hal_api.h 90 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #ifndef _HAL_API_H_
  20. #define _HAL_API_H_
  21. #include "qdf_types.h"
  22. #include "qdf_util.h"
  23. #include "qdf_atomic.h"
  24. #include "hal_internal.h"
  25. #include "hif.h"
  26. #include "hif_io32.h"
  27. #include "qdf_platform.h"
  28. #ifdef DUMP_REO_QUEUE_INFO_IN_DDR
  29. #include "hal_hw_headers.h"
  30. #endif
  31. /* Ring index for WBM2SW2 release ring */
  32. #define HAL_IPA_TX_COMP_RING_IDX 2
  33. /* calculate the register address offset from bar0 of shadow register x */
  34. #if defined(QCA_WIFI_QCA6390) || defined(QCA_WIFI_QCA6490) || \
  35. defined(QCA_WIFI_KIWI)
  36. #define SHADOW_REGISTER_START_ADDRESS_OFFSET 0x000008FC
  37. #define SHADOW_REGISTER_END_ADDRESS_OFFSET \
  38. ((SHADOW_REGISTER_START_ADDRESS_OFFSET) + (4 * (MAX_SHADOW_REGISTERS)))
  39. #define SHADOW_REGISTER(x) ((SHADOW_REGISTER_START_ADDRESS_OFFSET) + (4 * (x)))
  40. #elif defined(QCA_WIFI_QCA6290) || defined(QCA_WIFI_QCN9000)
  41. #define SHADOW_REGISTER_START_ADDRESS_OFFSET 0x00003024
  42. #define SHADOW_REGISTER_END_ADDRESS_OFFSET \
  43. ((SHADOW_REGISTER_START_ADDRESS_OFFSET) + (4 * (MAX_SHADOW_REGISTERS)))
  44. #define SHADOW_REGISTER(x) ((SHADOW_REGISTER_START_ADDRESS_OFFSET) + (4 * (x)))
  45. #elif defined(QCA_WIFI_QCA6750)
  46. #define SHADOW_REGISTER_START_ADDRESS_OFFSET 0x00000504
  47. #define SHADOW_REGISTER_END_ADDRESS_OFFSET \
  48. ((SHADOW_REGISTER_START_ADDRESS_OFFSET) + (4 * (MAX_SHADOW_REGISTERS)))
  49. #define SHADOW_REGISTER(x) ((SHADOW_REGISTER_START_ADDRESS_OFFSET) + (4 * (x)))
  50. #else
  51. #define SHADOW_REGISTER(x) 0
  52. #endif /* QCA_WIFI_QCA6390 || QCA_WIFI_QCA6490 || QCA_WIFI_QCA6750 */
  53. /*
  54. * BAR + 4K is always accessible, any access outside this
  55. * space requires force wake procedure.
  56. * OFFSET = 4K - 32 bytes = 0xFE0
  57. */
  58. #define MAPPED_REF_OFF 0xFE0
  59. #define HAL_OFFSET(block, field) block ## _ ## field ## _OFFSET
  60. #ifdef ENABLE_VERBOSE_DEBUG
  61. static inline void
  62. hal_set_verbose_debug(bool flag)
  63. {
  64. is_hal_verbose_debug_enabled = flag;
  65. }
  66. #endif
  67. #ifdef ENABLE_HAL_SOC_STATS
  68. #define HAL_STATS_INC(_handle, _field, _delta) \
  69. { \
  70. if (likely(_handle)) \
  71. _handle->stats._field += _delta; \
  72. }
  73. #else
  74. #define HAL_STATS_INC(_handle, _field, _delta)
  75. #endif
  76. #ifdef ENABLE_HAL_REG_WR_HISTORY
  77. #define HAL_REG_WRITE_FAIL_HIST_ADD(hal_soc, offset, wr_val, rd_val) \
  78. hal_reg_wr_fail_history_add(hal_soc, offset, wr_val, rd_val)
  79. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  80. uint32_t offset,
  81. uint32_t wr_val,
  82. uint32_t rd_val);
  83. static inline int hal_history_get_next_index(qdf_atomic_t *table_index,
  84. int array_size)
  85. {
  86. int record_index = qdf_atomic_inc_return(table_index);
  87. return record_index & (array_size - 1);
  88. }
  89. #else
  90. #define HAL_REG_WRITE_FAIL_HIST_ADD(hal_soc, offset, wr_val, rd_val) \
  91. hal_err("write failed at reg offset 0x%x, write 0x%x read 0x%x\n", \
  92. offset, \
  93. wr_val, \
  94. rd_val)
  95. #endif
  96. /**
  97. * hal_reg_write_result_check() - check register writing result
  98. * @hal_soc: HAL soc handle
  99. * @offset: register offset to read
  100. * @exp_val: the expected value of register
  101. * @ret_confirm: result confirm flag
  102. *
  103. * Return: none
  104. */
  105. static inline void hal_reg_write_result_check(struct hal_soc *hal_soc,
  106. uint32_t offset,
  107. uint32_t exp_val)
  108. {
  109. uint32_t value;
  110. value = qdf_ioread32(hal_soc->dev_base_addr + offset);
  111. if (exp_val != value) {
  112. HAL_REG_WRITE_FAIL_HIST_ADD(hal_soc, offset, exp_val, value);
  113. HAL_STATS_INC(hal_soc, reg_write_fail, 1);
  114. }
  115. }
  116. #ifdef WINDOW_REG_PLD_LOCK_ENABLE
  117. static inline void hal_lock_reg_access(struct hal_soc *soc,
  118. unsigned long *flags)
  119. {
  120. pld_lock_reg_window(soc->qdf_dev->dev, flags);
  121. }
  122. static inline void hal_unlock_reg_access(struct hal_soc *soc,
  123. unsigned long *flags)
  124. {
  125. pld_unlock_reg_window(soc->qdf_dev->dev, flags);
  126. }
  127. #else
  128. static inline void hal_lock_reg_access(struct hal_soc *soc,
  129. unsigned long *flags)
  130. {
  131. qdf_spin_lock_irqsave(&soc->register_access_lock);
  132. }
  133. static inline void hal_unlock_reg_access(struct hal_soc *soc,
  134. unsigned long *flags)
  135. {
  136. qdf_spin_unlock_irqrestore(&soc->register_access_lock);
  137. }
  138. #endif
  139. #ifdef PCIE_REG_WINDOW_LOCAL_NO_CACHE
  140. /**
  141. * hal_select_window_confirm() - write remap window register and
  142. check writing result
  143. *
  144. */
  145. static inline void hal_select_window_confirm(struct hal_soc *hal_soc,
  146. uint32_t offset)
  147. {
  148. uint32_t window = (offset >> WINDOW_SHIFT) & WINDOW_VALUE_MASK;
  149. qdf_iowrite32(hal_soc->dev_base_addr + WINDOW_REG_ADDRESS,
  150. WINDOW_ENABLE_BIT | window);
  151. hal_soc->register_window = window;
  152. hal_reg_write_result_check(hal_soc, WINDOW_REG_ADDRESS,
  153. WINDOW_ENABLE_BIT | window);
  154. }
  155. #else
  156. static inline void hal_select_window_confirm(struct hal_soc *hal_soc,
  157. uint32_t offset)
  158. {
  159. uint32_t window = (offset >> WINDOW_SHIFT) & WINDOW_VALUE_MASK;
  160. if (window != hal_soc->register_window) {
  161. qdf_iowrite32(hal_soc->dev_base_addr + WINDOW_REG_ADDRESS,
  162. WINDOW_ENABLE_BIT | window);
  163. hal_soc->register_window = window;
  164. hal_reg_write_result_check(
  165. hal_soc,
  166. WINDOW_REG_ADDRESS,
  167. WINDOW_ENABLE_BIT | window);
  168. }
  169. }
  170. #endif
  171. static inline qdf_iomem_t hal_get_window_address(struct hal_soc *hal_soc,
  172. qdf_iomem_t addr)
  173. {
  174. return hal_soc->ops->hal_get_window_address(hal_soc, addr);
  175. }
  176. static inline void hal_tx_init_cmd_credit_ring(hal_soc_handle_t hal_soc_hdl,
  177. hal_ring_handle_t hal_ring_hdl)
  178. {
  179. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  180. return hal_soc->ops->hal_tx_init_cmd_credit_ring(hal_soc_hdl,
  181. hal_ring_hdl);
  182. }
  183. /**
  184. * hal_write32_mb() - Access registers to update configuration
  185. * @hal_soc: hal soc handle
  186. * @offset: offset address from the BAR
  187. * @value: value to write
  188. *
  189. * Return: None
  190. *
  191. * Description: Register address space is split below:
  192. * SHADOW REGION UNWINDOWED REGION WINDOWED REGION
  193. * |--------------------|-------------------|------------------|
  194. * BAR NO FORCE WAKE BAR+4K FORCE WAKE BAR+512K FORCE WAKE
  195. *
  196. * 1. Any access to the shadow region, doesn't need force wake
  197. * and windowing logic to access.
  198. * 2. Any access beyond BAR + 4K:
  199. * If init_phase enabled, no force wake is needed and access
  200. * should be based on windowed or unwindowed access.
  201. * If init_phase disabled, force wake is needed and access
  202. * should be based on windowed or unwindowed access.
  203. *
  204. * note1: WINDOW_RANGE_MASK = (1 << WINDOW_SHIFT) -1
  205. * note2: 1 << WINDOW_SHIFT = MAX_UNWINDOWED_ADDRESS
  206. * note3: WINDOW_VALUE_MASK = big enough that trying to write past
  207. * that window would be a bug
  208. */
  209. #if !defined(QCA_WIFI_QCA6390) && !defined(QCA_WIFI_QCA6490) && \
  210. !defined(QCA_WIFI_QCA6750) && !defined(QCA_WIFI_KIWI)
  211. static inline void hal_write32_mb(struct hal_soc *hal_soc, uint32_t offset,
  212. uint32_t value)
  213. {
  214. unsigned long flags;
  215. qdf_iomem_t new_addr;
  216. if (!hal_soc->use_register_windowing ||
  217. offset < MAX_UNWINDOWED_ADDRESS) {
  218. qdf_iowrite32(hal_soc->dev_base_addr + offset, value);
  219. } else if (hal_soc->static_window_map) {
  220. new_addr = hal_get_window_address(hal_soc,
  221. hal_soc->dev_base_addr + offset);
  222. qdf_iowrite32(new_addr, value);
  223. } else {
  224. hal_lock_reg_access(hal_soc, &flags);
  225. hal_select_window_confirm(hal_soc, offset);
  226. qdf_iowrite32(hal_soc->dev_base_addr + WINDOW_START +
  227. (offset & WINDOW_RANGE_MASK), value);
  228. hal_unlock_reg_access(hal_soc, &flags);
  229. }
  230. }
  231. #define hal_write32_mb_confirm(_hal_soc, _offset, _value) \
  232. hal_write32_mb(_hal_soc, _offset, _value)
  233. #define hal_write32_mb_cmem(_hal_soc, _offset, _value)
  234. #else
  235. static inline void hal_write32_mb(struct hal_soc *hal_soc, uint32_t offset,
  236. uint32_t value)
  237. {
  238. int ret;
  239. unsigned long flags;
  240. qdf_iomem_t new_addr;
  241. if (!TARGET_ACCESS_ALLOWED(HIF_GET_SOFTC(
  242. hal_soc->hif_handle))) {
  243. hal_err_rl("target access is not allowed");
  244. return;
  245. }
  246. /* Region < BAR + 4K can be directly accessed */
  247. if (offset < MAPPED_REF_OFF) {
  248. qdf_iowrite32(hal_soc->dev_base_addr + offset, value);
  249. return;
  250. }
  251. /* Region greater than BAR + 4K */
  252. if (!hal_soc->init_phase) {
  253. ret = hif_force_wake_request(hal_soc->hif_handle);
  254. if (ret) {
  255. hal_err_rl("Wake up request failed");
  256. qdf_check_state_before_panic(__func__, __LINE__);
  257. return;
  258. }
  259. }
  260. if (!hal_soc->use_register_windowing ||
  261. offset < MAX_UNWINDOWED_ADDRESS) {
  262. qdf_iowrite32(hal_soc->dev_base_addr + offset, value);
  263. } else if (hal_soc->static_window_map) {
  264. new_addr = hal_get_window_address(
  265. hal_soc,
  266. hal_soc->dev_base_addr + offset);
  267. qdf_iowrite32(new_addr, value);
  268. } else {
  269. hal_lock_reg_access(hal_soc, &flags);
  270. hal_select_window_confirm(hal_soc, offset);
  271. qdf_iowrite32(hal_soc->dev_base_addr + WINDOW_START +
  272. (offset & WINDOW_RANGE_MASK), value);
  273. hal_unlock_reg_access(hal_soc, &flags);
  274. }
  275. if (!hal_soc->init_phase) {
  276. ret = hif_force_wake_release(hal_soc->hif_handle);
  277. if (ret) {
  278. hal_err("Wake up release failed");
  279. qdf_check_state_before_panic(__func__, __LINE__);
  280. return;
  281. }
  282. }
  283. }
  284. /**
  285. * hal_write32_mb_confirm() - write register and check wirting result
  286. *
  287. */
  288. static inline void hal_write32_mb_confirm(struct hal_soc *hal_soc,
  289. uint32_t offset,
  290. uint32_t value)
  291. {
  292. int ret;
  293. unsigned long flags;
  294. qdf_iomem_t new_addr;
  295. if (!TARGET_ACCESS_ALLOWED(HIF_GET_SOFTC(
  296. hal_soc->hif_handle))) {
  297. hal_err_rl("target access is not allowed");
  298. return;
  299. }
  300. /* Region < BAR + 4K can be directly accessed */
  301. if (offset < MAPPED_REF_OFF) {
  302. qdf_iowrite32(hal_soc->dev_base_addr + offset, value);
  303. return;
  304. }
  305. /* Region greater than BAR + 4K */
  306. if (!hal_soc->init_phase) {
  307. ret = hif_force_wake_request(hal_soc->hif_handle);
  308. if (ret) {
  309. hal_err("Wake up request failed");
  310. qdf_check_state_before_panic(__func__, __LINE__);
  311. return;
  312. }
  313. }
  314. if (!hal_soc->use_register_windowing ||
  315. offset < MAX_UNWINDOWED_ADDRESS) {
  316. qdf_iowrite32(hal_soc->dev_base_addr + offset, value);
  317. hal_reg_write_result_check(hal_soc, offset,
  318. value);
  319. } else if (hal_soc->static_window_map) {
  320. new_addr = hal_get_window_address(
  321. hal_soc,
  322. hal_soc->dev_base_addr + offset);
  323. qdf_iowrite32(new_addr, value);
  324. hal_reg_write_result_check(hal_soc,
  325. new_addr - hal_soc->dev_base_addr,
  326. value);
  327. } else {
  328. hal_lock_reg_access(hal_soc, &flags);
  329. hal_select_window_confirm(hal_soc, offset);
  330. qdf_iowrite32(hal_soc->dev_base_addr + WINDOW_START +
  331. (offset & WINDOW_RANGE_MASK), value);
  332. hal_reg_write_result_check(
  333. hal_soc,
  334. WINDOW_START + (offset & WINDOW_RANGE_MASK),
  335. value);
  336. hal_unlock_reg_access(hal_soc, &flags);
  337. }
  338. if (!hal_soc->init_phase) {
  339. ret = hif_force_wake_release(hal_soc->hif_handle);
  340. if (ret) {
  341. hal_err("Wake up release failed");
  342. qdf_check_state_before_panic(__func__, __LINE__);
  343. return;
  344. }
  345. }
  346. }
  347. static inline void hal_write32_mb_cmem(struct hal_soc *hal_soc, uint32_t offset,
  348. uint32_t value)
  349. {
  350. unsigned long flags;
  351. qdf_iomem_t new_addr;
  352. if (!TARGET_ACCESS_ALLOWED(HIF_GET_SOFTC(
  353. hal_soc->hif_handle))) {
  354. hal_err_rl("%s: target access is not allowed", __func__);
  355. return;
  356. }
  357. if (!hal_soc->use_register_windowing ||
  358. offset < MAX_UNWINDOWED_ADDRESS) {
  359. qdf_iowrite32(hal_soc->dev_base_addr + offset, value);
  360. } else if (hal_soc->static_window_map) {
  361. new_addr = hal_get_window_address(
  362. hal_soc,
  363. hal_soc->dev_base_addr + offset);
  364. qdf_iowrite32(new_addr, value);
  365. } else {
  366. hal_lock_reg_access(hal_soc, &flags);
  367. hal_select_window_confirm(hal_soc, offset);
  368. qdf_iowrite32(hal_soc->dev_base_addr + WINDOW_START +
  369. (offset & WINDOW_RANGE_MASK), value);
  370. hal_unlock_reg_access(hal_soc, &flags);
  371. }
  372. }
  373. #endif
  374. /**
  375. * hal_write_address_32_mb - write a value to a register
  376. *
  377. */
  378. static inline
  379. void hal_write_address_32_mb(struct hal_soc *hal_soc,
  380. qdf_iomem_t addr, uint32_t value, bool wr_confirm)
  381. {
  382. uint32_t offset;
  383. if (!hal_soc->use_register_windowing)
  384. return qdf_iowrite32(addr, value);
  385. offset = addr - hal_soc->dev_base_addr;
  386. if (qdf_unlikely(wr_confirm))
  387. hal_write32_mb_confirm(hal_soc, offset, value);
  388. else
  389. hal_write32_mb(hal_soc, offset, value);
  390. }
  391. #ifdef DP_HAL_MULTIWINDOW_DIRECT_ACCESS
  392. static inline void hal_srng_write_address_32_mb(struct hal_soc *hal_soc,
  393. struct hal_srng *srng,
  394. void __iomem *addr,
  395. uint32_t value)
  396. {
  397. qdf_iowrite32(addr, value);
  398. }
  399. #elif defined(FEATURE_HAL_DELAYED_REG_WRITE)
  400. static inline void hal_srng_write_address_32_mb(struct hal_soc *hal_soc,
  401. struct hal_srng *srng,
  402. void __iomem *addr,
  403. uint32_t value)
  404. {
  405. hal_delayed_reg_write(hal_soc, srng, addr, value);
  406. }
  407. #else
  408. static inline void hal_srng_write_address_32_mb(struct hal_soc *hal_soc,
  409. struct hal_srng *srng,
  410. void __iomem *addr,
  411. uint32_t value)
  412. {
  413. hal_write_address_32_mb(hal_soc, addr, value, false);
  414. }
  415. #endif
  416. #if !defined(QCA_WIFI_QCA6390) && !defined(QCA_WIFI_QCA6490) && \
  417. !defined(QCA_WIFI_QCA6750) && !defined(QCA_WIFI_KIWI)
  418. /**
  419. * hal_read32_mb() - Access registers to read configuration
  420. * @hal_soc: hal soc handle
  421. * @offset: offset address from the BAR
  422. * @value: value to write
  423. *
  424. * Description: Register address space is split below:
  425. * SHADOW REGION UNWINDOWED REGION WINDOWED REGION
  426. * |--------------------|-------------------|------------------|
  427. * BAR NO FORCE WAKE BAR+4K FORCE WAKE BAR+512K FORCE WAKE
  428. *
  429. * 1. Any access to the shadow region, doesn't need force wake
  430. * and windowing logic to access.
