qce50.c 195 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * QTI Crypto Engine driver.
  4. *
  5. * Copyright (c) 2012-2021, The Linux Foundation. All rights reserved.
  6. * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
  7. */
  8. #define pr_fmt(fmt) "QCE50: %s: " fmt, __func__
  9. #include <linux/types.h>
  10. #include <linux/kernel.h>
  11. #include <linux/module.h>
  12. #include <linux/mod_devicetable.h>
  13. #include <linux/device.h>
  14. #include <linux/clk.h>
  15. #include <linux/err.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/io.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/delay.h>
  21. #include <linux/crypto.h>
  22. #include <linux/bitops.h>
  23. #include <crypto/hash.h>
  24. #include <crypto/sha1.h>
  25. #include <soc/qcom/socinfo.h>
  26. #include <linux/iommu.h>
  27. #include "qcrypto.h"
  28. #include "qce.h"
  29. #include "qce50.h"
  30. #include "qcryptohw_50.h"
  31. #include "qce_ota.h"
  32. #define CRYPTO_SMMU_IOVA_START 0x10000000
  33. #define CRYPTO_SMMU_IOVA_SIZE 0x40000000
  34. #define CRYPTO_CONFIG_RESET 0xE01EF
  35. #define MAX_SPS_DESC_FIFO_SIZE 0xfff0
  36. #define QCE_MAX_NUM_DSCR 0x200
  37. #define QCE_SECTOR_SIZE 0x200
  38. #define CE_CLK_100MHZ 100000000
  39. #define CE_CLK_DIV 1000000
  40. #define CRYPTO_CORE_MAJOR_VER_NUM 0x05
  41. #define CRYPTO_CORE_MINOR_VER_NUM 0x03
  42. #define CRYPTO_CORE_STEP_VER_NUM 0x1
  43. #define CRYPTO_REQ_USER_PAT 0xdead0000
  44. static DEFINE_MUTEX(bam_register_lock);
  45. static DEFINE_MUTEX(qce_iomap_mutex);
  46. struct bam_registration_info {
  47. struct list_head qlist;
  48. unsigned long handle;
  49. uint32_t cnt;
  50. uint32_t bam_mem;
  51. void __iomem *bam_iobase;
  52. bool support_cmd_dscr;
  53. };
  54. static LIST_HEAD(qce50_bam_list);
  55. /* Used to determine the mode */
  56. #define MAX_BUNCH_MODE_REQ 2
  57. /* Max number of request supported */
  58. #define MAX_QCE_BAM_REQ 8
  59. /* Interrupt flag will be set for every SET_INTR_AT_REQ request */
  60. #define SET_INTR_AT_REQ (MAX_QCE_BAM_REQ / 2)
  61. /* To create extra request space to hold dummy request */
  62. #define MAX_QCE_BAM_REQ_WITH_DUMMY_REQ (MAX_QCE_BAM_REQ + 1)
  63. /* Allocate the memory for MAX_QCE_BAM_REQ + 1 (for dummy request) */
  64. #define MAX_QCE_ALLOC_BAM_REQ MAX_QCE_BAM_REQ_WITH_DUMMY_REQ
  65. /* QCE driver modes */
  66. #define IN_INTERRUPT_MODE 0
  67. #define IN_BUNCH_MODE 1
  68. /* Dummy request data length */
  69. #define DUMMY_REQ_DATA_LEN 64
  70. /* Delay timer to expire when in bunch mode */
  71. #define DELAY_IN_JIFFIES 5
  72. /* Index to point the dummy request */
  73. #define DUMMY_REQ_INDEX MAX_QCE_BAM_REQ
  74. #define TOTAL_IOVEC_SPACE_PER_PIPE (QCE_MAX_NUM_DSCR * sizeof(struct sps_iovec))
  75. #define AES_CTR_IV_CTR_SIZE 64
  76. #define QCE_NO_ERROR_VAL1 0x2000006
  77. #define QCE_NO_ERROR_VAL2 0x2000004
  78. // Crypto Engines 5.7 and below
  79. // Key timer expiry for pipes 1-15 (Status3)
  80. #define CRYPTO5_LEGACY_TIMER_EXPIRED_STATUS3 0x0000FF00
  81. // Key timer expiry for pipes 16-19 (Status6)
  82. #define CRYPTO5_LEGACY_TIMER_EXPIRED_STATUS6 0x00000300
  83. // Key pause for pipes 1-15 (Status3)
  84. #define CRYPTO5_LEGACY_KEY_PAUSE_STATUS3 0xFF000000
  85. // Key pause for pipes 16-19 (Status6)
  86. #define CRYPTO5_LEGACY_KEY_PAUSE_STATUS6 0x3000000
  87. // Crypto Engines 5.8 and above
  88. // Key timer expiry for all pipes (Status3)
  89. #define CRYPTO58_TIMER_EXPIRED 0x00000010
  90. // Key pause for all pipes (Status3)
  91. #define CRYPTO58_KEY_PAUSE 0x00001000
  92. // Key index for Status3 (Timer and Key Pause)
  93. #define KEY_INDEX_SHIFT 16
  94. enum qce_owner {
  95. QCE_OWNER_NONE = 0,
  96. QCE_OWNER_CLIENT = 1,
  97. QCE_OWNER_TIMEOUT = 2
  98. };
  99. struct dummy_request {
  100. struct qce_sha_req sreq;
  101. struct scatterlist sg;
  102. struct ahash_request areq;
  103. };
  104. /*
  105. * CE HW device structure.
