sde_hw_intf.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
  4. * Copyright (c) 2015-2021, The Linux Foundation. All rights reserved.
  5. */
  6. #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
  7. #include <linux/iopoll.h>
  8. #include "sde_hwio.h"
  9. #include "sde_hw_catalog.h"
  10. #include "sde_hw_intf.h"
  11. #include "sde_dbg.h"
  12. #define INTF_TIMING_ENGINE_EN 0x000
  13. #define INTF_CONFIG 0x004
  14. #define INTF_HSYNC_CTL 0x008
  15. #define INTF_VSYNC_PERIOD_F0 0x00C
  16. #define INTF_VSYNC_PERIOD_F1 0x010
  17. #define INTF_VSYNC_PULSE_WIDTH_F0 0x014
  18. #define INTF_VSYNC_PULSE_WIDTH_F1 0x018
  19. #define INTF_DISPLAY_V_START_F0 0x01C
  20. #define INTF_DISPLAY_V_START_F1 0x020
  21. #define INTF_DISPLAY_V_END_F0 0x024
  22. #define INTF_DISPLAY_V_END_F1 0x028
  23. #define INTF_ACTIVE_V_START_F0 0x02C
  24. #define INTF_ACTIVE_V_START_F1 0x030
  25. #define INTF_ACTIVE_V_END_F0 0x034
  26. #define INTF_ACTIVE_V_END_F1 0x038
  27. #define INTF_DISPLAY_HCTL 0x03C
  28. #define INTF_ACTIVE_HCTL 0x040
  29. #define INTF_BORDER_COLOR 0x044
  30. #define INTF_UNDERFLOW_COLOR 0x048
  31. #define INTF_HSYNC_SKEW 0x04C
  32. #define INTF_POLARITY_CTL 0x050
  33. #define INTF_TEST_CTL 0x054
  34. #define INTF_TP_COLOR0 0x058
  35. #define INTF_TP_COLOR1 0x05C
  36. #define INTF_CONFIG2 0x060
  37. #define INTF_DISPLAY_DATA_HCTL 0x064
  38. #define INTF_ACTIVE_DATA_HCTL 0x068
  39. #define INTF_FRAME_LINE_COUNT_EN 0x0A8
  40. #define INTF_MDP_FRAME_COUNT 0x0A4
  41. #define INTF_FRAME_COUNT 0x0AC
  42. #define INTF_LINE_COUNT 0x0B0
  43. #define INTF_DEFLICKER_CONFIG 0x0F0
  44. #define INTF_DEFLICKER_STRNG_COEFF 0x0F4
  45. #define INTF_DEFLICKER_WEAK_COEFF 0x0F8
  46. #define INTF_REG_SPLIT_LINK 0x080
  47. #define INTF_DSI_CMD_MODE_TRIGGER_EN 0x084
  48. #define INTF_PANEL_FORMAT 0x090
  49. #define INTF_TPG_ENABLE 0x100
  50. #define INTF_TPG_MAIN_CONTROL 0x104
  51. #define INTF_TPG_VIDEO_CONFIG 0x108
  52. #define INTF_TPG_COMPONENT_LIMITS 0x10C
  53. #define INTF_TPG_RECTANGLE 0x110
  54. #define INTF_TPG_INITIAL_VALUE 0x114
  55. #define INTF_TPG_BLK_WHITE_PATTERN_FRAMES 0x118
  56. #define INTF_TPG_RGB_MAPPING 0x11C
  57. #define INTF_PROG_FETCH_START 0x170
  58. #define INTF_PROG_ROT_START 0x174
  59. #define INTF_MISR_CTRL 0x180
  60. #define INTF_MISR_SIGNATURE 0x184
  61. #define INTF_WD_TIMER_0_LTJ_CTL 0x200
  62. #define INTF_WD_TIMER_0_LTJ_CTL1 0x204
  63. #define INTF_VSYNC_TIMESTAMP_CTRL 0x210
  64. #define INTF_VSYNC_TIMESTAMP0 0x214
  65. #define INTF_VSYNC_TIMESTAMP1 0x218
  66. #define INTF_MDP_VSYNC_TIMESTAMP0 0x21C
  67. #define INTF_MDP_VSYNC_TIMESTAMP1 0x220
  68. #define INTF_WD_TIMER_0_JITTER_CTL 0x224
  69. #define INTF_WD_TIMER_0_LTJ_SLOPE 0x228
  70. #define INTF_WD_TIMER_0_LTJ_MAX 0x22C
  71. #define INTF_WD_TIMER_0_CTL 0x230
  72. #define INTF_WD_TIMER_0_CTL2 0x234
  73. #define INTF_WD_TIMER_0_LOAD_VALUE 0x238
  74. #define INTF_WD_TIMER_0_LTJ_INT_STATUS 0x240
  75. #define INTF_WD_TIMER_0_LTJ_FRAC_STATUS 0x244
  76. #define INTF_MUX 0x25C
  77. #define INTF_UNDERRUN_COUNT 0x268
  78. #define INTF_STATUS 0x26C
  79. #define INTF_AVR_CONTROL 0x270
  80. #define INTF_AVR_MODE 0x274
  81. #define INTF_AVR_TRIGGER 0x278
  82. #define INTF_AVR_VTOTAL 0x27C
  83. #define INTF_TEAR_MDP_VSYNC_SEL 0x280
  84. #define INTF_TEAR_TEAR_CHECK_EN 0x284
  85. #define INTF_TEAR_SYNC_CONFIG_VSYNC 0x288
  86. #define INTF_TEAR_SYNC_CONFIG_HEIGHT 0x28C
  87. #define INTF_TEAR_SYNC_WRCOUNT 0x290
  88. #define INTF_TEAR_VSYNC_INIT_VAL 0x294
  89. #define INTF_TEAR_INT_COUNT_VAL 0x298
  90. #define INTF_TEAR_SYNC_THRESH 0x29C
  91. #define INTF_TEAR_START_POS 0x2A0
  92. #define INTF_TEAR_RD_PTR_IRQ 0x2A4
  93. #define INTF_TEAR_WR_PTR_IRQ 0x2A8
  94. #define INTF_TEAR_OUT_LINE_COUNT 0x2AC
  95. #define INTF_TEAR_LINE_COUNT 0x2B0
  96. #define INTF_TEAR_AUTOREFRESH_CONFIG 0x2B4
  97. #define INTF_TEAR_TEAR_DETECT_CTRL 0x2B8
  98. #define INTF_TEAR_PROG_FETCH_START 0x2C4
  99. #define INTF_TEAR_DSI_DMA_SCHD_CTRL0 0x2C8
  100. #define INTF_TEAR_DSI_DMA_SCHD_CTRL1 0x2CC
  101. #define INTF_TEAR_INT_COUNT_VAL_EXT 0x2DC
  102. #define INTF_TEAR_SYNC_THRESH_EXT 0x2E0
  103. #define INTF_TEAR_SYNC_WRCOUNT_EXT 0x2E4