  431. * 2. Any access beyond BAR + 4K:
  432. * If init_phase enabled, no force wake is needed and access
  433. * should be based on windowed or unwindowed access.
  434. * If init_phase disabled, force wake is needed and access
  435. * should be based on windowed or unwindowed access.
  436. *
  437. * Return: < 0 for failure/>= 0 for success
  438. */
  439. static inline uint32_t hal_read32_mb(struct hal_soc *hal_soc, uint32_t offset)
  440. {
  441. uint32_t ret;
  442. unsigned long flags;
  443. qdf_iomem_t new_addr;
  444. if (!hal_soc->use_register_windowing ||
  445. offset < MAX_UNWINDOWED_ADDRESS) {
  446. return qdf_ioread32(hal_soc->dev_base_addr + offset);
  447. } else if (hal_soc->static_window_map) {
  448. new_addr = hal_get_window_address(hal_soc, hal_soc->dev_base_addr + offset);
  449. return qdf_ioread32(new_addr);
  450. }
  451. hal_lock_reg_access(hal_soc, &flags);
  452. hal_select_window_confirm(hal_soc, offset);
  453. ret = qdf_ioread32(hal_soc->dev_base_addr + WINDOW_START +
  454. (offset & WINDOW_RANGE_MASK));
  455. hal_unlock_reg_access(hal_soc, &flags);
  456. return ret;
  457. }
  458. #define hal_read32_mb_cmem(_hal_soc, _offset)
  459. #else
  460. static
  461. uint32_t hal_read32_mb(struct hal_soc *hal_soc, uint32_t offset)
  462. {
  463. uint32_t ret;
  464. unsigned long flags;
  465. qdf_iomem_t new_addr;
  466. if (!TARGET_ACCESS_ALLOWED(HIF_GET_SOFTC(
  467. hal_soc->hif_handle))) {
  468. hal_err_rl("target access is not allowed");
  469. return 0;
  470. }
  471. /* Region < BAR + 4K can be directly accessed */
  472. if (offset < MAPPED_REF_OFF)
  473. return qdf_ioread32(hal_soc->dev_base_addr + offset);
  474. if ((!hal_soc->init_phase) &&
  475. hif_force_wake_request(hal_soc->hif_handle)) {
  476. hal_err("Wake up request failed");
  477. qdf_check_state_before_panic(__func__, __LINE__);
  478. return 0;
  479. }
  480. if (!hal_soc->use_register_windowing ||
  481. offset < MAX_UNWINDOWED_ADDRESS) {
  482. ret = qdf_ioread32(hal_soc->dev_base_addr + offset);
  483. } else if (hal_soc->static_window_map) {
  484. new_addr = hal_get_window_address(
  485. hal_soc,
  486. hal_soc->dev_base_addr + offset);
  487. ret = qdf_ioread32(new_addr);
  488. } else {
  489. hal_lock_reg_access(hal_soc, &flags);
  490. hal_select_window_confirm(hal_soc, offset);
  491. ret = qdf_ioread32(hal_soc->dev_base_addr + WINDOW_START +
  492. (offset & WINDOW_RANGE_MASK));
  493. hal_unlock_reg_access(hal_soc, &flags);
  494. }
  495. if ((!hal_soc->init_phase) &&
  496. hif_force_wake_release(hal_soc->hif_handle)) {
  497. hal_err("Wake up release failed");
  498. qdf_check_state_before_panic(__func__, __LINE__);
  499. return 0;
  500. }
  501. return ret;
  502. }
  503. static inline
  504. uint32_t hal_read32_mb_cmem(struct hal_soc *hal_soc, uint32_t offset)
  505. {
  506. uint32_t ret;
  507. unsigned long flags;
  508. qdf_iomem_t new_addr;
  509. if (!TARGET_ACCESS_ALLOWED(HIF_GET_SOFTC(
  510. hal_soc->hif_handle))) {
  511. hal_err_rl("%s: target access is not allowed", __func__);
  512. return 0;
  513. }
  514. if (!hal_soc->use_register_windowing ||
  515. offset < MAX_UNWINDOWED_ADDRESS) {
  516. ret = qdf_ioread32(hal_soc->dev_base_addr + offset);
  517. } else if (hal_soc->static_window_map) {
  518. new_addr = hal_get_window_address(
  519. hal_soc,
  520. hal_soc->dev_base_addr + offset);
  521. ret = qdf_ioread32(new_addr);
  522. } else {
  523. hal_lock_reg_access(hal_soc, &flags);
  524. hal_select_window_confirm(hal_soc, offset);
  525. ret = qdf_ioread32(hal_soc->dev_base_addr + WINDOW_START +
  526. (offset & WINDOW_RANGE_MASK));
  527. hal_unlock_reg_access(hal_soc, &flags);
  528. }
  529. return ret;
  530. }
  531. #endif
  532. /* Max times allowed for register writing retry */
  533. #define HAL_REG_WRITE_RETRY_MAX 5
  534. /* Delay milliseconds for each time retry */
  535. #define HAL_REG_WRITE_RETRY_DELAY 1
  536. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  537. /* To check shadow config index range between 0..31 */
  538. #define HAL_SHADOW_REG_INDEX_LOW 32
  539. /* To check shadow config index range between 32..39 */
  540. #define HAL_SHADOW_REG_INDEX_HIGH 40
  541. /* Dirty bit reg offsets corresponding to shadow config index */
  542. #define HAL_SHADOW_REG_DIRTY_BIT_DATA_LOW_OFFSET 0x30C8
  543. #define HAL_SHADOW_REG_DIRTY_BIT_DATA_HIGH_OFFSET 0x30C4
  544. /* PCIE_PCIE_TOP base addr offset */
  545. #define HAL_PCIE_PCIE_TOP_WRAPPER 0x01E00000
  546. /* Max retry attempts to read the dirty bit reg */
  547. #ifdef HAL_CONFIG_SLUB_DEBUG_ON
  548. #define HAL_SHADOW_DIRTY_BIT_POLL_MAX 10000
  549. #else
  550. #define HAL_SHADOW_DIRTY_BIT_POLL_MAX 2000
  551. #endif
  552. /* Delay in usecs for polling dirty bit reg */
  553. #define HAL_SHADOW_DIRTY_BIT_POLL_DELAY 5
  554. /**
  555. * hal_poll_dirty_bit_reg() - Poll dirty register bit to confirm
  556. * write was successful
  557. * @hal_soc: hal soc handle
  558. * @shadow_config_index: index of shadow reg used to confirm
  559. * write
  560. *
  561. * Return: QDF_STATUS_SUCCESS on success
  562. */
  563. static inline QDF_STATUS hal_poll_dirty_bit_reg(struct hal_soc *hal,
  564. int shadow_config_index)
  565. {
  566. uint32_t read_value = 0;
  567. int retry_cnt = 0;
  568. uint32_t reg_offset = 0;
  569. if (shadow_config_index > 0 &&
  570. shadow_config_index < HAL_SHADOW_REG_INDEX_LOW) {
  571. reg_offset =
  572. HAL_SHADOW_REG_DIRTY_BIT_DATA_LOW_OFFSET;
  573. } else if (shadow_config_index >= HAL_SHADOW_REG_INDEX_LOW &&
  574. shadow_config_index < HAL_SHADOW_REG_INDEX_HIGH) {
  575. reg_offset =
  576. HAL_SHADOW_REG_DIRTY_BIT_DATA_HIGH_OFFSET;
  577. } else {
  578. hal_err("Invalid shadow_config_index = %d",
  579. shadow_config_index);
  580. return QDF_STATUS_E_INVAL;
  581. }
  582. while (retry_cnt < HAL_SHADOW_DIRTY_BIT_POLL_MAX) {
  583. read_value = hal_read32_mb(
  584. hal, HAL_PCIE_PCIE_TOP_WRAPPER + reg_offset);
  585. /* Check if dirty bit corresponding to shadow_index is set */
  586. if (read_value & BIT(shadow_config_index)) {
  587. /* Dirty reg bit not reset */
  588. qdf_udelay(HAL_SHADOW_DIRTY_BIT_POLL_DELAY);
  589. retry_cnt++;
  590. } else {
  591. hal_debug("Shadow write: offset 0x%x read val 0x%x",
  592. reg_offset, read_value);
  593. return QDF_STATUS_SUCCESS;
  594. }
  595. }
  596. return QDF_STATUS_E_TIMEOUT;
  597. }
  598. /**
  599. * hal_write32_mb_shadow_confirm() - write to shadow reg and
  600. * poll dirty register bit to confirm write
  601. * @hal_soc: hal soc handle
  602. * @reg_offset: target reg offset address from BAR
  603. * @value: value to write
  604. *
  605. * Return: QDF_STATUS_SUCCESS on success
  606. */
  607. static inline QDF_STATUS hal_write32_mb_shadow_confirm(
  608. struct hal_soc *hal,
  609. uint32_t reg_offset,
  610. uint32_t value)
  611. {
  612. int i;
  613. QDF_STATUS ret;
  614. uint32_t shadow_reg_offset;
  615. int shadow_config_index;
  616. bool is_reg_offset_present = false;
  617. for (i = 0; i < MAX_GENERIC_SHADOW_REG; i++) {
  618. /* Found the shadow config for the reg_offset */
  619. struct shadow_reg_config *hal_shadow_reg_list =
  620. &hal->list_shadow_reg_config[i];
  621. if (hal_shadow_reg_list->target_register ==
  622. reg_offset) {
  623. shadow_config_index =
  624. hal_shadow_reg_list->shadow_config_index;
  625. shadow_reg_offset =
  626. SHADOW_REGISTER(shadow_config_index);
  627. hal_write32_mb_confirm(
  628. hal, shadow_reg_offset, value);
  629. is_reg_offset_present = true;
  630. break;
  631. }
  632. ret = QDF_STATUS_E_FAILURE;
  633. }
  634. if (is_reg_offset_present) {
  635. ret = hal_poll_dirty_bit_reg(hal, shadow_config_index);
  636. hal_info("Shadow write:reg 0x%x val 0x%x ret %d",
  637. reg_offset, value, ret);
  638. if (QDF_IS_STATUS_ERROR(ret)) {
  639. HAL_STATS_INC(hal, shadow_reg_write_fail, 1);
  640. return ret;
  641. }
  642. HAL_STATS_INC(hal, shadow_reg_write_succ, 1);
  643. }
  644. return ret;
  645. }
  646. /**
  647. * hal_write32_mb_confirm_retry() - write register with confirming and
  648. do retry/recovery if writing failed
  649. * @hal_soc: hal soc handle
  650. * @offset: offset address from the BAR
  651. * @value: value to write
  652. * @recovery: is recovery needed or not.
  653. *
  654. * Write the register value with confirming and read it back, if
  655. * read back value is not as expected, do retry for writing, if
  656. * retry hit max times allowed but still fail, check if recovery
  657. * needed.
  658. *
  659. * Return: None
  660. */
  661. static inline void hal_write32_mb_confirm_retry(struct hal_soc *hal_soc,
  662. uint32_t offset,
  663. uint32_t value,
  664. bool recovery)
  665. {
  666. QDF_STATUS ret;
  667. ret = hal_write32_mb_shadow_confirm(hal_soc, offset, value);
  668. if (QDF_IS_STATUS_ERROR(ret) && recovery)
  669. qdf_trigger_self_recovery(NULL, QDF_HAL_REG_WRITE_FAILURE);
  670. }
  671. #else /* GENERIC_SHADOW_REGISTER_ACCESS_ENABLE */
  672. static inline void hal_write32_mb_confirm_retry(struct hal_soc *hal_soc,
  673. uint32_t offset,
  674. uint32_t value,
  675. bool recovery)
  676. {
  677. uint8_t retry_cnt = 0;
  678. uint32_t read_value;
  679. while (retry_cnt <= HAL_REG_WRITE_RETRY_MAX) {
  680. hal_write32_mb_confirm(hal_soc, offset, value);
  681. read_value = hal_read32_mb(hal_soc, offset);
  682. if (qdf_likely(read_value == value))
  683. break;
  684. /* write failed, do retry */
  685. hal_warn("Retry reg offset 0x%x, value 0x%x, read value 0x%x",
  686. offset, value, read_value);
  687. qdf_mdelay(HAL_REG_WRITE_RETRY_DELAY);
  688. retry_cnt++;
  689. }
  690. if (retry_cnt > HAL_REG_WRITE_RETRY_MAX && recovery)
  691. qdf_trigger_self_recovery(NULL, QDF_HAL_REG_WRITE_FAILURE);
  692. }
  693. #endif /* GENERIC_SHADOW_REGISTER_ACCESS_ENABLE */
  694. #if defined(FEATURE_HAL_DELAYED_REG_WRITE)
  695. /**
  696. * hal_dump_reg_write_srng_stats() - dump SRNG reg write stats
  697. * @hal_soc: HAL soc handle
  698. *
  699. * Return: none
  700. */
  701. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl);
  702. /**
  703. * hal_dump_reg_write_stats() - dump reg write stats
  704. * @hal_soc: HAL soc handle
  705. *
  706. * Return: none
  707. */
  708. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl);
  709. /**
  710. * hal_get_reg_write_pending_work() - get the number of entries
  711. * pending in the workqueue to be processed.