  106. * Each engine has an instance of the structure.
  107. * Each engine can only handle one crypto operation at one time. It is up to
  108. * the sw above to ensure single threading of operation on an engine.
  109. */
  110. struct qce_device {
  111. struct device *pdev; /* Handle to platform_device structure */
  112. struct bam_registration_info *pbam;
  113. unsigned char *coh_vmem; /* Allocated coherent virtual memory */
  114. dma_addr_t coh_pmem; /* Allocated coherent physical memory */
  115. int memsize; /* Memory allocated */
  116. unsigned char *iovec_vmem; /* Allocate iovec virtual memory */
  117. int iovec_memsize; /* Memory allocated */
  118. uint32_t bam_mem; /* bam physical address, from DT */
  119. uint32_t bam_mem_size; /* bam io size, from DT */
  120. int is_shared; /* CE HW is shared */
  121. bool support_cmd_dscr;
  122. bool support_hw_key;
  123. bool support_clk_mgmt_sus_res;
  124. bool support_only_core_src_clk;
  125. bool request_bw_before_clk;
  126. void __iomem *iobase; /* Virtual io base of CE HW */
  127. unsigned int phy_iobase; /* Physical io base of CE HW */
  128. struct clk *ce_core_src_clk; /* Handle to CE src clk*/
  129. struct clk *ce_core_clk; /* Handle to CE clk */
  130. struct clk *ce_clk; /* Handle to CE clk */
  131. struct clk *ce_bus_clk; /* Handle to CE AXI clk*/
  132. bool no_get_around;
  133. bool no_ccm_mac_status_get_around;
  134. unsigned int ce_opp_freq_hz;
  135. bool use_sw_aes_cbc_ecb_ctr_algo;
  136. bool use_sw_aead_algo;
  137. bool use_sw_aes_xts_algo;
  138. bool use_sw_ahash_algo;
  139. bool use_sw_hmac_algo;
  140. bool use_sw_aes_ccm_algo;
  141. uint32_t engines_avail;
  142. struct qce_ce_cfg_reg_setting reg;
  143. struct ce_bam_info ce_bam_info;
  144. struct ce_request_info ce_request_info[MAX_QCE_ALLOC_BAM_REQ];
  145. unsigned int ce_request_index;
  146. enum qce_owner owner;
  147. atomic_t no_of_queued_req;
  148. struct timer_list timer;
  149. struct dummy_request dummyreq;
  150. unsigned int mode;
  151. unsigned int intr_cadence;
  152. unsigned int dev_no;
  153. struct qce_driver_stats qce_stats;
  154. atomic_t bunch_cmd_seq;
  155. atomic_t last_intr_seq;
  156. bool cadence_flag;
  157. uint8_t *dummyreq_in_buf;
  158. struct dma_iommu_mapping *smmu_mapping;
  159. bool enable_s1_smmu;
  160. bool no_clock_support;
  161. bool kernel_pipes_support;
  162. bool offload_pipes_support;
  163. };
  164. static void print_notify_debug(struct sps_event_notify *notify);
  165. static void _sps_producer_callback(struct sps_event_notify *notify);
  166. static int qce_dummy_req(struct qce_device *pce_dev);
  167. static int _qce50_disp_stats;
  168. /* Standard initialization vector for SHA-1, source: FIPS 180-2 */
  169. static uint32_t _std_init_vector_sha1[] = {
  170. 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0
  171. };
  172. /* Standard initialization vector for SHA-256, source: FIPS 180-2 */
  173. static uint32_t _std_init_vector_sha256[] = {
  174. 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
  175. 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
  176. };
  177. /*
  178. * Requests for offload operations do not require explicit dma operations
  179. * as they already have SMMU mapped source/destination buffers.
