hal_srng.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "hal_api.h"
  21. #include "hal_reo.h"
  22. #include "target_type.h"
  23. #include "qdf_module.h"
  24. #include "wcss_version.h"
  25. #include <qdf_tracepoint.h>
  26. struct tcl_data_cmd gtcl_data_symbol __attribute__((used));
  27. #ifdef QCA_WIFI_QCA8074
  28. void hal_qca6290_attach(struct hal_soc *hal);
  29. #endif
  30. #ifdef QCA_WIFI_QCA8074
  31. void hal_qca8074_attach(struct hal_soc *hal);
  32. #endif
  33. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
  34. defined(QCA_WIFI_QCA9574)
  35. void hal_qca8074v2_attach(struct hal_soc *hal);
  36. #endif
  37. #ifdef QCA_WIFI_QCA6390
  38. void hal_qca6390_attach(struct hal_soc *hal);
  39. #endif
  40. #ifdef QCA_WIFI_QCA6490
  41. void hal_qca6490_attach(struct hal_soc *hal);
  42. #endif
  43. #ifdef QCA_WIFI_QCN9000
  44. void hal_qcn9000_attach(struct hal_soc *hal);
  45. #endif
  46. #ifdef QCA_WIFI_QCN9224
  47. void hal_qcn9224_attach(struct hal_soc *hal);
  48. #endif
  49. #ifdef QCA_WIFI_QCN6122
  50. void hal_qcn6122_attach(struct hal_soc *hal);
  51. #endif
  52. #ifdef QCA_WIFI_QCA6750
  53. void hal_qca6750_attach(struct hal_soc *hal);
  54. #endif
  55. #ifdef QCA_WIFI_QCA5018
  56. void hal_qca5018_attach(struct hal_soc *hal);
  57. #endif
  58. #ifdef QCA_WIFI_KIWI
  59. void hal_kiwi_attach(struct hal_soc *hal);
  60. #endif
  61. #ifdef ENABLE_VERBOSE_DEBUG
  62. bool is_hal_verbose_debug_enabled;
  63. #endif
  64. #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x) ((x) + 0x4)
  65. #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x) ((x) + 0x8)
  66. #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x) ((x) + 0xc)
  67. #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x) ((x) + 0x10)
  68. #ifdef ENABLE_HAL_REG_WR_HISTORY
  69. struct hal_reg_write_fail_history hal_reg_wr_hist;
  70. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  71. uint32_t offset,
  72. uint32_t wr_val, uint32_t rd_val)
  73. {
  74. struct hal_reg_write_fail_entry *record;
  75. int idx;
  76. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  77. HAL_REG_WRITE_HIST_SIZE);
  78. record = &hal_soc->reg_wr_fail_hist->record[idx];
  79. record->timestamp = qdf_get_log_timestamp();
  80. record->reg_offset = offset;
  81. record->write_val = wr_val;
  82. record->read_val = rd_val;
  83. }
  84. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  85. {
  86. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  87. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  88. }
  89. #else
  90. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  91. {
  92. }
  93. #endif
  94. /**
  95. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  96. * @hal: hal_soc data structure
  97. * @ring_type: type enum describing the ring
  98. * @ring_num: which ring of the ring type
  99. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  100. *
  101. * Return: the ring id or -EINVAL if the ring does not exist.
  102. */
  103. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  104. int ring_num, int mac_id)
  105. {
  106. struct hal_hw_srng_config *ring_config =
  107. HAL_SRNG_CONFIG(hal, ring_type);
  108. int ring_id;
  109. if (ring_num >= ring_config->max_rings) {
  110. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  111. "%s: ring_num exceeded maximum no. of supported rings",
  112. __func__);
  113. /* TODO: This is a programming error. Assert if this happens */
  114. return -EINVAL;
  115. }
  116. /*
  117. * For BE, dmac_cmn_src_rxbuf_ring is set. If this is set
  118. * and ring is dst and also lmac ring then provide ring id per lmac
  119. */
  120. if (ring_config->lmac_ring &&
  121. (!hal->dmac_cmn_src_rxbuf_ring ||
  122. ring_config->ring_dir == HAL_SRNG_DST_RING)) {
  123. ring_id = (ring_config->start_ring_id + ring_num +
  124. (mac_id * HAL_MAX_RINGS_PER_LMAC));
  125. } else {
  126. ring_id = ring_config->start_ring_id + ring_num;
  127. }
  128. return ring_id;
  129. }
  130. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  131. {
  132. /* TODO: Should we allocate srng structures dynamically? */
  133. return &(hal->srng_list[ring_id]);
  134. }
  135. #ifndef SHADOW_REG_CONFIG_DISABLED
  136. #define HP_OFFSET_IN_REG_START 1
  137. #define OFFSET_FROM_HP_TO_TP 4
  138. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  139. int shadow_config_index,
  140. int ring_type,
  141. int ring_num)
  142. {
  143. struct hal_srng *srng;
  144. int ring_id;
  145. struct hal_hw_srng_config *ring_config =
  146. HAL_SRNG_CONFIG(hal_soc, ring_type);
  147. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  148. if (ring_id < 0)
  149. return;
  150. srng = hal_get_srng(hal_soc, ring_id);
  151. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  152. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  153. + hal_soc->dev_base_addr;
  154. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  155. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  156. shadow_config_index);
  157. } else {
  158. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  159. + hal_soc->dev_base_addr;
  160. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  161. srng->u.src_ring.hp_addr,
  162. hal_soc->dev_base_addr, shadow_config_index);
  163. }
  164. }
  165. #endif
  166. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  167. void hal_set_one_target_reg_config(struct hal_soc *hal,
  168. uint32_t target_reg_offset,
  169. int list_index)
  170. {
  171. int i = list_index;
  172. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  173. hal->list_shadow_reg_config[i].target_register =
  174. target_reg_offset;
  175. hal->num_generic_shadow_regs_configured++;
  176. }
  177. qdf_export_symbol(hal_set_one_target_reg_config);
  178. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  179. #define MAX_REO_REMAP_SHADOW_REGS 4
  180. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  181. {
  182. uint32_t target_reg_offset;
  183. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  184. int i;
  185. struct hal_hw_srng_config *srng_config =
  186. &hal->hw_srng_table[WBM2SW_RELEASE];
  187. uint32_t reo_reg_base;
  188. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
  189. target_reg_offset =
  190. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
  191. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  192. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  193. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  194. }
  195. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  196. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  197. * HAL_IPA_TX_COMP_RING_IDX);
  198. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  199. return QDF_STATUS_SUCCESS;
  200. }
  201. qdf_export_symbol(hal_set_shadow_regs);
  202. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  203. {
  204. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  205. int shadow_config_index = hal->num_shadow_registers_configured;
  206. int i;
  207. int num_regs = hal->num_generic_shadow_regs_configured;
  208. for (i = 0; i < num_regs; i++) {