  104. static struct sde_intf_cfg *_intf_offset(enum sde_intf intf,
  105. struct sde_mdss_cfg *m,
  106. void __iomem *addr,
  107. struct sde_hw_blk_reg_map *b)
  108. {
  109. int i;
  110. for (i = 0; i < m->intf_count; i++) {
  111. if ((intf == m->intf[i].id) &&
  112. (m->intf[i].type != INTF_NONE)) {
  113. b->base_off = addr;
  114. b->blk_off = m->intf[i].base;
  115. b->length = m->intf[i].len;
  116. b->hw_rev = m->hw_rev;
  117. b->log_mask = SDE_DBG_MASK_INTF;
  118. return &m->intf[i];
  119. }
  120. }
  121. return ERR_PTR(-EINVAL);
  122. }
  123. static void sde_hw_intf_avr_trigger(struct sde_hw_intf *ctx)
  124. {
  125. struct sde_hw_blk_reg_map *c;
  126. if (!ctx)
  127. return;
  128. c = &ctx->hw;
  129. SDE_REG_WRITE(c, INTF_AVR_TRIGGER, 0x1);
  130. SDE_DEBUG("AVR Triggered\n");
  131. }
  132. static int sde_hw_intf_avr_setup(struct sde_hw_intf *ctx,
  133. const struct intf_timing_params *params,
  134. const struct intf_avr_params *avr_params)
  135. {
  136. struct sde_hw_blk_reg_map *c;
  137. u32 hsync_period, vsync_period;
  138. u32 min_fps, default_fps, diff_fps;
  139. u32 vsync_period_slow;
  140. u32 avr_vtotal;
  141. u32 add_porches = 0;
  142. if (!ctx || !params || !avr_params) {
  143. SDE_ERROR("invalid input parameter(s)\n");
  144. return -EINVAL;
  145. }
  146. c = &ctx->hw;
  147. min_fps = avr_params->min_fps;
  148. default_fps = avr_params->default_fps;
  149. diff_fps = default_fps - min_fps;
  150. hsync_period = params->hsync_pulse_width +
  151. params->h_back_porch + params->width +
  152. params->h_front_porch;
  153. vsync_period = params->vsync_pulse_width +
  154. params->v_back_porch + params->height +
  155. params->v_front_porch;
  156. if (diff_fps)
  157. add_porches = mult_frac(vsync_period, diff_fps, min_fps);
  158. vsync_period_slow = vsync_period + add_porches;
  159. avr_vtotal = vsync_period_slow * hsync_period;
  160. SDE_REG_WRITE(c, INTF_AVR_VTOTAL, avr_vtotal);
  161. return 0;
  162. }
  163. static void sde_hw_intf_avr_ctrl(struct sde_hw_intf *ctx,
  164. const struct intf_avr_params *avr_params)
  165. {
  166. struct sde_hw_blk_reg_map *c;
  167. u32 avr_mode = 0;
  168. u32 avr_ctrl = 0;
  169. if (!ctx || !avr_params)
  170. return;
  171. c = &ctx->hw;
  172. if (avr_params->avr_mode) {
  173. avr_ctrl = BIT(0);
  174. avr_mode = (avr_params->avr_mode == SDE_RM_QSYNC_ONE_SHOT_MODE) ?
  175. (BIT(0) | BIT(8)) : 0x0;
  176. if (avr_params->avr_step_lines)
  177. avr_mode |= avr_params->avr_step_lines << 16;
  178. }
  179. SDE_REG_WRITE(c, INTF_AVR_CONTROL, avr_ctrl);
  180. SDE_REG_WRITE(c, INTF_AVR_MODE, avr_mode);
  181. }
  182. static u32 sde_hw_intf_get_avr_status(struct sde_hw_intf *ctx)
  183. {
  184. struct sde_hw_blk_reg_map *c;
  185. u32 avr_ctrl;
  186. if (!ctx)
  187. return false;
  188. c = &ctx->hw;
  189. avr_ctrl = SDE_REG_READ(c, INTF_AVR_CONTROL);
  190. return avr_ctrl >> 31;
  191. }
  192. static inline void _check_and_set_comp_bit(struct sde_hw_intf *ctx,
  193. bool dsc_4hs_merge, bool compression_en, u32 *intf_cfg2)
  194. {
  195. if (((SDE_HW_MAJOR(ctx->mdss->hw_rev) >= SDE_HW_MAJOR(SDE_HW_VER_700)) && compression_en)
  196. || (IS_SDE_MAJOR_SAME(ctx->mdss->hw_rev, SDE_HW_VER_600) && dsc_4hs_merge))
  197. (*intf_cfg2) |= BIT(12);
  198. else if (!compression_en)
  199. (*intf_cfg2) &= ~BIT(12);
  200. }
  201. static void sde_hw_intf_reset_counter(struct sde_hw_intf *ctx)
  202. {
  203. struct sde_hw_blk_reg_map *c = &ctx->hw;
  204. SDE_REG_WRITE(c, INTF_LINE_COUNT, BIT(31));
  205. }
  206. static u64 sde_hw_intf_get_vsync_timestamp(struct sde_hw_intf *ctx, bool is_vid)
  207. {
  208. struct sde_hw_blk_reg_map *c = &ctx->hw;
  209. u32 timestamp_lo, timestamp_hi;
  210. u64 timestamp = 0;
  211. u32 reg_ts_0, reg_ts_1;
  212. if (ctx->cap->features & BIT(SDE_INTF_MDP_VSYNC_TS) && is_vid) {
  213. reg_ts_0 = INTF_MDP_VSYNC_TIMESTAMP0;
  214. reg_ts_1 = INTF_MDP_VSYNC_TIMESTAMP1;
  215. } else {
  216. reg_ts_0 = INTF_VSYNC_TIMESTAMP0;
  217. reg_ts_1 = INTF_VSYNC_TIMESTAMP1;
  218. }
  219. timestamp_hi = SDE_REG_READ(c, reg_ts_1);
  220. timestamp_lo = SDE_REG_READ(c, reg_ts_0);
  221. timestamp = timestamp_hi;