  180. */
  181. static bool is_offload_op(int op)
  182. {
  183. return (op == QCE_OFFLOAD_HLOS_HLOS || op == QCE_OFFLOAD_HLOS_HLOS_1 ||
  184. op == QCE_OFFLOAD_CPB_HLOS || op == QCE_OFFLOAD_HLOS_CPB ||
  185. op == QCE_OFFLOAD_HLOS_CPB_1);
  186. }
  187. static uint32_t qce_get_config_be(struct qce_device *pce_dev,
  188. uint32_t pipe_pair)
  189. {
  190. uint32_t beats = (pce_dev->ce_bam_info.ce_burst_size >> 3) - 1;
  191. return (beats << CRYPTO_REQ_SIZE |
  192. BIT(CRYPTO_MASK_DOUT_INTR) | BIT(CRYPTO_MASK_DIN_INTR) |
  193. BIT(CRYPTO_MASK_OP_DONE_INTR) | 0 << CRYPTO_HIGH_SPD_EN_N |
  194. pipe_pair << CRYPTO_PIPE_SET_SELECT);
  195. }
  196. static void dump_status_regs(unsigned int *status)
  197. {
  198. pr_info("%s: CRYPTO_STATUS_REG = 0x%x\n", __func__, status[0]);
  199. pr_info("%s: CRYPTO_STATUS2_REG = 0x%x\n", __func__, status[1]);
  200. pr_info("%s: CRYPTO_STATUS3_REG = 0x%x\n", __func__, status[2]);
  201. pr_info("%s: CRYPTO_STATUS4_REG = 0x%x\n", __func__, status[3]);
  202. pr_info("%s: CRYPTO_STATUS5_REG = 0x%x\n", __func__, status[4]);
  203. pr_info("%s: CRYPTO_STATUS6_REG = 0x%x\n", __func__, status[5]);
  204. }
  205. void qce_get_crypto_status(void *handle, struct qce_error *error)
  206. {
  207. struct qce_device *pce_dev = (struct qce_device *) handle;
  208. unsigned int status[6] = {0};
  209. status[0] = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS_REG);
  210. status[1] = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS2_REG);
  211. status[2] = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS3_REG);
  212. status[3] = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS4_REG);
  213. status[4] = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS5_REG);
  214. status[5] = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS6_REG);
  215. #ifdef QCE_DEBUG
  216. dump_status_regs(status);
  217. #endif
  218. if (status[0] != QCE_NO_ERROR_VAL1 && status[0] != QCE_NO_ERROR_VAL2) {
  219. if (pce_dev->ce_bam_info.minor_version >= 8) {
  220. if (status[2] & CRYPTO58_TIMER_EXPIRED) {
  221. error->timer_error = true;
  222. pr_err("%s: timer expired, index = 0x%x\n",
  223. __func__, (status[2] >> KEY_INDEX_SHIFT));
  224. } else if (status[2] & CRYPTO58_KEY_PAUSE) {
  225. error->key_paused = true;
  226. pr_err("%s: key paused, index = 0x%x\n",
  227. __func__, (status[2] >> KEY_INDEX_SHIFT));
  228. } else {
  229. pr_err("%s: generic error, refer all status\n",
  230. __func__);
  231. error->generic_error = true;
  232. }
  233. } else {
  234. if ((status[2] & CRYPTO5_LEGACY_TIMER_EXPIRED_STATUS3) ||
  235. (status[5] & CRYPTO5_LEGACY_TIMER_EXPIRED_STATUS6)) {
  236. error->timer_error = true;
  237. pr_err("%s: timer expired, refer status 3 and 6\n",
  238. __func__);
  239. }
  240. else if ((status[2] & CRYPTO5_LEGACY_KEY_PAUSE_STATUS3) ||
  241. (status[5] & CRYPTO5_LEGACY_KEY_PAUSE_STATUS6)) {
  242. error->key_paused = true;
  243. pr_err("%s: key paused, reder status 3 and 6\n",
  244. __func__);
  245. } else {
  246. pr_err("%s: generic error, refer all status\n",
  247. __func__);