  209. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  210. hal->shadow_config[shadow_config_index].addr =
  211. hal->list_shadow_reg_config[i].target_register;
  212. hal->list_shadow_reg_config[i].shadow_config_index =
  213. shadow_config_index;
  214. hal->list_shadow_reg_config[i].va =
  215. SHADOW_REGISTER(shadow_config_index) +
  216. (uintptr_t)hal->dev_base_addr;
  217. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  218. hal->shadow_config[shadow_config_index].addr,
  219. SHADOW_REGISTER(shadow_config_index),
  220. shadow_config_index);
  221. shadow_config_index++;
  222. hal->num_shadow_registers_configured++;
  223. }
  224. return QDF_STATUS_SUCCESS;
  225. }
  226. qdf_export_symbol(hal_construct_shadow_regs);
  227. #endif
  228. #ifndef SHADOW_REG_CONFIG_DISABLED
  229. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  230. int ring_type,
  231. int ring_num)
  232. {
  233. uint32_t target_register;
  234. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  235. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  236. int shadow_config_index = hal->num_shadow_registers_configured;
  237. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  238. QDF_ASSERT(0);
  239. return QDF_STATUS_E_RESOURCES;
  240. }
  241. hal->num_shadow_registers_configured++;
  242. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  243. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  244. *ring_num);
  245. /* if the ring is a dst ring, we need to shadow the tail pointer */
  246. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  247. target_register += OFFSET_FROM_HP_TO_TP;
  248. hal->shadow_config[shadow_config_index].addr = target_register;
  249. /* update hp/tp addr in the hal_soc structure*/
  250. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  251. ring_num);
  252. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  253. target_register,
  254. SHADOW_REGISTER(shadow_config_index),
  255. shadow_config_index,
  256. ring_type, ring_num);
  257. return QDF_STATUS_SUCCESS;
  258. }
  259. qdf_export_symbol(hal_set_one_shadow_config);
  260. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  261. {
  262. int ring_type, ring_num;
  263. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  264. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  265. struct hal_hw_srng_config *srng_config =
  266. &hal->hw_srng_table[ring_type];
  267. if (ring_type == CE_SRC ||
  268. ring_type == CE_DST ||
  269. ring_type == CE_DST_STATUS)
  270. continue;
  271. if (srng_config->lmac_ring)
  272. continue;
  273. for (ring_num = 0; ring_num < srng_config->max_rings;
  274. ring_num++)
  275. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  276. }
  277. return QDF_STATUS_SUCCESS;
  278. }
  279. qdf_export_symbol(hal_construct_srng_shadow_regs);
  280. #else
  281. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  282. {
  283. return QDF_STATUS_SUCCESS;
  284. }
  285. qdf_export_symbol(hal_construct_srng_shadow_regs);
  286. QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
  287. int ring_num)
  288. {
  289. return QDF_STATUS_SUCCESS;
  290. }
  291. qdf_export_symbol(hal_set_one_shadow_config);
  292. #endif
  293. void hal_get_shadow_config(void *hal_soc,
  294. struct pld_shadow_reg_v2_cfg **shadow_config,
  295. int *num_shadow_registers_configured)
  296. {
  297. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  298. *shadow_config = &hal->shadow_config[0].v2;
  299. *num_shadow_registers_configured =
  300. hal->num_shadow_registers_configured;
  301. }
  302. qdf_export_symbol(hal_get_shadow_config);
  303. #ifdef CONFIG_SHADOW_V3
  304. void hal_get_shadow_v3_config(void *hal_soc,
  305. struct pld_shadow_reg_v3_cfg **shadow_config,
  306. int *num_shadow_registers_configured)
  307. {
  308. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  309. *shadow_config = &hal->shadow_config[0].v3;
  310. *num_shadow_registers_configured =
  311. hal->num_shadow_registers_configured;
  312. }
  313. qdf_export_symbol(hal_get_shadow_v3_config);
  314. #endif
  315. static bool hal_validate_shadow_register(struct hal_soc *hal,
  316. uint32_t *destination,
  317. uint32_t *shadow_address)
  318. {
  319. unsigned int index;
  320. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  321. int destination_ba_offset =
  322. ((char *)destination) - (char *)hal->dev_base_addr;
  323. index = shadow_address - shadow_0_offset;
  324. if (index >= MAX_SHADOW_REGISTERS) {
  325. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  326. "%s: index %x out of bounds", __func__, index);
  327. goto error;
  328. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  329. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  330. "%s: sanity check failure, expected %x, found %x",
  331. __func__, destination_ba_offset,
  332. hal->shadow_config[index].addr);
  333. goto error;
  334. }
  335. return true;
  336. error:
  337. qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  338. hal->dev_base_addr, destination, shadow_address,
  339. shadow_0_offset, index);
  340. QDF_BUG(0);
  341. return false;
  342. }
  343. static void hal_target_based_configure(struct hal_soc *hal)
  344. {
  345. /**
  346. * Indicate Initialization of srngs to avoid force wake
  347. * as umac power collapse is not enabled yet
  348. */
  349. hal->init_phase = true;
  350. switch (hal->target_type) {
  351. #ifdef QCA_WIFI_QCA6290
  352. case TARGET_TYPE_QCA6290:
  353. hal->use_register_windowing = true;
  354. hal_qca6290_attach(hal);
  355. break;
  356. #endif
  357. #ifdef QCA_WIFI_QCA6390
  358. case TARGET_TYPE_QCA6390:
  359. hal->use_register_windowing = true;
  360. hal_qca6390_attach(hal);
  361. break;
  362. #endif
  363. #ifdef QCA_WIFI_QCA6490
  364. case TARGET_TYPE_QCA6490:
  365. hal->use_register_windowing = true;
  366. hal_qca6490_attach(hal);
  367. break;
  368. #endif
  369. #ifdef QCA_WIFI_QCA6750
  370. case TARGET_TYPE_QCA6750:
  371. hal->use_register_windowing = true;
  372. hal->static_window_map = true;
  373. hal_qca6750_attach(hal);
  374. break;
  375. #endif
  376. #ifdef QCA_WIFI_KIWI
  377. case TARGET_TYPE_KIWI:
  378. case TARGET_TYPE_MANGO:
  379. hal->use_register_windowing = true;
  380. hal_kiwi_attach(hal);
  381. break;
  382. #endif
  383. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  384. case TARGET_TYPE_QCA8074:
  385. hal_qca8074_attach(hal);
  386. break;
  387. #endif
  388. #if defined(QCA_WIFI_QCA8074V2)
  389. case TARGET_TYPE_QCA8074V2:
  390. hal_qca8074v2_attach(hal);
  391. break;
  392. #endif
  393. #if defined(QCA_WIFI_QCA6018)
  394. case TARGET_TYPE_QCA6018:
  395. hal_qca8074v2_attach(hal);
  396. break;
  397. #endif
  398. #if defined(QCA_WIFI_QCA9574)
  399. case TARGET_TYPE_QCA9574:
  400. hal_qca8074v2_attach(hal);
  401. break;
  402. #endif
  403. #if defined(QCA_WIFI_QCN6122)
  404. case TARGET_TYPE_QCN6122:
  405. hal->use_register_windowing = true;
  406. /*
  407. * Static window map is enabled for qcn9000 to use 2mb bar
  408. * size and use multiple windows to write into registers.