  222. timestamp = (timestamp << 32) | timestamp_lo;
  223. return timestamp;
  224. }
  225. static void sde_hw_intf_setup_timing_engine(struct sde_hw_intf *ctx,
  226. const struct intf_timing_params *p,
  227. const struct sde_format *fmt)
  228. {
  229. struct sde_hw_blk_reg_map *c = &ctx->hw;
  230. u32 hsync_period, vsync_period;
  231. u32 display_v_start, display_v_end;
  232. u32 hsync_start_x, hsync_end_x;
  233. u32 hsync_data_start_x, hsync_data_end_x;
  234. u32 active_h_start, active_h_end;
  235. u32 active_v_start, active_v_end;
  236. u32 active_hctl, display_hctl, hsync_ctl;
  237. u32 polarity_ctl, den_polarity, hsync_polarity, vsync_polarity;
  238. u32 panel_format;
  239. u32 intf_cfg, intf_cfg2 = 0;
  240. u32 display_data_hctl = 0, active_data_hctl = 0;
  241. u32 data_width;
  242. bool dp_intf = false;
  243. /* read interface_cfg */
  244. intf_cfg = SDE_REG_READ(c, INTF_CONFIG);
  245. if (ctx->cap->type == INTF_EDP || ctx->cap->type == INTF_DP)
  246. dp_intf = true;
  247. hsync_period = p->hsync_pulse_width + p->h_back_porch + p->width +
  248. p->h_front_porch;
  249. vsync_period = p->vsync_pulse_width + p->v_back_porch + p->height +
  250. p->v_front_porch;
  251. display_v_start = ((p->vsync_pulse_width + p->v_back_porch) *
  252. hsync_period) + p->hsync_skew;
  253. display_v_end = ((vsync_period - p->v_front_porch) * hsync_period) +
  254. p->hsync_skew - 1;
  255. hsync_ctl = (hsync_period << 16) | p->hsync_pulse_width;
  256. hsync_start_x = p->h_back_porch + p->hsync_pulse_width;
  257. hsync_end_x = hsync_period - p->h_front_porch - 1;
  258. /*
  259. * DATA_HCTL_EN controls data timing which can be different from
  260. * video timing. It is recommended to enable it for all cases, except
  261. * if compression is enabled in 1 pixel per clock mode
  262. */
  263. if (!p->compression_en || p->wide_bus_en)
  264. intf_cfg2 |= BIT(4);
  265. if (p->wide_bus_en)
  266. intf_cfg2 |= BIT(0);
  267. /*
  268. * If widebus is disabled:
  269. * For uncompressed stream, the data is valid for the entire active
  270. * window period.
  271. * For compressed stream, data is valid for a shorter time period
  272. * inside the active window depending on the compression ratio.
  273. *
  274. * If widebus is enabled:
  275. * For uncompressed stream, data is valid for only half the active
  276. * window, since the data rate is doubled in this mode.
  277. * p->width holds the adjusted width for DP but unadjusted width for DSI
  278. * For compressed stream, data validity window needs to be adjusted for
  279. * compression ratio and then further halved.
  280. */
  281. data_width = p->width;
  282. if (p->compression_en) {
  283. if (p->wide_bus_en)
  284. data_width = DIV_ROUND_UP(p->dce_bytes_per_line, 6);
  285. else
  286. data_width = DIV_ROUND_UP(p->dce_bytes_per_line, 3);
  287. } else if (!dp_intf && p->wide_bus_en) {
  288. data_width = p->width >> 1;
  289. } else {
  290. data_width = p->width;
  291. }
  292. hsync_data_start_x = hsync_start_x;
  293. hsync_data_end_x = hsync_start_x + data_width - 1;
  294. display_hctl = (hsync_end_x << 16) | hsync_start_x;
  295. display_data_hctl = (hsync_data_end_x << 16) | hsync_data_start_x;
  296. if (dp_intf) {
  297. // DP timing adjustment
  298. display_v_start += p->hsync_pulse_width + p->h_back_porch;
  299. display_v_end -= p->h_front_porch;
  300. }
  301. intf_cfg |= BIT(29); /* ACTIVE_H_ENABLE */
  302. intf_cfg |= BIT(30); /* ACTIVE_V_ENABLE */
  303. active_h_start = hsync_start_x;
  304. active_h_end = active_h_start + p->xres - 1;
  305. active_v_start = display_v_start;
  306. active_v_end = active_v_start + (p->yres * hsync_period) - 1;
  307. active_hctl = (active_h_end << 16) | active_h_start;
  308. if (dp_intf) {
  309. display_hctl = active_hctl;
  310. if (p->compression_en) {
  311. active_data_hctl = (hsync_start_x +
  312. p->extra_dto_cycles) << 16;
  313. active_data_hctl += hsync_start_x;
  314. display_data_hctl = active_data_hctl;
  315. }
  316. }
  317. _check_and_set_comp_bit(ctx, p->dsc_4hs_merge, p->compression_en,
  318. &intf_cfg2);
  319. den_polarity = 0;
  320. if (ctx->cap->type == INTF_HDMI) {
  321. hsync_polarity = p->yres >= 720 ? 0 : 1;
