msm_cvp_buf.c 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/pid.h>
  6. #include <linux/fdtable.h>
  7. #include <linux/rcupdate.h>
  8. #include <linux/fs.h>
  9. #include <linux/dma-buf.h>
  10. #include <linux/sched/task.h>
  11. #include <linux/version.h>
  12. #include "msm_cvp_common.h"
  13. #include "cvp_hfi_api.h"
  14. #include "msm_cvp_debug.h"
  15. #include "msm_cvp_core.h"
  16. #include "msm_cvp_dsp.h"
  17. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 16, 0))
  18. #define eva_buf_map dma_buf_map
  19. #define _buf_map_set_vaddr dma_buf_map_set_vaddr
  20. #else
  21. #define eva_buf_map iosys_map
  22. #define _buf_map_set_vaddr iosys_map_set_vaddr
  23. #endif
  24. #define CLEAR_USE_BITMAP(idx, inst) \
  25. do { \
  26. clear_bit(idx, &inst->dma_cache.usage_bitmap); \
  27. dprintk(CVP_MEM, "clear %x bit %d dma_cache bitmap 0x%llx\n", \
  28. hash32_ptr(inst->session), smem->bitmap_index, \
  29. inst->dma_cache.usage_bitmap); \
  30. } while (0)
  31. #define SET_USE_BITMAP(idx, inst) \
  32. do { \
  33. set_bit(idx, &inst->dma_cache.usage_bitmap); \
  34. dprintk(CVP_MEM, "Set %x bit %d dma_cache bitmap 0x%llx\n", \
  35. hash32_ptr(inst->session), idx, \
  36. inst->dma_cache.usage_bitmap); \
  37. } while (0)
  38. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst);
  39. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  40. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata);
  41. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log);
  42. int print_smem(u32 tag, const char *str, struct msm_cvp_inst *inst,
  43. struct msm_cvp_smem *smem)
  44. {
  45. int i;
  46. char name[PKT_NAME_LEN] = "Unknown";
  47. if (!(tag & msm_cvp_debug))
  48. return 0;
  49. if (!inst || !smem) {
  50. dprintk(CVP_ERR, "Invalid inst 0x%llx or smem 0x%llx\n",
  51. inst, smem);
  52. return -EINVAL;
  53. }
  54. if (smem->dma_buf) {
  55. i = get_pkt_index_from_type(smem->pkt_type);
  56. if (i > 0)
  57. strlcpy(name, cvp_hfi_defs[i].name, PKT_NAME_LEN);
  58. if (!atomic_read(&smem->refcount))
  59. dprintk(tag,
  60. " UNUSED mapping %s: 0x%llx %s size %d iova %#x idx %d pkt_type %s buf_idx %#x fd %d",
  61. str, smem->dma_buf, smem->dma_buf->name,
  62. smem->size, smem->device_addr, smem->bitmap_index, name, smem->buf_idx, smem->fd);
  63. else
  64. dprintk(tag,
  65. "%s: %x : 0x%llx %s size %d flags %#x iova %#x idx %d ref %d pkt_type %s buf_idx %#x fd %d",
  66. str, hash32_ptr(inst->session), smem->dma_buf, smem->dma_buf->name,
  67. smem->size, smem->flags, smem->device_addr,
  68. smem->bitmap_index, atomic_read(&smem->refcount),
  69. name, smem->buf_idx, smem->fd);
  70. }
  71. return 0;
  72. }
  73. static void print_internal_buffer(u32 tag, const char *str,
  74. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf)
  75. {
  76. if (!(tag & msm_cvp_debug) || !inst || !cbuf)
  77. return;
  78. if (cbuf->smem->dma_buf) {
  79. dprintk(tag,
  80. "%s: %x : fd %d off %d 0x%llx %s size %d iova %#x",
  81. str, hash32_ptr(inst->session), cbuf->fd,
  82. cbuf->offset, cbuf->smem->dma_buf, cbuf->smem->dma_buf->name,
  83. cbuf->size, cbuf->smem->device_addr);
  84. } else {
  85. dprintk(tag,
  86. "%s: %x : idx %2d fd %d off %d size %d iova %#x",
  87. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  88. cbuf->offset, cbuf->size, cbuf->smem->device_addr);
  89. }
  90. }
  91. void print_cvp_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst,
  92. struct cvp_internal_buf *cbuf)
  93. {
  94. if (!inst || !cbuf) {
  95. dprintk(CVP_ERR,
  96. "%s Invalid params inst %pK, cbuf %pK\n",
  97. str, inst, cbuf);
  98. return;
  99. }
  100. print_smem(tag, str, inst, cbuf->smem);
  101. }
  102. static void _log_smem(struct inst_snapshot *snapshot, struct msm_cvp_inst *inst,
  103. struct msm_cvp_smem *smem, bool logging)
  104. {
  105. if (print_smem(CVP_ERR, "bufdump", inst, smem))
  106. return;
  107. if (!logging || !snapshot)
  108. return;
  109. if (snapshot && snapshot->smem_index < MAX_ENTRIES) {
  110. struct smem_data *s;
  111. s = &snapshot->smem_log[snapshot->smem_index];
  112. snapshot->smem_index++;
  113. s->size = smem->size;
  114. s->flags = smem->flags;
  115. s->device_addr = smem->device_addr;
  116. s->bitmap_index = smem->bitmap_index;
  117. s->refcount = atomic_read(&smem->refcount);
  118. s->pkt_type = smem->pkt_type;
  119. s->buf_idx = smem->buf_idx;
  120. }
  121. }
  122. static void _log_buf(struct inst_snapshot *snapshot, enum smem_prop prop,
  123. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf,
  124. bool logging)
  125. {
  126. struct cvp_buf_data *buf = NULL;
  127. u32 index;
  128. print_cvp_buffer(CVP_ERR, "bufdump", inst, cbuf);
  129. if (!logging)
  130. return;
  131. if (snapshot) {
  132. if (prop == SMEM_ADSP && snapshot->dsp_index < MAX_ENTRIES) {
  133. index = snapshot->dsp_index;
  134. buf = &snapshot->dsp_buf_log[index];
  135. snapshot->dsp_index++;
  136. } else if (prop == SMEM_PERSIST &&
  137. snapshot->persist_index < MAX_ENTRIES) {
  138. index = snapshot->persist_index;
  139. buf = &snapshot->persist_buf_log[index];
  140. snapshot->persist_index++;
  141. }
  142. if (buf) {
  143. buf->device_addr = cbuf->smem->device_addr;
  144. buf->size = cbuf->size;
  145. }
  146. }
  147. }
  148. void print_client_buffer(u32 tag, const char *str,
  149. struct msm_cvp_inst *inst, struct eva_kmd_buffer *cbuf)
  150. {
  151. if (!(tag & msm_cvp_debug) || !str || !inst || !cbuf)
  152. return;
  153. dprintk(tag,
  154. "%s: %x : idx %2d fd %d off %d size %d type %d flags 0x%x"
  155. " reserved[0] %u\n",
  156. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  157. cbuf->offset, cbuf->size, cbuf->type, cbuf->flags,
  158. cbuf->reserved[0]);
  159. }
  160. static bool __is_buf_valid(struct msm_cvp_inst *inst,
  161. struct eva_kmd_buffer *buf)
  162. {
  163. struct cvp_hal_session *session;
  164. struct cvp_internal_buf *cbuf = NULL;
  165. bool found = false;
  166. if (!inst || !inst->core || !buf) {
  167. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  168. return false;
  169. }
  170. if (buf->fd < 0) {
  171. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  172. return false;
  173. }
  174. if (buf->offset) {
  175. dprintk(CVP_ERR,
  176. "%s: offset is deprecated, set to 0.\n",
  177. __func__);
  178. return false;
  179. }
  180. session = (struct cvp_hal_session *)inst->session;
  181. mutex_lock(&inst->cvpdspbufs.lock);
  182. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  183. if (cbuf->fd == buf->fd) {
  184. if (cbuf->size != buf->size) {
  185. dprintk(CVP_ERR, "%s: buf size mismatch\n",
  186. __func__);
  187. mutex_unlock(&inst->cvpdspbufs.lock);
  188. return false;
  189. }
  190. found = true;
  191. break;
  192. }
  193. }
  194. mutex_unlock(&inst->cvpdspbufs.lock);
  195. if (found) {
  196. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  197. return false;
  198. }
  199. return true;
  200. }
  201. static struct file *msm_cvp_fget(unsigned int fd, struct task_struct *task,
  202. fmode_t mask, unsigned int refs)
  203. {
  204. struct files_struct *files = task->files;
  205. struct file *file;
  206. if (!files)
  207. return NULL;
  208. rcu_read_lock();
  209. loop:
  210. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0))
  211. file = fcheck_files(files, fd);
  212. #else
  213. file = files_lookup_fd_rcu(files, fd);
  214. #endif
  215. if (file) {
  216. /* File object ref couldn't be taken.