  409. */
  410. hal->static_window_map = true;
  411. hal_qcn6122_attach(hal);
  412. break;
  413. #endif
  414. #ifdef QCA_WIFI_QCN9000
  415. case TARGET_TYPE_QCN9000:
  416. hal->use_register_windowing = true;
  417. /*
  418. * Static window map is enabled for qcn9000 to use 2mb bar
  419. * size and use multiple windows to write into registers.
  420. */
  421. hal->static_window_map = true;
  422. hal_qcn9000_attach(hal);
  423. break;
  424. #endif
  425. #ifdef QCA_WIFI_QCA5018
  426. case TARGET_TYPE_QCA5018:
  427. hal->use_register_windowing = true;
  428. hal->static_window_map = true;
  429. hal_qca5018_attach(hal);
  430. break;
  431. #endif
  432. #ifdef QCA_WIFI_QCN9224
  433. case TARGET_TYPE_QCN9224:
  434. hal->use_register_windowing = true;
  435. hal->static_window_map = true;
  436. hal_qcn9224_attach(hal);
  437. break;
  438. #endif
  439. default:
  440. break;
  441. }
  442. }
  443. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  444. {
  445. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  446. struct hif_target_info *tgt_info =
  447. hif_get_target_info_handle(hal_soc->hif_handle);
  448. return tgt_info->target_type;
  449. }
  450. qdf_export_symbol(hal_get_target_type);
  451. #if defined(FEATURE_HAL_DELAYED_REG_WRITE)
  452. /**
  453. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  454. * @hal: hal_soc pointer
  455. *
  456. * Return: true if throughput is high, else false.
  457. */
  458. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  459. {
  460. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  461. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  462. }
  463. static inline
  464. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  465. char *buf, qdf_size_t size)
  466. {
  467. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  468. srng->wstats.enqueues, srng->wstats.dequeues,
  469. srng->wstats.coalesces, srng->wstats.direct);
  470. return buf;
  471. }
  472. /* bytes for local buffer */
  473. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  474. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  475. {
  476. struct hal_srng *srng;
  477. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  478. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  479. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  480. hal_debug("SW2TCL1: %s",
  481. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  482. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  483. hal_debug("WBM2SW0: %s",
  484. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  485. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  486. hal_debug("REO2SW1: %s",
  487. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  488. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  489. hal_debug("REO2SW2: %s",
  490. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  491. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  492. hal_debug("REO2SW3: %s",
  493. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  494. }
  495. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  496. {
  497. uint32_t *hist;
  498. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  499. hist = hal->stats.wstats.sched_delay;
  500. hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  501. qdf_atomic_read(&hal->stats.wstats.enqueues),
  502. hal->stats.wstats.dequeues,
  503. qdf_atomic_read(&hal->stats.wstats.coalesces),
  504. qdf_atomic_read(&hal->stats.wstats.direct),
  505. qdf_atomic_read(&hal->stats.wstats.q_depth),
  506. hal->stats.wstats.max_q_depth,
  507. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  508. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  509. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  510. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  511. }
  512. int hal_get_reg_write_pending_work(void *hal_soc)
  513. {
  514. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  515. return qdf_atomic_read(&hal->active_work_cnt);
  516. }
  517. #endif
  518. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  519. #ifdef MEMORY_DEBUG
  520. /*
  521. * Length of the queue(array) used to hold delayed register writes.
  522. * Must be a multiple of 2.
  523. */
  524. #define HAL_REG_WRITE_QUEUE_LEN 128
  525. #else
  526. #define HAL_REG_WRITE_QUEUE_LEN 32
  527. #endif
  528. /**
  529. * hal_process_reg_write_q_elem() - process a regiter write queue element
  530. * @hal: hal_soc pointer
  531. * @q_elem: pointer to hal regiter write queue element
  532. *
  533. * Return: The value which was written to the address
  534. */
  535. static uint32_t
  536. hal_process_reg_write_q_elem(struct hal_soc *hal,
  537. struct hal_reg_write_q_elem *q_elem)
  538. {
  539. struct hal_srng *srng = q_elem->srng;
  540. uint32_t write_val;
  541. SRNG_LOCK(&srng->lock);
  542. srng->reg_write_in_progress = false;
  543. srng->wstats.dequeues++;
  544. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  545. q_elem->dequeue_val = srng->u.src_ring.hp;
  546. hal_write_address_32_mb(hal,
  547. srng->u.src_ring.hp_addr,
  548. srng->u.src_ring.hp, false);
  549. write_val = srng->u.src_ring.hp;
  550. } else {
  551. q_elem->dequeue_val = srng->u.dst_ring.tp;
  552. hal_write_address_32_mb(hal,
  553. srng->u.dst_ring.tp_addr,
  554. srng->u.dst_ring.tp, false);
  555. write_val = srng->u.dst_ring.tp;
  556. }
  557. q_elem->valid = 0;
  558. srng->last_dequeue_time = q_elem->dequeue_time;
  559. SRNG_UNLOCK(&srng->lock);
  560. return write_val;
  561. }
  562. /**
  563. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  564. * @hal: hal_soc pointer
  565. * @delay: delay in us
  566. *
  567. * Return: None
  568. */
  569. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  570. uint64_t delay_us)
  571. {
  572. uint32_t *hist;
  573. hist = hal->stats.wstats.sched_delay;
  574. if (delay_us < 100)
  575. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  576. else if (delay_us < 1000)
  577. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  578. else if (delay_us < 5000)
  579. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  580. else
  581. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  582. }
  583. #ifdef SHADOW_WRITE_DELAY
  584. #define SHADOW_WRITE_MIN_DELTA_US 5
  585. #define SHADOW_WRITE_DELAY_US 50
  586. /*
  587. * Never add those srngs which are performance relate.
  588. * The delay itself will hit performance heavily.