  712. * @hal_soc: HAL soc handle
  713. *
  714. * Returns: the number of entries pending to be processed
  715. */
  716. int hal_get_reg_write_pending_work(void *hal_soc);
  717. #else
  718. static inline void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  719. {
  720. }
  721. static inline void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  722. {
  723. }
  724. static inline int hal_get_reg_write_pending_work(void *hal_soc)
  725. {
  726. return 0;
  727. }
  728. #endif
  729. /**
  730. * hal_read_address_32_mb() - Read 32-bit value from the register
  731. * @soc: soc handle
  732. * @addr: register address to read
  733. *
  734. * Return: 32-bit value
  735. */
  736. static inline
  737. uint32_t hal_read_address_32_mb(struct hal_soc *soc,
  738. qdf_iomem_t addr)
  739. {
  740. uint32_t offset;
  741. uint32_t ret;
  742. if (!soc->use_register_windowing)
  743. return qdf_ioread32(addr);
  744. offset = addr - soc->dev_base_addr;
  745. ret = hal_read32_mb(soc, offset);
  746. return ret;
  747. }
  748. /**
  749. * hal_attach - Initialize HAL layer
  750. * @hif_handle: Opaque HIF handle
  751. * @qdf_dev: QDF device
  752. *
  753. * Return: Opaque HAL SOC handle
  754. * NULL on failure (if given ring is not available)
  755. *
  756. * This function should be called as part of HIF initialization (for accessing
  757. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  758. */
  759. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev);
  760. /**
  761. * hal_detach - Detach HAL layer
  762. * @hal_soc: HAL SOC handle
  763. *
  764. * This function should be called as part of HIF detach
  765. *
  766. */
  767. extern void hal_detach(void *hal_soc);
  768. #define HAL_SRNG_LMAC_RING 0x80000000
  769. /* SRNG flags passed in hal_srng_params.flags */
  770. #define HAL_SRNG_MSI_SWAP 0x00000008
  771. #define HAL_SRNG_RING_PTR_SWAP 0x00000010
  772. #define HAL_SRNG_DATA_TLV_SWAP 0x00000020
  773. #define HAL_SRNG_LOW_THRES_INTR_ENABLE 0x00010000
  774. #define HAL_SRNG_MSI_INTR 0x00020000
  775. #define HAL_SRNG_CACHED_DESC 0x00040000
  776. #if defined(QCA_WIFI_QCA6490) || defined(QCA_WIFI_KIWI)
  777. #define HAL_SRNG_PREFETCH_TIMER 1
  778. #else
  779. #define HAL_SRNG_PREFETCH_TIMER 0
  780. #endif
  781. #define PN_SIZE_24 0
  782. #define PN_SIZE_48 1
  783. #define PN_SIZE_128 2
  784. #ifdef FORCE_WAKE
  785. /**
  786. * hal_set_init_phase() - Indicate initialization of
  787. * datapath rings
  788. * @soc: hal_soc handle
  789. * @init_phase: flag to indicate datapath rings
  790. * initialization status
  791. *
  792. * Return: None
  793. */
  794. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase);
  795. #else
  796. static inline
  797. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  798. {
  799. }
  800. #endif /* FORCE_WAKE */
  801. /**
  802. * hal_srng_get_entrysize - Returns size of ring entry in bytes. Should be
  803. * used by callers for calculating the size of memory to be allocated before
  804. * calling hal_srng_setup to setup the ring
  805. *
  806. * @hal_soc: Opaque HAL SOC handle
  807. * @ring_type: one of the types from hal_ring_type
  808. *
  809. */
  810. extern uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type);
  811. /**
  812. * hal_srng_max_entries - Returns maximum possible number of ring entries
  813. * @hal_soc: Opaque HAL SOC handle
  814. * @ring_type: one of the types from hal_ring_type
  815. *
  816. * Return: Maximum number of entries for the given ring_type
  817. */
  818. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type);
  819. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  820. uint32_t low_threshold);
  821. /**
  822. * hal_srng_dump - Dump ring status
  823. * @srng: hal srng pointer
  824. */
  825. void hal_srng_dump(struct hal_srng *srng);
  826. /**
  827. * hal_srng_get_dir - Returns the direction of the ring
  828. * @hal_soc: Opaque HAL SOC handle
  829. * @ring_type: one of the types from hal_ring_type
  830. *
  831. * Return: Ring direction
  832. */
  833. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type);
  834. /* HAL memory information */
  835. struct hal_mem_info {
  836. /* dev base virutal addr */
  837. void *dev_base_addr;
  838. /* dev base physical addr */
  839. void *dev_base_paddr;
  840. /* dev base ce virutal addr - applicable only for qca5018 */
  841. /* In qca5018 CE register are outside wcss block */
  842. /* using a separate address space to access CE registers */
  843. void *dev_base_addr_ce;
  844. /* dev base ce physical addr */
  845. void *dev_base_paddr_ce;
  846. /* Remote virtual pointer memory for HW/FW updates */
  847. void *shadow_rdptr_mem_vaddr;
  848. /* Remote physical pointer memory for HW/FW updates */
  849. void *shadow_rdptr_mem_paddr;
  850. /* Shared memory for ring pointer updates from host to FW */
  851. void *shadow_wrptr_mem_vaddr;
  852. /* Shared physical memory for ring pointer updates from host to FW */
  853. void *shadow_wrptr_mem_paddr;
  854. /* lmac srng start id */
  855. uint8_t lmac_srng_start_id;
  856. };
  857. /* SRNG parameters to be passed to hal_srng_setup */
  858. struct hal_srng_params {
  859. /* Physical base address of the ring */
  860. qdf_dma_addr_t ring_base_paddr;
  861. /* Virtual base address of the ring */
  862. void *ring_base_vaddr;
  863. /* Number of entries in ring */
  864. uint32_t num_entries;
  865. /* max transfer length */
  866. uint16_t max_buffer_length;
  867. /* MSI Address */
  868. qdf_dma_addr_t msi_addr;
  869. /* MSI data */
  870. uint32_t msi_data;
  871. /* Interrupt timer threshold – in micro seconds */
  872. uint32_t intr_timer_thres_us;
  873. /* Interrupt batch counter threshold – in number of ring entries */
  874. uint32_t intr_batch_cntr_thres_entries;
  875. /* Low threshold – in number of ring entries
  876. * (valid for src rings only)
  877. */
  878. uint32_t low_threshold;
  879. /* Misc flags */
  880. uint32_t flags;
  881. /* Unique ring id */
  882. uint8_t ring_id;
  883. /* Source or Destination ring */
  884. enum hal_srng_dir ring_dir;
  885. /* Size of ring entry */
  886. uint32_t entry_size;
  887. /* hw register base address */
  888. void *hwreg_base[MAX_SRNG_REG_GROUPS];
  889. /* prefetch timer config - in micro seconds */
  890. uint32_t prefetch_timer;
  891. #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
  892. /* Near full IRQ support flag */
  893. uint32_t nf_irq_support;
  894. /* MSI2 Address */
  895. qdf_dma_addr_t msi2_addr;
  896. /* MSI2 data */
  897. uint32_t msi2_data;
  898. /* Critical threshold */
  899. uint16_t crit_thresh;
  900. /* High threshold */
  901. uint16_t high_thresh;
  902. /* Safe threshold */
  903. uint16_t safe_thresh;
  904. #endif
  905. };
  906. /* hal_construct_srng_shadow_regs() - initialize the shadow
  907. * registers for srngs
  908. * @hal_soc: hal handle
  909. *
  910. * Return: QDF_STATUS_OK on success
  911. */
  912. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc);
  913. /* hal_set_one_shadow_config() - add a config for the specified ring
  914. * @hal_soc: hal handle
  915. * @ring_type: ring type
  916. * @ring_num: ring num
  917. *
  918. * The ring type and ring num uniquely specify the ring. After this call,
  919. * the hp/tp will be added as the next entry int the shadow register
  920. * configuration table. The hal code will use the shadow register address
  921. * in place of the hp/tp address.
  922. *
  923. * This function is exposed, so that the CE module can skip configuring shadow
  924. * registers for unused ring and rings assigned to the firmware.
  925. *
  926. * Return: QDF_STATUS_OK on success
  927. */
  928. QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
  929. int ring_num);
  930. /**
  931. * hal_get_shadow_config() - retrieve the config table for shadow cfg v2
  932. * @hal_soc: hal handle
  933. * @shadow_config: will point to the table after
  934. * @num_shadow_registers_configured: will contain the number of valid entries
  935. */
  936. extern void
  937. hal_get_shadow_config(void *hal_soc,
  938. struct pld_shadow_reg_v2_cfg **shadow_config,
  939. int *num_shadow_registers_configured);
  940. #ifdef CONFIG_SHADOW_V3
  941. /**
  942. * hal_get_shadow_v3_config() - retrieve the config table for shadow cfg v3
  943. * @hal_soc: hal handle
  944. * @shadow_config: will point to the table after
  945. * @num_shadow_registers_configured: will contain the number of valid entries
  946. */
  947. extern void
  948. hal_get_shadow_v3_config(void *hal_soc,
  949. struct pld_shadow_reg_v3_cfg **shadow_config,
  950. int *num_shadow_registers_configured);
  951. #endif
  952. #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
  953. /**
  954. * hal_srng_is_near_full_irq_supported() - Check if srng supports near full irq
  955. * @hal_soc: HAL SoC handle [To be validated by caller]
  956. * @ring_type: srng type
  957. * @ring_num: The index of the srng (of the same type)
  958. *
  959. * Return: true, if srng support near full irq trigger
  960. * false, if the srng does not support near full irq support.
  961. */
  962. bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
  963. int ring_type, int ring_num);
  964. #else
  965. static inline
  966. bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
  967. int ring_type, int ring_num)
  968. {
  969. return false;
  970. }
  971. #endif
  972. /**
  973. * hal_srng_setup - Initialize HW SRNG ring.
  974. *
  975. * @hal_soc: Opaque HAL SOC handle
  976. * @ring_type: one of the types from hal_ring_type
  977. * @ring_num: Ring number if there are multiple rings of
  978. * same type (staring from 0)
  979. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  980. * @ring_params: SRNG ring params in hal_srng_params structure.
  981. * Callers are expected to allocate contiguous ring memory of size
  982. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  983. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in hal_srng_params
  984. * structure. Ring base address should be 8 byte aligned and size of each ring
  985. * entry should be queried using the API hal_srng_get_entrysize
  986. *
  987. * Return: Opaque pointer to ring on success
  988. * NULL on failure (if given ring is not available)
  989. */
  990. extern void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  991. int mac_id, struct hal_srng_params *ring_params);
  992. /* Remapping ids of REO rings */
  993. #define REO_REMAP_TCL 0
  994. #define REO_REMAP_SW1 1
  995. #define REO_REMAP_SW2 2
  996. #define REO_REMAP_SW3 3
  997. #define REO_REMAP_SW4 4
  998. #define REO_REMAP_RELEASE 5
  999. #define REO_REMAP_FW 6
  1000. /*
  1001. * In Beryllium: 4 bits REO destination ring value is defined as: 0: TCL
  1002. * 1:SW1 2:SW2 3:SW3 4:SW4 5:Release 6:FW(WIFI) 7:SW5
  1003. * 8:SW6 9:SW7 10:SW8 11: NOT_USED.
  1004. *
  1005. */
  1006. #define REO_REMAP_SW5 7
  1007. #define REO_REMAP_SW6 8
  1008. #define REO_REMAP_SW7 9
  1009. #define REO_REMAP_SW8 10
  1010. /*
  1011. * Macro to access HWIO_REO_R0_ERROR_DESTINATION_RING_CTRL_IX_0
  1012. * to map destination to rings
  1013. */
  1014. #define HAL_REO_ERR_REMAP_IX0(_VALUE, _OFFSET) \
  1015. ((_VALUE) << \
  1016. (HWIO_REO_R0_ERROR_DESTINATION_MAPPING_IX_0_ERROR_ ## \
  1017. DESTINATION_RING_ ## _OFFSET ## _SHFT))
  1018. /*
  1019. * Macro to access HWIO_REO_R0_ERROR_DESTINATION_RING_CTRL_IX_1
  1020. * to map destination to rings
  1021. */
  1022. #define HAL_REO_ERR_REMAP_IX1(_VALUE, _OFFSET) \
  1023. ((_VALUE) << \
  1024. (HWIO_REO_R0_ERROR_DESTINATION_MAPPING_IX_1_ERROR_ ## \
  1025. DESTINATION_RING_ ## _OFFSET ## _SHFT))
  1026. /*
  1027. * Macro to access HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0
  1028. * to map destination to rings
  1029. */
  1030. #define HAL_REO_REMAP_IX0(_VALUE, _OFFSET) \
  1031. ((_VALUE) << \
  1032. (HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_DEST_RING_MAPPING_ ## \
  1033. _OFFSET ## _SHFT))
  1034. /*
  1035. * Macro to access HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1
  1036. * to map destination to rings
  1037. */
  1038. #define HAL_REO_REMAP_IX2(_VALUE, _OFFSET) \
  1039. ((_VALUE) << \
  1040. (HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_DEST_RING_MAPPING_ ## \
  1041. _OFFSET ## _SHFT))
  1042. /*
  1043. * Macro to access HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3
  1044. * to map destination to rings
  1045. */
  1046. #define HAL_REO_REMAP_IX3(_VALUE, _OFFSET) \
  1047. ((_VALUE) << \
  1048. (HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_DEST_RING_MAPPING_ ## \
  1049. _OFFSET ## _SHFT))
  1050. /**
  1051. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  1052. * @hal_soc_hdl: HAL SOC handle
  1053. * @read: boolean value to indicate if read or write
  1054. * @ix0: pointer to store IX0 reg value
  1055. * @ix1: pointer to store IX1 reg value
  1056. * @ix2: pointer to store IX2 reg value
  1057. * @ix3: pointer to store IX3 reg value
  1058. */
  1059. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1060. uint32_t *ix0, uint32_t *ix1,
  1061. uint32_t *ix2, uint32_t *ix3);
  1062. /**
  1063. * hal_srng_set_hp_paddr_confirm() - Set physical address to dest SRNG head
  1064. * pointer and confirm that write went through by reading back the value
  1065. * @sring: sring pointer
  1066. * @paddr: physical address
  1067. *
  1068. * Return: None
  1069. */
  1070. extern void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *sring,
  1071. uint64_t paddr);
  1072. /**
  1073. * hal_srng_dst_init_hp() - Initilaize head pointer with cached head pointer
  1074. * @hal_soc: hal_soc handle
  1075. * @srng: sring pointer
  1076. * @vaddr: virtual address
  1077. */
  1078. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1079. struct hal_srng *srng,
  1080. uint32_t *vaddr);
  1081. /**
  1082. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1083. * @hal_soc: Opaque HAL SOC handle
  1084. * @hal_srng: Opaque HAL SRNG pointer
  1085. */
  1086. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl);
  1087. static inline bool hal_srng_initialized(hal_ring_handle_t hal_ring_hdl)
  1088. {
  1089. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1090. return !!srng->initialized;
  1091. }
  1092. /**
  1093. * hal_srng_dst_peek - Check if there are any entries in the ring (peek)
  1094. * @hal_soc: Opaque HAL SOC handle
  1095. * @hal_ring_hdl: Destination ring pointer
  1096. *
  1097. * Caller takes responsibility for any locking needs.