  322. vsync_polarity = p->yres >= 720 ? 0 : 1;
  323. } else if (ctx->cap->type == INTF_DP) {
  324. hsync_polarity = p->hsync_polarity;
  325. vsync_polarity = p->vsync_polarity;
  326. } else {
  327. hsync_polarity = 0;
  328. vsync_polarity = 0;
  329. }
  330. polarity_ctl = (den_polarity << 2) | /* DEN Polarity */
  331. (vsync_polarity << 1) | /* VSYNC Polarity */
  332. (hsync_polarity << 0); /* HSYNC Polarity */
  333. if (!SDE_FORMAT_IS_YUV(fmt))
  334. panel_format = (fmt->bits[C0_G_Y] |
  335. (fmt->bits[C1_B_Cb] << 2) |
  336. (fmt->bits[C2_R_Cr] << 4) |
  337. (0x21 << 8));
  338. else
  339. /* Interface treats all the pixel data in RGB888 format */
  340. panel_format = (COLOR_8BIT |
  341. (COLOR_8BIT << 2) |
  342. (COLOR_8BIT << 4) |
  343. (0x21 << 8));
  344. if (p->wide_bus_en)
  345. intf_cfg2 |= BIT(0);
  346. /* Synchronize timing engine enable to TE */
  347. if ((ctx->cap->features & BIT(SDE_INTF_TE_ALIGN_VSYNC))
  348. && p->poms_align_vsync)
  349. intf_cfg2 |= BIT(16);
  350. if (ctx->cfg.split_link_en)
  351. SDE_REG_WRITE(c, INTF_REG_SPLIT_LINK, 0x3);
  352. SDE_REG_WRITE(c, INTF_HSYNC_CTL, hsync_ctl);
  353. SDE_REG_WRITE(c, INTF_VSYNC_PERIOD_F0, vsync_period * hsync_period);
  354. SDE_REG_WRITE(c, INTF_VSYNC_PULSE_WIDTH_F0,
  355. p->vsync_pulse_width * hsync_period);
  356. SDE_REG_WRITE(c, INTF_DISPLAY_HCTL, display_hctl);
  357. SDE_REG_WRITE(c, INTF_DISPLAY_V_START_F0, display_v_start);
  358. SDE_REG_WRITE(c, INTF_DISPLAY_V_END_F0, display_v_end);
  359. SDE_REG_WRITE(c, INTF_ACTIVE_HCTL, active_hctl);
  360. SDE_REG_WRITE(c, INTF_ACTIVE_V_START_F0, active_v_start);
  361. SDE_REG_WRITE(c, INTF_ACTIVE_V_END_F0, active_v_end);
  362. SDE_REG_WRITE(c, INTF_BORDER_COLOR, p->border_clr);
  363. SDE_REG_WRITE(c, INTF_UNDERFLOW_COLOR, p->underflow_clr);
  364. SDE_REG_WRITE(c, INTF_HSYNC_SKEW, p->hsync_skew);
  365. SDE_REG_WRITE(c, INTF_POLARITY_CTL, polarity_ctl);
  366. SDE_REG_WRITE(c, INTF_FRAME_LINE_COUNT_EN, 0x3);
  367. SDE_REG_WRITE(c, INTF_CONFIG, intf_cfg);
  368. SDE_REG_WRITE(c, INTF_PANEL_FORMAT, panel_format);
  369. SDE_REG_WRITE(c, INTF_CONFIG2, intf_cfg2);
  370. SDE_REG_WRITE(c, INTF_DISPLAY_DATA_HCTL, display_data_hctl);
  371. SDE_REG_WRITE(c, INTF_ACTIVE_DATA_HCTL, active_data_hctl);
  372. }
  373. static void sde_hw_intf_enable_timing_engine(struct sde_hw_intf *intf, u8 enable)
  374. {
  375. struct sde_hw_blk_reg_map *c = &intf->hw;
  376. u32 val;
  377. /* Note: Display interface select is handled in top block hw layer */
  378. SDE_REG_WRITE(c, INTF_TIMING_ENGINE_EN, enable != 0);
  379. if (enable && (intf->cap->features
  380. & (BIT(SDE_INTF_PANEL_VSYNC_TS) | BIT(SDE_INTF_MDP_VSYNC_TS)))) {
  381. val = BIT(0);
  382. if (intf->cap->features & SDE_INTF_VSYNC_TS_SRC_EN)
  383. val |= BIT(4);
  384. SDE_REG_WRITE(c, INTF_VSYNC_TIMESTAMP_CTRL, val);
  385. }
  386. }
  387. static void sde_hw_intf_enable_te_level_trigger(struct sde_hw_intf *intf, bool enable)
  388. {
  389. struct sde_hw_blk_reg_map *c = &intf->hw;
  390. u32 intf_cfg = 0;
  391. intf_cfg = SDE_REG_READ(c, INTF_CONFIG);
  392. if (enable)
  393. intf_cfg |= BIT(22);
  394. else
  395. intf_cfg &= ~BIT(22);
  396. SDE_REG_WRITE(c, INTF_CONFIG, intf_cfg);
  397. }
  398. static void sde_hw_intf_setup_prg_fetch(
  399. struct sde_hw_intf *intf,
  400. const struct intf_prog_fetch *fetch)
  401. {
  402. struct sde_hw_blk_reg_map *c = &intf->hw;
  403. int fetch_enable;
  404. /*
  405. * Fetch should always be outside the active lines. If the fetching
  406. * is programmed within active region, hardware behavior is unknown.
  407. */
  408. fetch_enable = SDE_REG_READ(c, INTF_CONFIG);
  409. if (fetch->enable) {
  410. fetch_enable |= BIT(31);
  411. SDE_REG_WRITE(c, INTF_PROG_FETCH_START,
  412. fetch->fetch_start);
  413. } else {
  414. fetch_enable &= ~BIT(31);
  415. }
  416. SDE_REG_WRITE(c, INTF_CONFIG, fetch_enable);
  417. }
  418. static void sde_hw_intf_configure_wd_timer_jitter(struct sde_hw_intf *intf,
  419. struct intf_wd_jitter_params *wd_jitter)
  420. {
  421. struct sde_hw_blk_reg_map *c;
  422. u32 reg, jitter_ctl = 0;
  423. c = &intf->hw;
  424. /*
  425. * Load Jitter values with jitter feature disabled.