  589. */
  590. #define IS_SRNG_MATCH(s) ((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
  591. (s)->ring_id == HAL_SRNG_CE_1_DST)
  592. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  593. {
  594. struct hal_srng *srng = elem->srng;
  595. struct hal_soc *hal;
  596. qdf_time_t now;
  597. qdf_iomem_t real_addr;
  598. if (qdf_unlikely(!srng))
  599. return false;
  600. hal = srng->hal_soc;
  601. if (qdf_unlikely(!hal))
  602. return false;
  603. /* Check if it is target srng, and valid shadow reg */
  604. if (qdf_likely(!IS_SRNG_MATCH(srng)))
  605. return false;
  606. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  607. real_addr = SRNG_SRC_ADDR(srng, HP);
  608. else
  609. real_addr = SRNG_DST_ADDR(srng, TP);
  610. if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
  611. return false;
  612. /* Check the time delta from last write of same srng */
  613. now = qdf_get_log_timestamp();
  614. if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
  615. SHADOW_WRITE_MIN_DELTA_US)
  616. return false;
  617. /* Delay dequeue, and record */
  618. qdf_udelay(SHADOW_WRITE_DELAY_US);
  619. srng->wstats.dequeue_delay++;
  620. hal->stats.wstats.dequeue_delay++;
  621. return true;
  622. }
  623. #else
  624. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  625. {
  626. return false;
  627. }
  628. #endif
  629. /**
  630. * hal_reg_write_work() - Worker to process delayed writes
  631. * @arg: hal_soc pointer
  632. *
  633. * Return: None
  634. */
  635. static void hal_reg_write_work(void *arg)
  636. {
  637. int32_t q_depth, write_val;
  638. struct hal_soc *hal = arg;
  639. struct hal_reg_write_q_elem *q_elem;
  640. uint64_t delta_us;
  641. uint8_t ring_id;
  642. uint32_t *addr;
  643. uint32_t num_processed = 0;
  644. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  645. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  646. q_elem->cpu_id = qdf_get_cpu();
  647. /* Make sure q_elem consistent in the memory for multi-cores */
  648. qdf_rmb();
  649. if (!q_elem->valid)
  650. return;
  651. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  652. if (q_depth > hal->stats.wstats.max_q_depth)
  653. hal->stats.wstats.max_q_depth = q_depth;
  654. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  655. hal->stats.wstats.prevent_l1_fails++;
  656. return;
  657. }
  658. while (true) {
  659. qdf_rmb();
  660. if (!q_elem->valid)
  661. break;
  662. q_elem->dequeue_time = qdf_get_log_timestamp();
  663. ring_id = q_elem->srng->ring_id;
  664. addr = q_elem->addr;
  665. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  666. q_elem->enqueue_time);
  667. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  668. hal->stats.wstats.dequeues++;
  669. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  670. if (hal_reg_write_need_delay(q_elem))
  671. hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
  672. q_elem->srng->ring_id, q_elem->addr);
  673. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  674. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  675. hal->read_idx, ring_id, addr, write_val, delta_us);
  676. qdf_trace_dp_del_reg_write(ring_id, q_elem->enqueue_val,
  677. q_elem->dequeue_val,
  678. q_elem->enqueue_time,
  679. q_elem->dequeue_time);
  680. num_processed++;
  681. hal->read_idx = (hal->read_idx + 1) &
  682. (HAL_REG_WRITE_QUEUE_LEN - 1);
  683. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  684. }
  685. hif_allow_link_low_power_states(hal->hif_handle);
  686. /*
  687. * Decrement active_work_cnt by the number of elements dequeued after
  688. * hif_allow_link_low_power_states.
  689. * This makes sure that hif_try_complete_tasks will wait till we make
  690. * the bus access in hif_allow_link_low_power_states. This will avoid
  691. * race condition between delayed register worker and bus suspend
  692. * (system suspend or runtime suspend).
  693. *
  694. * The following decrement should be done at the end!
  695. */
  696. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  697. }
  698. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  699. {
  700. qdf_flush_work(&hal->reg_write_work);
  701. qdf_disable_work(&hal->reg_write_work);
  702. }
  703. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  704. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  705. }
  706. /**
  707. * hal_reg_write_enqueue() - enqueue register writes into kworker
  708. * @hal_soc: hal_soc pointer
  709. * @srng: srng pointer
  710. * @addr: iomem address of regiter
  711. * @value: value to be written to iomem address
  712. *
  713. * This function executes from within the SRNG LOCK
  714. *
  715. * Return: None
  716. */
  717. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  718. struct hal_srng *srng,
  719. void __iomem *addr,
  720. uint32_t value)
  721. {
  722. struct hal_reg_write_q_elem *q_elem;
  723. uint32_t write_idx;
  724. if (srng->reg_write_in_progress) {
  725. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  726. srng->ring_id, addr, value);
  727. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  728. srng->wstats.coalesces++;
  729. return;
  730. }
  731. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  732. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  733. q_elem = &hal_soc->reg_write_queue[write_idx];
  734. if (q_elem->valid) {
  735. hal_err("queue full");
  736. QDF_BUG(0);
  737. return;
  738. }
  739. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  740. srng->wstats.enqueues++;
  741. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  742. q_elem->srng = srng;
  743. q_elem->addr = addr;
  744. q_elem->enqueue_val = value;
  745. q_elem->enqueue_time = qdf_get_log_timestamp();
  746. /*
  747. * Before the valid flag is set to true, all the other
  748. * fields in the q_elem needs to be updated in memory.
  749. * Else there is a chance that the dequeuing worker thread
  750. * might read stale entries and process incorrect srng.
  751. */
  752. qdf_wmb();
  753. q_elem->valid = true;
  754. /*
  755. * After all other fields in the q_elem has been updated
  756. * in memory successfully, the valid flag needs to be updated
  757. * in memory in time too.
  758. * Else there is a chance that the dequeuing worker thread
  759. * might read stale valid flag and the work will be bypassed
  760. * for this round. And if there is no other work scheduled
  761. * later, this hal register writing won't be updated any more.
  762. */
  763. qdf_wmb();
  764. srng->reg_write_in_progress = true;
  765. qdf_atomic_inc(&hal_soc->active_work_cnt);
  766. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  767. write_idx, srng->ring_id, addr, value);
  768. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  769. &hal_soc->reg_write_work);
  770. }
  771. /**
  772. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  773. * @hal_soc: hal_soc pointer
  774. *
  775. * Initialize main data structures to process register writes in a delayed
  776. * workqueue.
  777. *
  778. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  779. */
  780. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  781. {
  782. hal->reg_write_wq =
  783. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  784. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  785. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  786. sizeof(*hal->reg_write_queue));
  787. if (!hal->reg_write_queue) {
  788. hal_err("unable to allocate memory");
  789. QDF_BUG(0);
  790. return QDF_STATUS_E_NOMEM;
  791. }
  792. /* Initial value of indices */
  793. hal->read_idx = 0;
  794. qdf_atomic_set(&hal->write_idx, -1);
  795. return QDF_STATUS_SUCCESS;
  796. }
  797. /**
  798. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  799. * @hal_soc: hal_soc pointer
  800. *
  801. * De-initialize main data structures to process register writes in a delayed
  802. * workqueue.