  248. error->generic_error = true;
  249. }
  250. }
  251. dump_status_regs(status);
  252. return;
  253. }
  254. error->no_error = true;
  255. pr_info("%s: No crypto error, status1 = 0x%x\n",
  256. __func__, status[0]);
  257. return;
  258. }
  259. EXPORT_SYMBOL(qce_get_crypto_status);
  260. static int qce_crypto_config(struct qce_device *pce_dev,
  261. enum qce_offload_op_enum offload_op)
  262. {
  263. uint32_t config_be = 0;
  264. config_be = qce_get_config_be(pce_dev,
  265. pce_dev->ce_bam_info.pipe_pair_index[offload_op]);
  266. pce_dev->reg.crypto_cfg_be = config_be;
  267. pce_dev->reg.crypto_cfg_le = (config_be |
  268. CRYPTO_LITTLE_ENDIAN_MASK);
  269. return 0;
  270. }
  271. static void qce_enable_clock_gating(struct qce_device *pce_dev)
  272. {
  273. /* This feature might cause some HW issues, noop till resolved. */
  274. return;
  275. }
  276. /*
  277. * IV counter mask is be set based on the values sent through the offload ioctl
  278. * calls. Currently for offload operations, it is 64 bytes of mask for AES CTR,
  279. * and 128 bytes of mask for AES CBC.
  280. */
  281. static void qce_set_iv_ctr_mask(struct qce_device *pce_dev,
  282. struct qce_req *creq)
  283. {
  284. if (creq->iv_ctr_size == AES_CTR_IV_CTR_SIZE) {
  285. pce_dev->reg.encr_cntr_mask_0 = 0x0;
  286. pce_dev->reg.encr_cntr_mask_1 = 0x0;
  287. pce_dev->reg.encr_cntr_mask_2 = 0xFFFFFFFF;
  288. pce_dev->reg.encr_cntr_mask_3 = 0xFFFFFFFF;
  289. } else {
  290. pce_dev->reg.encr_cntr_mask_0 = 0xFFFFFFFF;
  291. pce_dev->reg.encr_cntr_mask_1 = 0xFFFFFFFF;
  292. pce_dev->reg.encr_cntr_mask_2 = 0xFFFFFFFF;
  293. pce_dev->reg.encr_cntr_mask_3 = 0xFFFFFFFF;
  294. }
  295. return;
  296. }
  297. static void _byte_stream_to_net_words(uint32_t *iv, unsigned char *b,
  298. unsigned int len)
  299. {
  300. unsigned int n;
  301. n = len / sizeof(uint32_t);
  302. for (; n > 0; n--) {
  303. *iv = ((*b << 24) & 0xff000000) |
  304. (((*(b+1)) << 16) & 0xff0000) |
  305. (((*(b+2)) << 8) & 0xff00) |
  306. (*(b+3) & 0xff);
  307. b += sizeof(uint32_t);
  308. iv++;
  309. }
  310. n = len % sizeof(uint32_t);
  311. if (n == 3) {
  312. *iv = ((*b << 24) & 0xff000000) |
  313. (((*(b+1)) << 16) & 0xff0000) |
  314. (((*(b+2)) << 8) & 0xff00);
  315. } else if (n == 2) {
  316. *iv = ((*b << 24) & 0xff000000) |
  317. (((*(b+1)) << 16) & 0xff0000);
  318. } else if (n == 1) {
  319. *iv = ((*b << 24) & 0xff000000);
  320. }
  321. }
  322. static void _byte_stream_swap_to_net_words(uint32_t *iv, unsigned char *b,
  323. unsigned int len)
  324. {
  325. unsigned int i, j;
  326. unsigned char swap_iv[AES_IV_LENGTH];
  327. memset(swap_iv, 0, AES_IV_LENGTH);
  328. for (i = (AES_IV_LENGTH-len), j = len-1; i < AES_IV_LENGTH; i++, j--)
  329. swap_iv[i] = b[j];
  330. _byte_stream_to_net_words(iv, swap_iv, AES_IV_LENGTH);
  331. }
  332. static int count_sg(struct scatterlist *sg, int nbytes)
  333. {
  334. int i;
  335. for (i = 0; nbytes > 0; i++, sg = sg_next(sg))
  336. nbytes -= sg->length;
  337. return i;
  338. }
  339. static int qce_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  340. enum dma_data_direction direction)