  426. */
  427. SDE_REG_WRITE(c, INTF_WD_TIMER_0_JITTER_CTL, 0x1);
  428. if (wd_jitter->jitter)
  429. jitter_ctl |= ((wd_jitter->jitter & 0x3FF) << 16);
  430. if (wd_jitter->ltj_max) {
  431. SDE_REG_WRITE(c, INTF_WD_TIMER_0_LTJ_MAX, wd_jitter->ltj_max);
  432. SDE_REG_WRITE(c, INTF_WD_TIMER_0_LTJ_SLOPE, wd_jitter->ltj_slope);
  433. }
  434. reg = SDE_REG_READ(c, INTF_WD_TIMER_0_JITTER_CTL);
  435. reg |= jitter_ctl;
  436. SDE_REG_WRITE(c, INTF_WD_TIMER_0_JITTER_CTL, reg);
  437. if (wd_jitter->jitter)
  438. reg |= BIT(31);
  439. if (wd_jitter->ltj_max)
  440. reg |= BIT(30);
  441. SDE_REG_WRITE(c, INTF_WD_TIMER_0_JITTER_CTL, reg);
  442. if (intf->cap->features & BIT(SDE_INTF_WD_LTJ_CTL)) {
  443. if (wd_jitter->ltj_step_dir && wd_jitter->ltj_initial_val) {
  444. reg = ((wd_jitter->ltj_step_dir & 0x1) << 31) |
  445. (wd_jitter->ltj_initial_val & 0x1FFFFF);
  446. SDE_REG_WRITE(c, INTF_WD_TIMER_0_LTJ_CTL, reg);
  447. wd_jitter->ltj_step_dir = 0;
  448. wd_jitter->ltj_initial_val = 0;
  449. }
  450. if (wd_jitter->ltj_fractional_val) {
  451. SDE_REG_WRITE(c, INTF_WD_TIMER_0_LTJ_CTL1, wd_jitter->ltj_fractional_val);
  452. wd_jitter->ltj_fractional_val = 0;
  453. }
  454. }
  455. }
  456. static void sde_hw_intf_read_wd_ltj_ctl(struct sde_hw_intf *intf,
  457. struct intf_wd_jitter_params *wd_jitter)
  458. {
  459. struct sde_hw_blk_reg_map *c;
  460. u32 reg;
  461. c = &intf->hw;
  462. if (intf->cap->features & BIT(SDE_INTF_WD_LTJ_CTL)) {
  463. reg = SDE_REG_READ(c, INTF_WD_TIMER_0_LTJ_INT_STATUS);
  464. wd_jitter->ltj_step_dir = reg & BIT(31);
  465. wd_jitter->ltj_initial_val = (reg & 0x1FFFFF);
  466. reg = SDE_REG_READ(c, INTF_WD_TIMER_0_LTJ_FRAC_STATUS);
  467. wd_jitter->ltj_fractional_val = (reg & 0xFFFF);
  468. }
  469. }
  470. static void sde_hw_intf_setup_vsync_source(struct sde_hw_intf *intf, u32 frame_rate)
  471. {
  472. struct sde_hw_blk_reg_map *c;
  473. u32 reg = 0;
  474. if (!intf)
  475. return;
  476. c = &intf->hw;
  477. reg = CALCULATE_WD_LOAD_VALUE(frame_rate);
  478. SDE_REG_WRITE(c, INTF_WD_TIMER_0_LOAD_VALUE, reg);
  479. SDE_REG_WRITE(c, INTF_WD_TIMER_0_CTL, BIT(0)); /* clear timer */
  480. reg = BIT(8); /* enable heartbeat timer */
  481. reg |= BIT(0); /* enable WD timer */
  482. reg |= BIT(1); /* select default 16 clock ticks */
  483. SDE_REG_WRITE(c, INTF_WD_TIMER_0_CTL2, reg);
  484. /* make sure that timers are enabled/disabled for vsync state */
  485. wmb();
  486. }
  487. static void sde_hw_intf_bind_pingpong_blk(
  488. struct sde_hw_intf *intf,
  489. bool enable,
  490. const enum sde_pingpong pp)
  491. {
  492. struct sde_hw_blk_reg_map *c;
  493. u32 mux_cfg;
  494. if (!intf)
  495. return;
  496. c = &intf->hw;
  497. if (enable) {
  498. mux_cfg = SDE_REG_READ(c, INTF_MUX);
  499. mux_cfg &= ~0x0f;
  500. mux_cfg |= (pp - PINGPONG_0) & 0x7;
  501. /* Splitlink case, pp0->sublink0, pp1->sublink1 */
  502. if (intf->cfg.split_link_en)
  503. mux_cfg = 0x10000;
  504. } else {
  505. mux_cfg = 0xf000f;
  506. }
  507. SDE_REG_WRITE(c, INTF_MUX, mux_cfg);
  508. }
  509. static u32 sde_hw_intf_get_frame_count(struct sde_hw_intf *intf)
  510. {
  511. struct sde_hw_blk_reg_map *c = &intf->hw;
  512. bool en;
  513. /*
  514. * MDP VSync Frame Count is enabled with programmable fetch
  515. * or with auto-refresh enabled.
  516. */
  517. en = (SDE_REG_READ(c, INTF_TEAR_AUTOREFRESH_CONFIG) & BIT(31)) |
  518. (SDE_REG_READ(c, INTF_CONFIG) & BIT(31));
  519. if (en && (intf->cap->features & BIT(SDE_INTF_MDP_VSYNC_FC)))
  520. return SDE_REG_READ(c, INTF_MDP_FRAME_COUNT);
  521. else
  522. return SDE_REG_READ(c, INTF_FRAME_COUNT);
  523. }
  524. static void sde_hw_intf_get_status(
  525. struct sde_hw_intf *intf,
  526. struct intf_status *s)
  527. {
  528. struct sde_hw_blk_reg_map *c = &intf->hw;
  529. s->is_en = SDE_REG_READ(c, INTF_TIMING_ENGINE_EN);
  530. if (s->is_en) {
  531. s->frame_count = SDE_REG_READ(c, INTF_FRAME_COUNT);
  532. s->line_count = SDE_REG_READ(c, INTF_LINE_COUNT) & 0xffff;
  533. } else {
  534. s->line_count = 0;
  535. s->frame_count = 0;
  536. }
  537. }
  538. static void sde_hw_intf_v1_get_status(
  539. struct sde_hw_intf *intf,
  540. struct intf_status *s)
  541. {
  542. struct sde_hw_blk_reg_map *c = &intf->hw;
  543. s->is_en = SDE_REG_READ(c, INTF_STATUS) & BIT(0);
  544. s->is_prog_fetch_en = (SDE_REG_READ(c, INTF_CONFIG) & BIT(31));
  545. if (s->is_en) {
  546. s->frame_count = sde_hw_intf_get_frame_count(intf);
  547. s->line_count = SDE_REG_READ(c, INTF_LINE_COUNT) & 0xffff;
  548. } else {
  549. s->line_count = 0;
  550. s->frame_count = 0;
  551. }
  552. }
  553. static void sde_hw_intf_setup_misr(struct sde_hw_intf *intf,
  554. bool enable, u32 frame_count)
  555. {
  556. struct sde_hw_blk_reg_map *c = &intf->hw;
  557. u32 config = 0;
  558. SDE_REG_WRITE(c, INTF_MISR_CTRL, MISR_CTRL_STATUS_CLEAR);
  559. /* clear misr data */
  560. wmb();
  561. if (enable)
  562. config = (frame_count & MISR_FRAME_COUNT_MASK) |
  563. MISR_CTRL_ENABLE |
  564. INTF_MISR_CTRL_FREE_RUN_MASK |
  565. INTF_MISR_CTRL_INPUT_SEL_DATA;
  566. SDE_REG_WRITE(c, INTF_MISR_CTRL, config);
  567. }
  568. static int sde_hw_intf_collect_misr(struct sde_hw_intf *intf, bool nonblock,
  569. u32 *misr_value)
  570. {
  571. struct sde_hw_blk_reg_map *c = &intf->hw;
  572. u32 ctrl = 0;
  573. int rc = 0;
  574. if (!misr_value)
  575. return -EINVAL;
  576. ctrl = SDE_REG_READ(c, INTF_MISR_CTRL);
  577. if (!nonblock) {
  578. if (ctrl & MISR_CTRL_ENABLE) {
  579. rc = read_poll_timeout(sde_reg_read, ctrl, (ctrl & MISR_CTRL_STATUS) > 0,
  580. 500, false, 84000, c, INTF_MISR_CTRL);
  581. if (rc)
  582. return rc;
  583. } else {
  584. return -EINVAL;
  585. }
  586. }
  587. *misr_value = SDE_REG_READ(c, INTF_MISR_SIGNATURE);
  588. return rc;
  589. }
  590. static u32 sde_hw_intf_get_line_count(struct sde_hw_intf *intf)
  591. {
  592. struct sde_hw_blk_reg_map *c;
  593. if (!intf)
  594. return 0;
  595. c = &intf->hw;
  596. return SDE_REG_READ(c, INTF_LINE_COUNT) & 0xffff;
  597. }
  598. static u32 sde_hw_intf_get_underrun_line_count(struct sde_hw_intf *intf)
  599. {
  600. struct sde_hw_blk_reg_map *c;
  601. u32 hsync_period;
  602. if (!intf)
  603. return 0;
  604. c = &intf->hw;
  605. hsync_period = SDE_REG_READ(c, INTF_HSYNC_CTL);
  606. hsync_period = ((hsync_period & 0xffff0000) >> 16);
  607. return hsync_period ?