  803. *
  804. * Return: None
  805. */
  806. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  807. {
  808. __hal_flush_reg_write_work(hal);
  809. qdf_flush_workqueue(0, hal->reg_write_wq);
  810. qdf_destroy_workqueue(0, hal->reg_write_wq);
  811. qdf_mem_free(hal->reg_write_queue);
  812. }
  813. #else
  814. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  815. {
  816. return QDF_STATUS_SUCCESS;
  817. }
  818. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  819. {
  820. }
  821. #endif
  822. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  823. #ifdef QCA_WIFI_QCA6750
  824. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  825. struct hal_srng *srng,
  826. void __iomem *addr,
  827. uint32_t value)
  828. {
  829. uint8_t vote_access;
  830. switch (srng->ring_type) {
  831. case CE_SRC:
  832. case CE_DST:
  833. case CE_DST_STATUS:
  834. vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
  835. HIF_EP_VOTE_NONDP_ACCESS);
  836. if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
  837. (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
  838. PLD_MHI_STATE_L0 ==
  839. pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
  840. hal_write_address_32_mb(hal_soc, addr, value, false);
  841. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  842. srng->wstats.direct++;
  843. } else {
  844. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  845. }
  846. break;
  847. default:
  848. if (hif_get_ep_vote_access(hal_soc->hif_handle,
  849. HIF_EP_VOTE_DP_ACCESS) ==
  850. HIF_EP_VOTE_ACCESS_DISABLE ||
  851. hal_is_reg_write_tput_level_high(hal_soc) ||
  852. PLD_MHI_STATE_L0 ==
  853. pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
  854. hal_write_address_32_mb(hal_soc, addr, value, false);
  855. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  856. srng->wstats.direct++;
  857. } else {
  858. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  859. }
  860. break;
  861. }
  862. }
  863. #else
  864. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  865. struct hal_srng *srng,
  866. void __iomem *addr,
  867. uint32_t value)
  868. {
  869. if (hal_is_reg_write_tput_level_high(hal_soc) ||
  870. pld_is_device_awake(hal_soc->qdf_dev->dev)) {
  871. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  872. srng->wstats.direct++;
  873. hal_write_address_32_mb(hal_soc, addr, value, false);
  874. } else {
  875. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  876. }
  877. }
  878. #endif
  879. #endif
  880. /**
  881. * hal_attach - Initialize HAL layer
  882. * @hif_handle: Opaque HIF handle
  883. * @qdf_dev: QDF device
  884. *
  885. * Return: Opaque HAL SOC handle
  886. * NULL on failure (if given ring is not available)
  887. *
  888. * This function should be called as part of HIF initialization (for accessing
  889. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  890. *
  891. */
  892. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  893. {
  894. struct hal_soc *hal;
  895. int i;
  896. hal = qdf_mem_malloc(sizeof(*hal));
  897. if (!hal) {
  898. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  899. "%s: hal_soc allocation failed", __func__);
  900. goto fail0;
  901. }
  902. hal->hif_handle = hif_handle;
  903. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  904. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  905. hal->qdf_dev = qdf_dev;
  906. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  907. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  908. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  909. if (!hal->shadow_rdptr_mem_paddr) {
  910. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  911. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  912. __func__);
  913. goto fail1;
  914. }
  915. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  916. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  917. hal->shadow_wrptr_mem_vaddr =
  918. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  919. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  920. &(hal->shadow_wrptr_mem_paddr));
  921. if (!hal->shadow_wrptr_mem_vaddr) {
  922. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  923. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  924. __func__);
  925. goto fail2;
  926. }
  927. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  928. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  929. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  930. hal->srng_list[i].initialized = 0;
  931. hal->srng_list[i].ring_id = i;
  932. }
  933. qdf_spinlock_create(&hal->register_access_lock);
  934. hal->register_window = 0;
  935. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  936. hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
  937. if (!hal->ops) {
  938. hal_err("unable to allocable memory for HAL ops");
  939. goto fail3;
  940. }
  941. hal_target_based_configure(hal);
  942. hal_reg_write_fail_history_init(hal);
  943. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  944. qdf_atomic_init(&hal->active_work_cnt);
  945. hal_delayed_reg_write_init(hal);
  946. hal_reo_shared_qaddr_setup((hal_soc_handle_t)hal);
  947. hif_rtpm_register(HIF_RTPM_ID_HAL_REO_CMD, NULL);
  948. return (void *)hal;
  949. fail3:
  950. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  951. sizeof(*hal->shadow_wrptr_mem_vaddr) *
  952. HAL_MAX_LMAC_RINGS,
  953. hal->shadow_wrptr_mem_vaddr,
  954. hal->shadow_wrptr_mem_paddr, 0);
  955. fail2:
  956. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  957. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  958. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  959. fail1:
  960. qdf_mem_free(hal);
  961. fail0:
  962. return NULL;
  963. }
  964. qdf_export_symbol(hal_attach);
  965. /**
  966. * hal_mem_info - Retrieve hal memory base address
  967. *
  968. * @hal_soc: Opaque HAL SOC handle
  969. * @mem: pointer to structure to be updated with hal mem info
  970. */
  971. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  972. {
  973. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  974. mem->dev_base_addr = (void *)hal->dev_base_addr;
  975. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  976. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  977. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  978. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  979. hif_read_phy_mem_base((void *)hal->hif_handle,
  980. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  981. mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
  982. return;
  983. }
  984. qdf_export_symbol(hal_get_meminfo);
  985. /**
  986. * hal_detach - Detach HAL layer
  987. * @hal_soc: HAL SOC handle
  988. *
  989. * Return: Opaque HAL SOC handle
  990. * NULL on failure (if given ring is not available)
  991. *
  992. * This function should be called as part of HIF initialization (for accessing
  993. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  994. *
  995. */
  996. extern void hal_detach(void *hal_soc)
  997. {
  998. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  999. hif_rtpm_deregister(HIF_RTPM_ID_HAL_REO_CMD);
  1000. hal_delayed_reg_write_deinit(hal);
  1001. hal_reo_shared_qaddr_detach((hal_soc_handle_t)hal);
  1002. qdf_mem_free(hal->ops);
  1003. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1004. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1005. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1006. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1007. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1008. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  1009. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  1010. qdf_mem_free(hal);
  1011. return;
  1012. }
  1013. qdf_export_symbol(hal_detach);
  1014. #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x) ((x) + 0x000000b0)
  1015. #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK 0x0000ffff
  1016. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x) ((x) + 0x00000040)
  1017. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK 0x00000007
  1018. /**
  1019. * hal_ce_dst_setup - Initialize CE destination ring registers
  1020. * @hal_soc: HAL SOC handle
  1021. * @srng: SRNG ring pointer
  1022. */
  1023. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  1024. int ring_num)
  1025. {
  1026. uint32_t reg_val = 0;
  1027. uint32_t reg_addr;
  1028. struct hal_hw_srng_config *ring_config =
  1029. HAL_SRNG_CONFIG(hal, CE_DST);
  1030. /* set DEST_MAX_LENGTH according to ce assignment */
  1031. reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
  1032. ring_config->reg_start[R0_INDEX] +
  1033. (ring_num * ring_config->reg_size[R0_INDEX]));
  1034. reg_val = HAL_REG_READ(hal, reg_addr);
  1035. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1036. reg_val |= srng->u.dst_ring.max_buffer_length &
  1037. HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1038. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1039. if (srng->prefetch_timer) {
  1040. reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  1041. ring_config->reg_start[R0_INDEX] +
  1042. (ring_num * ring_config->reg_size[R0_INDEX]));
  1043. reg_val = HAL_REG_READ(hal, reg_addr);
  1044. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  1045. reg_val |= srng->prefetch_timer;