  217. * dup2() atomicity guarantee is the reason
  218. * we loop to catch the new file (or NULL pointer)
  219. */
  220. if (file->f_mode & mask)
  221. file = NULL;
  222. else if (!get_file_rcu(file))
  223. goto loop;
  224. }
  225. rcu_read_unlock();
  226. return file;
  227. }
  228. static struct dma_buf *cvp_dma_buf_get(struct file *file, int fd,
  229. struct task_struct *task)
  230. {
  231. if (file->f_op != gfa_cv.dmabuf_f_op) {
  232. dprintk(CVP_WARN, "fd doesn't refer to dma_buf\n");
  233. return ERR_PTR(-EINVAL);
  234. }
  235. return file->private_data;
  236. }
  237. int msm_cvp_map_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  238. {
  239. int rc = 0;
  240. struct cvp_internal_buf *cbuf = NULL;
  241. struct msm_cvp_smem *smem = NULL;
  242. struct dma_buf *dma_buf = NULL;
  243. struct file *file;
  244. if (!__is_buf_valid(inst, buf))
  245. return -EINVAL;
  246. if (!inst->task)
  247. return -EINVAL;
  248. file = msm_cvp_fget(buf->fd, inst->task, FMODE_PATH, 1);
  249. if (file == NULL) {
  250. dprintk(CVP_WARN, "%s fail to get file from fd\n", __func__);
  251. return -EINVAL;
  252. }
  253. dma_buf = cvp_dma_buf_get(
  254. file,
  255. buf->fd,
  256. inst->task);
  257. if (dma_buf == ERR_PTR(-EINVAL)) {
  258. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  259. rc = -EINVAL;
  260. goto exit;
  261. }
  262. dprintk(CVP_MEM, "dma_buf from internal %llu\n", dma_buf);
  263. cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  264. if (!cbuf) {
  265. rc = -ENOMEM;
  266. goto exit;
  267. }
  268. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  269. if (!smem) {
  270. rc = -ENOMEM;
  271. goto exit;
  272. }
  273. smem->dma_buf = dma_buf;
  274. smem->bitmap_index = MAX_DMABUF_NUMS;
  275. smem->pkt_type = 0;
  276. smem->buf_idx = 0;
  277. smem->fd = buf->fd;
  278. dprintk(CVP_MEM, "%s: dma_buf = %llx\n", __func__, dma_buf);
  279. rc = msm_cvp_map_smem(inst, smem, "map dsp");
  280. if (rc) {
  281. print_client_buffer(CVP_ERR, "map failed", inst, buf);
  282. goto exit;
  283. }
  284. cbuf->smem = smem;
  285. cbuf->fd = buf->fd;
  286. cbuf->size = buf->size;
  287. cbuf->offset = buf->offset;
  288. cbuf->ownership = CLIENT;
  289. cbuf->index = buf->index;
  290. buf->reserved[0] = (uint32_t)smem->device_addr;
  291. mutex_lock(&inst->cvpdspbufs.lock);
  292. list_add_tail(&cbuf->list, &inst->cvpdspbufs.list);
  293. mutex_unlock(&inst->cvpdspbufs.lock);
  294. return rc;
  295. exit:
  296. fput(file);
  297. if (smem) {
  298. if (smem->device_addr)
  299. msm_cvp_unmap_smem(inst, smem, "unmap dsp");
  300. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  301. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  302. }
  303. if (cbuf)
  304. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  305. return rc;
  306. }
  307. int msm_cvp_unmap_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  308. {
  309. int rc = 0;
  310. bool found;
  311. struct cvp_internal_buf *cbuf;
  312. struct cvp_hal_session *session;
  313. if (!inst || !inst->core || !buf) {
  314. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  315. return -EINVAL;
  316. }
  317. session = (struct cvp_hal_session *)inst->session;
  318. if (!session) {
  319. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  320. return -EINVAL;
  321. }
  322. mutex_lock(&inst->cvpdspbufs.lock);
  323. found = false;
  324. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  325. if (cbuf->fd == buf->fd) {
  326. found = true;
  327. break;
  328. }
  329. }
  330. mutex_unlock(&inst->cvpdspbufs.lock);
  331. if (!found) {
  332. print_client_buffer(CVP_ERR, "invalid", inst, buf);
  333. return -EINVAL;
  334. }
  335. if (cbuf->smem->device_addr) {
  336. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  337. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  338. }
  339. mutex_lock(&inst->cvpdspbufs.lock);
  340. list_del(&cbuf->list);
  341. mutex_unlock(&inst->cvpdspbufs.lock);
  342. cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem);
  343. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  344. return rc;
  345. }
  346. int msm_cvp_map_buf_wncc(struct msm_cvp_inst *inst,
  347. struct eva_kmd_buffer *buf)
  348. {
  349. int rc = 0, i;
  350. bool found = false;
  351. struct cvp_internal_buf* cbuf;
  352. struct msm_cvp_smem* smem = NULL;
  353. struct dma_buf* dma_buf = NULL;
  354. if (!inst || !inst->core || !buf) {
  355. dprintk(CVP_ERR, "%s: invalid params", __func__);
  356. return -EINVAL;
  357. }
  358. if (!inst->session) {
  359. dprintk(CVP_ERR, "%s: invalid session", __func__);
  360. return -EINVAL;
  361. }
  362. if (buf->index) {
  363. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  364. __func__, buf->fd);
  365. return -EINVAL;
  366. }
  367. if (buf->fd < 0) {
  368. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  369. return -EINVAL;
  370. }
  371. if (buf->offset) {
  372. dprintk(CVP_ERR, "%s: offset is not supported, set to 0.",
  373. __func__);
  374. return -EINVAL;
  375. }
  376. mutex_lock(&inst->cvpwnccbufs.lock);
  377. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  378. if (cbuf->fd == buf->fd) {
  379. if (cbuf->size != buf->size) {
  380. dprintk(CVP_ERR, "%s: buf size mismatch",
  381. __func__);
  382. mutex_unlock(&inst->cvpwnccbufs.lock);
  383. return -EINVAL;
  384. }
  385. found = true;
  386. break;
  387. }
  388. }
  389. mutex_unlock(&inst->cvpwnccbufs.lock);
  390. if (found) {
  391. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  392. return -EINVAL;
  393. }
  394. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  395. if (!dma_buf) {
  396. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  397. return -EINVAL;
  398. }
  399. cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  400. if (!cbuf) {
  401. msm_cvp_smem_put_dma_buf(dma_buf);
  402. return -ENOMEM;
  403. }
  404. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  405. if (!smem) {
  406. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  407. msm_cvp_smem_put_dma_buf(dma_buf);
  408. return -ENOMEM;
  409. }
  410. smem->dma_buf = dma_buf;
  411. smem->bitmap_index = MAX_DMABUF_NUMS;
  412. smem->pkt_type = 0;
  413. smem->buf_idx = 0;
  414. smem->fd = buf->fd;
  415. dprintk(CVP_MEM, "%s: dma_buf = %llx", __func__, dma_buf);
  416. rc = msm_cvp_map_smem(inst, smem, "map wncc");
  417. if (rc) {
  418. dprintk(CVP_ERR, "%s: map failed", __func__);
  419. print_client_buffer(CVP_ERR, __func__, inst, buf);
  420. goto exit;
  421. }
  422. cbuf->smem = smem;
  423. cbuf->fd = buf->fd;
  424. cbuf->size = buf->size;
  425. cbuf->offset = buf->offset;
  426. cbuf->ownership = CLIENT;
  427. cbuf->index = buf->index;
  428. /* Added for PreSil/RUMI testing */
  429. #ifdef USE_PRESIL
  430. dprintk(CVP_DBG,
  431. "wncc buffer is %x for cam_presil_send_buffer"
  432. " with MAP_ADDR_OFFSET %x",
  433. (u64)(smem->device_addr) - MAP_ADDR_OFFSET, MAP_ADDR_OFFSET);
  434. cam_presil_send_buffer((u64)smem->dma_buf, 0,
  435. (u32)cbuf->offset, (u32)cbuf->size,
  436. (u64)(smem->device_addr) - MAP_ADDR_OFFSET);
  437. #endif
  438. mutex_lock(&inst->cvpwnccbufs.lock);
  439. if (inst->cvpwnccbufs_table == NULL) {
  440. inst->cvpwnccbufs_table =
  441. (struct msm_cvp_wncc_buffer*) kzalloc(
  442. sizeof(struct msm_cvp_wncc_buffer) *
  443. EVA_KMD_WNCC_MAX_SRC_BUFS,
  444. GFP_KERNEL);
  445. if (!inst->cvpwnccbufs_table) {
  446. mutex_unlock(&inst->cvpwnccbufs.lock);
  447. goto exit;
  448. }
  449. }
  450. list_add_tail(&cbuf->list, &inst->cvpwnccbufs.list);
  451. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS; i++)
  452. {
  453. if (inst->cvpwnccbufs_table[i].iova == 0)
  454. {
  455. inst->cvpwnccbufs_num++;
  456. inst->cvpwnccbufs_table[i].fd = buf->fd;
  457. inst->cvpwnccbufs_table[i].iova = smem->device_addr;
  458. inst->cvpwnccbufs_table[i].size = smem->size;
  459. /* buf reserved[0] used to store wncc src buf id */
  460. buf->reserved[0] = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  461. /* cbuf ktid used to store wncc src buf id */
  462. cbuf->ktid = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  463. dprintk(CVP_MEM, "%s: wncc buf iova: 0x%08X",
  464. __func__, inst->cvpwnccbufs_table[i].iova);
  465. break;
  466. }
  467. }
  468. if (i == EVA_KMD_WNCC_MAX_SRC_BUFS) {
  469. dprintk(CVP_ERR,
  470. "%s: wncc buf table full - max (%u) already registered",