  608. SDE_REG_READ(c, INTF_UNDERRUN_COUNT) / hsync_period :
  609. 0xebadebad;
  610. }
  611. static u32 sde_hw_intf_get_intr_status(struct sde_hw_intf *intf)
  612. {
  613. if (!intf)
  614. return -EINVAL;
  615. return SDE_REG_READ(&intf->hw, INTF_INTR_STATUS);
  616. }
  617. static int sde_hw_intf_setup_te_config(struct sde_hw_intf *intf,
  618. struct sde_hw_tear_check *te)
  619. {
  620. struct sde_hw_blk_reg_map *c;
  621. u32 cfg = 0, val;
  622. spinlock_t tearcheck_spinlock;
  623. if (!intf)
  624. return -EINVAL;
  625. spin_lock_init(&tearcheck_spinlock);
  626. c = &intf->hw;
  627. if (te->hw_vsync_mode)
  628. cfg |= BIT(20);
  629. cfg |= te->vsync_count;
  630. /*
  631. * Local spinlock is acquired here to avoid pre-emption
  632. * as below register programming should be completed in
  633. * less than 2^16 vsync clk cycles.
  634. */
  635. spin_lock(&tearcheck_spinlock);
  636. val = te->start_pos + te->sync_threshold_start + 1;
  637. if (intf->cap->features & BIT(SDE_INTF_TE_32BIT))
  638. SDE_REG_WRITE(c, INTF_TEAR_SYNC_WRCOUNT_EXT, (val >> 16));
  639. SDE_REG_WRITE(c, INTF_TEAR_SYNC_WRCOUNT, (val & 0xffff));
  640. SDE_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_VSYNC, cfg);
  641. wmb(); /* disable vsync counter before updating single buffer registers */
  642. SDE_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_HEIGHT, te->sync_cfg_height);
  643. SDE_REG_WRITE(c, INTF_TEAR_VSYNC_INIT_VAL, te->vsync_init_val);
  644. SDE_REG_WRITE(c, INTF_TEAR_RD_PTR_IRQ, te->rd_ptr_irq);
  645. SDE_REG_WRITE(c, INTF_TEAR_WR_PTR_IRQ, te->wr_ptr_irq);
  646. SDE_REG_WRITE(c, INTF_TEAR_START_POS, te->start_pos);
  647. if (intf->cap->features & BIT(SDE_INTF_TE_32BIT))
  648. SDE_REG_WRITE(c, INTF_TEAR_SYNC_THRESH_EXT,
  649. ((te->sync_threshold_continue & 0xffff0000) |
  650. (te->sync_threshold_start >> 16)));
  651. SDE_REG_WRITE(c, INTF_TEAR_SYNC_THRESH,
  652. ((te->sync_threshold_continue << 16) |
  653. (te->sync_threshold_start & 0xffff)));
  654. cfg |= BIT(19); /* VSYNC_COUNTER_EN */
  655. SDE_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_VSYNC, cfg);
  656. spin_unlock(&tearcheck_spinlock);
  657. return 0;
  658. }
  659. static int sde_hw_intf_setup_autorefresh_config(struct sde_hw_intf *intf,
  660. struct sde_hw_autorefresh *cfg)
  661. {
  662. struct sde_hw_blk_reg_map *c;
  663. u32 refresh_cfg;
  664. if (!intf || !cfg)
  665. return -EINVAL;
  666. c = &intf->hw;
  667. refresh_cfg = SDE_REG_READ(c, INTF_TEAR_AUTOREFRESH_CONFIG);
  668. if (cfg->enable)
  669. refresh_cfg = BIT(31) | cfg->frame_count;
  670. else
  671. refresh_cfg &= ~BIT(31);
  672. SDE_REG_WRITE(c, INTF_TEAR_AUTOREFRESH_CONFIG, refresh_cfg);
  673. return 0;
  674. }
  675. static int sde_hw_intf_get_autorefresh_config(struct sde_hw_intf *intf,
  676. struct sde_hw_autorefresh *cfg)
  677. {
  678. struct sde_hw_blk_reg_map *c;
  679. u32 val;
  680. if (!intf || !cfg)
  681. return -EINVAL;
  682. c = &intf->hw;
  683. val = SDE_REG_READ(c, INTF_TEAR_AUTOREFRESH_CONFIG);
  684. cfg->enable = (val & BIT(31)) >> 31;
  685. cfg->frame_count = val & 0xffff;
  686. return 0;
  687. }
  688. static int sde_hw_intf_poll_timeout_wr_ptr(struct sde_hw_intf *intf,
  689. u32 timeout_us)
  690. {
  691. struct sde_hw_blk_reg_map *c;
  692. u32 val, mask = 0;
  693. if (!intf)
  694. return -EINVAL;
  695. if (intf->cap->features & BIT(SDE_INTF_TE_32BIT))
  696. mask = 0xffffffff;
  697. else
  698. mask = 0xffff;
  699. c = &intf->hw;
  700. return read_poll_timeout(sde_reg_read, val, (val & mask) >= 1, 10, false, timeout_us,
  701. c, INTF_TEAR_LINE_COUNT);
  702. }
  703. static int sde_hw_intf_enable_te(struct sde_hw_intf *intf, bool enable)
  704. {
  705. struct sde_hw_blk_reg_map *c;
  706. uint32_t val = 0;
  707. if (!intf)
  708. return -EINVAL;
  709. c = &intf->hw;
  710. if (enable)
  711. val |= BIT(0);
  712. if (intf->cap->features & BIT(SDE_INTF_TE_SINGLE_UPDATE))
  713. val |= BIT(3);
  714. SDE_REG_WRITE(c, INTF_TEAR_TEAR_CHECK_EN, val);
  715. if (enable && (intf->cap->features &
  716. (BIT(SDE_INTF_PANEL_VSYNC_TS) | BIT(SDE_INTF_MDP_VSYNC_TS)))) {
  717. val = BIT(0);
  718. if (intf->cap->features & SDE_INTF_VSYNC_TS_SRC_EN)
  719. val |= BIT(5);
  720. SDE_REG_WRITE(c, INTF_VSYNC_TIMESTAMP_CTRL, val);