  1098. *
  1099. * Return: Opaque pointer for next ring entry; NULL on failire
  1100. */
  1101. static inline
  1102. void *hal_srng_dst_peek(hal_soc_handle_t hal_soc_hdl,
  1103. hal_ring_handle_t hal_ring_hdl)
  1104. {
  1105. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1106. if (srng->u.dst_ring.tp != srng->u.dst_ring.cached_hp)
  1107. return (void *)(&srng->ring_base_vaddr[srng->u.dst_ring.tp]);
  1108. return NULL;
  1109. }
  1110. /**
  1111. * hal_mem_dma_cache_sync - Cache sync the specified virtual address Range
  1112. * @hal_soc: HAL soc handle
  1113. * @desc: desc start address
  1114. * @entry_size: size of memory to sync
  1115. *
  1116. * Return: void
  1117. */
  1118. #if defined(__LINUX_MIPS32_ARCH__) || defined(__LINUX_MIPS64_ARCH__)
  1119. static inline void hal_mem_dma_cache_sync(struct hal_soc *soc, uint32_t *desc,
  1120. uint32_t entry_size)
  1121. {
  1122. qdf_nbuf_dma_inv_range((void *)desc, (void *)(desc + entry_size));
  1123. }
  1124. #else
  1125. static inline void hal_mem_dma_cache_sync(struct hal_soc *soc, uint32_t *desc,
  1126. uint32_t entry_size)
  1127. {
  1128. qdf_mem_dma_cache_sync(soc->qdf_dev, qdf_mem_virt_to_phys(desc),
  1129. QDF_DMA_FROM_DEVICE,
  1130. (entry_size * sizeof(uint32_t)));
  1131. }
  1132. #endif
  1133. /**
  1134. * hal_srng_access_start_unlocked - Start ring access (unlocked). Should use
  1135. * hal_srng_access_start if locked access is required
  1136. *
  1137. * @hal_soc: Opaque HAL SOC handle
  1138. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  1139. *
  1140. * This API doesn't implement any byte-order conversion on reading hp/tp.
  1141. * So, Use API only for those srngs for which the target writes hp/tp values to
  1142. * the DDR in the Host order.
  1143. *
  1144. * Return: 0 on success; error on failire
  1145. */
  1146. static inline int
  1147. hal_srng_access_start_unlocked(hal_soc_handle_t hal_soc_hdl,
  1148. hal_ring_handle_t hal_ring_hdl)
  1149. {
  1150. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1151. struct hal_soc *soc = (struct hal_soc *)hal_soc_hdl;
  1152. uint32_t *desc;
  1153. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1154. srng->u.src_ring.cached_tp =
  1155. *(volatile uint32_t *)(srng->u.src_ring.tp_addr);
  1156. else {
  1157. srng->u.dst_ring.cached_hp =
  1158. *(volatile uint32_t *)(srng->u.dst_ring.hp_addr);
  1159. if (srng->flags & HAL_SRNG_CACHED_DESC) {
  1160. desc = hal_srng_dst_peek(hal_soc_hdl, hal_ring_hdl);
  1161. if (qdf_likely(desc)) {
  1162. hal_mem_dma_cache_sync(soc, desc,
  1163. srng->entry_size);
  1164. qdf_prefetch(desc);
  1165. }
  1166. }
  1167. }
  1168. return 0;
  1169. }
  1170. /**
  1171. * hal_le_srng_access_start_unlocked_in_cpu_order - Start ring access
  1172. * (unlocked) with endianness correction.
  1173. * @hal_soc: Opaque HAL SOC handle
  1174. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  1175. *
  1176. * This API provides same functionally as hal_srng_access_start_unlocked()
  1177. * except that it converts the little-endian formatted hp/tp values to
  1178. * Host order on reading them. So, this API should only be used for those srngs
  1179. * for which the target always writes hp/tp values in little-endian order
  1180. * regardless of Host order.
  1181. *
  1182. * Also, this API doesn't take the lock. For locked access, use
  1183. * hal_srng_access_start/hal_le_srng_access_start_in_cpu_order.
  1184. *
  1185. * Return: 0 on success; error on failire
  1186. */
  1187. static inline int
  1188. hal_le_srng_access_start_unlocked_in_cpu_order(
  1189. hal_soc_handle_t hal_soc_hdl,
  1190. hal_ring_handle_t hal_ring_hdl)
  1191. {
  1192. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1193. struct hal_soc *soc = (struct hal_soc *)hal_soc_hdl;
  1194. uint32_t *desc;
  1195. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1196. srng->u.src_ring.cached_tp =
  1197. qdf_le32_to_cpu(*(volatile uint32_t *)
  1198. (srng->u.src_ring.tp_addr));
  1199. else {
  1200. srng->u.dst_ring.cached_hp =
  1201. qdf_le32_to_cpu(*(volatile uint32_t *)
  1202. (srng->u.dst_ring.hp_addr));
  1203. if (srng->flags & HAL_SRNG_CACHED_DESC) {
  1204. desc = hal_srng_dst_peek(hal_soc_hdl, hal_ring_hdl);
  1205. if (qdf_likely(desc)) {
  1206. hal_mem_dma_cache_sync(soc, desc,
  1207. srng->entry_size);
  1208. qdf_prefetch(desc);
  1209. }
  1210. }
  1211. }
  1212. return 0;
  1213. }
  1214. /**
  1215. * hal_srng_try_access_start - Try to start (locked) ring access
  1216. *
  1217. * @hal_soc: Opaque HAL SOC handle
  1218. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  1219. *
  1220. * Return: 0 on success; error on failure
  1221. */
  1222. static inline int hal_srng_try_access_start(hal_soc_handle_t hal_soc_hdl,
  1223. hal_ring_handle_t hal_ring_hdl)
  1224. {
  1225. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1226. if (qdf_unlikely(!hal_ring_hdl)) {
  1227. qdf_print("Error: Invalid hal_ring\n");
  1228. return -EINVAL;
  1229. }
  1230. if (!SRNG_TRY_LOCK(&(srng->lock)))
  1231. return -EINVAL;
  1232. return hal_srng_access_start_unlocked(hal_soc_hdl, hal_ring_hdl);
  1233. }
  1234. /**
  1235. * hal_srng_access_start - Start (locked) ring access
  1236. *
  1237. * @hal_soc: Opaque HAL SOC handle
  1238. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  1239. *
  1240. * This API doesn't implement any byte-order conversion on reading hp/tp.
  1241. * So, Use API only for those srngs for which the target writes hp/tp values to
  1242. * the DDR in the Host order.
  1243. *
  1244. * Return: 0 on success; error on failire
  1245. */
  1246. static inline int hal_srng_access_start(hal_soc_handle_t hal_soc_hdl,
  1247. hal_ring_handle_t hal_ring_hdl)
  1248. {
  1249. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1250. if (qdf_unlikely(!hal_ring_hdl)) {
  1251. qdf_print("Error: Invalid hal_ring\n");
  1252. return -EINVAL;
  1253. }
  1254. SRNG_LOCK(&(srng->lock));
  1255. return hal_srng_access_start_unlocked(hal_soc_hdl, hal_ring_hdl);
  1256. }
  1257. /**
  1258. * hal_le_srng_access_start_in_cpu_order - Start (locked) ring access with
  1259. * endianness correction
  1260. * @hal_soc: Opaque HAL SOC handle
  1261. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  1262. *
  1263. * This API provides same functionally as hal_srng_access_start()
  1264. * except that it converts the little-endian formatted hp/tp values to
  1265. * Host order on reading them. So, this API should only be used for those srngs
  1266. * for which the target always writes hp/tp values in little-endian order
  1267. * regardless of Host order.
  1268. *
  1269. * Return: 0 on success; error on failire
  1270. */
  1271. static inline int
  1272. hal_le_srng_access_start_in_cpu_order(
  1273. hal_soc_handle_t hal_soc_hdl,
  1274. hal_ring_handle_t hal_ring_hdl)
  1275. {
  1276. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1277. if (qdf_unlikely(!hal_ring_hdl)) {
  1278. qdf_print("Error: Invalid hal_ring\n");
  1279. return -EINVAL;
  1280. }
  1281. SRNG_LOCK(&(srng->lock));
  1282. return hal_le_srng_access_start_unlocked_in_cpu_order(
  1283. hal_soc_hdl, hal_ring_hdl);
  1284. }
  1285. /**
  1286. * hal_srng_dst_get_next - Get next entry from a destination ring
  1287. * @hal_soc: Opaque HAL SOC handle
  1288. * @hal_ring_hdl: Destination ring pointer
  1289. *
  1290. * Return: Opaque pointer for next ring entry; NULL on failure
  1291. */
  1292. static inline
  1293. void *hal_srng_dst_get_next(void *hal_soc,
  1294. hal_ring_handle_t hal_ring_hdl)
  1295. {
  1296. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1297. uint32_t *desc;
  1298. if (srng->u.dst_ring.tp == srng->u.dst_ring.cached_hp)
  1299. return NULL;
  1300. desc = &srng->ring_base_vaddr[srng->u.dst_ring.tp];
  1301. /* TODO: Using % is expensive, but we have to do this since
  1302. * size of some SRNG rings is not power of 2 (due to descriptor
  1303. * sizes). Need to create separate API for rings used
  1304. * per-packet, with sizes power of 2 (TCL2SW, REO2SW,
  1305. * SW2RXDMA and CE rings)
  1306. */
  1307. srng->u.dst_ring.tp = (srng->u.dst_ring.tp + srng->entry_size);
  1308. if (srng->u.dst_ring.tp == srng->ring_size)
  1309. srng->u.dst_ring.tp = 0;
  1310. if (srng->flags & HAL_SRNG_CACHED_DESC) {
  1311. struct hal_soc *soc = (struct hal_soc *)hal_soc;
  1312. uint32_t *desc_next;
  1313. uint32_t tp;
  1314. tp = srng->u.dst_ring.tp;
  1315. desc_next = &srng->ring_base_vaddr[srng->u.dst_ring.tp];
  1316. hal_mem_dma_cache_sync(soc, desc_next, srng->entry_size);
  1317. qdf_prefetch(desc_next);
  1318. }
  1319. return (void *)desc;
  1320. }
  1321. /**
  1322. * hal_srng_dst_get_next_cached - Get cached next entry
  1323. * @hal_soc: Opaque HAL SOC handle
  1324. * @hal_ring_hdl: Destination ring pointer
  1325. *
  1326. * Get next entry from a destination ring and move cached tail pointer
  1327. *
  1328. * Return: Opaque pointer for next ring entry; NULL on failure
  1329. */
  1330. static inline
  1331. void *hal_srng_dst_get_next_cached(void *hal_soc,
  1332. hal_ring_handle_t hal_ring_hdl)
  1333. {
  1334. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1335. uint32_t *desc;
  1336. uint32_t *desc_next;
  1337. if (srng->u.dst_ring.tp == srng->u.dst_ring.cached_hp)
  1338. return NULL;
  1339. desc = &srng->ring_base_vaddr[srng->u.dst_ring.tp];
  1340. /* TODO: Using % is expensive, but we have to do this since
  1341. * size of some SRNG rings is not power of 2 (due to descriptor
  1342. * sizes). Need to create separate API for rings used
  1343. * per-packet, with sizes power of 2 (TCL2SW, REO2SW,
  1344. * SW2RXDMA and CE rings)
  1345. */
  1346. srng->u.dst_ring.tp = (srng->u.dst_ring.tp + srng->entry_size);
  1347. if (srng->u.dst_ring.tp == srng->ring_size)
  1348. srng->u.dst_ring.tp = 0;
  1349. desc_next = &srng->ring_base_vaddr[srng->u.dst_ring.tp];
  1350. qdf_prefetch(desc_next);
  1351. return (void *)desc;
  1352. }
  1353. /**
  1354. * hal_srng_dst_dec_tp - decrement the TP of the Dst ring by one entry
  1355. * @hal_soc: Opaque HAL SOC handle
  1356. * @hal_ring_hdl: Destination ring pointer
  1357. *
  1358. * reset the tail pointer in the destination ring by one entry
  1359. *
  1360. */
  1361. static inline
  1362. void hal_srng_dst_dec_tp(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1363. {
  1364. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1365. if (qdf_unlikely(!srng->u.dst_ring.tp))
  1366. srng->u.dst_ring.tp = (srng->ring_size - srng->entry_size);
  1367. else
  1368. srng->u.dst_ring.tp -= srng->entry_size;
  1369. }
  1370. static inline int hal_srng_lock(hal_ring_handle_t hal_ring_hdl)
  1371. {
  1372. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1373. if (qdf_unlikely(!hal_ring_hdl)) {
  1374. qdf_print("error: invalid hal_ring\n");
  1375. return -EINVAL;
  1376. }
  1377. SRNG_LOCK(&(srng->lock));
  1378. return 0;
  1379. }
  1380. static inline int hal_srng_unlock(hal_ring_handle_t hal_ring_hdl)
  1381. {
  1382. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1383. if (qdf_unlikely(!hal_ring_hdl)) {
  1384. qdf_print("error: invalid hal_ring\n");
  1385. return -EINVAL;
  1386. }
  1387. SRNG_UNLOCK(&(srng->lock));
  1388. return 0;
  1389. }
  1390. /**
  1391. * hal_srng_dst_get_next_hp - Get next entry from a destination ring and move
  1392. * cached head pointer
  1393. *
  1394. * @hal_soc: Opaque HAL SOC handle
  1395. * @hal_ring_hdl: Destination ring pointer
  1396. *
  1397. * Return: Opaque pointer for next ring entry; NULL on failire
  1398. */
  1399. static inline void *
  1400. hal_srng_dst_get_next_hp(hal_soc_handle_t hal_soc_hdl,
  1401. hal_ring_handle_t hal_ring_hdl)
  1402. {
  1403. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1404. uint32_t *desc;
  1405. /* TODO: Using % is expensive, but we have to do this since
  1406. * size of some SRNG rings is not power of 2 (due to descriptor
  1407. * sizes). Need to create separate API for rings used
  1408. * per-packet, with sizes power of 2 (TCL2SW, REO2SW,
  1409. * SW2RXDMA and CE rings)
  1410. */
  1411. uint32_t next_hp = (srng->u.dst_ring.cached_hp + srng->entry_size) %
  1412. srng->ring_size;
  1413. if (next_hp != srng->u.dst_ring.tp) {
  1414. desc = &(srng->ring_base_vaddr[srng->u.dst_ring.cached_hp]);
  1415. srng->u.dst_ring.cached_hp = next_hp;
  1416. return (void *)desc;
  1417. }
  1418. return NULL;
  1419. }
  1420. /**
  1421. * hal_srng_dst_peek_sync - Check if there are any entries in the ring (peek)
  1422. * @hal_soc: Opaque HAL SOC handle
  1423. * @hal_ring_hdl: Destination ring pointer
  1424. *
  1425. * Sync cached head pointer with HW.
  1426. * Caller takes responsibility for any locking needs.
  1427. *
  1428. * Return: Opaque pointer for next ring entry; NULL on failire
  1429. */
  1430. static inline
  1431. void *hal_srng_dst_peek_sync(hal_soc_handle_t hal_soc_hdl,
  1432. hal_ring_handle_t hal_ring_hdl)
  1433. {
  1434. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1435. srng->u.dst_ring.cached_hp =
  1436. *(volatile uint32_t *)(srng->u.dst_ring.hp_addr);
  1437. if (srng->u.dst_ring.tp != srng->u.dst_ring.cached_hp)
  1438. return (void *)(&(srng->ring_base_vaddr[srng->u.dst_ring.tp]));
  1439. return NULL;
  1440. }
  1441. /**
  1442. * hal_srng_dst_peek_sync_locked - Peek for any entries in the ring
  1443. * @hal_soc: Opaque HAL SOC handle
  1444. * @hal_ring_hdl: Destination ring pointer
  1445. *
  1446. * Sync cached head pointer with HW.