  341. {
  342. int i;
  343. for (i = 0; i < nents; ++i) {
  344. dma_map_sg(dev, sg, 1, direction);
  345. sg = sg_next(sg);
  346. }
  347. return nents;
  348. }
  349. static int qce_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
  350. int nents, enum dma_data_direction direction)
  351. {
  352. int i;
  353. for (i = 0; i < nents; ++i) {
  354. dma_unmap_sg(dev, sg, 1, direction);
  355. sg = sg_next(sg);
  356. }
  357. return nents;
  358. }
  359. static int _probe_ce_engine(struct qce_device *pce_dev)
  360. {
  361. unsigned int rev;
  362. unsigned int maj_rev, min_rev, step_rev;
  363. rev = readl_relaxed(pce_dev->iobase + CRYPTO_VERSION_REG);
  364. /*
  365. * Ensure previous instructions (setting the GO register)
  366. * was completed before checking the version.
  367. */
  368. mb();
  369. maj_rev = (rev & CRYPTO_CORE_MAJOR_REV_MASK) >> CRYPTO_CORE_MAJOR_REV;
  370. min_rev = (rev & CRYPTO_CORE_MINOR_REV_MASK) >> CRYPTO_CORE_MINOR_REV;
  371. step_rev = (rev & CRYPTO_CORE_STEP_REV_MASK) >> CRYPTO_CORE_STEP_REV;
  372. if (maj_rev != CRYPTO_CORE_MAJOR_VER_NUM) {
  373. pr_err("Unsupported QTI crypto device at 0x%x, rev %d.%d.%d\n",
  374. pce_dev->phy_iobase, maj_rev, min_rev, step_rev);
  375. return -EIO;
  376. }
  377. /*
  378. * The majority of crypto HW bugs have been fixed in 5.3.0 and
  379. * above. That allows a single sps transfer of consumer
  380. * pipe, and a single sps transfer of producer pipe
  381. * for a crypto request. no_get_around flag indicates this.
  382. *
  383. * In 5.3.1, the CCM MAC_FAILED in result dump issue is
  384. * fixed. no_ccm_mac_status_get_around flag indicates this.
  385. */
  386. pce_dev->no_get_around = (min_rev >=
  387. CRYPTO_CORE_MINOR_VER_NUM) ? true : false;
  388. if (min_rev > CRYPTO_CORE_MINOR_VER_NUM)
  389. pce_dev->no_ccm_mac_status_get_around = true;
  390. else if ((min_rev == CRYPTO_CORE_MINOR_VER_NUM) &&
  391. (step_rev >= CRYPTO_CORE_STEP_VER_NUM))
  392. pce_dev->no_ccm_mac_status_get_around = true;
  393. else
  394. pce_dev->no_ccm_mac_status_get_around = false;
  395. pce_dev->ce_bam_info.minor_version = min_rev;
  396. pce_dev->ce_bam_info.major_version = maj_rev;
  397. pce_dev->engines_avail = readl_relaxed(pce_dev->iobase +
  398. CRYPTO_ENGINES_AVAIL);
  399. dev_info(pce_dev->pdev, "QTI Crypto %d.%d.%d device found @0x%x\n",
  400. maj_rev, min_rev, step_rev, pce_dev->phy_iobase);
  401. pce_dev->ce_bam_info.ce_burst_size = MAX_CE_BAM_BURST_SIZE;
  402. dev_dbg(pce_dev->pdev, "CE device = %#x IO base, CE = %pK Consumer (IN) PIPE %d,\nProducer (OUT) PIPE %d IO base BAM = %pK\nBAM IRQ %d Engines Availability = %#x\n",
  403. pce_dev->ce_bam_info.ce_device, pce_dev->iobase,
  404. pce_dev->ce_bam_info.dest_pipe_index,
  405. pce_dev->ce_bam_info.src_pipe_index,
  406. pce_dev->ce_bam_info.bam_iobase,
  407. pce_dev->ce_bam_info.bam_irq, pce_dev->engines_avail);
  408. return 0;
  409. };
  410. static struct qce_cmdlist_info *_ce_get_hash_cmdlistinfo(
  411. struct qce_device *pce_dev,
  412. int req_info, struct qce_sha_req *sreq)