  721. }
  722. return 0;
  723. }
  724. static void sde_hw_intf_update_te(struct sde_hw_intf *intf,
  725. struct sde_hw_tear_check *te)
  726. {
  727. struct sde_hw_blk_reg_map *c;
  728. int cfg;
  729. if (!intf || !te)
  730. return;
  731. c = &intf->hw;
  732. cfg = SDE_REG_READ(c, INTF_TEAR_SYNC_THRESH);
  733. cfg &= ~0xFFFF;
  734. cfg |= te->sync_threshold_start;
  735. SDE_REG_WRITE(c, INTF_TEAR_SYNC_THRESH, cfg);
  736. SDE_REG_WRITE(c, INTF_TEAR_START_POS, te->start_pos);
  737. }
  738. static int sde_hw_intf_connect_external_te(struct sde_hw_intf *intf,
  739. bool enable_external_te)
  740. {
  741. struct sde_hw_blk_reg_map *c = &intf->hw;
  742. u32 cfg;
  743. int orig;
  744. if (!intf)
  745. return -EINVAL;
  746. c = &intf->hw;
  747. cfg = SDE_REG_READ(c, INTF_TEAR_SYNC_CONFIG_VSYNC);
  748. orig = (bool)(cfg & BIT(20));
  749. if (enable_external_te)
  750. cfg |= BIT(20);
  751. else
  752. cfg &= ~BIT(20);
  753. SDE_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_VSYNC, cfg);
  754. return orig;
  755. }
  756. static int sde_hw_intf_get_vsync_info(struct sde_hw_intf *intf,
  757. struct sde_hw_pp_vsync_info *info)
  758. {
  759. struct sde_hw_blk_reg_map *c = &intf->hw;
  760. u32 val;
  761. if (!intf || !info)
  762. return -EINVAL;
  763. c = &intf->hw;
  764. val = SDE_REG_READ(c, INTF_TEAR_VSYNC_INIT_VAL);
  765. if (intf->cap->features & BIT(SDE_INTF_TE_32BIT))
  766. info->rd_ptr_init_val = val;
  767. else
  768. info->rd_ptr_init_val = val & 0xffff;
  769. val = SDE_REG_READ(c, INTF_TEAR_INT_COUNT_VAL);
  770. info->rd_ptr_frame_count = (val & 0xffff0000) >> 16;
  771. info->rd_ptr_line_count = val & 0xffff;
  772. if (intf->cap->features & BIT(SDE_INTF_TE_32BIT)) {
  773. val = SDE_REG_READ(c, INTF_TEAR_INT_COUNT_VAL_EXT);
  774. info->rd_ptr_line_count |= (val << 16);
  775. }
  776. val = SDE_REG_READ(c, INTF_TEAR_LINE_COUNT);
  777. info->wr_ptr_line_count = val;
  778. val = sde_hw_intf_get_frame_count(intf);
  779. info->intf_frame_count = val;
  780. return 0;
  781. }
  782. static int sde_hw_intf_v1_check_and_reset_tearcheck(struct sde_hw_intf *intf,
  783. struct intf_tear_status *status)
  784. {
  785. struct sde_hw_blk_reg_map *c = &intf->hw;
  786. u32 start_pos, val;
  787. if (!intf || !status)
  788. return -EINVAL;
  789. c = &intf->hw;
  790. status->read_line_count = SDE_REG_READ(c, INTF_TEAR_INT_COUNT_VAL);
  791. if (intf->cap->features & BIT(SDE_INTF_TE_32BIT))
  792. status->read_line_count |= (SDE_REG_READ(c, INTF_TEAR_INT_COUNT_VAL_EXT) << 16);
  793. start_pos = SDE_REG_READ(c, INTF_TEAR_START_POS);
  794. val = SDE_REG_READ(c, INTF_TEAR_SYNC_WRCOUNT);
  795. status->write_frame_count = val >> 16;
  796. status->write_line_count = start_pos;
  797. if (intf->cap->features & BIT(SDE_INTF_TE_32BIT)) {
  798. val = (status->write_line_count & 0xffff0000) >> 16;
  799. SDE_REG_WRITE(c, INTF_TEAR_SYNC_WRCOUNT_EXT, val);
  800. }
  801. val = (status->write_frame_count << 16) | (status->write_line_count & 0xffff);
  802. SDE_REG_WRITE(c, INTF_TEAR_SYNC_WRCOUNT, val);
  803. return 0;
  804. }
  805. static void sde_hw_intf_override_tear_rd_ptr_val(struct sde_hw_intf *intf,
  806. u32 adjusted_rd_ptr_val)
  807. {
  808. struct sde_hw_blk_reg_map *c;
  809. if (!intf || !adjusted_rd_ptr_val)
  810. return;
  811. c = &intf->hw;
  812. SDE_REG_WRITE(c, INTF_TEAR_SYNC_WRCOUNT, (adjusted_rd_ptr_val & 0xFFFF));
  813. /* ensure rd_ptr_val is written */
  814. wmb();
  815. }
  816. static void sde_hw_intf_vsync_sel(struct sde_hw_intf *intf,
  817. u32 vsync_source)
  818. {
  819. struct sde_hw_blk_reg_map *c;
  820. if (!intf)
  821. return;
  822. c = &intf->hw;
  823. SDE_REG_WRITE(c, INTF_TEAR_MDP_VSYNC_SEL, (vsync_source & 0xf));
  824. }
  825. static void sde_hw_intf_enable_compressed_input(struct sde_hw_intf *intf,
  826. bool compression_en, bool dsc_4hs_merge)
  827. {
  828. struct sde_hw_blk_reg_map *c;
  829. u32 intf_cfg2;
  830. if (!intf)
  831. return;
  832. /*
  833. * callers can either call this function to enable/disable the 64 bit
  834. * compressed input or this configuration can be applied along
  835. * with timing generation parameters
  836. */
  837. c = &intf->hw;
  838. intf_cfg2 = SDE_REG_READ(c, INTF_CONFIG2);
  839. _check_and_set_comp_bit(intf, dsc_4hs_merge, compression_en,