  1447. * This function takes up SRNG_LOCK. Should not be called with SRNG lock held.
  1448. *
  1449. * Return: Opaque pointer for next ring entry; NULL on failire
  1450. */
  1451. static inline
  1452. void *hal_srng_dst_peek_sync_locked(hal_soc_handle_t hal_soc_hdl,
  1453. hal_ring_handle_t hal_ring_hdl)
  1454. {
  1455. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1456. void *ring_desc_ptr = NULL;
  1457. if (qdf_unlikely(!hal_ring_hdl)) {
  1458. qdf_print("Error: Invalid hal_ring\n");
  1459. return NULL;
  1460. }
  1461. SRNG_LOCK(&srng->lock);
  1462. ring_desc_ptr = hal_srng_dst_peek_sync(hal_soc_hdl, hal_ring_hdl);
  1463. SRNG_UNLOCK(&srng->lock);
  1464. return ring_desc_ptr;
  1465. }
  1466. #define hal_srng_dst_num_valid_nolock(hal_soc, hal_ring_hdl, sync_hw_ptr) \
  1467. hal_srng_dst_num_valid(hal_soc, hal_ring_hdl, sync_hw_ptr)
  1468. /**
  1469. * hal_srng_dst_num_valid - Returns number of valid entries (to be processed
  1470. * by SW) in destination ring
  1471. *
  1472. * @hal_soc: Opaque HAL SOC handle
  1473. * @hal_ring_hdl: Destination ring pointer
  1474. * @sync_hw_ptr: Sync cached head pointer with HW
  1475. *
  1476. */
  1477. static inline
  1478. uint32_t hal_srng_dst_num_valid(void *hal_soc,
  1479. hal_ring_handle_t hal_ring_hdl,
  1480. int sync_hw_ptr)
  1481. {
  1482. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1483. uint32_t hp;
  1484. uint32_t tp = srng->u.dst_ring.tp;
  1485. if (sync_hw_ptr) {
  1486. hp = *(volatile uint32_t *)(srng->u.dst_ring.hp_addr);
  1487. srng->u.dst_ring.cached_hp = hp;
  1488. } else {
  1489. hp = srng->u.dst_ring.cached_hp;
  1490. }
  1491. if (hp >= tp)
  1492. return (hp - tp) / srng->entry_size;
  1493. return (srng->ring_size - tp + hp) / srng->entry_size;
  1494. }
  1495. /**
  1496. * hal_srng_dst_inv_cached_descs - API to invalidate descriptors in batch mode
  1497. * @hal_soc: Opaque HAL SOC handle
  1498. * @hal_ring_hdl: Destination ring pointer
  1499. * @entry_count: call invalidate API if valid entries available
  1500. *
  1501. * Invalidates a set of cached descriptors starting from TP to cached_HP
  1502. *
  1503. * Return - None
  1504. */
  1505. static inline void hal_srng_dst_inv_cached_descs(void *hal_soc,
  1506. hal_ring_handle_t hal_ring_hdl,
  1507. uint32_t entry_count)
  1508. {
  1509. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1510. uint32_t *first_desc;
  1511. uint32_t *last_desc;
  1512. uint32_t last_desc_index;
  1513. /*
  1514. * If SRNG does not have cached descriptors this
  1515. * API call should be a no op
  1516. */
  1517. if (!(srng->flags & HAL_SRNG_CACHED_DESC))
  1518. return;
  1519. if (!entry_count)
  1520. return;
  1521. first_desc = &srng->ring_base_vaddr[srng->u.dst_ring.tp];
  1522. last_desc_index = (srng->u.dst_ring.tp +
  1523. (entry_count * srng->entry_size)) %
  1524. srng->ring_size;
  1525. last_desc = &srng->ring_base_vaddr[last_desc_index];
  1526. if (last_desc > (uint32_t *)first_desc)
  1527. /* invalidate from tp to cached_hp */
  1528. qdf_nbuf_dma_inv_range_no_dsb((void *)first_desc,
  1529. (void *)(last_desc));
  1530. else {
  1531. /* invalidate from tp to end of the ring */
  1532. qdf_nbuf_dma_inv_range_no_dsb((void *)first_desc,
  1533. (void *)srng->ring_vaddr_end);
  1534. /* invalidate from start of ring to cached_hp */
  1535. qdf_nbuf_dma_inv_range_no_dsb((void *)srng->ring_base_vaddr,
  1536. (void *)last_desc);
  1537. }
  1538. qdf_dsb();
  1539. }
  1540. /**
  1541. * hal_srng_dst_num_valid_locked - Returns num valid entries to be processed
  1542. *
  1543. * @hal_soc: Opaque HAL SOC handle
  1544. * @hal_ring_hdl: Destination ring pointer
  1545. * @sync_hw_ptr: Sync cached head pointer with HW
  1546. *
  1547. * Returns number of valid entries to be processed by the host driver. The
  1548. * function takes up SRNG lock.
  1549. *
  1550. * Return: Number of valid destination entries
  1551. */
  1552. static inline uint32_t
  1553. hal_srng_dst_num_valid_locked(hal_soc_handle_t hal_soc,
  1554. hal_ring_handle_t hal_ring_hdl,
  1555. int sync_hw_ptr)
  1556. {
  1557. uint32_t num_valid;
  1558. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1559. SRNG_LOCK(&srng->lock);
  1560. num_valid = hal_srng_dst_num_valid(hal_soc, hal_ring_hdl, sync_hw_ptr);
  1561. SRNG_UNLOCK(&srng->lock);
  1562. return num_valid;
  1563. }
  1564. /**
  1565. * hal_srng_sync_cachedhp - sync cachehp pointer from hw hp
  1566. *
  1567. * @hal_soc: Opaque HAL SOC handle
  1568. * @hal_ring_hdl: Destination ring pointer
  1569. *
  1570. */
  1571. static inline
  1572. void hal_srng_sync_cachedhp(void *hal_soc,
  1573. hal_ring_handle_t hal_ring_hdl)
  1574. {
  1575. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1576. uint32_t hp;
  1577. hp = *(volatile uint32_t *)(srng->u.dst_ring.hp_addr);
  1578. srng->u.dst_ring.cached_hp = hp;
  1579. }
  1580. /**
  1581. * hal_srng_src_reap_next - Reap next entry from a source ring and move reap
  1582. * pointer. This can be used to release any buffers associated with completed
  1583. * ring entries. Note that this should not be used for posting new descriptor
  1584. * entries. Posting of new entries should be done only using
  1585. * hal_srng_src_get_next_reaped when this function is used for reaping.
  1586. *
  1587. * @hal_soc: Opaque HAL SOC handle
  1588. * @hal_ring_hdl: Source ring pointer
  1589. *
  1590. * Return: Opaque pointer for next ring entry; NULL on failire
  1591. */
  1592. static inline void *
  1593. hal_srng_src_reap_next(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1594. {
  1595. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1596. uint32_t *desc;
  1597. /* TODO: Using % is expensive, but we have to do this since
  1598. * size of some SRNG rings is not power of 2 (due to descriptor
  1599. * sizes). Need to create separate API for rings used
  1600. * per-packet, with sizes power of 2 (TCL2SW, REO2SW,
  1601. * SW2RXDMA and CE rings)
  1602. */
  1603. uint32_t next_reap_hp = (srng->u.src_ring.reap_hp + srng->entry_size) %
  1604. srng->ring_size;
  1605. if (next_reap_hp != srng->u.src_ring.cached_tp) {
  1606. desc = &(srng->ring_base_vaddr[next_reap_hp]);
  1607. srng->u.src_ring.reap_hp = next_reap_hp;
  1608. return (void *)desc;
  1609. }
  1610. return NULL;
  1611. }
  1612. /**
  1613. * hal_srng_src_get_next_reaped - Get next entry from a source ring that is
  1614. * already reaped using hal_srng_src_reap_next, for posting new entries to
  1615. * the ring
  1616. *
  1617. * @hal_soc: Opaque HAL SOC handle
  1618. * @hal_ring_hdl: Source ring pointer
  1619. *
  1620. * Return: Opaque pointer for next (reaped) source ring entry; NULL on failire
  1621. */
  1622. static inline void *
  1623. hal_srng_src_get_next_reaped(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1624. {
  1625. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1626. uint32_t *desc;
  1627. if (srng->u.src_ring.hp != srng->u.src_ring.reap_hp) {
  1628. desc = &(srng->ring_base_vaddr[srng->u.src_ring.hp]);
  1629. srng->u.src_ring.hp = (srng->u.src_ring.hp + srng->entry_size) %
  1630. srng->ring_size;
  1631. return (void *)desc;
  1632. }
  1633. return NULL;
  1634. }
  1635. /**
  1636. * hal_srng_src_pending_reap_next - Reap next entry from a source ring and
  1637. * move reap pointer. This API is used in detach path to release any buffers
  1638. * associated with ring entries which are pending reap.
  1639. *
  1640. * @hal_soc: Opaque HAL SOC handle
  1641. * @hal_ring_hdl: Source ring pointer
  1642. *
  1643. * Return: Opaque pointer for next ring entry; NULL on failire
  1644. */
  1645. static inline void *
  1646. hal_srng_src_pending_reap_next(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1647. {
  1648. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1649. uint32_t *desc;
  1650. uint32_t next_reap_hp = (srng->u.src_ring.reap_hp + srng->entry_size) %
  1651. srng->ring_size;
  1652. if (next_reap_hp != srng->u.src_ring.hp) {
  1653. desc = &(srng->ring_base_vaddr[next_reap_hp]);
  1654. srng->u.src_ring.reap_hp = next_reap_hp;
  1655. return (void *)desc;
  1656. }
  1657. return NULL;
  1658. }
  1659. /**
  1660. * hal_srng_src_done_val -
  1661. *
  1662. * @hal_soc: Opaque HAL SOC handle
  1663. * @hal_ring_hdl: Source ring pointer
  1664. *
  1665. * Return: Opaque pointer for next ring entry; NULL on failire
  1666. */
  1667. static inline uint32_t
  1668. hal_srng_src_done_val(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1669. {
  1670. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1671. /* TODO: Using % is expensive, but we have to do this since
  1672. * size of some SRNG rings is not power of 2 (due to descriptor
  1673. * sizes). Need to create separate API for rings used
  1674. * per-packet, with sizes power of 2 (TCL2SW, REO2SW,
  1675. * SW2RXDMA and CE rings)
  1676. */
  1677. uint32_t next_reap_hp = (srng->u.src_ring.reap_hp + srng->entry_size) %
  1678. srng->ring_size;
  1679. if (next_reap_hp == srng->u.src_ring.cached_tp)
  1680. return 0;
  1681. if (srng->u.src_ring.cached_tp > next_reap_hp)
  1682. return (srng->u.src_ring.cached_tp - next_reap_hp) /
  1683. srng->entry_size;
  1684. else
  1685. return ((srng->ring_size - next_reap_hp) +
  1686. srng->u.src_ring.cached_tp) / srng->entry_size;
  1687. }
  1688. /**
  1689. * hal_get_entrysize_from_srng() - Retrieve ring entry size
  1690. * @hal_ring_hdl: Source ring pointer
  1691. *
  1692. * srng->entry_size value is in 4 byte dwords so left shifting
  1693. * this by 2 to return the value of entry_size in bytes.
  1694. *
  1695. * Return: uint8_t
  1696. */
  1697. static inline
  1698. uint8_t hal_get_entrysize_from_srng(hal_ring_handle_t hal_ring_hdl)
  1699. {
  1700. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1701. return srng->entry_size << 2;
  1702. }
  1703. /**
  1704. * hal_get_sw_hptp - Get SW head and tail pointer location for any ring
  1705. * @hal_soc: Opaque HAL SOC handle
  1706. * @hal_ring_hdl: Source ring pointer
  1707. * @tailp: Tail Pointer
  1708. * @headp: Head Pointer
  1709. *
  1710. * Return: Update tail pointer and head pointer in arguments.
  1711. */
  1712. static inline
  1713. void hal_get_sw_hptp(void *hal_soc, hal_ring_handle_t hal_ring_hdl,
  1714. uint32_t *tailp, uint32_t *headp)
  1715. {
  1716. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1717. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1718. *headp = srng->u.src_ring.hp;
  1719. *tailp = *srng->u.src_ring.tp_addr;
  1720. } else {
  1721. *tailp = srng->u.dst_ring.tp;
  1722. *headp = *srng->u.dst_ring.hp_addr;
  1723. }
  1724. }
  1725. #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
  1726. /**
  1727. * hal_srng_src_get_next_consumed - Get the next desc if consumed by HW
  1728. *
  1729. * @hal_soc: Opaque HAL SOC handle
  1730. * @hal_ring_hdl: Source ring pointer
  1731. *
  1732. * Return: pointer to descriptor if consumed by HW, else NULL
  1733. */
  1734. static inline
  1735. void *hal_srng_src_get_next_consumed(void *hal_soc,
  1736. hal_ring_handle_t hal_ring_hdl)
  1737. {
  1738. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1739. uint32_t *desc = NULL;
  1740. /* TODO: Using % is expensive, but we have to do this since
  1741. * size of some SRNG rings is not power of 2 (due to descriptor
  1742. * sizes). Need to create separate API for rings used
  1743. * per-packet, with sizes power of 2 (TCL2SW, REO2SW,
  1744. * SW2RXDMA and CE rings)
  1745. */
  1746. uint32_t next_entry = (srng->last_desc_cleared + srng->entry_size) %
  1747. srng->ring_size;
  1748. if (next_entry != srng->u.src_ring.cached_tp) {
  1749. desc = &srng->ring_base_vaddr[next_entry];
  1750. srng->last_desc_cleared = next_entry;
  1751. }
  1752. return desc;
  1753. }
  1754. #else
  1755. static inline
  1756. void *hal_srng_src_get_next_consumed(void *hal_soc,
  1757. hal_ring_handle_t hal_ring_hdl)
  1758. {
  1759. return NULL;
  1760. }
  1761. #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
  1762. /**
  1763. * hal_srng_src_get_next - Get next entry from a source ring and move cached tail pointer
  1764. *
  1765. * @hal_soc: Opaque HAL SOC handle
  1766. * @hal_ring_hdl: Source ring pointer
  1767. *
  1768. * Return: Opaque pointer for next ring entry; NULL on failire
  1769. */
  1770. static inline
  1771. void *hal_srng_src_get_next(void *hal_soc,
  1772. hal_ring_handle_t hal_ring_hdl)
  1773. {
  1774. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1775. uint32_t *desc;
  1776. /* TODO: Using % is expensive, but we have to do this since
  1777. * size of some SRNG rings is not power of 2 (due to descriptor
  1778. * sizes). Need to create separate API for rings used
  1779. * per-packet, with sizes power of 2 (TCL2SW, REO2SW,
  1780. * SW2RXDMA and CE rings)
  1781. */
  1782. uint32_t next_hp = (srng->u.src_ring.hp + srng->entry_size) %
  1783. srng->ring_size;
  1784. if (next_hp != srng->u.src_ring.cached_tp) {
  1785. desc = &(srng->ring_base_vaddr[srng->u.src_ring.hp]);
  1786. srng->u.src_ring.hp = next_hp;
  1787. /* TODO: Since reap function is not used by all rings, we can
  1788. * remove the following update of reap_hp in this function
  1789. * if we can ensure that only hal_srng_src_get_next_reaped
  1790. * is used for the rings requiring reap functionality
  1791. */
  1792. srng->u.src_ring.reap_hp = next_hp;
  1793. return (void *)desc;
  1794. }
  1795. return NULL;
  1796. }
  1797. /**
  1798. * hal_srng_src_peek_n_get_next - Get next entry from a ring without
  1799. * moving head pointer.