  471. __func__, EVA_KMD_WNCC_MAX_SRC_BUFS);
  472. /* _wncc_print_cvpwnccbufs_table(inst); */
  473. mutex_unlock(&inst->cvpwnccbufs.lock);
  474. rc = -EDQUOT;
  475. goto exit;
  476. }
  477. mutex_unlock(&inst->cvpwnccbufs.lock);
  478. return rc;
  479. exit:
  480. if (smem->device_addr)
  481. msm_cvp_unmap_smem(inst, smem, "unmap wncc");
  482. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  483. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  484. cbuf = NULL;
  485. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  486. smem = NULL;
  487. return rc;
  488. }
  489. int msm_cvp_unmap_buf_wncc(struct msm_cvp_inst *inst,
  490. struct eva_kmd_buffer *buf)
  491. {
  492. int rc = 0;
  493. bool found;
  494. struct cvp_internal_buf *cbuf;
  495. uint32_t buf_id, buf_idx;
  496. if (!inst || !inst->core || !buf) {
  497. dprintk(CVP_ERR, "%s: invalid params", __func__);
  498. return -EINVAL;
  499. }
  500. if (!inst->session) {
  501. dprintk(CVP_ERR, "%s: invalid session", __func__);
  502. return -EINVAL;
  503. }
  504. if (buf->index) {
  505. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  506. __func__, buf->fd);
  507. return -EINVAL;
  508. }
  509. buf_id = buf->reserved[0];
  510. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET || buf_id >=
  511. (EVA_KMD_WNCC_MAX_SRC_BUFS + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET)) {
  512. dprintk(CVP_ERR, "%s: invalid buffer id %d",
  513. __func__, buf->reserved[0]);
  514. return -EINVAL;
  515. }
  516. mutex_lock(&inst->cvpwnccbufs.lock);
  517. if (inst->cvpwnccbufs_num == 0) {
  518. dprintk(CVP_ERR, "%s: no wncc buffers currently mapped", __func__);
  519. mutex_unlock(&inst->cvpwnccbufs.lock);
  520. return -EINVAL;
  521. }
  522. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  523. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  524. dprintk(CVP_ERR, "%s: buffer id %d not found",
  525. __func__, buf_id);
  526. mutex_unlock(&inst->cvpwnccbufs.lock);
  527. return -EINVAL;
  528. }
  529. buf->fd = inst->cvpwnccbufs_table[buf_idx].fd;
  530. found = false;
  531. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  532. if (cbuf->fd == buf->fd) {
  533. found = true;
  534. break;
  535. }
  536. }
  537. if (!found) {
  538. dprintk(CVP_ERR, "%s: buffer id %d not found",
  539. __func__, buf_id);
  540. print_client_buffer(CVP_ERR, __func__, inst, buf);
  541. _wncc_print_cvpwnccbufs_table(inst);
  542. mutex_unlock(&inst->cvpwnccbufs.lock);
  543. return -EINVAL;
  544. }
  545. mutex_unlock(&inst->cvpwnccbufs.lock);
  546. if (cbuf->smem->device_addr) {
  547. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap wncc");
  548. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  549. }
  550. mutex_lock(&inst->cvpwnccbufs.lock);
  551. list_del(&cbuf->list);
  552. inst->cvpwnccbufs_table[buf_idx].fd = 0;
  553. inst->cvpwnccbufs_table[buf_idx].iova = 0;
  554. inst->cvpwnccbufs_table[buf_idx].size = 0;
  555. inst->cvpwnccbufs_num--;
  556. if (inst->cvpwnccbufs_num == 0) {
  557. kfree(inst->cvpwnccbufs_table);
  558. inst->cvpwnccbufs_table = NULL;
  559. }
  560. mutex_unlock(&inst->cvpwnccbufs.lock);
  561. cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem);
  562. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  563. return rc;
  564. }
  565. static void _wncc_print_oob(struct eva_kmd_oob_wncc* wncc_oob)
  566. {
  567. u32 i, j;
  568. if (!wncc_oob) {
  569. dprintk(CVP_ERR, "%s: invalid params", __func__);
  570. return;
  571. }
  572. dprintk(CVP_DBG, "%s: wncc OOB --", __func__);
  573. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, wncc_oob->num_layers);
  574. for (i = 0; i < wncc_oob->num_layers; i++) {
  575. dprintk(CVP_DBG, "%s: layers[%u].num_addrs: %u",
  576. __func__, i, wncc_oob->layers[i].num_addrs);
  577. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  578. dprintk(CVP_DBG,
  579. "%s: layers[%u].addrs[%u]: %04u 0x%08x",
  580. __func__, i, j,
  581. wncc_oob->layers[i].addrs[j].buffer_id,
  582. wncc_oob->layers[i].addrs[j].offset);
  583. }
  584. }
  585. }
  586. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst)
  587. {
  588. u32 i, entries = 0;
  589. if (!inst) {
  590. dprintk(CVP_ERR, "%s: invalid params", __func__);
  591. return;
  592. }
  593. if (inst->cvpwnccbufs_num == 0) {
  594. dprintk(CVP_DBG, "%s: wncc buffer look-up table is empty",
  595. __func__);
  596. return;
  597. }
  598. if (!inst->cvpwnccbufs_table) {
  599. dprintk(CVP_ERR, "%s: invalid params", __func__);
  600. return;
  601. }
  602. dprintk(CVP_DBG, "%s: wncc buffer table:", __func__);
  603. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS &&
  604. entries < inst->cvpwnccbufs_num; i++) {
  605. if (inst->cvpwnccbufs_table[i].iova != 0) {
  606. dprintk(CVP_DBG,
  607. "%s: buf_idx=%04d --> "
  608. "fd=%03d, iova=0x%08x, size=%d",
  609. __func__, i,
  610. inst->cvpwnccbufs_table[i].fd,
  611. inst->cvpwnccbufs_table[i].iova,
  612. inst->cvpwnccbufs_table[i].size);
  613. entries++;
  614. }
  615. }
  616. }
  617. static void _wncc_print_metadata_buf(u32 num_layers, u32 num_addrs,
  618. struct eva_kmd_wncc_metadata** wncc_metadata)
  619. {
  620. u32 i, j, iova;
  621. if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS ||
  622. !wncc_metadata) {
  623. dprintk(CVP_ERR, "%s: invalid params", __func__);
  624. return;
  625. }
  626. dprintk(CVP_DBG, "%s: wncc metadata buffers --", __func__);
  627. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, num_layers);
  628. dprintk(CVP_DBG, "%s: num_addrs: %u", __func__, num_addrs);
  629. for (i = 0; i < num_layers; i++) {
  630. for (j = 0; j < num_addrs; j++) {
  631. iova = (wncc_metadata[i][j].iova_msb << 22) |
  632. wncc_metadata[i][j].iova_lsb;
  633. dprintk(CVP_DBG,
  634. "%s: wncc_metadata[%u][%u]: "
  635. "%4u %3u %4u %3u 0x%08x %1u %4d %4d %4d %4d",
  636. __func__, i, j,
  637. wncc_metadata[i][j].loc_x_dec,
  638. wncc_metadata[i][j].loc_x_frac,
  639. wncc_metadata[i][j].loc_y_dec,
  640. wncc_metadata[i][j].loc_y_frac,
  641. iova,
  642. wncc_metadata[i][j].scale_idx,
  643. wncc_metadata[i][j].aff_coeff_3,
  644. wncc_metadata[i][j].aff_coeff_2,
  645. wncc_metadata[i][j].aff_coeff_1,
  646. wncc_metadata[i][j].aff_coeff_0);
  647. }
  648. }
  649. }
  650. static int _wncc_copy_oob_from_user(struct eva_kmd_hfi_packet* in_pkt,
  651. struct eva_kmd_oob_wncc* wncc_oob)
  652. {
  653. int rc = 0;
  654. u32 oob_type;
  655. struct eva_kmd_oob_wncc* wncc_oob_u;
  656. struct eva_kmd_oob_wncc* wncc_oob_k;
  657. unsigned int i;
  658. u32 num_addrs;
  659. if (!in_pkt || !wncc_oob) {
  660. dprintk(CVP_ERR, "%s: invalid params", __func__);
  661. return -EINVAL;
  662. }
  663. if (!access_ok(in_pkt->oob_buf, sizeof(*in_pkt->oob_buf))) {
  664. dprintk(CVP_ERR, "%s: invalid OOB buf pointer", __func__);
  665. return -EINVAL;
  666. }
  667. rc = get_user(oob_type, &in_pkt->oob_buf->oob_type);
  668. if (rc)
  669. return rc;
  670. if (oob_type != EVA_KMD_OOB_WNCC) {
  671. dprintk(CVP_ERR, "%s: incorrect OOB type (%d) for wncc",
  672. __func__, oob_type);
  673. return -EINVAL;
  674. }
  675. wncc_oob_u = &in_pkt->oob_buf->wncc;
  676. wncc_oob_k = wncc_oob;
  677. rc = get_user(wncc_oob_k->num_layers, &wncc_oob_u->num_layers);
  678. if (rc)
  679. return rc;
  680. if (wncc_oob_k->num_layers < 1 ||
  681. wncc_oob_k->num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  682. dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
  683. return -EINVAL;
  684. }
  685. for (i = 0; i < wncc_oob_k->num_layers; i++) {
  686. rc = get_user(wncc_oob_k->layers[i].num_addrs,
  687. &wncc_oob_u->layers[i].num_addrs);
  688. if (rc)
  689. break;
  690. num_addrs = wncc_oob_k->layers[i].num_addrs;
  691. if (num_addrs < 1 || num_addrs > EVA_KMD_WNCC_MAX_ADDRESSES) {
  692. dprintk(CVP_ERR,
  693. "%s: invalid wncc num addrs for layer %u",
  694. __func__, i);
  695. rc = -EINVAL;
  696. break;
  697. }
  698. rc = copy_from_user(wncc_oob_k->layers[i].addrs,
  699. wncc_oob_u->layers[i].addrs,
  700. wncc_oob_k->layers[i].num_addrs *
  701. sizeof(struct eva_kmd_wncc_addr));
  702. if (rc)
  703. break;
  704. }
  705. if (false)
  706. _wncc_print_oob(wncc_oob);
  707. return rc;
  708. }
  709. static int _wncc_map_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  710. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata)
  711. {
