F, 0x00);
snd_soc_component_update_bits(component,
AQT1000_CDC_CLSH_K1_LSB,
0xFF, 0xC0);
snd_soc_component_update_bits(component,
AQT1000_CDC_RX1_RX_PATH_CFG0,
0x40, 0x40);
}
aqt_clsh_set_buck_regulator_mode(component, mode);
aqt_clsh_set_flyback_mode(component, mode);
aqt_clsh_gm3_boost_disable(component, mode);
aqt_clsh_flyback_dac_ctl(component, VREF_N0P9V);
aqt_clsh_mode_vref_ctl(component, I2C);
aqt_clsh_force_iq_ctl(component, mode);
aqt_clsh_rdac_hd2_ctl(component, P82_0P77, req_state);
aqt_clsh_flyback_ctrl(component, clsh_d, mode, true);
aqt_clsh_flyback_dac_ctl(component, VREF_N1P827V);
aqt_clsh_set_buck_mode(component, mode);
aqt_clsh_buck_ctrl(component, clsh_d, mode, true);
aqt_clsh_mode_vref_ctl(component, CONTROLLER);
aqt_clsh_buck_current_bias_ctl(component, true);
aqt_clsh_set_hph_mode(component, mode);
} else {
aqt_clsh_set_hph_mode(component, CLS_H_NORMAL);
aqt_clsh_buck_current_bias_ctl(component, false);
if (mode != CLS_AB && mode != CLS_AB_HIFI) {
snd_soc_component_update_bits(component,
AQT1000_CDC_RX1_RX_PATH_CFG0,
0x40, 0x00);
aqt_enable_clsh_block(component, clsh_d, false);
}
/* set buck and flyback to Default Mode */
aqt_clsh_buck_ctrl(component, clsh_d, CLS_H_NORMAL, false);
aqt_clsh_flyback_ctrl(component, clsh_d, CLS_H_NORMAL, false);
aqt_clsh_rdac_hd2_ctl(component, P5_0P35, req_state);
aqt_clsh_force_iq_ctl(component, CLS_H_NORMAL);
aqt_clsh_gm3_boost_disable(component, CLS_H_NORMAL);
aqt_clsh_set_flyback_mode(component, CLS_H_NORMAL);
aqt_clsh_set_buck_mode(component, CLS_H_NORMAL);
aqt_clsh_set_buck_regulator_mode(component, CLS_H_NORMAL);
}
}
static void aqt_clsh_state_err(struct snd_soc_component *component,
struct aqt_clsh_cdc_data *clsh_d,
u8 req_state, bool is_enable, int mode)
{
dev_err(component->dev,
"%s Wrong request for class H state machine requested to %s %s",
__func__, is_enable ? "enable" : "disable",
state_to_str[req_state]);
}
/*
* Function: aqt_clsh_is_state_valid
* Params: state
* Description:
* Provides information on valid states of Class H configuration
*/
static bool aqt_clsh_is_state_valid(u8 state)
{
switch (state) {
case AQT_CLSH_STATE_IDLE:
case AQT_CLSH_STATE_HPHL:
case AQT_CLSH_STATE_HPHR:
case AQT_CLSH_STATE_HPH_ST:
return true;
default:
return false;
};
}
/*
* Function: aqt_clsh_fsm
* Params: component, cdc_clsh_d, req_state, req_type, clsh_event
* Description:
* This function handles PRE DAC and POST DAC conditions of different devices
* and updates class H configuration of different combination of devices
* based on validity of their states. cdc_clsh_d will contain current
* class h state information
*/
void aqt_clsh_fsm(struct snd_soc_component *component,
struct aqt_clsh_cdc_data *cdc_clsh_d,
u8 clsh_event, u8 req_state,
int int_mode)
{
u8 old_state, new_state;
switch (clsh_event) {
case AQT_CLSH_EVENT_PRE_DAC:
old_state = cdc_clsh_d->state;
new_state = old_state | req_state;
if (!aqt_clsh_is_state_valid(new_state)) {
dev_err(component->dev,
"%s: Class-H not a valid new state: %s\n",
__func__, state_to_str[new_state]);
return;
}
if (new_state == old_state) {
dev_err(component->dev,
"%s: Class-H already in requested state: %s\n",
__func__, state_to_str[new_state]);
return;
}
cdc_clsh_d->state = new_state;
aqt_clsh_set_int_mode(cdc_clsh_d, req_state, int_mode);
(*clsh_state_fp[new_state]) (component, cdc_clsh_d, req_state,
CLSH_REQ_ENABLE, int_mode);
dev_dbg(component->dev,
"%s: ClassH state transition from %s to %s\n",
__func__, state_to_str[old_state],
state_to_str[cdc_clsh_d->state]);
break;
case AQT_CLSH_EVENT_POST_PA:
old_state = cdc_clsh_d->state;
new_state = old_state & (~req_state);
if (new_state < NUM_CLSH_STATES) {
if (!aqt_clsh_is_state_valid(old_state)) {
dev_err(component->dev,
"%s:Invalid old state:%s\n",
__func__, state_to_str[old_state]);
return;
}
if (new_state == old_state) {
dev_err(component->dev,
"%s: Class-H already in requested state: %s\n",
__func__,state_to_str[new_state]);
return;
}
(*clsh_state_fp[old_state]) (component, cdc_clsh_d,
req_state, CLSH_REQ_DISABLE,
int_mode);
cdc_clsh_d->state = new_state;
aqt_clsh_set_int_mode(cdc_clsh_d, req_state, CLS_NONE);
dev_dbg(component->dev, "%s: ClassH state transition from %s to %s\n",
__func__, state_to_str[old_state],
state_to_str[cdc_clsh_d->state]);
}
break;
};
}
EXPORT_SYMBOL(aqt_clsh_fsm);
/*
* Function: aqt_clsh_get_clsh_state
* Params: clsh
* Description:
* This function returns the state of the class H controller
*/
int aqt_clsh_get_clsh_state(struct aqt_clsh_cdc_data *clsh)
{
return clsh->state;
}
EXPORT_SYMBOL(aqt_clsh_get_clsh_state);
/*
* Function: aqt_clsh_init
* Params: clsh
* Description:
* This function initializes the class H controller
*/
void aqt_clsh_init(struct aqt_clsh_cdc_data *clsh)
{
int i;
clsh->state = AQT_CLSH_STATE_IDLE;
for (i = 0; i < NUM_CLSH_STATES; i++)
clsh_state_fp[i] = aqt_clsh_state_err;
clsh_state_fp[AQT_CLSH_STATE_HPHL] = aqt_clsh_state_hph_l;
clsh_state_fp[AQT_CLSH_STATE_HPHR] = aqt_clsh_state_hph_r;
clsh_state_fp[AQT_CLSH_STATE_HPH_ST] = aqt_clsh_state_hph_st;
/* Set interpolator modes to NONE */
aqt_clsh_set_int_mode(clsh, AQT_CLSH_STATE_HPHL, CLS_NONE);
aqt_clsh_set_int_mode(clsh, AQT_CLSH_STATE_HPHR, CLS_NONE);
clsh->flyback_users = 0;
clsh->buck_users = 0;
clsh->clsh_users = 0;
}
EXPORT_SYMBOL(aqt_clsh_init);