  413. {
  414. struct ce_sps_data *pce_sps_data;
  415. struct qce_cmdlistptr_ops *cmdlistptr;
  416. pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps;
  417. cmdlistptr = &pce_sps_data->cmdlistptr;
  418. switch (sreq->alg) {
  419. case QCE_HASH_SHA1:
  420. return &cmdlistptr->auth_sha1;
  421. case QCE_HASH_SHA256:
  422. return &cmdlistptr->auth_sha256;
  423. case QCE_HASH_SHA1_HMAC:
  424. return &cmdlistptr->auth_sha1_hmac;
  425. case QCE_HASH_SHA256_HMAC:
  426. return &cmdlistptr->auth_sha256_hmac;
  427. case QCE_HASH_AES_CMAC:
  428. if (sreq->authklen == AES128_KEY_SIZE)
  429. return &cmdlistptr->auth_aes_128_cmac;
  430. return &cmdlistptr->auth_aes_256_cmac;
  431. default:
  432. return NULL;
  433. }
  434. return NULL;
  435. }
  436. static int _ce_setup_hash(struct qce_device *pce_dev,
  437. struct qce_sha_req *sreq,
  438. struct qce_cmdlist_info *cmdlistinfo)
  439. {
  440. uint32_t auth32[SHA256_DIGEST_SIZE / sizeof(uint32_t)];
  441. uint32_t diglen;
  442. int i;
  443. uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {
  444. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  445. bool sha1 = false;
  446. struct sps_command_element *pce = NULL;
  447. bool use_hw_key = false;
  448. bool use_pipe_key = false;
  449. uint32_t authk_size_in_word = sreq->authklen/sizeof(uint32_t);
  450. uint32_t auth_cfg;
  451. if (qce_crypto_config(pce_dev, QCE_OFFLOAD_NONE))
  452. return -EINVAL;
  453. pce = cmdlistinfo->crypto_cfg;
  454. pce->data = pce_dev->reg.crypto_cfg_be;
  455. pce = cmdlistinfo->crypto_cfg_le;
  456. pce->data = pce_dev->reg.crypto_cfg_le;
  457. if ((sreq->alg == QCE_HASH_SHA1_HMAC) ||
  458. (sreq->alg == QCE_HASH_SHA256_HMAC) ||
  459. (sreq->alg == QCE_HASH_AES_CMAC)) {
  460. /* no more check for null key. use flag */
  461. if ((sreq->flags & QCRYPTO_CTX_USE_HW_KEY)
  462. == QCRYPTO_CTX_USE_HW_KEY)
  463. use_hw_key = true;
  464. else if ((sreq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
  465. QCRYPTO_CTX_USE_PIPE_KEY)
  466. use_pipe_key = true;
  467. pce = cmdlistinfo->go_proc;
  468. if (use_hw_key) {
  469. pce->addr = (uint32_t)(CRYPTO_GOPROC_QC_KEY_REG +
  470. pce_dev->phy_iobase);
  471. } else {
  472. pce->addr = (uint32_t)(CRYPTO_GOPROC_REG +
  473. pce_dev->phy_iobase);
  474. pce = cmdlistinfo->auth_key;
  475. if (!use_pipe_key) {
  476. _byte_stream_to_net_words(mackey32,
  477. sreq->authkey,
  478. sreq->authklen);
  479. for (i = 0; i < authk_size_in_word; i++, pce++)
  480. pce->data = mackey32[i];
  481. }
  482. }
  483. }
  484. if (sreq->alg == QCE_HASH_AES_CMAC)
  485. goto go_proc;
  486. /* if not the last, the size has to be on the block boundary */
  487. if (!sreq->last_blk && (sreq->size % SHA256_BLOCK_SIZE))
  488. return -EIO;
  489. switch (sreq->alg) {
  490. case QCE_HASH_SHA1:
  491. case QCE_HASH_SHA1_HMAC:
  492. diglen = SHA1_DIGEST_SIZE;
  493. sha1 = true;
  494. break;
  495. case QCE_HASH_SHA256:
  496. case QCE_HASH_SHA256_HMAC:
  497. diglen = SHA256_DIGEST_SIZE;
  498. break;
  499. default:
  500. return -EINVAL;
  501. }