  1046. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1047. reg_val = HAL_REG_READ(hal, reg_addr);
  1048. }
  1049. }
  1050. /**
  1051. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  1052. * @hal: HAL SOC handle
  1053. * @read: boolean value to indicate if read or write
  1054. * @ix0: pointer to store IX0 reg value
  1055. * @ix1: pointer to store IX1 reg value
  1056. * @ix2: pointer to store IX2 reg value
  1057. * @ix3: pointer to store IX3 reg value
  1058. */
  1059. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1060. uint32_t *ix0, uint32_t *ix1,
  1061. uint32_t *ix2, uint32_t *ix3)
  1062. {
  1063. uint32_t reg_offset;
  1064. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1065. uint32_t reo_reg_base;
  1066. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
  1067. if (read) {
  1068. if (ix0) {
  1069. reg_offset =
  1070. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1071. reo_reg_base);
  1072. *ix0 = HAL_REG_READ(hal, reg_offset);
  1073. }
  1074. if (ix1) {
  1075. reg_offset =
  1076. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1077. reo_reg_base);
  1078. *ix1 = HAL_REG_READ(hal, reg_offset);
  1079. }
  1080. if (ix2) {
  1081. reg_offset =
  1082. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1083. reo_reg_base);
  1084. *ix2 = HAL_REG_READ(hal, reg_offset);
  1085. }
  1086. if (ix3) {
  1087. reg_offset =
  1088. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1089. reo_reg_base);
  1090. *ix3 = HAL_REG_READ(hal, reg_offset);
  1091. }
  1092. } else {
  1093. if (ix0) {
  1094. reg_offset =
  1095. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1096. reo_reg_base);
  1097. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1098. *ix0, true);
  1099. }
  1100. if (ix1) {
  1101. reg_offset =
  1102. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1103. reo_reg_base);
  1104. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1105. *ix1, true);
  1106. }
  1107. if (ix2) {
  1108. reg_offset =
  1109. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1110. reo_reg_base);
  1111. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1112. *ix2, true);
  1113. }
  1114. if (ix3) {
  1115. reg_offset =
  1116. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1117. reo_reg_base);
  1118. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1119. *ix3, true);
  1120. }
  1121. }
  1122. }
  1123. qdf_export_symbol(hal_reo_read_write_ctrl_ix);
  1124. /**
  1125. * hal_srng_dst_set_hp_paddr_confirm() - Set physical address to dest ring head
  1126. * pointer and confirm that write went through by reading back the value
  1127. * @srng: sring pointer
  1128. * @paddr: physical address
  1129. *
  1130. * Return: None
  1131. */
  1132. void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
  1133. {
  1134. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
  1135. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
  1136. }
  1137. qdf_export_symbol(hal_srng_dst_set_hp_paddr_confirm);
  1138. /**
  1139. * hal_srng_dst_init_hp() - Initialize destination ring head
  1140. * pointer
  1141. * @hal_soc: hal_soc handle
  1142. * @srng: sring pointer
  1143. * @vaddr: virtual address
  1144. */
  1145. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1146. struct hal_srng *srng,
  1147. uint32_t *vaddr)
  1148. {
  1149. uint32_t reg_offset;
  1150. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1151. if (!srng)
  1152. return;
  1153. srng->u.dst_ring.hp_addr = vaddr;
  1154. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  1155. HAL_REG_WRITE_CONFIRM_RETRY(
  1156. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  1157. if (vaddr) {
  1158. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  1159. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1160. "hp_addr=%pK, cached_hp=%d, hp=%d",
  1161. (void *)srng->u.dst_ring.hp_addr,
  1162. srng->u.dst_ring.cached_hp,
  1163. *srng->u.dst_ring.hp_addr);
  1164. }
  1165. }
  1166. qdf_export_symbol(hal_srng_dst_init_hp);
  1167. /**
  1168. * hal_srng_hw_init - Private function to initialize SRNG HW
  1169. * @hal_soc: HAL SOC handle
  1170. * @srng: SRNG ring pointer
  1171. */
  1172. static inline void hal_srng_hw_init(struct hal_soc *hal,
  1173. struct hal_srng *srng)
  1174. {
  1175. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1176. hal_srng_src_hw_init(hal, srng);
  1177. else
  1178. hal_srng_dst_hw_init(hal, srng);
  1179. }
  1180. #if defined(CONFIG_SHADOW_V2) || defined(CONFIG_SHADOW_V3)
  1181. #define ignore_shadow false
  1182. #define CHECK_SHADOW_REGISTERS true
  1183. #else
  1184. #define ignore_shadow true
  1185. #define CHECK_SHADOW_REGISTERS false
  1186. #endif
  1187. #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
  1188. /**
  1189. * hal_srng_is_near_full_irq_supported() - Check if near full irq is
  1190. * supported on this SRNG
  1191. * @hal_soc: HAL SoC handle
  1192. * @ring_type: SRNG type
  1193. * @ring_num: ring number
  1194. *
  1195. * Return: true, if near full irq is supported for this SRNG
  1196. * false, if near full irq is not supported for this SRNG
  1197. */
  1198. bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
  1199. int ring_type, int ring_num)
  1200. {
  1201. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1202. struct hal_hw_srng_config *ring_config =
  1203. HAL_SRNG_CONFIG(hal, ring_type);
  1204. return ring_config->nf_irq_support;
  1205. }
  1206. /**
  1207. * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
  1208. * ring params
  1209. * @srng: SRNG handle
  1210. * @ring_params: ring params for this SRNG
  1211. *
  1212. * Return: None
  1213. */
  1214. static inline void
  1215. hal_srng_set_msi2_params(struct hal_srng *srng,
  1216. struct hal_srng_params *ring_params)
  1217. {
  1218. srng->msi2_addr = ring_params->msi2_addr;
  1219. srng->msi2_data = ring_params->msi2_data;
  1220. }
  1221. /**
  1222. * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
  1223. * @srng: SRNG handle
  1224. * @ring_params: ring params for this SRNG
  1225. *
  1226. * Return: None
  1227. */
  1228. static inline void
  1229. hal_srng_get_nf_params(struct hal_srng *srng,
  1230. struct hal_srng_params *ring_params)
  1231. {
  1232. ring_params->msi2_addr = srng->msi2_addr;
  1233. ring_params->msi2_data = srng->msi2_data;
  1234. }
  1235. /**
  1236. * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
  1237. * @srng: SRNG handle where the params are to be set
  1238. * @ring_params: ring params, from where threshold is to be fetched
  1239. *
  1240. * Return: None
  1241. */
  1242. static inline void
  1243. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1244. struct hal_srng_params *ring_params)
  1245. {
  1246. srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
  1247. srng->u.dst_ring.high_thresh = ring_params->high_thresh;
  1248. }
  1249. #else
  1250. static inline void
  1251. hal_srng_set_msi2_params(struct hal_srng *srng,
  1252. struct hal_srng_params *ring_params)
  1253. {
  1254. }
  1255. static inline void
  1256. hal_srng_get_nf_params(struct hal_srng *srng,
  1257. struct hal_srng_params *ring_params)
  1258. {
  1259. }
  1260. static inline void
  1261. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1262. struct hal_srng_params *ring_params)
  1263. {
  1264. }
  1265. #endif
  1266. #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
  1267. /**
  1268. * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
  1269. *
  1270. * @srng: Source ring pointer
  1271. *
  1272. * Return: None
  1273. */
  1274. static inline
  1275. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1276. {
  1277. srng->last_desc_cleared = srng->ring_size - srng->entry_size;
  1278. }
  1279. #else
  1280. static inline
  1281. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1282. {
  1283. }
  1284. #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
  1285. #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
  1286. static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
  1287. {
  1288. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100] =
  1289. ((srng->num_entries * 90) / 100);
  1290. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90] =
  1291. ((srng->num_entries * 80) / 100);
  1292. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80] =
  1293. ((srng->num_entries * 70) / 100);
  1294. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70] =
  1295. ((srng->num_entries * 60) / 100);
  1296. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60] =
  1297. ((srng->num_entries * 50) / 100);
  1298. /* Below 50% threshold is not needed */
  1299. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT] = 0;
  1300. hal_info("ring_id: %u, wm_thresh- <50:%u, 50-60:%u, 60-70:%u, 70-80:%u, 80-90:%u, 90-100:%u",
  1301. srng->ring_id,
  1302. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT],
  1303. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60],
  1304. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70],
  1305. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80],
  1306. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90],
  1307. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100]);
  1308. }
  1309. #else
  1310. static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
  1311. {
  1312. }
  1313. #endif
  1314. /**
  1315. * hal_srng_setup - Initialize HW SRNG ring.