  712. int rc = 0, i;
  713. struct cvp_buf_type* wncc_metadata_bufs;
  714. struct dma_buf* dmabuf;
  715. struct eva_buf_map map;
  716. if (!in_pkt || !wncc_metadata ||
  717. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  718. dprintk(CVP_ERR, "%s: invalid params", __func__);
  719. return -EINVAL;
  720. }
  721. wncc_metadata_bufs = (struct cvp_buf_type*)
  722. &in_pkt->pkt_data[EVA_KMD_WNCC_HFI_METADATA_BUFS_OFFSET];
  723. for (i = 0; i < num_layers; i++) {
  724. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  725. if (IS_ERR(dmabuf)) {
  726. rc = PTR_ERR(dmabuf);
  727. dprintk(CVP_ERR,
  728. "%s: dma_buf_get() failed for "
  729. "wncc_metadata_bufs[%d], rc %d",
  730. __func__, i, rc);
  731. break;
  732. }
  733. rc = dma_buf_begin_cpu_access(dmabuf, DMA_TO_DEVICE);
  734. if (rc) {
  735. dprintk(CVP_ERR,
  736. "%s: dma_buf_begin_cpu_access() failed "
  737. "for wncc_metadata_bufs[%d], rc %d",
  738. __func__, i, rc);
  739. dma_buf_put(dmabuf);
  740. break;
  741. }
  742. rc = dma_buf_vmap(dmabuf, &map);
  743. if (rc) {
  744. dprintk(CVP_ERR,
  745. "%s: dma_buf_vmap() failed for "
  746. "wncc_metadata_bufs[%d]",
  747. __func__, i);
  748. dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  749. dma_buf_put(dmabuf);
  750. break;
  751. }
  752. dprintk(CVP_DBG,
  753. "%s: wncc_metadata_bufs[%d] map.is_iomem is %d",
  754. __func__, i, map.is_iomem);
  755. wncc_metadata[i] = (struct eva_kmd_wncc_metadata*)map.vaddr;
  756. dma_buf_put(dmabuf);
  757. }
  758. if (rc)
  759. _wncc_unmap_metadata_bufs(in_pkt, i, wncc_metadata);
  760. return rc;
  761. }
  762. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  763. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata)
  764. {
  765. int rc = 0, i;
  766. struct cvp_buf_type* wncc_metadata_bufs;
  767. struct dma_buf* dmabuf;
  768. struct eva_buf_map map;
  769. if (!in_pkt || !wncc_metadata ||
  770. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  771. dprintk(CVP_ERR, "%s: invalid params", __func__);
  772. return -EINVAL;
  773. }
  774. wncc_metadata_bufs = (struct cvp_buf_type*)
  775. &in_pkt->pkt_data[EVA_KMD_WNCC_HFI_METADATA_BUFS_OFFSET];
  776. for (i = 0; i < num_layers; i++) {
  777. if (!wncc_metadata[i]) {
  778. rc = -EINVAL;
  779. break;
  780. }
  781. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  782. if (IS_ERR(dmabuf)) {
  783. rc = -PTR_ERR(dmabuf);
  784. dprintk(CVP_ERR,
  785. "%s: dma_buf_get() failed for "
  786. "wncc_metadata_bufs[%d], rc %d",
  787. __func__, i, rc);
  788. break;
  789. }
  790. _buf_map_set_vaddr(&map, wncc_metadata[i]);
  791. dma_buf_vunmap(dmabuf, &map);
  792. wncc_metadata[i] = NULL;
  793. rc = dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  794. dma_buf_put(dmabuf);
  795. if (rc) {
  796. dprintk(CVP_ERR,
  797. "%s: dma_buf_end_cpu_access() failed "
  798. "for wncc_metadata_bufs[%d], rc %d",
  799. __func__, i, rc);
  800. break;
  801. }
  802. }
  803. return rc;
  804. }
  805. static int msm_cvp_proc_oob_wncc(struct msm_cvp_inst* inst,
  806. struct eva_kmd_hfi_packet* in_pkt)
  807. {
  808. int rc = 0;
  809. struct eva_kmd_oob_wncc* wncc_oob;
  810. struct eva_kmd_wncc_metadata* wncc_metadata[EVA_KMD_WNCC_MAX_LAYERS];
  811. unsigned int i, j;
  812. bool empty = false;
  813. u32 buf_id, buf_idx, buf_offset, iova;
  814. if (!inst || !inst->core || !in_pkt) {
  815. dprintk(CVP_ERR, "%s: invalid params", __func__);
  816. return -EINVAL;
  817. }
  818. wncc_oob = (struct eva_kmd_oob_wncc*)kzalloc(
  819. sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
  820. if (!wncc_oob)
  821. return -ENOMEM;
  822. rc = _wncc_copy_oob_from_user(in_pkt, wncc_oob);
  823. if (rc) {
  824. dprintk(CVP_ERR, "%s: OOB buf copying failed", __func__);
  825. goto exit;
  826. }
  827. rc = _wncc_map_metadata_bufs(in_pkt,
  828. wncc_oob->num_layers, wncc_metadata);
  829. if (rc) {
  830. dprintk(CVP_ERR, "%s: failed to map wncc metadata bufs",
  831. __func__);
  832. goto exit;
  833. }
  834. mutex_lock(&inst->cvpwnccbufs.lock);
  835. if (inst->cvpwnccbufs_num == 0 || inst->cvpwnccbufs_table == NULL) {
  836. dprintk(CVP_ERR, "%s: no wncc bufs currently mapped", __func__);
  837. empty = true;
  838. rc = -EINVAL;
  839. }
  840. for (i = 0; !empty && i < wncc_oob->num_layers; i++) {
  841. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  842. buf_id = wncc_oob->layers[i].addrs[j].buffer_id;
  843. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET ||
  844. buf_id >= (EVA_KMD_WNCC_SRC_BUF_ID_OFFSET +
  845. EVA_KMD_WNCC_MAX_SRC_BUFS)) {
  846. dprintk(CVP_ERR,
  847. "%s: invalid wncc buf id %u "
  848. "in layer #%u address #%u",
  849. __func__, buf_id, i, j);
  850. rc = -EINVAL;
  851. break;
  852. }
  853. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  854. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  855. dprintk(CVP_ERR,
  856. "%s: unmapped wncc buf id %u "
  857. "in layer #%u address #%u",
  858. __func__, buf_id, i, j);
  859. /* _wncc_print_cvpwnccbufs_table(inst); */
  860. rc = -EINVAL;
  861. break;
  862. }
  863. buf_offset = wncc_oob->layers[i].addrs[j].offset;
  864. if (buf_offset >=
  865. inst->cvpwnccbufs_table[buf_idx].size) {
  866. /* NOTE: This buffer offset validation is
  867. * not comprehensive since wncc src image
  868. * resolution information is not known to
  869. * KMD. UMD is responsible for comprehensive
  870. * validation.
  871. */
  872. dprintk(CVP_ERR,
  873. "%s: invalid wncc buf offset %u "
  874. "in layer #%u address #%u",
  875. __func__, buf_offset, i, j);
  876. rc = -EINVAL;
  877. break;
  878. }
  879. iova = inst->cvpwnccbufs_table[buf_idx].iova +
  880. buf_offset;
  881. wncc_metadata[i][j].iova_lsb = iova;
  882. wncc_metadata[i][j].iova_msb = iova >> 22;
  883. }
  884. }
  885. mutex_unlock(&inst->cvpwnccbufs.lock);
  886. if (false)
  887. _wncc_print_metadata_buf(wncc_oob->num_layers,
  888. wncc_oob->layers[0].num_addrs, wncc_metadata);
  889. if (_wncc_unmap_metadata_bufs(in_pkt,
  890. wncc_oob->num_layers, wncc_metadata)) {
  891. dprintk(CVP_ERR, "%s: failed to unmap wncc metadata bufs",
  892. __func__);
  893. }
  894. exit:
  895. kfree(wncc_oob);
  896. return rc;
  897. }
  898. int msm_cvp_proc_oob(struct msm_cvp_inst* inst,
  899. struct eva_kmd_hfi_packet* in_pkt)
  900. {
  901. int rc = 0;
  902. struct cvp_hfi_cmd_session_hdr* cmd_hdr =
  903. (struct cvp_hfi_cmd_session_hdr*)in_pkt;
  904. if (!inst || !inst->core || !in_pkt) {
  905. dprintk(CVP_ERR, "%s: invalid params", __func__);
  906. return -EINVAL;
  907. }
  908. switch (cmd_hdr->packet_type) {
  909. case HFI_CMD_SESSION_CVP_WARP_NCC_FRAME:
  910. rc = msm_cvp_proc_oob_wncc(inst, in_pkt);
  911. break;
  912. default:
  913. break;
  914. }
  915. return rc;
  916. }
  917. void msm_cvp_cache_operations(struct msm_cvp_smem *smem, u32 type,
  918. u32 offset, u32 size)
  919. {
  920. enum smem_cache_ops cache_op;
  921. if (msm_cvp_cacheop_disabled)
  922. return;
  923. if (!smem) {
  924. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  925. return;
  926. }
  927. switch (type) {
  928. case EVA_KMD_BUFTYPE_INPUT:
  929. cache_op = SMEM_CACHE_CLEAN;
  930. break;
  931. case EVA_KMD_BUFTYPE_OUTPUT:
  932. cache_op = SMEM_CACHE_INVALIDATE;
  933. break;
  934. default:
  935. cache_op = SMEM_CACHE_CLEAN_INVALIDATE;
  936. }
  937. dprintk(CVP_MEM,
  938. "%s: cache operation enabled for dma_buf: %llx, cache_op: %d, offset: %d, size: %d\n",
  939. __func__, smem->dma_buf, cache_op, offset, size);
  940. msm_cvp_smem_cache_operations(smem->dma_buf, cache_op, offset, size);
  941. }
  942. static struct msm_cvp_smem *msm_cvp_session_find_smem(struct msm_cvp_inst *inst,
  943. struct dma_buf *dma_buf,
  944. u32 pkt_type)
  945. {
  946. struct msm_cvp_smem *smem;
  947. struct msm_cvp_frame *frame;
  948. struct cvp_internal_buf *buf;
  949. int i;
  950. if (inst->dma_cache.nr > MAX_DMABUF_NUMS)
  951. return NULL;
  952. mutex_lock(&inst->dma_cache.lock);
  953. for (i = 0; i < inst->dma_cache.nr; i++)
  954. if (inst->dma_cache.entries[i]->dma_buf == dma_buf) {
  955. SET_USE_BITMAP(i, inst);
  956. smem = inst->dma_cache.entries[i];
  957. smem->bitmap_index = i;
  958. smem->pkt_type = pkt_type;
  959. atomic_inc(&smem->refcount);
  960. /*
  961. * If we find it, it means we already increased
  962. * refcount before, so we put it to avoid double
  963. * incremental.