  1800. * hal_srng_src_get_next should be called subsequently to move the head pointer
  1801. *
  1802. * @hal_soc: Opaque HAL SOC handle
  1803. * @hal_ring_hdl: Source ring pointer
  1804. *
  1805. * Return: Opaque pointer for next ring entry; NULL on failire
  1806. */
  1807. static inline
  1808. void *hal_srng_src_peek_n_get_next(hal_soc_handle_t hal_soc_hdl,
  1809. hal_ring_handle_t hal_ring_hdl)
  1810. {
  1811. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1812. uint32_t *desc;
  1813. /* TODO: Using % is expensive, but we have to do this since
  1814. * size of some SRNG rings is not power of 2 (due to descriptor
  1815. * sizes). Need to create separate API for rings used
  1816. * per-packet, with sizes power of 2 (TCL2SW, REO2SW,
  1817. * SW2RXDMA and CE rings)
  1818. */
  1819. if (((srng->u.src_ring.hp + srng->entry_size) %
  1820. srng->ring_size) != srng->u.src_ring.cached_tp) {
  1821. desc = &(srng->ring_base_vaddr[(srng->u.src_ring.hp +
  1822. srng->entry_size) %
  1823. srng->ring_size]);
  1824. return (void *)desc;
  1825. }
  1826. return NULL;
  1827. }
  1828. /**
  1829. * hal_srng_src_peek_n_get_next_next - Get next to next, i.e HP + 2 entry
  1830. * from a ring without moving head pointer.
  1831. *
  1832. * @hal_soc: Opaque HAL SOC handle
  1833. * @hal_ring_hdl: Source ring pointer
  1834. *
  1835. * Return: Opaque pointer for next to next ring entry; NULL on failire
  1836. */
  1837. static inline
  1838. void *hal_srng_src_peek_n_get_next_next(hal_soc_handle_t hal_soc_hdl,
  1839. hal_ring_handle_t hal_ring_hdl)
  1840. {
  1841. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1842. uint32_t *desc;
  1843. /* TODO: Using % is expensive, but we have to do this since
  1844. * size of some SRNG rings is not power of 2 (due to descriptor
  1845. * sizes). Need to create separate API for rings used
  1846. * per-packet, with sizes power of 2 (TCL2SW, REO2SW,
  1847. * SW2RXDMA and CE rings)
  1848. */
  1849. if ((((srng->u.src_ring.hp + (srng->entry_size)) %
  1850. srng->ring_size) != srng->u.src_ring.cached_tp) &&
  1851. (((srng->u.src_ring.hp + (srng->entry_size * 2)) %
  1852. srng->ring_size) != srng->u.src_ring.cached_tp)) {
  1853. desc = &(srng->ring_base_vaddr[(srng->u.src_ring.hp +
  1854. (srng->entry_size * 2)) %
  1855. srng->ring_size]);
  1856. return (void *)desc;
  1857. }
  1858. return NULL;
  1859. }
  1860. /**
  1861. * hal_srng_src_get_cur_hp_n_move_next () - API returns current hp
  1862. * and move hp to next in src ring
  1863. *
  1864. * Usage: This API should only be used at init time replenish.
  1865. *
  1866. * @hal_soc_hdl: HAL soc handle
  1867. * @hal_ring_hdl: Source ring pointer
  1868. *
  1869. */
  1870. static inline void *
  1871. hal_srng_src_get_cur_hp_n_move_next(hal_soc_handle_t hal_soc_hdl,
  1872. hal_ring_handle_t hal_ring_hdl)
  1873. {
  1874. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1875. uint32_t *cur_desc = NULL;
  1876. uint32_t next_hp;
  1877. cur_desc = &srng->ring_base_vaddr[(srng->u.src_ring.hp)];
  1878. next_hp = (srng->u.src_ring.hp + srng->entry_size) %
  1879. srng->ring_size;
  1880. if (next_hp != srng->u.src_ring.cached_tp)
  1881. srng->u.src_ring.hp = next_hp;
  1882. return (void *)cur_desc;
  1883. }
  1884. /**
  1885. * hal_srng_src_num_avail - Returns number of available entries in src ring
  1886. *
  1887. * @hal_soc: Opaque HAL SOC handle
  1888. * @hal_ring_hdl: Source ring pointer
  1889. * @sync_hw_ptr: Sync cached tail pointer with HW
  1890. *
  1891. */
  1892. static inline uint32_t
  1893. hal_srng_src_num_avail(void *hal_soc,
  1894. hal_ring_handle_t hal_ring_hdl, int sync_hw_ptr)
  1895. {
  1896. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1897. uint32_t tp;
  1898. uint32_t hp = srng->u.src_ring.hp;
  1899. if (sync_hw_ptr) {
  1900. tp = *(srng->u.src_ring.tp_addr);
  1901. srng->u.src_ring.cached_tp = tp;
  1902. } else {
  1903. tp = srng->u.src_ring.cached_tp;
  1904. }
  1905. if (tp > hp)
  1906. return ((tp - hp) / srng->entry_size) - 1;
  1907. else
  1908. return ((srng->ring_size - hp + tp) / srng->entry_size) - 1;
  1909. }
  1910. #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
  1911. /**
  1912. * hal_srng_clear_ring_usage_wm_locked() - Clear SRNG usage watermark stats
  1913. * @hal_soc_hdl: HAL soc handle
  1914. * @hal_ring_hdl: SRNG handle
  1915. *
  1916. * This function tries to acquire SRNG lock, and hence should not be called
  1917. * from a context which has already acquired the SRNG lock.
  1918. *
  1919. * Return: None
  1920. */
  1921. static inline
  1922. void hal_srng_clear_ring_usage_wm_locked(hal_soc_handle_t hal_soc_hdl,
  1923. hal_ring_handle_t hal_ring_hdl)
  1924. {
  1925. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1926. SRNG_LOCK(&srng->lock);
  1927. srng->high_wm.val = 0;
  1928. srng->high_wm.timestamp = 0;
  1929. qdf_mem_zero(&srng->high_wm.bins[0], sizeof(srng->high_wm.bins[0]) *
  1930. HAL_SRNG_HIGH_WM_BIN_MAX);
  1931. SRNG_UNLOCK(&srng->lock);
  1932. }
  1933. /**
  1934. * hal_srng_update_ring_usage_wm_no_lock() - Update the SRNG usage wm stats
  1935. * @hal_soc_hdl: HAL soc handle
  1936. * @hal_ring_hdl: SRNG handle
  1937. *
  1938. * This function should be called with the SRNG lock held.
  1939. *
  1940. * Return: None
  1941. */
  1942. static inline
  1943. void hal_srng_update_ring_usage_wm_no_lock(hal_soc_handle_t hal_soc_hdl,
  1944. hal_ring_handle_t hal_ring_hdl)
  1945. {
  1946. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1947. uint32_t curr_wm_val = 0;
  1948. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1949. curr_wm_val = hal_srng_src_num_avail(hal_soc_hdl, hal_ring_hdl,
  1950. 0);
  1951. else
  1952. curr_wm_val = hal_srng_dst_num_valid(hal_soc_hdl, hal_ring_hdl,
  1953. 0);
  1954. if (curr_wm_val > srng->high_wm.val) {
  1955. srng->high_wm.val = curr_wm_val;
  1956. srng->high_wm.timestamp = qdf_get_system_timestamp();
  1957. }
  1958. if (curr_wm_val >=
  1959. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100])
  1960. srng->high_wm.bins[HAL_SRNG_HIGH_WM_BIN_90_to_100]++;
  1961. else if (curr_wm_val >=
  1962. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90])
  1963. srng->high_wm.bins[HAL_SRNG_HIGH_WM_BIN_80_to_90]++;
  1964. else if (curr_wm_val >=
  1965. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80])
  1966. srng->high_wm.bins[HAL_SRNG_HIGH_WM_BIN_70_to_80]++;
  1967. else if (curr_wm_val >=
  1968. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70])
  1969. srng->high_wm.bins[HAL_SRNG_HIGH_WM_BIN_60_to_70]++;
  1970. else if (curr_wm_val >=
  1971. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60])
  1972. srng->high_wm.bins[HAL_SRNG_HIGH_WM_BIN_50_to_60]++;
  1973. else
  1974. srng->high_wm.bins[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT]++;
  1975. }
  1976. static inline
  1977. int hal_dump_srng_high_wm_stats(hal_soc_handle_t hal_soc_hdl,
  1978. hal_ring_handle_t hal_ring_hdl,
  1979. char *buf, int buf_len, int pos)
  1980. {
  1981. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1982. return qdf_scnprintf(buf + pos, buf_len - pos,
  1983. "%8u %7u %12llu %10u %10u %10u %10u %10u %10u",
  1984. srng->ring_id, srng->high_wm.val,
  1985. srng->high_wm.timestamp,
  1986. srng->high_wm.bins[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT],
  1987. srng->high_wm.bins[HAL_SRNG_HIGH_WM_BIN_50_to_60],
  1988. srng->high_wm.bins[HAL_SRNG_HIGH_WM_BIN_60_to_70],
  1989. srng->high_wm.bins[HAL_SRNG_HIGH_WM_BIN_70_to_80],
  1990. srng->high_wm.bins[HAL_SRNG_HIGH_WM_BIN_80_to_90],
  1991. srng->high_wm.bins[HAL_SRNG_HIGH_WM_BIN_90_to_100]);
  1992. }
  1993. #else
  1994. /**
  1995. * hal_srng_clear_ring_usage_wm_locked() - Clear SRNG usage watermark stats
  1996. * @hal_soc_hdl: HAL soc handle
  1997. * @hal_ring_hdl: SRNG handle
  1998. *
  1999. * This function tries to acquire SRNG lock, and hence should not be called
  2000. * from a context which has already acquired the SRNG lock.
  2001. *
  2002. * Return: None
  2003. */
  2004. static inline
  2005. void hal_srng_clear_ring_usage_wm_locked(hal_soc_handle_t hal_soc_hdl,
  2006. hal_ring_handle_t hal_ring_hdl)
  2007. {
  2008. }
  2009. /**
  2010. * hal_srng_update_ring_usage_wm_no_lock() - Update the SRNG usage wm stats
  2011. * @hal_soc_hdl: HAL soc handle
  2012. * @hal_ring_hdl: SRNG handle
  2013. *
  2014. * This function should be called with the SRNG lock held.
  2015. *
  2016. * Return: None
  2017. */
  2018. static inline
  2019. void hal_srng_update_ring_usage_wm_no_lock(hal_soc_handle_t hal_soc_hdl,
  2020. hal_ring_handle_t hal_ring_hdl)
  2021. {
  2022. }
  2023. static inline
  2024. int hal_dump_srng_high_wm_stats(hal_soc_handle_t hal_soc_hdl,
  2025. hal_ring_handle_t hal_ring_hdl,
  2026. char *buf, int buf_len, int pos)
  2027. {
  2028. return 0;
  2029. }
  2030. #endif
  2031. /**
  2032. * hal_srng_access_end_unlocked - End ring access (unlocked) - update cached
  2033. * ring head/tail pointers to HW.
  2034. *
  2035. * @hal_soc: Opaque HAL SOC handle
  2036. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  2037. *
  2038. * The target expects cached head/tail pointer to be updated to the
  2039. * shared location in the little-endian order, This API ensures that.
  2040. * This API should be used only if hal_srng_access_start_unlocked was used to
  2041. * start ring access
  2042. *
  2043. * Return: None
  2044. */
  2045. static inline void
  2046. hal_srng_access_end_unlocked(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  2047. {
  2048. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2049. /* TODO: See if we need a write memory barrier here */
  2050. if (srng->flags & HAL_SRNG_LMAC_RING) {
  2051. /* For LMAC rings, ring pointer updates are done through FW and
  2052. * hence written to a shared memory location that is read by FW
  2053. */
  2054. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  2055. *srng->u.src_ring.hp_addr =
  2056. qdf_cpu_to_le32(srng->u.src_ring.hp);
  2057. } else {
  2058. *srng->u.dst_ring.tp_addr =
  2059. qdf_cpu_to_le32(srng->u.dst_ring.tp);
  2060. }
  2061. } else {
  2062. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  2063. hal_srng_write_address_32_mb(hal_soc,
  2064. srng,
  2065. srng->u.src_ring.hp_addr,
  2066. srng->u.src_ring.hp);
  2067. else
  2068. hal_srng_write_address_32_mb(hal_soc,
  2069. srng,
  2070. srng->u.dst_ring.tp_addr,
  2071. srng->u.dst_ring.tp);
  2072. }
  2073. }
  2074. /* hal_srng_access_end_unlocked already handles endianness conversion,
  2075. * use the same.
  2076. */
  2077. #define hal_le_srng_access_end_unlocked_in_cpu_order \
  2078. hal_srng_access_end_unlocked
  2079. /**
  2080. * hal_srng_access_end - Unlock ring access and update cached ring head/tail
  2081. * pointers to HW
  2082. *
  2083. * @hal_soc: Opaque HAL SOC handle
  2084. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  2085. *
  2086. * The target expects cached head/tail pointer to be updated to the
  2087. * shared location in the little-endian order, This API ensures that.
  2088. * This API should be used only if hal_srng_access_start was used to
  2089. * start ring access
  2090. *
  2091. */
  2092. static inline void
  2093. hal_srng_access_end(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  2094. {
  2095. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2096. if (qdf_unlikely(!hal_ring_hdl)) {
  2097. qdf_print("Error: Invalid hal_ring\n");
  2098. return;
  2099. }
  2100. hal_srng_access_end_unlocked(hal_soc, hal_ring_hdl);
  2101. SRNG_UNLOCK(&(srng->lock));
  2102. }
  2103. #ifdef FEATURE_RUNTIME_PM
  2104. #define hal_srng_access_end_v1 hal_srng_rtpm_access_end
  2105. /**
  2106. * hal_srng_rtpm_access_end - RTPM aware, Unlock ring access
  2107. * @hal_soc: Opaque HAL SOC handle
  2108. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  2109. * @rtpm_dbgid: RTPM debug id
  2110. * @is_critical_ctx: Whether the calling context is critical
  2111. *
  2112. * Function updates the HP/TP value to the hardware register.
  2113. * The target expects cached head/tail pointer to be updated to the
  2114. * shared location in the little-endian order, This API ensures that.
  2115. * This API should be used only if hal_srng_access_start was used to
  2116. * start ring access
  2117. *
  2118. * Return: None
  2119. */
  2120. void
  2121. hal_srng_rtpm_access_end(hal_soc_handle_t hal_soc_hdl,
  2122. hal_ring_handle_t hal_ring_hdl,
  2123. uint32_t rtpm_id);
  2124. #else
  2125. #define hal_srng_access_end_v1(hal_soc_hdl, hal_ring_hdl, rtpm_id) \
  2126. hal_srng_access_end(hal_soc_hdl, hal_ring_hdl)
  2127. #endif
  2128. /* hal_srng_access_end already handles endianness conversion, so use the same */
  2129. #define hal_le_srng_access_end_in_cpu_order \
  2130. hal_srng_access_end
  2131. /**
  2132. * hal_srng_access_end_reap - Unlock ring access
  2133. * This should be used only if hal_srng_access_start to start ring access
  2134. * and should be used only while reaping SRC ring completions
  2135. *
  2136. * @hal_soc: Opaque HAL SOC handle
  2137. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  2138. *
  2139. * Return: 0 on success; error on failire
  2140. */
  2141. static inline void
  2142. hal_srng_access_end_reap(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  2143. {
  2144. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2145. SRNG_UNLOCK(&(srng->lock));
  2146. }
  2147. /* TODO: Check if the following definitions is available in HW headers */
  2148. #define WBM_IDLE_SCATTER_BUF_SIZE 32704
  2149. #define NUM_MPDUS_PER_LINK_DESC 6
  2150. #define NUM_MSDUS_PER_LINK_DESC 7
  2151. #define REO_QUEUE_DESC_ALIGN 128
  2152. #define LINK_DESC_ALIGN 128
  2153. #define ADDRESS_MATCH_TAG_VAL 0x5
  2154. /* Number of mpdu link pointers is 9 in case of TX_MPDU_QUEUE_HEAD and 14 in
  2155. * of TX_MPDU_QUEUE_EXT. We are defining a common average count here
  2156. */
  2157. #define NUM_MPDU_LINKS_PER_QUEUE_DESC 12
  2158. /* TODO: Check with HW team on the scatter buffer size supported. As per WBM
  2159. * MLD, scatter_buffer_size in IDLE_LIST_CONTROL register is 9 bits and size
  2160. * should be specified in 16 word units. But the number of bits defined for
  2161. * this field in HW header files is 5.