  502. /* write 20/32 bytes, 5/8 words into auth_iv for SHA1/SHA256 */
  503. if (sreq->first_blk) {
  504. if (sha1) {
  505. for (i = 0; i < 5; i++)
  506. auth32[i] = _std_init_vector_sha1[i];
  507. } else {
  508. for (i = 0; i < 8; i++)
  509. auth32[i] = _std_init_vector_sha256[i];
  510. }
  511. } else {
  512. _byte_stream_to_net_words(auth32, sreq->digest, diglen);
  513. }
  514. pce = cmdlistinfo->auth_iv;
  515. for (i = 0; i < 5; i++, pce++)
  516. pce->data = auth32[i];
  517. if ((sreq->alg == QCE_HASH_SHA256) ||
  518. (sreq->alg == QCE_HASH_SHA256_HMAC)) {
  519. for (i = 5; i < 8; i++, pce++)
  520. pce->data = auth32[i];
  521. }
  522. /* write auth_bytecnt 0/1, start with 0 */
  523. pce = cmdlistinfo->auth_bytecount;
  524. for (i = 0; i < 2; i++, pce++)
  525. pce->data = sreq->auth_data[i];
  526. /* Set/reset last bit in CFG register */
  527. pce = cmdlistinfo->auth_seg_cfg;
  528. auth_cfg = pce->data & ~(1 << CRYPTO_LAST |
  529. 1 << CRYPTO_FIRST |
  530. 1 << CRYPTO_USE_PIPE_KEY_AUTH |
  531. 1 << CRYPTO_USE_HW_KEY_AUTH);
  532. if (sreq->last_blk)
  533. auth_cfg |= 1 << CRYPTO_LAST;
  534. if (sreq->first_blk)
  535. auth_cfg |= 1 << CRYPTO_FIRST;
  536. if (use_hw_key)
  537. auth_cfg |= 1 << CRYPTO_USE_HW_KEY_AUTH;
  538. if (use_pipe_key)
  539. auth_cfg |= 1 << CRYPTO_USE_PIPE_KEY_AUTH;
  540. pce->data = auth_cfg;
  541. go_proc:
  542. /* write auth seg size */
  543. pce = cmdlistinfo->auth_seg_size;
  544. pce->data = sreq->size;
  545. pce = cmdlistinfo->encr_seg_cfg;
  546. pce->data = 0;
  547. /* write auth seg size start*/
  548. pce = cmdlistinfo->auth_seg_start;
  549. pce->data = 0;
  550. /* write seg size */
  551. pce = cmdlistinfo->seg_size;
  552. /* always ensure there is input data. ZLT does not work for bam-ndp */
  553. if (sreq->size)
  554. pce->data = sreq->size;
  555. else
  556. pce->data = pce_dev->ce_bam_info.ce_burst_size;
  557. return 0;
  558. }
  559. static struct qce_cmdlist_info *_ce_get_aead_cmdlistinfo(
  560. struct qce_device *pce_dev,
  561. int req_info, struct qce_req *creq)
  562. {
  563. struct ce_sps_data *pce_sps_data;
  564. struct qce_cmdlistptr_ops *cmdlistptr;
  565. pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps;
  566. cmdlistptr = &pce_sps_data->cmdlistptr;
  567. switch (creq->alg) {
  568. case CIPHER_ALG_DES:
  569. switch (creq->mode) {
  570. case QCE_MODE_CBC:
  571. if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
  572. return &cmdlistptr->aead_hmac_sha1_cbc_des;
  573. else if (creq->auth_alg == QCE_HASH_SHA256_HMAC)
  574. return &cmdlistptr->aead_hmac_sha256_cbc_des;
  575. else
  576. return NULL;
  577. break;
  578. default:
  579. return NULL;
  580. }
  581. break;
  582. case CIPHER_ALG_3DES:
  583. switch (creq->mode) {
  584. case QCE_MODE_CBC:
  585. if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
  586. return &cmdlistptr->aead_hmac_sha1_cbc_3des;
  587. else if (creq->auth_alg == QCE_HASH_SHA256_HMAC)
  588. return &cmdlistptr->aead_hmac_sha256_cbc_3des;
  589. else
  590. return NULL;
  591. break;
  592. default:
  593. return NULL;
  594. }