  964. */
  965. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  966. mutex_unlock(&inst->dma_cache.lock);
  967. print_smem(CVP_MEM, "found in cache", inst, smem);
  968. return smem;
  969. }
  970. mutex_unlock(&inst->dma_cache.lock);
  971. /* earch persist list */
  972. mutex_lock(&inst->persistbufs.lock);
  973. list_for_each_entry(buf, &inst->persistbufs.list, list) {
  974. smem = buf->smem;
  975. if (smem && smem->dma_buf == dma_buf) {
  976. atomic_inc(&smem->refcount);
  977. mutex_unlock(&inst->persistbufs.lock);
  978. print_smem(CVP_MEM, "found in persist", inst, smem);
  979. return smem;
  980. }
  981. }
  982. mutex_unlock(&inst->persistbufs.lock);
  983. /* Search frame list */
  984. mutex_lock(&inst->frames.lock);
  985. list_for_each_entry(frame, &inst->frames.list, list) {
  986. for (i = 0; i < frame->nr; i++) {
  987. smem = frame->bufs[i].smem;
  988. if (smem && smem->dma_buf == dma_buf) {
  989. atomic_inc(&smem->refcount);
  990. mutex_unlock(&inst->frames.lock);
  991. print_smem(CVP_MEM, "found in frame",
  992. inst, smem);
  993. return smem;
  994. }
  995. }
  996. }
  997. mutex_unlock(&inst->frames.lock);
  998. return NULL;
  999. }
  1000. static int msm_cvp_session_add_smem(struct msm_cvp_inst *inst,
  1001. struct msm_cvp_smem *smem)
  1002. {
  1003. unsigned int i;
  1004. struct msm_cvp_smem *smem2;
  1005. mutex_lock(&inst->dma_cache.lock);
  1006. if (inst->dma_cache.nr < MAX_DMABUF_NUMS) {
  1007. inst->dma_cache.entries[inst->dma_cache.nr] = smem;
  1008. SET_USE_BITMAP(inst->dma_cache.nr, inst);
  1009. smem->bitmap_index = inst->dma_cache.nr;
  1010. inst->dma_cache.nr++;
  1011. i = smem->bitmap_index;
  1012. } else {
  1013. i = find_first_zero_bit(&inst->dma_cache.usage_bitmap,
  1014. MAX_DMABUF_NUMS);
  1015. if (i < MAX_DMABUF_NUMS) {
  1016. smem2 = inst->dma_cache.entries[i];
  1017. msm_cvp_unmap_smem(inst, smem2, "unmap cpu");
  1018. msm_cvp_smem_put_dma_buf(smem2->dma_buf);
  1019. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem2);
  1020. inst->dma_cache.entries[i] = smem;
  1021. smem->bitmap_index = i;
  1022. SET_USE_BITMAP(i, inst);
  1023. } else {
  1024. dprintk(CVP_WARN,
  1025. "%s: reached limit, fallback to buf mapping list\n"
  1026. , __func__);
  1027. atomic_inc(&smem->refcount);
  1028. mutex_unlock(&inst->dma_cache.lock);
  1029. return -ENOMEM;
  1030. }
  1031. }
  1032. atomic_inc(&smem->refcount);
  1033. mutex_unlock(&inst->dma_cache.lock);
  1034. dprintk(CVP_MEM, "Add entry %d into cache\n", i);
  1035. return 0;
  1036. }
  1037. static struct msm_cvp_smem *msm_cvp_session_get_smem(struct msm_cvp_inst *inst,
  1038. struct cvp_buf_type *buf,
  1039. bool is_persist,
  1040. u32 pkt_type)
  1041. {
  1042. int rc = 0, found = 1;
  1043. struct msm_cvp_smem *smem = NULL;
  1044. struct dma_buf *dma_buf = NULL;
  1045. if (buf->fd < 0) {
  1046. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1047. return NULL;
  1048. }
  1049. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1050. if (!dma_buf) {
  1051. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1052. return NULL;
  1053. }
  1054. if (is_persist) {
  1055. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1056. if (!smem)
  1057. return NULL;
  1058. smem->dma_buf = dma_buf;
  1059. smem->bitmap_index = MAX_DMABUF_NUMS;
  1060. smem->pkt_type = pkt_type;
  1061. smem->flags |= SMEM_PERSIST;
  1062. smem->fd = buf->fd;
  1063. atomic_inc(&smem->refcount);
  1064. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1065. if (rc)
  1066. goto exit;
  1067. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1068. dprintk(CVP_ERR,
  1069. "%s: invalid offset %d or size %d persist\n",
  1070. __func__, buf->offset, buf->size);
  1071. goto exit2;
  1072. }
  1073. return smem;
  1074. }
  1075. smem = msm_cvp_session_find_smem(inst, dma_buf, pkt_type);
  1076. if (!smem) {
  1077. found = 0;
  1078. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1079. if (!smem)
  1080. return NULL;
  1081. smem->dma_buf = dma_buf;
  1082. smem->bitmap_index = MAX_DMABUF_NUMS;
  1083. smem->pkt_type = pkt_type;
  1084. smem->fd = buf->fd;
  1085. if (is_params_pkt(pkt_type))
  1086. smem->flags |= SMEM_PERSIST;
  1087. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1088. if (rc)
  1089. goto exit;
  1090. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1091. dprintk(CVP_ERR,
  1092. "%s: invalid buf %d %d fd %d dma 0x%llx %s %d type %#x\n",
  1093. __func__, buf->offset, buf->size, buf->fd,
  1094. dma_buf, dma_buf->name, dma_buf->size, pkt_type);
  1095. goto exit2;
  1096. }
  1097. rc = msm_cvp_session_add_smem(inst, smem);
  1098. if (rc && rc != -ENOMEM)
  1099. goto exit2;
  1100. return smem;
  1101. }
  1102. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1103. dprintk(CVP_ERR, "%s: invalid offset %d or size %d found\n",
  1104. __func__, buf->offset, buf->size);
  1105. if (found) {
  1106. mutex_lock(&inst->dma_cache.lock);
  1107. atomic_dec(&smem->refcount);
  1108. mutex_unlock(&inst->dma_cache.lock);
  1109. return NULL;
  1110. }
  1111. goto exit2;
  1112. }
  1113. return smem;
  1114. exit2:
  1115. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1116. exit:
  1117. msm_cvp_smem_put_dma_buf(dma_buf);
  1118. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1119. smem = NULL;
  1120. return smem;
  1121. }
  1122. static u32 msm_cvp_map_user_persist_buf(struct msm_cvp_inst *inst,
  1123. struct cvp_buf_type *buf,
  1124. u32 pkt_type, u32 buf_idx)
  1125. {
  1126. u32 iova = 0;
  1127. struct msm_cvp_smem *smem = NULL;
  1128. struct list_head *ptr, *next;
  1129. struct cvp_internal_buf *pbuf;
  1130. struct dma_buf *dma_buf;
  1131. if (!inst) {
  1132. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1133. return -EINVAL;
  1134. }
  1135. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1136. if (!dma_buf)
  1137. return -EINVAL;
  1138. mutex_lock(&inst->persistbufs.lock);
  1139. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1140. pbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1141. if (dma_buf == pbuf->smem->dma_buf) {
  1142. pbuf->size =
  1143. (pbuf->size >= buf->size) ?