  1316. * @hal_soc: Opaque HAL SOC handle
  1317. * @ring_type: one of the types from hal_ring_type
  1318. * @ring_num: Ring number if there are multiple rings of same type (staring
  1319. * from 0)
  1320. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1321. * @ring_params: SRNG ring params in hal_srng_params structure.
  1322. * Callers are expected to allocate contiguous ring memory of size
  1323. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1324. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1325. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1326. * and size of each ring entry should be queried using the API
  1327. * hal_srng_get_entrysize
  1328. *
  1329. * Return: Opaque pointer to ring on success
  1330. * NULL on failure (if given ring is not available)
  1331. */
  1332. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1333. int mac_id, struct hal_srng_params *ring_params)
  1334. {
  1335. int ring_id;
  1336. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1337. struct hal_srng *srng;
  1338. struct hal_hw_srng_config *ring_config =
  1339. HAL_SRNG_CONFIG(hal, ring_type);
  1340. void *dev_base_addr;
  1341. int i;
  1342. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1343. if (ring_id < 0)
  1344. return NULL;
  1345. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1346. srng = hal_get_srng(hal_soc, ring_id);
  1347. if (srng->initialized) {
  1348. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1349. return NULL;
  1350. }
  1351. dev_base_addr = hal->dev_base_addr;
  1352. srng->ring_id = ring_id;
  1353. srng->ring_type = ring_type;
  1354. srng->ring_dir = ring_config->ring_dir;
  1355. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1356. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1357. srng->entry_size = ring_config->entry_size;
  1358. srng->num_entries = ring_params->num_entries;
  1359. srng->ring_size = srng->num_entries * srng->entry_size;
  1360. srng->ring_size_mask = srng->ring_size - 1;
  1361. srng->ring_vaddr_end = srng->ring_base_vaddr + srng->ring_size;
  1362. srng->msi_addr = ring_params->msi_addr;
  1363. srng->msi_data = ring_params->msi_data;
  1364. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1365. srng->intr_batch_cntr_thres_entries =
  1366. ring_params->intr_batch_cntr_thres_entries;
  1367. srng->prefetch_timer = ring_params->prefetch_timer;
  1368. srng->hal_soc = hal_soc;
  1369. hal_srng_set_msi2_params(srng, ring_params);
  1370. hal_srng_update_high_wm_thresholds(srng);
  1371. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1372. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1373. + (ring_num * ring_config->reg_size[i]);
  1374. }
  1375. /* Zero out the entire ring memory */
  1376. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1377. srng->num_entries) << 2);
  1378. srng->flags = ring_params->flags;
  1379. /* For cached descriptors flush and invalidate the memory*/
  1380. if (srng->flags & HAL_SRNG_CACHED_DESC) {
  1381. qdf_nbuf_dma_clean_range(
  1382. srng->ring_base_vaddr,
  1383. srng->ring_base_vaddr +
  1384. ((srng->entry_size * srng->num_entries)));
  1385. qdf_nbuf_dma_inv_range(
  1386. srng->ring_base_vaddr,
  1387. srng->ring_base_vaddr +
  1388. ((srng->entry_size * srng->num_entries)));
  1389. }
  1390. #ifdef BIG_ENDIAN_HOST
  1391. /* TODO: See if we should we get these flags from caller */
  1392. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1393. srng->flags |= HAL_SRNG_MSI_SWAP;
  1394. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1395. #endif
  1396. hal_srng_last_desc_cleared_init(srng);
  1397. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1398. srng->u.src_ring.hp = 0;
  1399. srng->u.src_ring.reap_hp = srng->ring_size -
  1400. srng->entry_size;
  1401. srng->u.src_ring.tp_addr =
  1402. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1403. srng->u.src_ring.low_threshold =
  1404. ring_params->low_threshold * srng->entry_size;
  1405. if (ring_config->lmac_ring) {
  1406. /* For LMAC rings, head pointer updates will be done
  1407. * through FW by writing to a shared memory location
  1408. */
  1409. srng->u.src_ring.hp_addr =
  1410. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1411. HAL_SRNG_LMAC1_ID_START]);
  1412. srng->flags |= HAL_SRNG_LMAC_RING;
  1413. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1414. srng->u.src_ring.hp_addr =
  1415. hal_get_window_address(hal,
  1416. SRNG_SRC_ADDR(srng, HP));
  1417. if (CHECK_SHADOW_REGISTERS) {
  1418. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1419. QDF_TRACE_LEVEL_ERROR,
  1420. "%s: Ring (%d, %d) missing shadow config",
  1421. __func__, ring_type, ring_num);
  1422. }
  1423. } else {
  1424. hal_validate_shadow_register(hal,
  1425. SRNG_SRC_ADDR(srng, HP),
  1426. srng->u.src_ring.hp_addr);
  1427. }
  1428. } else {
  1429. /* During initialization loop count in all the descriptors
  1430. * will be set to zero, and HW will set it to 1 on completing
  1431. * descriptor update in first loop, and increments it by 1 on
  1432. * subsequent loops (loop count wraps around after reaching
  1433. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1434. * loop count in descriptors updated by HW (to be processed
  1435. * by SW).