  2162. */
  2163. #define WBM_IDLE_SCATTER_BUF_NEXT_PTR_SIZE 8
  2164. /**
  2165. * hal_idle_list_scatter_buf_size - Get the size of each scatter buffer
  2166. * in an idle list
  2167. *
  2168. * @hal_soc: Opaque HAL SOC handle
  2169. *
  2170. */
  2171. static inline
  2172. uint32_t hal_idle_list_scatter_buf_size(hal_soc_handle_t hal_soc_hdl)
  2173. {
  2174. return WBM_IDLE_SCATTER_BUF_SIZE;
  2175. }
  2176. /**
  2177. * hal_get_link_desc_size - Get the size of each link descriptor
  2178. *
  2179. * @hal_soc: Opaque HAL SOC handle
  2180. *
  2181. */
  2182. static inline uint32_t hal_get_link_desc_size(hal_soc_handle_t hal_soc_hdl)
  2183. {
  2184. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  2185. if (!hal_soc || !hal_soc->ops) {
  2186. qdf_print("Error: Invalid ops\n");
  2187. QDF_BUG(0);
  2188. return -EINVAL;
  2189. }
  2190. if (!hal_soc->ops->hal_get_link_desc_size) {
  2191. qdf_print("Error: Invalid function pointer\n");
  2192. QDF_BUG(0);
  2193. return -EINVAL;
  2194. }
  2195. return hal_soc->ops->hal_get_link_desc_size();
  2196. }
  2197. /**
  2198. * hal_get_link_desc_align - Get the required start address alignment for
  2199. * link descriptors
  2200. *
  2201. * @hal_soc: Opaque HAL SOC handle
  2202. *
  2203. */
  2204. static inline
  2205. uint32_t hal_get_link_desc_align(hal_soc_handle_t hal_soc_hdl)
  2206. {
  2207. return LINK_DESC_ALIGN;
  2208. }
  2209. /**
  2210. * hal_num_mpdus_per_link_desc - Get number of mpdus each link desc can hold
  2211. *
  2212. * @hal_soc: Opaque HAL SOC handle
  2213. *
  2214. */
  2215. static inline
  2216. uint32_t hal_num_mpdus_per_link_desc(hal_soc_handle_t hal_soc_hdl)
  2217. {
  2218. return NUM_MPDUS_PER_LINK_DESC;
  2219. }
  2220. /**
  2221. * hal_num_msdus_per_link_desc - Get number of msdus each link desc can hold
  2222. *
  2223. * @hal_soc: Opaque HAL SOC handle
  2224. *
  2225. */
  2226. static inline
  2227. uint32_t hal_num_msdus_per_link_desc(hal_soc_handle_t hal_soc_hdl)
  2228. {
  2229. return NUM_MSDUS_PER_LINK_DESC;
  2230. }
  2231. /**
  2232. * hal_num_mpdu_links_per_queue_desc - Get number of mpdu links each queue
  2233. * descriptor can hold
  2234. *
  2235. * @hal_soc: Opaque HAL SOC handle
  2236. *
  2237. */
  2238. static inline
  2239. uint32_t hal_num_mpdu_links_per_queue_desc(hal_soc_handle_t hal_soc_hdl)
  2240. {
  2241. return NUM_MPDU_LINKS_PER_QUEUE_DESC;
  2242. }
  2243. /**
  2244. * hal_idle_list_scatter_buf_num_entries - Get the number of link desc entries
  2245. * that the given buffer size
  2246. *
  2247. * @hal_soc: Opaque HAL SOC handle
  2248. * @scatter_buf_size: Size of scatter buffer
  2249. *
  2250. */
  2251. static inline
  2252. uint32_t hal_idle_scatter_buf_num_entries(hal_soc_handle_t hal_soc_hdl,
  2253. uint32_t scatter_buf_size)
  2254. {
  2255. return (scatter_buf_size - WBM_IDLE_SCATTER_BUF_NEXT_PTR_SIZE) /
  2256. hal_srng_get_entrysize(hal_soc_hdl, WBM_IDLE_LINK);
  2257. }
  2258. /**
  2259. * hal_idle_list_num_scatter_bufs - Get the number of sctater buffer
  2260. * each given buffer size
  2261. *
  2262. * @hal_soc: Opaque HAL SOC handle
  2263. * @total_mem: size of memory to be scattered
  2264. * @scatter_buf_size: Size of scatter buffer
  2265. *
  2266. */
  2267. static inline
  2268. uint32_t hal_idle_list_num_scatter_bufs(hal_soc_handle_t hal_soc_hdl,
  2269. uint32_t total_mem,
  2270. uint32_t scatter_buf_size)
  2271. {
  2272. uint8_t rem = (total_mem % (scatter_buf_size -
  2273. WBM_IDLE_SCATTER_BUF_NEXT_PTR_SIZE)) ? 1 : 0;
  2274. uint32_t num_scatter_bufs = (total_mem / (scatter_buf_size -
  2275. WBM_IDLE_SCATTER_BUF_NEXT_PTR_SIZE)) + rem;
  2276. return num_scatter_bufs;
  2277. }
  2278. enum hal_pn_type {
  2279. HAL_PN_NONE,
  2280. HAL_PN_WPA,
  2281. HAL_PN_WAPI_EVEN,
  2282. HAL_PN_WAPI_UNEVEN,
  2283. };
  2284. #define HAL_RX_BA_WINDOW_256 256
  2285. #define HAL_RX_BA_WINDOW_1024 1024
  2286. /**
  2287. * hal_get_reo_qdesc_align - Get start address alignment for reo
  2288. * queue descriptors
  2289. *
  2290. * @hal_soc: Opaque HAL SOC handle
  2291. *
  2292. */
  2293. static inline
  2294. uint32_t hal_get_reo_qdesc_align(hal_soc_handle_t hal_soc_hdl)
  2295. {
  2296. return REO_QUEUE_DESC_ALIGN;
  2297. }
  2298. /**
  2299. * hal_srng_get_hp_addr - Get head pointer physical address
  2300. *
  2301. * @hal_soc: Opaque HAL SOC handle
  2302. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  2303. *
  2304. */
  2305. static inline qdf_dma_addr_t
  2306. hal_srng_get_hp_addr(void *hal_soc,
  2307. hal_ring_handle_t hal_ring_hdl)
  2308. {
  2309. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2310. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  2311. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  2312. return hal->shadow_wrptr_mem_paddr +
  2313. ((unsigned long)(srng->u.src_ring.hp_addr) -
  2314. (unsigned long)(hal->shadow_wrptr_mem_vaddr));
  2315. } else {
  2316. return hal->shadow_rdptr_mem_paddr +
  2317. ((unsigned long)(srng->u.dst_ring.hp_addr) -
  2318. (unsigned long)(hal->shadow_rdptr_mem_vaddr));
  2319. }
  2320. }
  2321. /**
  2322. * hal_srng_get_tp_addr - Get tail pointer physical address
  2323. *
  2324. * @hal_soc: Opaque HAL SOC handle
  2325. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  2326. *
  2327. */
  2328. static inline qdf_dma_addr_t
  2329. hal_srng_get_tp_addr(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  2330. {
  2331. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2332. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  2333. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  2334. return hal->shadow_rdptr_mem_paddr +
  2335. ((unsigned long)(srng->u.src_ring.tp_addr) -
  2336. (unsigned long)(hal->shadow_rdptr_mem_vaddr));
  2337. } else {
  2338. return hal->shadow_wrptr_mem_paddr +
  2339. ((unsigned long)(srng->u.dst_ring.tp_addr) -
  2340. (unsigned long)(hal->shadow_wrptr_mem_vaddr));
  2341. }
  2342. }
  2343. /**
  2344. * hal_srng_get_num_entries - Get total entries in the HAL Srng
  2345. *
  2346. * @hal_soc: Opaque HAL SOC handle
  2347. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  2348. *
  2349. * Return: total number of entries in hal ring
  2350. */
  2351. static inline
  2352. uint32_t hal_srng_get_num_entries(hal_soc_handle_t hal_soc_hdl,
  2353. hal_ring_handle_t hal_ring_hdl)
  2354. {
  2355. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2356. return srng->num_entries;
  2357. }
  2358. /**
  2359. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  2360. *
  2361. * @hal_soc: Opaque HAL SOC handle
  2362. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  2363. * @ring_params: SRNG parameters will be returned through this structure
  2364. */
  2365. void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  2366. hal_ring_handle_t hal_ring_hdl,
  2367. struct hal_srng_params *ring_params);
  2368. /**
  2369. * hal_mem_info - Retrieve hal memory base address
  2370. *
  2371. * @hal_soc: Opaque HAL SOC handle
  2372. * @mem: pointer to structure to be updated with hal mem info
  2373. */
  2374. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem);
  2375. /**
  2376. * hal_get_target_type - Return target type
  2377. *
  2378. * @hal_soc: Opaque HAL SOC handle
  2379. */
  2380. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl);
  2381. /**
  2382. * hal_srng_dst_hw_init - Private function to initialize SRNG
  2383. * destination ring HW
  2384. * @hal_soc: HAL SOC handle
  2385. * @srng: SRNG ring pointer
  2386. */
  2387. static inline void hal_srng_dst_hw_init(struct hal_soc *hal,
  2388. struct hal_srng *srng)
  2389. {
  2390. hal->ops->hal_srng_dst_hw_init(hal, srng);
  2391. }
  2392. /**
  2393. * hal_srng_src_hw_init - Private function to initialize SRNG
  2394. * source ring HW
  2395. * @hal_soc: HAL SOC handle
  2396. * @srng: SRNG ring pointer
  2397. */
  2398. static inline void hal_srng_src_hw_init(struct hal_soc *hal,
  2399. struct hal_srng *srng)
  2400. {
  2401. hal->ops->hal_srng_src_hw_init(hal, srng);
  2402. }
  2403. /**
  2404. * hal_get_hw_hptp() - Get HW head and tail pointer value for any ring
  2405. * @hal_soc: Opaque HAL SOC handle
  2406. * @hal_ring_hdl: Source ring pointer
  2407. * @headp: Head Pointer
  2408. * @tailp: Tail Pointer
  2409. * @ring_type: Ring
  2410. *
  2411. * Return: Update tail pointer and head pointer in arguments.
  2412. */
  2413. static inline
  2414. void hal_get_hw_hptp(hal_soc_handle_t hal_soc_hdl,
  2415. hal_ring_handle_t hal_ring_hdl,
  2416. uint32_t *headp, uint32_t *tailp,
  2417. uint8_t ring_type)
  2418. {
  2419. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  2420. hal_soc->ops->hal_get_hw_hptp(hal_soc, hal_ring_hdl,
  2421. headp, tailp, ring_type);
  2422. }
  2423. /**
  2424. * hal_reo_setup - Initialize HW REO block
  2425. *
  2426. * @hal_soc: Opaque HAL SOC handle
  2427. * @reo_params: parameters needed by HAL for REO config
  2428. */
  2429. static inline void hal_reo_setup(hal_soc_handle_t hal_soc_hdl,
  2430. void *reoparams)
  2431. {
  2432. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  2433. hal_soc->ops->hal_reo_setup(hal_soc, reoparams);
  2434. }
  2435. static inline
  2436. void hal_compute_reo_remap_ix2_ix3(hal_soc_handle_t hal_soc_hdl,
  2437. uint32_t *ring, uint32_t num_rings,
  2438. uint32_t *remap1, uint32_t *remap2)
  2439. {
  2440. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  2441. return hal_soc->ops->hal_compute_reo_remap_ix2_ix3(ring,
  2442. num_rings, remap1, remap2);
  2443. }
  2444. static inline
  2445. void hal_compute_reo_remap_ix0(hal_soc_handle_t hal_soc_hdl, uint32_t *remap0)
  2446. {
  2447. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  2448. if (hal_soc->ops->hal_compute_reo_remap_ix0)
  2449. hal_soc->ops->hal_compute_reo_remap_ix0(remap0);
  2450. }
  2451. /**
  2452. * hal_setup_link_idle_list - Setup scattered idle list using the
  2453. * buffer list provided
  2454. *
  2455. * @hal_soc: Opaque HAL SOC handle
  2456. * @scatter_bufs_base_paddr: Array of physical base addresses
  2457. * @scatter_bufs_base_vaddr: Array of virtual base addresses
  2458. * @num_scatter_bufs: Number of scatter buffers in the above lists
  2459. * @scatter_buf_size: Size of each scatter buffer
  2460. * @last_buf_end_offset: Offset to the last entry
  2461. * @num_entries: Total entries of all scatter bufs
  2462. *
  2463. */
  2464. static inline
  2465. void hal_setup_link_idle_list(hal_soc_handle_t hal_soc_hdl,
  2466. qdf_dma_addr_t scatter_bufs_base_paddr[],
  2467. void *scatter_bufs_base_vaddr[],
  2468. uint32_t num_scatter_bufs,
  2469. uint32_t scatter_buf_size,
  2470. uint32_t last_buf_end_offset,
  2471. uint32_t num_entries)
  2472. {
  2473. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  2474. hal_soc->ops->hal_setup_link_idle_list(hal_soc, scatter_bufs_base_paddr,
  2475. scatter_bufs_base_vaddr, num_scatter_bufs,
  2476. scatter_buf_size, last_buf_end_offset,
  2477. num_entries);
  2478. }
  2479. #ifdef DUMP_REO_QUEUE_INFO_IN_DDR
  2480. /**
  2481. * hal_dump_rx_reo_queue_desc() - Dump reo queue descriptor fields
  2482. * @hw_qdesc_vaddr_aligned: Pointer to hw reo queue desc virtual addr
  2483. *
  2484. * Use the virtual addr pointer to reo h/w queue desc to read
  2485. * the values from ddr and log them.