  1144. pbuf->size : buf->size;
  1145. iova = pbuf->smem->device_addr + buf->offset;
  1146. mutex_unlock(&inst->persistbufs.lock);
  1147. atomic_inc(&pbuf->smem->refcount);
  1148. dma_buf_put(dma_buf);
  1149. dprintk(CVP_MEM,
  1150. "map persist Reuse fd %d, dma_buf %#llx\n",
  1151. pbuf->fd, pbuf->smem->dma_buf);
  1152. return iova;
  1153. }
  1154. }
  1155. mutex_unlock(&inst->persistbufs.lock);
  1156. dma_buf_put(dma_buf);
  1157. pbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  1158. if (!pbuf) {
  1159. dprintk(CVP_ERR, "%s failed to allocate kmem obj\n",
  1160. __func__);
  1161. return 0;
  1162. }
  1163. if (is_params_pkt(pkt_type))
  1164. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1165. else
  1166. smem = msm_cvp_session_get_smem(inst, buf, true, pkt_type);
  1167. if (!smem)
  1168. goto exit;
  1169. smem->pkt_type = pkt_type;
  1170. smem->buf_idx = buf_idx;
  1171. smem->fd = buf->fd;
  1172. pbuf->smem = smem;
  1173. pbuf->fd = buf->fd;
  1174. pbuf->size = buf->size;
  1175. pbuf->offset = buf->offset;
  1176. pbuf->ownership = CLIENT;
  1177. mutex_lock(&inst->persistbufs.lock);
  1178. list_add_tail(&pbuf->list, &inst->persistbufs.list);
  1179. mutex_unlock(&inst->persistbufs.lock);
  1180. print_internal_buffer(CVP_MEM, "map persist", inst, pbuf);
  1181. iova = smem->device_addr + buf->offset;
  1182. return iova;
  1183. exit:
  1184. cvp_kmem_cache_free(&cvp_driver->buf_cache, pbuf);
  1185. return 0;
  1186. }
  1187. static u32 msm_cvp_map_frame_buf(struct msm_cvp_inst *inst,
  1188. struct cvp_buf_type *buf,
  1189. struct msm_cvp_frame *frame,
  1190. u32 pkt_type, u32 buf_idx)
  1191. {
  1192. u32 iova = 0;
  1193. struct msm_cvp_smem *smem = NULL;
  1194. u32 nr;
  1195. u32 type;
  1196. if (!inst || !frame) {
  1197. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1198. return 0;
  1199. }
  1200. nr = frame->nr;
  1201. if (nr == MAX_FRAME_BUFFER_NUMS) {
  1202. dprintk(CVP_ERR, "%s: max frame buffer reached\n", __func__);
  1203. return 0;
  1204. }
  1205. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1206. if (!smem)
  1207. return 0;
  1208. smem->buf_idx = buf_idx;
  1209. frame->bufs[nr].fd = buf->fd;
  1210. frame->bufs[nr].smem = smem;
  1211. frame->bufs[nr].size = buf->size;
  1212. frame->bufs[nr].offset = buf->offset;
  1213. print_internal_buffer(CVP_MEM, "map cpu", inst, &frame->bufs[nr]);
  1214. frame->nr++;
  1215. type = EVA_KMD_BUFTYPE_INPUT | EVA_KMD_BUFTYPE_OUTPUT;
  1216. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1217. iova = smem->device_addr + buf->offset;
  1218. return iova;
  1219. }
  1220. static void msm_cvp_unmap_frame_buf(struct msm_cvp_inst *inst,
  1221. struct msm_cvp_frame *frame)
  1222. {
  1223. u32 i;
  1224. u32 type;
  1225. struct msm_cvp_smem *smem = NULL;
  1226. struct cvp_internal_buf *buf;
  1227. type = EVA_KMD_BUFTYPE_OUTPUT;
  1228. for (i = 0; i < frame->nr; ++i) {
  1229. buf = &frame->bufs[i];
  1230. smem = buf->smem;
  1231. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1232. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1233. /* smem not in dmamap cache */
  1234. if (atomic_dec_and_test(&smem->refcount)) {
  1235. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1236. dma_heap_buffer_free(smem->dma_buf);
  1237. smem->buf_idx |= 0xdead0000;
  1238. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1239. buf->smem = NULL;
  1240. }
  1241. } else {
  1242. mutex_lock(&inst->dma_cache.lock);
  1243. if (atomic_dec_and_test(&smem->refcount)) {
  1244. CLEAR_USE_BITMAP(smem->bitmap_index, inst);
  1245. print_smem(CVP_MEM, "Map dereference",
  1246. inst, smem);
  1247. smem->buf_idx |= 0x10000000;
  1248. }
  1249. mutex_unlock(&inst->dma_cache.lock);
  1250. }
  1251. }
  1252. cvp_kmem_cache_free(&cvp_driver->frame_cache, frame);
  1253. }
  1254. static void backup_frame_buffers(struct msm_cvp_inst *inst,
  1255. struct msm_cvp_frame *frame)
  1256. {
  1257. /* Save frame buffers before unmap them */
  1258. int i = frame->nr;
  1259. if (i == 0 || i > MAX_FRAME_BUFFER_NUMS)
  1260. return;
  1261. inst->last_frame.ktid = frame->ktid;
  1262. inst->last_frame.nr = frame->nr;
  1263. do {
  1264. i--;
  1265. inst->last_frame.smem[i] = *(frame->bufs[i].smem);
  1266. } while (i);
  1267. }
  1268. void msm_cvp_unmap_frame(struct msm_cvp_inst *inst, u64 ktid)
  1269. {
  1270. struct msm_cvp_frame *frame, *dummy1;
  1271. bool found;
  1272. if (!inst) {
  1273. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1274. return;
  1275. }
  1276. ktid &= (FENCE_BIT - 1);
  1277. dprintk(CVP_MEM, "%s: (%#x) unmap frame %llu\n",
  1278. __func__, hash32_ptr(inst->session), ktid);
  1279. found = false;
  1280. mutex_lock(&inst->frames.lock);
  1281. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1282. if (frame->ktid == ktid) {
  1283. found = true;
  1284. list_del(&frame->list);
  1285. break;
  1286. }
  1287. }
  1288. mutex_unlock(&inst->frames.lock);
  1289. if (found) {
  1290. dprintk(CVP_CMD, "%s: "
  1291. "pkt_type %08x sess_id %08x trans_id <> ktid %llu\n",
  1292. __func__, frame->pkt_type,
  1293. hash32_ptr(inst->session),
  1294. frame->ktid);
  1295. /* Save the previous frame mappings for debug */
  1296. backup_frame_buffers(inst, frame);
  1297. msm_cvp_unmap_frame_buf(inst, frame);
  1298. }
  1299. else
  1300. dprintk(CVP_WARN, "%s frame %llu not found!\n", __func__, ktid);
  1301. }
  1302. int msm_cvp_mark_user_persist(struct msm_cvp_inst *inst,
  1303. struct eva_kmd_hfi_packet *in_pkt,
  1304. unsigned int offset, unsigned int buf_num)
  1305. {
  1306. dprintk(CVP_ERR, "Unexpected user persistent buffer release\n");
  1307. return 0;
  1308. }
  1309. int msm_cvp_map_user_persist(struct msm_cvp_inst *inst,
  1310. struct eva_kmd_hfi_packet *in_pkt,
  1311. unsigned int offset, unsigned int buf_num)
  1312. {
  1313. struct cvp_buf_type *buf;
  1314. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1315. int i;
  1316. u32 iova;
  1317. if (!offset || !buf_num)
  1318. return 0;
  1319. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1320. for (i = 0; i < buf_num; i++) {
  1321. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1322. offset += sizeof(*buf) >> 2;
  1323. if (buf->fd < 0 || !buf->size)
  1324. continue;
  1325. iova = msm_cvp_map_user_persist_buf(inst, buf,
  1326. cmd_hdr->packet_type, i);
  1327. if (!iova) {
  1328. dprintk(CVP_ERR,
  1329. "%s: buf %d register failed.\n",
  1330. __func__, i);
  1331. return -EINVAL;
  1332. }
  1333. buf->fd = iova;
  1334. }
  1335. return 0;
  1336. }
  1337. int msm_cvp_map_frame(struct msm_cvp_inst *inst,
  1338. struct eva_kmd_hfi_packet *in_pkt,
  1339. unsigned int offset, unsigned int buf_num)
  1340. {
  1341. struct cvp_buf_type *buf;
  1342. int i;
  1343. u32 iova;
  1344. u64 ktid;
  1345. struct msm_cvp_frame *frame;
  1346. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1347. struct msm_cvp_inst *instance;
  1348. struct msm_cvp_core *core = NULL;
  1349. core = get_cvp_core(MSM_CORE_CVP);
  1350. if (!core)
  1351. return -EINVAL;
  1352. if (!offset || !buf_num)
  1353. return 0;
  1354. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1355. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  1356. ktid &= (FENCE_BIT - 1);
  1357. cmd_hdr->client_data.kdata = ktid;
  1358. dprintk(CVP_CMD, "%s: "
  1359. "pkt_type %08x sess_id %08x trans_id %u ktid %llu\n",
  1360. __func__, cmd_hdr->packet_type,
  1361. cmd_hdr->session_id,
  1362. cmd_hdr->client_data.transaction_id,
  1363. cmd_hdr->client_data.kdata & (FENCE_BIT - 1));
  1364. frame = cvp_kmem_cache_zalloc(&cvp_driver->frame_cache, GFP_KERNEL);
  1365. if (!frame)
  1366. return -ENOMEM;
  1367. frame->ktid = ktid;
  1368. frame->nr = 0;
  1369. frame->pkt_type = cmd_hdr->packet_type;
  1370. for (i = 0; i < buf_num; i++) {
  1371. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1372. offset += sizeof(*buf) >> 2;
  1373. if (buf->fd < 0 || !buf->size) {
  1374. buf->fd = 0;
  1375. buf->size = 0;
  1376. continue;
  1377. }
  1378. iova = msm_cvp_map_frame_buf(inst, buf, frame, cmd_hdr->packet_type, i);