  840. &intf_cfg2);
  841. SDE_REG_WRITE(c, INTF_CONFIG2, intf_cfg2);
  842. }
  843. static void sde_hw_intf_enable_wide_bus(struct sde_hw_intf *intf,
  844. bool enable)
  845. {
  846. struct sde_hw_blk_reg_map *c;
  847. u32 intf_cfg2;
  848. if (!intf)
  849. return;
  850. c = &intf->hw;
  851. intf_cfg2 = SDE_REG_READ(c, INTF_CONFIG2);
  852. intf_cfg2 &= ~BIT(0);
  853. intf_cfg2 |= enable ? BIT(0) : 0;
  854. SDE_REG_WRITE(c, INTF_CONFIG2, intf_cfg2);
  855. }
  856. static bool sde_hw_intf_is_te_32bit_supported(struct sde_hw_intf *intf)
  857. {
  858. return (intf->cap->features & BIT(SDE_INTF_TE_32BIT));
  859. }
  860. static void _setup_intf_ops(struct sde_hw_intf_ops *ops,
  861. unsigned long cap)
  862. {
  863. ops->setup_timing_gen = sde_hw_intf_setup_timing_engine;
  864. ops->setup_prg_fetch = sde_hw_intf_setup_prg_fetch;
  865. ops->enable_timing = sde_hw_intf_enable_timing_engine;
  866. ops->setup_misr = sde_hw_intf_setup_misr;
  867. ops->collect_misr = sde_hw_intf_collect_misr;
  868. ops->get_line_count = sde_hw_intf_get_line_count;
  869. ops->get_underrun_line_count = sde_hw_intf_get_underrun_line_count;
  870. ops->get_intr_status = sde_hw_intf_get_intr_status;
  871. ops->avr_setup = sde_hw_intf_avr_setup;
  872. ops->avr_trigger = sde_hw_intf_avr_trigger;
  873. ops->avr_ctrl = sde_hw_intf_avr_ctrl;
  874. ops->enable_compressed_input = sde_hw_intf_enable_compressed_input;
  875. ops->enable_wide_bus = sde_hw_intf_enable_wide_bus;
  876. ops->is_te_32bit_supported = sde_hw_intf_is_te_32bit_supported;
  877. if (cap & BIT(SDE_INTF_STATUS))
  878. ops->get_status = sde_hw_intf_v1_get_status;
  879. else
  880. ops->get_status = sde_hw_intf_get_status;
  881. if (cap & BIT(SDE_INTF_INPUT_CTRL))
  882. ops->bind_pingpong_blk = sde_hw_intf_bind_pingpong_blk;
  883. if (cap & BIT(SDE_INTF_WD_TIMER))
  884. ops->setup_vsync_source = sde_hw_intf_setup_vsync_source;
  885. if (cap & BIT(SDE_INTF_AVR_STATUS))
  886. ops->get_avr_status = sde_hw_intf_get_avr_status;
  887. if (cap & BIT(SDE_INTF_TE)) {
  888. ops->setup_tearcheck = sde_hw_intf_setup_te_config;
  889. ops->enable_tearcheck = sde_hw_intf_enable_te;
  890. ops->update_tearcheck = sde_hw_intf_update_te;
  891. ops->connect_external_te = sde_hw_intf_connect_external_te;
  892. ops->get_vsync_info = sde_hw_intf_get_vsync_info;
  893. ops->setup_autorefresh = sde_hw_intf_setup_autorefresh_config;
  894. ops->get_autorefresh = sde_hw_intf_get_autorefresh_config;
  895. ops->poll_timeout_wr_ptr = sde_hw_intf_poll_timeout_wr_ptr;
  896. ops->vsync_sel = sde_hw_intf_vsync_sel;
  897. ops->check_and_reset_tearcheck = sde_hw_intf_v1_check_and_reset_tearcheck;
  898. ops->override_tear_rd_ptr_val = sde_hw_intf_override_tear_rd_ptr_val;
  899. if (cap & BIT(SDE_INTF_TE_LEVEL_TRIGGER))
  900. ops->enable_te_level_trigger = sde_hw_intf_enable_te_level_trigger;
  901. }
  902. if (cap & BIT(SDE_INTF_RESET_COUNTER))
  903. ops->reset_counter = sde_hw_intf_reset_counter;
  904. if (cap & (BIT(SDE_INTF_PANEL_VSYNC_TS) | BIT(SDE_INTF_MDP_VSYNC_TS)))
  905. ops->get_vsync_timestamp = sde_hw_intf_get_vsync_timestamp;
  906. if (cap & BIT(SDE_INTF_WD_JITTER))
  907. ops->configure_wd_jitter = sde_hw_intf_configure_wd_timer_jitter;
  908. if (cap & BIT(SDE_INTF_WD_LTJ_CTL))
  909. ops->get_wd_ltj_status = sde_hw_intf_read_wd_ltj_ctl;
  910. }
  911. struct sde_hw_blk_reg_map *sde_hw_intf_init(enum sde_intf idx,
  912. void __iomem *addr,
  913. struct sde_mdss_cfg *m)
  914. {
  915. struct sde_hw_intf *c;
  916. struct sde_intf_cfg *cfg;
  917. c = kzalloc(sizeof(*c), GFP_KERNEL);
  918. if (!c)
  919. return ERR_PTR(-ENOMEM);
  920. cfg = _intf_offset(idx, m, addr, &c->hw);
  921. if (IS_ERR_OR_NULL(cfg)) {
  922. kfree(c);
  923. pr_err("failed to create sde_hw_intf %d\n", idx);
  924. return ERR_PTR(-EINVAL);
  925. }
  926. /*
  927. * Assign ops
  928. */
  929. c->idx = idx;
  930. c->cap = cfg;
  931. c->mdss = m;
  932. _setup_intf_ops(&c->ops, c->cap->features);
  933. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name, c->hw.blk_off,
  934. c->hw.blk_off + c->hw.length, c->hw.xin_id);
  935. return &c->hw;
  936. }
  937. void sde_hw_intf_destroy(struct sde_hw_blk_reg_map *hw)
  938. {
  939. if (hw)
  940. kfree(to_sde_hw_intf(hw));
  941. }