  2486. *
  2487. * Return: none
  2488. */
  2489. static inline void hal_dump_rx_reo_queue_desc(
  2490. void *hw_qdesc_vaddr_aligned)
  2491. {
  2492. struct rx_reo_queue *hw_qdesc =
  2493. (struct rx_reo_queue *)hw_qdesc_vaddr_aligned;
  2494. if (!hw_qdesc)
  2495. return;
  2496. hal_info("receive_queue_number %u vld %u window_jump_2k %u"
  2497. " hole_count %u ba_window_size %u ignore_ampdu_flag %u"
  2498. " svld %u ssn %u current_index %u"
  2499. " disable_duplicate_detection %u soft_reorder_enable %u"
  2500. " chk_2k_mode %u oor_mode %u mpdu_frames_processed_count %u"
  2501. " msdu_frames_processed_count %u total_processed_byte_count %u"
  2502. " late_receive_mpdu_count %u seq_2k_error_detected_flag %u"
  2503. " pn_error_detected_flag %u current_mpdu_count %u"
  2504. " current_msdu_count %u timeout_count %u"
  2505. " forward_due_to_bar_count %u duplicate_count %u"
  2506. " frames_in_order_count %u bar_received_count %u"
  2507. " pn_check_needed %u pn_shall_be_even %u"
  2508. " pn_shall_be_uneven %u pn_size %u",
  2509. hw_qdesc->receive_queue_number,
  2510. hw_qdesc->vld,
  2511. hw_qdesc->window_jump_2k,
  2512. hw_qdesc->hole_count,
  2513. hw_qdesc->ba_window_size,
  2514. hw_qdesc->ignore_ampdu_flag,
  2515. hw_qdesc->svld,
  2516. hw_qdesc->ssn,
  2517. hw_qdesc->current_index,
  2518. hw_qdesc->disable_duplicate_detection,
  2519. hw_qdesc->soft_reorder_enable,
  2520. hw_qdesc->chk_2k_mode,
  2521. hw_qdesc->oor_mode,
  2522. hw_qdesc->mpdu_frames_processed_count,
  2523. hw_qdesc->msdu_frames_processed_count,
  2524. hw_qdesc->total_processed_byte_count,
  2525. hw_qdesc->late_receive_mpdu_count,
  2526. hw_qdesc->seq_2k_error_detected_flag,
  2527. hw_qdesc->pn_error_detected_flag,
  2528. hw_qdesc->current_mpdu_count,
  2529. hw_qdesc->current_msdu_count,
  2530. hw_qdesc->timeout_count,
  2531. hw_qdesc->forward_due_to_bar_count,
  2532. hw_qdesc->duplicate_count,
  2533. hw_qdesc->frames_in_order_count,
  2534. hw_qdesc->bar_received_count,
  2535. hw_qdesc->pn_check_needed,
  2536. hw_qdesc->pn_shall_be_even,
  2537. hw_qdesc->pn_shall_be_uneven,
  2538. hw_qdesc->pn_size);
  2539. }
  2540. #else /* DUMP_REO_QUEUE_INFO_IN_DDR */
  2541. static inline void hal_dump_rx_reo_queue_desc(
  2542. void *hw_qdesc_vaddr_aligned)
  2543. {
  2544. }
  2545. #endif /* DUMP_REO_QUEUE_INFO_IN_DDR */
  2546. /**
  2547. * hal_srng_dump_ring_desc() - Dump ring descriptor info
  2548. *
  2549. * @hal_soc: Opaque HAL SOC handle
  2550. * @hal_ring_hdl: Source ring pointer
  2551. * @ring_desc: Opaque ring descriptor handle
  2552. */
  2553. static inline void hal_srng_dump_ring_desc(hal_soc_handle_t hal_soc_hdl,
  2554. hal_ring_handle_t hal_ring_hdl,
  2555. hal_ring_desc_t ring_desc)
  2556. {
  2557. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2558. QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
  2559. ring_desc, (srng->entry_size << 2));
  2560. }
  2561. /**
  2562. * hal_srng_dump_ring() - Dump last 128 descs of the ring
  2563. *
  2564. * @hal_soc: Opaque HAL SOC handle
  2565. * @hal_ring_hdl: Source ring pointer
  2566. */
  2567. static inline void hal_srng_dump_ring(hal_soc_handle_t hal_soc_hdl,
  2568. hal_ring_handle_t hal_ring_hdl)
  2569. {
  2570. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2571. uint32_t *desc;
  2572. uint32_t tp, i;
  2573. tp = srng->u.dst_ring.tp;
  2574. for (i = 0; i < 128; i++) {
  2575. if (!tp)
  2576. tp = srng->ring_size;
  2577. desc = &srng->ring_base_vaddr[tp - srng->entry_size];
  2578. QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_DP,
  2579. QDF_TRACE_LEVEL_DEBUG,
  2580. desc, (srng->entry_size << 2));
  2581. tp -= srng->entry_size;
  2582. }
  2583. }
  2584. /*
  2585. * hal_rxdma_desc_to_hal_ring_desc - API to convert rxdma ring desc
  2586. * to opaque dp_ring desc type
  2587. * @ring_desc - rxdma ring desc
  2588. *
  2589. * Return: hal_rxdma_desc_t type
  2590. */
  2591. static inline
  2592. hal_ring_desc_t hal_rxdma_desc_to_hal_ring_desc(hal_rxdma_desc_t ring_desc)
  2593. {
  2594. return (hal_ring_desc_t)ring_desc;
  2595. }
  2596. /**
  2597. * hal_srng_set_event() - Set hal_srng event
  2598. * @hal_ring_hdl: Source ring pointer
  2599. * @event: SRNG ring event
  2600. *
  2601. * Return: None
  2602. */
  2603. static inline void hal_srng_set_event(hal_ring_handle_t hal_ring_hdl, int event)
  2604. {
  2605. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2606. qdf_atomic_set_bit(event, &srng->srng_event);
  2607. }
  2608. /**
  2609. * hal_srng_clear_event() - Clear hal_srng event
  2610. * @hal_ring_hdl: Source ring pointer
  2611. * @event: SRNG ring event
  2612. *
  2613. * Return: None
  2614. */
  2615. static inline
  2616. void hal_srng_clear_event(hal_ring_handle_t hal_ring_hdl, int event)
  2617. {
  2618. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2619. qdf_atomic_clear_bit(event, &srng->srng_event);
  2620. }
  2621. /**
  2622. * hal_srng_get_clear_event() - Clear srng event and return old value
  2623. * @hal_ring_hdl: Source ring pointer
  2624. * @event: SRNG ring event
  2625. *
  2626. * Return: Return old event value
  2627. */
  2628. static inline
  2629. int hal_srng_get_clear_event(hal_ring_handle_t hal_ring_hdl, int event)
  2630. {
  2631. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2632. return qdf_atomic_test_and_clear_bit(event, &srng->srng_event);
  2633. }
  2634. /**
  2635. * hal_srng_set_flush_last_ts() - Record last flush time stamp
  2636. * @hal_ring_hdl: Source ring pointer
  2637. *
  2638. * Return: None
  2639. */
  2640. static inline void hal_srng_set_flush_last_ts(hal_ring_handle_t hal_ring_hdl)
  2641. {
  2642. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2643. srng->last_flush_ts = qdf_get_log_timestamp();
  2644. }
  2645. /**
  2646. * hal_srng_inc_flush_cnt() - Increment flush counter
  2647. * @hal_ring_hdl: Source ring pointer
  2648. *
  2649. * Return: None
  2650. */
  2651. static inline void hal_srng_inc_flush_cnt(hal_ring_handle_t hal_ring_hdl)
  2652. {
  2653. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2654. srng->flush_count++;
  2655. }
  2656. /**
  2657. * hal_rx_sw_mon_desc_info_get () - Get SW monitor desc info
  2658. *
  2659. * @hal: Core HAL soc handle
  2660. * @ring_desc: Mon dest ring descriptor
  2661. * @desc_info: Desc info to be populated
  2662. *
  2663. * Return void
  2664. */
  2665. static inline void
  2666. hal_rx_sw_mon_desc_info_get(struct hal_soc *hal,
  2667. hal_ring_desc_t ring_desc,
  2668. hal_rx_mon_desc_info_t desc_info)
  2669. {
  2670. return hal->ops->hal_rx_sw_mon_desc_info_get(ring_desc, desc_info);
  2671. }
  2672. /**
  2673. * hal_reo_set_err_dst_remap() - Set REO error destination ring remap
  2674. * register value.
  2675. *
  2676. * @hal_soc_hdl: Opaque HAL soc handle
  2677. *
  2678. * Return: None
  2679. */
  2680. static inline void hal_reo_set_err_dst_remap(hal_soc_handle_t hal_soc_hdl)
  2681. {
  2682. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  2683. if (hal_soc->ops->hal_reo_set_err_dst_remap)
  2684. hal_soc->ops->hal_reo_set_err_dst_remap(hal_soc);
  2685. }
  2686. /**
  2687. * hal_reo_enable_pn_in_dest() - Subscribe for previous PN for 2k-jump or
  2688. * OOR error frames
  2689. * @hal_soc_hdl: Opaque HAL soc handle
  2690. *
  2691. * Return: true if feature is enabled,
  2692. * false, otherwise.
  2693. */
  2694. static inline uint8_t
  2695. hal_reo_enable_pn_in_dest(hal_soc_handle_t hal_soc_hdl)
  2696. {
  2697. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  2698. if (hal_soc->ops->hal_reo_enable_pn_in_dest)
  2699. return hal_soc->ops->hal_reo_enable_pn_in_dest(hal_soc);
  2700. return 0;
  2701. }
  2702. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  2703. /**
  2704. * hal_set_one_target_reg_config() - Populate the target reg
  2705. * offset in hal_soc for one non srng related register at the
  2706. * given list index
  2707. * @hal_soc: hal handle
  2708. * @target_reg_offset: target register offset
  2709. * @list_index: index in hal list for shadow regs
  2710. *
  2711. * Return: none
  2712. */
  2713. void hal_set_one_target_reg_config(struct hal_soc *hal,
  2714. uint32_t target_reg_offset,
  2715. int list_index);
  2716. /**
  2717. * hal_set_shadow_regs() - Populate register offset for
  2718. * registers that need to be populated in list_shadow_reg_config
  2719. * in order to be sent to FW. These reg offsets will be mapped
  2720. * to shadow registers.
  2721. * @hal_soc: hal handle
  2722. *
  2723. * Return: QDF_STATUS_OK on success
  2724. */
  2725. QDF_STATUS hal_set_shadow_regs(void *hal_soc);
  2726. /**
  2727. * hal_construct_shadow_regs() - initialize the shadow registers
  2728. * for non-srng related register configs
  2729. * @hal_soc: hal handle
  2730. *
  2731. * Return: QDF_STATUS_OK on success
  2732. */
  2733. QDF_STATUS hal_construct_shadow_regs(void *hal_soc);
  2734. #else /* GENERIC_SHADOW_REGISTER_ACCESS_ENABLE */
  2735. static inline void hal_set_one_target_reg_config(
  2736. struct hal_soc *hal,
  2737. uint32_t target_reg_offset,
  2738. int list_index)
  2739. {
  2740. }
  2741. static inline QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  2742. {
  2743. return QDF_STATUS_SUCCESS;
  2744. }
  2745. static inline QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  2746. {
  2747. return QDF_STATUS_SUCCESS;
  2748. }
  2749. #endif /* GENERIC_SHADOW_REGISTER_ACCESS_ENABLE */
  2750. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  2751. /**
  2752. * hal_flush_reg_write_work() - flush all writes from register write queue
  2753. * @arg: hal_soc pointer
  2754. *
  2755. * Return: None
  2756. */
  2757. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle);
  2758. #else
  2759. static inline void hal_flush_reg_write_work(hal_soc_handle_t hal_handle) { }
  2760. #endif
  2761. /**
  2762. * hal_get_ring_usage - Calculate the ring usage percentage
  2763. * @hal_ring_hdl: Ring pointer
  2764. * @ring_type: Ring type
  2765. * @headp: pointer to head value
  2766. * @tailp: pointer to tail value
  2767. *
  2768. * Calculate the ring usage percentage for src and dest rings
  2769. *
  2770. * Return: Ring usage percentage
  2771. */
  2772. static inline
  2773. uint32_t hal_get_ring_usage(
  2774. hal_ring_handle_t hal_ring_hdl,
  2775. enum hal_ring_type ring_type, uint32_t *headp, uint32_t *tailp)
  2776. {
  2777. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2778. uint32_t num_avail, num_valid = 0;
  2779. uint32_t ring_usage;
  2780. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  2781. if (*tailp > *headp)
  2782. num_avail = ((*tailp - *headp) / srng->entry_size) - 1;
  2783. else
  2784. num_avail = ((srng->ring_size - *headp + *tailp) /
  2785. srng->entry_size) - 1;
  2786. if (ring_type == WBM_IDLE_LINK)
  2787. num_valid = num_avail;
  2788. else
  2789. num_valid = srng->num_entries - num_avail;
  2790. } else {
  2791. if (*headp >= *tailp)
  2792. num_valid = ((*headp - *tailp) / srng->entry_size);
  2793. else
  2794. num_valid = ((srng->ring_size - *tailp + *headp) /
  2795. srng->entry_size);
  2796. }
  2797. ring_usage = (100 * num_valid) / srng->num_entries;
  2798. return ring_usage;
  2799. }
  2800. /**
  2801. * hal_cmem_write() - function for CMEM buffer writing
  2802. * @hal_soc_hdl: HAL SOC handle
  2803. * @offset: CMEM address
  2804. * @value: value to write
  2805. *
  2806. * Return: None.
  2807. */
  2808. static inline void
  2809. hal_cmem_write(hal_soc_handle_t hal_soc_hdl, uint32_t offset,
  2810. uint32_t value)
  2811. {
  2812. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  2813. if (hal_soc->ops->hal_cmem_write)
  2814. hal_soc->ops->hal_cmem_write(hal_soc_hdl, offset, value);
  2815. return;
  2816. }
  2817. static inline bool
  2818. hal_dmac_cmn_src_rxbuf_ring_get(hal_soc_handle_t hal_soc_hdl)
  2819. {
  2820. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  2821. return hal_soc->dmac_cmn_src_rxbuf_ring;
  2822. }
  2823. /**
  2824. * hal_srng_dst_prefetch() - function to prefetch 4 destination ring descs
  2825. * @hal_soc_hdl: HAL SOC handle
  2826. * @hal_ring_hdl: Destination ring pointer
  2827. * @num_valid: valid entries in the ring
  2828. *
  2829. * return: last prefetched destination ring descriptor
  2830. */
  2831. static inline
  2832. void *hal_srng_dst_prefetch(hal_soc_handle_t hal_soc_hdl,
  2833. hal_ring_handle_t hal_ring_hdl,
  2834. uint16_t num_valid)
  2835. {
  2836. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2837. uint8_t *desc;
  2838. uint32_t cnt;
  2839. /*
  2840. * prefetching 4 HW descriptors will ensure atleast by the time
  2841. * 5th HW descriptor is being processed it is guranteed that the
  2842. * 5th HW descriptor, its SW Desc, its nbuf and its nbuf's data
  2843. * are in cache line. basically ensuring all the 4 (HW, SW, nbuf
  2844. * & nbuf->data) are prefetched.
  2845. */
  2846. uint32_t max_prefetch = 4;
  2847. if (srng->u.dst_ring.tp == srng->u.dst_ring.cached_hp)
  2848. return NULL;
  2849. desc = (uint8_t *)&srng->ring_base_vaddr[srng->u.dst_ring.tp];
  2850. if (num_valid < max_prefetch)
  2851. max_prefetch = num_valid;
  2852. for (cnt = 0; cnt < max_prefetch; cnt++) {
  2853. desc += srng->entry_size * sizeof(uint32_t);
  2854. if (desc == ((uint8_t *)srng->ring_vaddr_end))
  2855. desc = (uint8_t *)&srng->ring_base_vaddr[0];
  2856. qdf_prefetch(desc);
  2857. }
  2858. return (void *)desc;
  2859. }
  2860. /**
  2861. * hal_srng_dst_prefetch_next_cached_desc() - function to prefetch next desc
  2862. * @hal_soc_hdl: HAL SOC handle
  2863. * @hal_ring_hdl: Destination ring pointer
  2864. * @last_prefetched_hw_desc: last prefetched HW descriptor
  2865. *
  2866. * return: next prefetched destination descriptor
  2867. */
  2868. static inline
  2869. void *hal_srng_dst_prefetch_next_cached_desc(hal_soc_handle_t hal_soc_hdl,
  2870. hal_ring_handle_t hal_ring_hdl,
  2871. uint8_t *last_prefetched_hw_desc)
  2872. {
  2873. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2874. if (srng->u.dst_ring.tp == srng->u.dst_ring.cached_hp)
  2875. return NULL;
  2876. last_prefetched_hw_desc += srng->entry_size * sizeof(uint32_t);
  2877. if (last_prefetched_hw_desc == ((uint8_t *)srng->ring_vaddr_end))
  2878. last_prefetched_hw_desc = (uint8_t *)&srng->ring_base_vaddr[0];
  2879. qdf_prefetch(last_prefetched_hw_desc);
  2880. return (void *)last_prefetched_hw_desc;
  2881. }
  2882. #endif /* _HAL_APIH_ */