  1436. */
  1437. hal_srng_set_nf_thresholds(srng, ring_params);
  1438. srng->u.dst_ring.loop_cnt = 1;
  1439. srng->u.dst_ring.tp = 0;
  1440. srng->u.dst_ring.hp_addr =
  1441. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1442. if (ring_config->lmac_ring) {
  1443. /* For LMAC rings, tail pointer updates will be done
  1444. * through FW by writing to a shared memory location
  1445. */
  1446. srng->u.dst_ring.tp_addr =
  1447. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1448. HAL_SRNG_LMAC1_ID_START]);
  1449. srng->flags |= HAL_SRNG_LMAC_RING;
  1450. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1451. srng->u.dst_ring.tp_addr =
  1452. hal_get_window_address(hal,
  1453. SRNG_DST_ADDR(srng, TP));
  1454. if (CHECK_SHADOW_REGISTERS) {
  1455. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1456. QDF_TRACE_LEVEL_ERROR,
  1457. "%s: Ring (%d, %d) missing shadow config",
  1458. __func__, ring_type, ring_num);
  1459. }
  1460. } else {
  1461. hal_validate_shadow_register(hal,
  1462. SRNG_DST_ADDR(srng, TP),
  1463. srng->u.dst_ring.tp_addr);
  1464. }
  1465. }
  1466. if (!(ring_config->lmac_ring)) {
  1467. hal_srng_hw_init(hal, srng);
  1468. if (ring_type == CE_DST) {
  1469. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1470. hal_ce_dst_setup(hal, srng, ring_num);
  1471. }
  1472. }
  1473. SRNG_LOCK_INIT(&srng->lock);
  1474. srng->srng_event = 0;
  1475. srng->initialized = true;
  1476. return (void *)srng;
  1477. }
  1478. qdf_export_symbol(hal_srng_setup);
  1479. /**
  1480. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1481. * @hal_soc: Opaque HAL SOC handle
  1482. * @hal_srng: Opaque HAL SRNG pointer
  1483. */
  1484. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1485. {
  1486. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1487. SRNG_LOCK_DESTROY(&srng->lock);
  1488. srng->initialized = 0;
  1489. }
  1490. qdf_export_symbol(hal_srng_cleanup);
  1491. /**
  1492. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1493. * @hal_soc: Opaque HAL SOC handle
  1494. * @ring_type: one of the types from hal_ring_type
  1495. *
  1496. */
  1497. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1498. {
  1499. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1500. struct hal_hw_srng_config *ring_config =
  1501. HAL_SRNG_CONFIG(hal, ring_type);
  1502. return ring_config->entry_size << 2;
  1503. }
  1504. qdf_export_symbol(hal_srng_get_entrysize);
  1505. /**
  1506. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1507. * @hal_soc: Opaque HAL SOC handle
  1508. * @ring_type: one of the types from hal_ring_type
  1509. *
  1510. * Return: Maximum number of entries for the given ring_type
  1511. */
  1512. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1513. {
  1514. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1515. struct hal_hw_srng_config *ring_config =
  1516. HAL_SRNG_CONFIG(hal, ring_type);
  1517. return ring_config->max_size / ring_config->entry_size;
  1518. }
  1519. qdf_export_symbol(hal_srng_max_entries);
  1520. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1521. {
  1522. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1523. struct hal_hw_srng_config *ring_config =
  1524. HAL_SRNG_CONFIG(hal, ring_type);
  1525. return ring_config->ring_dir;
  1526. }
  1527. /**
  1528. * hal_srng_dump - Dump ring status
  1529. * @srng: hal srng pointer
  1530. */
  1531. void hal_srng_dump(struct hal_srng *srng)
  1532. {
  1533. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1534. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1535. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1536. srng->u.src_ring.hp,
  1537. srng->u.src_ring.reap_hp,
  1538. *srng->u.src_ring.tp_addr,
  1539. srng->u.src_ring.cached_tp);
  1540. } else {
  1541. hal_debug("=== DST RING %d ===", srng->ring_id);
  1542. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1543. srng->u.dst_ring.tp,
  1544. *srng->u.dst_ring.hp_addr,
  1545. srng->u.dst_ring.cached_hp,
  1546. srng->u.dst_ring.loop_cnt);
  1547. }
  1548. }
  1549. /**
  1550. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1551. *
  1552. * @hal_soc: Opaque HAL SOC handle
  1553. * @hal_ring: Ring pointer (Source or Destination ring)
  1554. * @ring_params: SRNG parameters will be returned through this structure
  1555. */
  1556. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1557. hal_ring_handle_t hal_ring_hdl,
  1558. struct hal_srng_params *ring_params)
  1559. {
  1560. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1561. int i =0;
  1562. ring_params->ring_id = srng->ring_id;
  1563. ring_params->ring_dir = srng->ring_dir;
  1564. ring_params->entry_size = srng->entry_size;
  1565. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1566. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1567. ring_params->num_entries = srng->num_entries;
  1568. ring_params->msi_addr = srng->msi_addr;
  1569. ring_params->msi_data = srng->msi_data;
  1570. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1571. ring_params->intr_batch_cntr_thres_entries =
  1572. srng->intr_batch_cntr_thres_entries;
  1573. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1574. ring_params->flags = srng->flags;
  1575. ring_params->ring_id = srng->ring_id;
  1576. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1577. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1578. hal_srng_get_nf_params(srng, ring_params);
  1579. }
  1580. qdf_export_symbol(hal_get_srng_params);
  1581. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1582. uint32_t low_threshold)
  1583. {
  1584. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1585. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1586. }
  1587. qdf_export_symbol(hal_set_low_threshold);
  1588. #ifdef FEATURE_RUNTIME_PM
  1589. void
  1590. hal_srng_rtpm_access_end(hal_soc_handle_t hal_soc_hdl,
  1591. hal_ring_handle_t hal_ring_hdl,
  1592. uint32_t rtpm_id)
  1593. {
  1594. if (qdf_unlikely(!hal_ring_hdl)) {
  1595. qdf_print("Error: Invalid hal_ring\n");
  1596. return;
  1597. }
  1598. if (hif_rtpm_get(HIF_RTPM_GET_ASYNC, rtpm_id) == 0) {
  1599. hal_srng_access_end(hal_soc_hdl, hal_ring_hdl);
  1600. hif_rtpm_put(HIF_RTPM_PUT_ASYNC, rtpm_id);
  1601. } else {
  1602. hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
  1603. hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
  1604. hal_srng_inc_flush_cnt(hal_ring_hdl);
  1605. }
  1606. }
  1607. qdf_export_symbol(hal_srng_rtpm_access_end);
  1608. #endif /* FEATURE_RUNTIME_PM */
  1609. #ifdef FORCE_WAKE
  1610. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1611. {
  1612. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1613. hal_soc->init_phase = init_phase;
  1614. }
  1615. #endif /* FORCE_WAKE */