  1379. if (!iova) {
  1380. dprintk(CVP_ERR,
  1381. "%s: buf %d register failed.\n",
  1382. __func__, i);
  1383. dprintk(CVP_ERR, "smem_leak_count %d\n", core->smem_leak_count);
  1384. mutex_lock(&core->lock);
  1385. list_for_each_entry(instance, &core->instances, list) {
  1386. msm_cvp_print_inst_bufs(instance, false);
  1387. }
  1388. mutex_unlock(&core->lock);
  1389. msm_cvp_unmap_frame_buf(inst, frame);
  1390. return -EINVAL;
  1391. }
  1392. buf->fd = iova;
  1393. }
  1394. mutex_lock(&inst->frames.lock);
  1395. list_add_tail(&frame->list, &inst->frames.list);
  1396. mutex_unlock(&inst->frames.lock);
  1397. dprintk(CVP_MEM, "%s: map frame %llu\n", __func__, ktid);
  1398. return 0;
  1399. }
  1400. int msm_cvp_session_deinit_buffers(struct msm_cvp_inst *inst)
  1401. {
  1402. int rc = 0, i;
  1403. struct cvp_internal_buf *cbuf, *dummy;
  1404. struct msm_cvp_frame *frame, *dummy1;
  1405. struct msm_cvp_smem *smem;
  1406. struct cvp_hal_session *session;
  1407. struct eva_kmd_buffer buf;
  1408. struct list_head *ptr, *next;
  1409. session = (struct cvp_hal_session *)inst->session;
  1410. mutex_lock(&inst->frames.lock);
  1411. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1412. list_del(&frame->list);
  1413. msm_cvp_unmap_frame_buf(inst, frame);
  1414. }
  1415. mutex_unlock(&inst->frames.lock);
  1416. mutex_lock(&inst->persistbufs.lock);
  1417. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1418. cbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1419. smem = cbuf->smem;
  1420. if (!smem) {
  1421. dprintk(CVP_ERR, "%s invalid persist smem\n", __func__);
  1422. mutex_unlock(&inst->persistbufs.lock);
  1423. return -EINVAL;
  1424. }
  1425. if (cbuf->ownership != DRIVER) {
  1426. dprintk(CVP_MEM,
  1427. "%s: %x : fd %d %pK size %d",
  1428. "free user persistent", hash32_ptr(inst->session), cbuf->fd,
  1429. smem->dma_buf, cbuf->size);
  1430. list_del(&cbuf->list);
  1431. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1432. /*
  1433. * don't care refcount, has to remove mapping
  1434. * this is user persistent buffer
  1435. */
  1436. if (smem->device_addr) {
  1437. msm_cvp_unmap_smem(inst, smem,
  1438. "unmap persist");
  1439. msm_cvp_smem_put_dma_buf(
  1440. cbuf->smem->dma_buf);
  1441. smem->device_addr = 0;
  1442. }
  1443. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1444. cbuf->smem = NULL;
  1445. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1446. } else {
  1447. /*
  1448. * DMM_PARAMS and WAP_NCC_PARAMS cases
  1449. * Leave dma_cache cleanup to unmap
  1450. */
  1451. cbuf->smem = NULL;
  1452. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1453. }
  1454. }
  1455. }
  1456. mutex_unlock(&inst->persistbufs.lock);
  1457. mutex_lock(&inst->dma_cache.lock);
  1458. for (i = 0; i < inst->dma_cache.nr; i++) {
  1459. smem = inst->dma_cache.entries[i];
  1460. if (atomic_read(&smem->refcount) == 0) {
  1461. print_smem(CVP_MEM, "free", inst, smem);
  1462. } else if (!(smem->flags & SMEM_PERSIST)) {
  1463. print_smem(CVP_WARN, "in use", inst, smem);
  1464. }
  1465. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1466. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  1467. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1468. inst->dma_cache.entries[i] = NULL;
  1469. }
  1470. mutex_unlock(&inst->dma_cache.lock);
  1471. mutex_lock(&inst->cvpdspbufs.lock);
  1472. list_for_each_entry_safe(cbuf, dummy, &inst->cvpdspbufs.list, list) {
  1473. print_internal_buffer(CVP_MEM, "remove dspbufs", inst, cbuf);
  1474. if (cbuf->ownership == CLIENT) {
  1475. rc = cvp_dsp_deregister_buffer(hash32_ptr(session),
  1476. cbuf->fd, cbuf->smem->dma_buf->size, cbuf->size,
  1477. cbuf->offset, cbuf->index,
  1478. (uint32_t)cbuf->smem->device_addr);
  1479. if (rc)
  1480. dprintk(CVP_ERR,
  1481. "%s: failed dsp deregistration fd=%d rc=%d",
  1482. __func__, cbuf->fd, rc);
  1483. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  1484. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  1485. } else if (cbuf->ownership == DSP) {
  1486. rc = cvp_dsp_fastrpc_unmap(inst->process_id, cbuf);
  1487. if (rc)
  1488. dprintk(CVP_ERR,
  1489. "%s: failed to unmap buf from DSP\n",
  1490. __func__);
  1491. rc = cvp_release_dsp_buffers(inst, cbuf);
  1492. if (rc)
  1493. dprintk(CVP_ERR,
  1494. "%s Fail to free buffer 0x%x\n",
  1495. __func__, rc);
  1496. }
  1497. list_del(&cbuf->list);
  1498. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1499. }
  1500. mutex_unlock(&inst->cvpdspbufs.lock);
  1501. mutex_lock(&inst->cvpwnccbufs.lock);
  1502. if (inst->cvpwnccbufs_num != 0)
  1503. dprintk(CVP_WARN, "%s: cvpwnccbufs not empty, contains %d bufs",
  1504. __func__, inst->cvpwnccbufs_num);
  1505. list_for_each_entry_safe(cbuf, dummy, &inst->cvpwnccbufs.list, list) {
  1506. print_internal_buffer(CVP_MEM, "remove wnccbufs", inst, cbuf);
  1507. buf.fd = cbuf->fd;
  1508. buf.reserved[0] = cbuf->ktid;
  1509. mutex_unlock(&inst->cvpwnccbufs.lock);
  1510. msm_cvp_unmap_buf_wncc(inst, &buf);
  1511. mutex_lock(&inst->cvpwnccbufs.lock);
  1512. }
  1513. mutex_unlock(&inst->cvpwnccbufs.lock);
  1514. return rc;
  1515. }
  1516. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log)
  1517. {
  1518. struct cvp_internal_buf *buf;
  1519. struct msm_cvp_frame *frame;
  1520. struct msm_cvp_core *core;
  1521. struct inst_snapshot *snap = NULL;
  1522. int i = 0, c = 0;
  1523. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  1524. if (log && core->log.snapshot_index < 16) {
  1525. snap = &core->log.snapshot[core->log.snapshot_index];
  1526. snap->session = inst->session;
  1527. core->log.snapshot_index++;
  1528. }
  1529. if (!inst) {
  1530. dprintk(CVP_ERR, "%s - invalid param %pK\n",
  1531. __func__, inst);
  1532. return;
  1533. }
  1534. dprintk(CVP_ERR,
  1535. "---Buffer details for inst: %pK %s of type: %d---\n",
  1536. inst, inst->proc_name, inst->session_type);
  1537. dprintk(CVP_ERR, "dma_cache entries %d\n", inst->dma_cache.nr);
  1538. mutex_lock(&inst->dma_cache.lock);
  1539. if (inst->dma_cache.nr <= MAX_DMABUF_NUMS)
  1540. for (i = 0; i < inst->dma_cache.nr; i++)
  1541. _log_smem(snap, inst, inst->dma_cache.entries[i], log);
  1542. mutex_unlock(&inst->dma_cache.lock);
  1543. i = 0;
  1544. dprintk(CVP_ERR, "frame buffer list\n");
  1545. mutex_lock(&inst->frames.lock);
  1546. list_for_each_entry(frame, &inst->frames.list, list) {
  1547. dprintk(CVP_ERR, "frame no %d tid %llx bufs\n", i++, frame->ktid);
  1548. for (c = 0; c < frame->nr; c++)
  1549. _log_smem(snap, inst, frame->bufs[c].smem, log);
  1550. }
  1551. mutex_unlock(&inst->frames.lock);
  1552. mutex_lock(&inst->cvpdspbufs.lock);
  1553. dprintk(CVP_ERR, "dsp buffer list:\n");
  1554. list_for_each_entry(buf, &inst->cvpdspbufs.list, list)
  1555. _log_buf(snap, SMEM_ADSP, inst, buf, log);
  1556. mutex_unlock(&inst->cvpdspbufs.lock);
  1557. mutex_lock(&inst->cvpwnccbufs.lock);
  1558. dprintk(CVP_ERR, "wncc buffer list:\n");
  1559. list_for_each_entry(buf, &inst->cvpwnccbufs.list, list)
  1560. print_cvp_buffer(CVP_ERR, "bufdump", inst, buf);
  1561. mutex_unlock(&inst->cvpwnccbufs.lock);
  1562. mutex_lock(&inst->persistbufs.lock);
  1563. dprintk(CVP_ERR, "persist buffer list:\n");
  1564. list_for_each_entry(buf, &inst->persistbufs.list, list)
  1565. _log_buf(snap, SMEM_PERSIST, inst, buf, log);
  1566. mutex_unlock(&inst->persistbufs.lock);
  1567. dprintk(CVP_ERR, "last frame ktid %llx\n", inst->last_frame.ktid);
  1568. for (i = 0; i < inst->last_frame.nr; i++)
  1569. _log_smem(snap, inst, &inst->last_frame.smem[i], log);
  1570. }
  1571. struct cvp_internal_buf *cvp_allocate_arp_bufs(struct msm_cvp_inst *inst,
  1572. u32 buffer_size)
  1573. {
  1574. struct cvp_internal_buf *buf;
  1575. struct msm_cvp_list *buf_list;
  1576. u32 smem_flags = SMEM_UNCACHED;
  1577. int rc = 0;
  1578. if (!inst) {
  1579. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1580. return NULL;
  1581. }
  1582. buf_list = &inst->persistbufs;
  1583. if (!buffer_size)
  1584. return NULL;
  1585. /* If PERSIST buffer requires secure mapping, uncomment
  1586. * below flags setting
  1587. * smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1588. */
  1589. buf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  1590. if (!buf) {
  1591. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1592. goto fail_kzalloc;
  1593. }
  1594. buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1595. if (!buf->smem) {
  1596. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1597. goto fail_kzalloc;
  1598. }
  1599. buf->smem->flags = smem_flags;
  1600. rc = msm_cvp_smem_alloc(buffer_size, 1, 0, /* 0: no mapping in kernel space */
  1601. &(inst->core->resources), buf->smem);
  1602. if (rc) {
  1603. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  1604. goto err_no_mem;
  1605. }
  1606. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1607. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1608. atomic_inc(&buf->smem->refcount);
  1609. buf->size = buf->smem->size;
  1610. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1611. buf->ownership = DRIVER;
  1612. mutex_lock(&buf_list->lock);
  1613. list_add_tail(&buf->list, &buf_list->list);
  1614. mutex_unlock(&buf_list->lock);
  1615. return buf;
  1616. err_no_mem:
  1617. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1618. fail_kzalloc:
  1619. return NULL;
  1620. }
  1621. int cvp_release_arp_buffers(struct msm_cvp_inst *inst)
  1622. {
  1623. struct msm_cvp_smem *smem;
  1624. struct list_head *ptr, *next;
  1625. struct cvp_internal_buf *buf;
  1626. int rc = 0;
  1627. struct msm_cvp_core *core;
  1628. struct cvp_hfi_device *hdev;
  1629. if (!inst) {
  1630. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1631. return -EINVAL;
  1632. }
  1633. core = inst->core;
  1634. if (!core) {
  1635. dprintk(CVP_ERR, "Invalid core pointer = %pK\n", core);
  1636. return -EINVAL;
  1637. }
  1638. hdev = core->device;
  1639. if (!hdev) {
  1640. dprintk(CVP_ERR, "Invalid device pointer = %pK\n", hdev);
  1641. return -EINVAL;
  1642. }
  1643. dprintk(CVP_MEM, "release persist buffer!\n");
  1644. mutex_lock(&inst->persistbufs.lock);
  1645. /* Workaround for FW: release buffer means release all */
  1646. if (inst->state <= MSM_CVP_CLOSE_DONE) {
  1647. rc = call_hfi_op(hdev, session_release_buffers,
  1648. (void *)inst->session);
  1649. if (!rc) {
  1650. mutex_unlock(&inst->persistbufs.lock);
  1651. rc = wait_for_sess_signal_receipt(inst,
  1652. HAL_SESSION_RELEASE_BUFFER_DONE);
  1653. if (rc)
  1654. dprintk(CVP_WARN,
  1655. "%s: wait for signal failed, rc %d\n",
  1656. __func__, rc);
  1657. mutex_lock(&inst->persistbufs.lock);
  1658. } else {
  1659. dprintk_rl(CVP_WARN, "Fail to send Rel prst buf\n");
  1660. }
  1661. }
  1662. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1663. buf = list_entry(ptr, struct cvp_internal_buf, list);
  1664. smem = buf->smem;
  1665. if (!smem) {
  1666. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1667. mutex_unlock(&inst->persistbufs.lock);
  1668. return -EINVAL;
  1669. }
  1670. if (buf->ownership == DRIVER) {
  1671. dprintk(CVP_MEM,
  1672. "%s: %x : fd %d %pK size %d",
  1673. "free arp", hash32_ptr(inst->session), buf->fd,
  1674. smem->dma_buf, buf->size);
  1675. list_del(&buf->list);
  1676. atomic_dec(&smem->refcount);
  1677. msm_cvp_smem_free(smem);
  1678. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1679. buf->smem = NULL;
  1680. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1681. }
  1682. }
  1683. mutex_unlock(&inst->persistbufs.lock);
  1684. return rc;
  1685. }
  1686. int cvp_allocate_dsp_bufs(struct msm_cvp_inst *inst,
  1687. struct cvp_internal_buf *buf,
  1688. u32 buffer_size,
  1689. u32 secure_type)
  1690. {
  1691. u32 smem_flags = SMEM_UNCACHED;
  1692. int rc = 0;
  1693. if (!inst) {
  1694. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1695. return -EINVAL;
  1696. }
  1697. if (!buf)
  1698. return -EINVAL;
  1699. if (!buffer_size)
  1700. return -EINVAL;
  1701. switch (secure_type) {
  1702. case 0:
  1703. break;
  1704. case 1:
  1705. smem_flags |= SMEM_SECURE | SMEM_PIXEL;
  1706. break;
  1707. case 2:
  1708. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1709. break;
  1710. default:
  1711. dprintk(CVP_ERR, "%s Invalid secure_type %d\n",
  1712. __func__, secure_type);
  1713. return -EINVAL;
  1714. }
  1715. dprintk(CVP_MEM, "%s smem_flags 0x%x\n", __func__, smem_flags);
  1716. buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1717. if (!buf->smem) {
  1718. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1719. goto fail_kzalloc_smem_cache;
  1720. }
  1721. buf->smem->flags = smem_flags;
  1722. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  1723. &(inst->core->resources), buf->smem);
  1724. if (rc) {
  1725. dprintk(CVP_ERR, "Failed to allocate DSP buf\n");
  1726. goto err_no_mem;
  1727. }
  1728. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1729. atomic_inc(&buf->smem->refcount);
  1730. dprintk(CVP_MEM, "%s dma_buf %pK\n", __func__, buf->smem->dma_buf);
  1731. buf->size = buf->smem->size;
  1732. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1733. buf->ownership = DSP;
  1734. return rc;
  1735. err_no_mem:
  1736. cvp_kmem_cache_free(&cvp_driver->smem_cache, buf->smem);
  1737. fail_kzalloc_smem_cache:
  1738. return rc;
  1739. }
  1740. int cvp_release_dsp_buffers(struct msm_cvp_inst *inst,
  1741. struct cvp_internal_buf *buf)
  1742. {
  1743. struct msm_cvp_smem *smem;
  1744. int rc = 0;
  1745. if (!inst) {
  1746. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1747. return -EINVAL;
  1748. }
  1749. if (!buf) {
  1750. dprintk(CVP_ERR, "Invalid buffer pointer = %pK\n", inst);
  1751. return -EINVAL;
  1752. }
  1753. smem = buf->smem;
  1754. if (!smem) {
  1755. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1756. return -EINVAL;
  1757. }
  1758. if (buf->ownership == DSP) {
  1759. dprintk(CVP_MEM,
  1760. "%s: %x : fd %x %s size %d",
  1761. __func__, hash32_ptr(inst->session), buf->fd,
  1762. smem->dma_buf->name, buf->size);
  1763. atomic_dec(&smem->refcount);
  1764. msm_cvp_smem_free(smem);
  1765. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1766. } else {
  1767. dprintk(CVP_ERR,
  1768. "%s: wrong owner %d %x : fd %x %s size %d",
  1769. __func__, buf->ownership, hash32_ptr(inst->session),
  1770. buf->fd, smem->dma_buf->name, buf->size);
  1771. }
  1772. return rc;
  1773. }
  1774. int msm_cvp_register_buffer(struct msm_cvp_inst *inst,
  1775. struct eva_kmd_buffer *buf)
  1776. {
  1777. struct cvp_hfi_device *hdev;
  1778. struct cvp_hal_session *session;
  1779. struct msm_cvp_inst *s;
  1780. int rc = 0;
  1781. if (!inst || !inst->core || !buf) {
  1782. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1783. return -EINVAL;
  1784. }
  1785. s = cvp_get_inst_validate(inst->core, inst);
  1786. if (!s)
  1787. return -ECONNRESET;
  1788. session = (struct cvp_hal_session *)inst->session;
  1789. if (!session) {
  1790. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  1791. rc = -EINVAL;
  1792. goto exit;
  1793. }
  1794. hdev = inst->core->device;
  1795. print_client_buffer(CVP_HFI, "register", inst, buf);
  1796. if (buf->index)
  1797. rc = msm_cvp_map_buf_dsp(inst, buf);
  1798. else
  1799. rc = msm_cvp_map_buf_wncc(inst, buf);
  1800. dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__,
  1801. buf->fd, buf->reserved[0]);
  1802. exit:
  1803. cvp_put_inst(s);
  1804. return rc;
  1805. }
  1806. int msm_cvp_unregister_buffer(struct msm_cvp_inst *inst,
  1807. struct eva_kmd_buffer *buf)
  1808. {
  1809. struct msm_cvp_inst *s;
  1810. int rc = 0;
  1811. if (!inst || !inst->core || !buf) {
  1812. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1813. return -EINVAL;
  1814. }
  1815. s = cvp_get_inst_validate(inst->core, inst);
  1816. if (!s)
  1817. return -ECONNRESET;
  1818. print_client_buffer(CVP_HFI, "unregister", inst, buf);
  1819. if (buf->index)
  1820. rc = msm_cvp_unmap_buf_dsp(inst, buf);
  1821. else
  1822. rc = msm_cvp_unmap_buf_wncc(inst, buf);
  1823. cvp_put_inst(s);
  1824. return rc;
  1825. }