  595. break;
  596. case CIPHER_ALG_AES:
  597. switch (creq->mode) {
  598. case QCE_MODE_CBC:
  599. if (creq->encklen == AES128_KEY_SIZE) {
  600. if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
  601. return
  602. &cmdlistptr->aead_hmac_sha1_cbc_aes_128;
  603. else if (creq->auth_alg == QCE_HASH_SHA256_HMAC)
  604. return
  605. &cmdlistptr->aead_hmac_sha256_cbc_aes_128;
  606. else
  607. return NULL;
  608. } else if (creq->encklen == AES256_KEY_SIZE) {
  609. if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
  610. return &cmdlistptr->aead_hmac_sha1_cbc_aes_256;
  611. else if (creq->auth_alg == QCE_HASH_SHA256_HMAC)
  612. return
  613. &cmdlistptr->aead_hmac_sha256_cbc_aes_256;
  614. else
  615. return NULL;
  616. } else
  617. return NULL;
  618. break;
  619. default:
  620. return NULL;
  621. }
  622. break;
  623. default:
  624. return NULL;
  625. }
  626. return NULL;
  627. }
  628. static int _ce_setup_aead(struct qce_device *pce_dev, struct qce_req *q_req,
  629. uint32_t totallen_in, uint32_t coffset,
  630. struct qce_cmdlist_info *cmdlistinfo)
  631. {
  632. int32_t authk_size_in_word = SHA_HMAC_KEY_SIZE/sizeof(uint32_t);
  633. int i;
  634. uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {0};
  635. struct sps_command_element *pce;
  636. uint32_t a_cfg;
  637. uint32_t enckey32[(MAX_CIPHER_KEY_SIZE*2)/sizeof(uint32_t)] = {0};
  638. uint32_t enciv32[MAX_IV_LENGTH/sizeof(uint32_t)] = {0};
  639. uint32_t enck_size_in_word = 0;
  640. uint32_t enciv_in_word;
  641. uint32_t key_size;
  642. uint32_t encr_cfg = 0;
  643. uint32_t ivsize = q_req->ivsize;
  644. key_size = q_req->encklen;
  645. enck_size_in_word = key_size/sizeof(uint32_t);
  646. if (qce_crypto_config(pce_dev, q_req->offload_op))
  647. return -EINVAL;
  648. pce = cmdlistinfo->crypto_cfg;
  649. pce->data = pce_dev->reg.crypto_cfg_be;
  650. pce = cmdlistinfo->crypto_cfg_le;
  651. pce->data = pce_dev->reg.crypto_cfg_le;
  652. switch (q_req->alg) {
  653. case CIPHER_ALG_DES:
  654. enciv_in_word = 2;
  655. break;
  656. case CIPHER_ALG_3DES:
  657. enciv_in_word = 2;
  658. break;
  659. case CIPHER_ALG_AES:
  660. if ((key_size != AES128_KEY_SIZE) &&
  661. (key_size != AES256_KEY_SIZE))
  662. return -EINVAL;
  663. enciv_in_word = 4;
  664. break;
  665. default:
  666. return -EINVAL;
  667. }
  668. /* only support cbc mode */
  669. if (q_req->mode != QCE_MODE_CBC)
  670. return -EINVAL;
  671. _byte_stream_to_net_words(enciv32, q_req->iv, ivsize);
  672. pce = cmdlistinfo->encr_cntr_iv;
  673. for (i = 0; i < enciv_in_word; i++, pce++)
  674. pce->data = enciv32[i];
  675. /*
  676. * write encr key
  677. * do not use hw key or pipe key
  678. */
  679. _byte_stream_to_net_words(enckey32, q_req->enckey, key_size);
  680. pce = cmdlistinfo->encr_key;
  681. for (i = 0; i < enck_size_in_word; i++, pce++)
  682. pce->data = enckey32[i];
  683. /* write encr seg cfg */
  684. pce = cmdlistinfo->encr_seg_cfg;
  685. encr_cfg = pce->data;
  686. if (q_req->dir == QCE_ENCRYPT)
  687. encr_cfg |= (1 << CRYPTO_ENCODE);
  688. else
  689. encr_cfg &= ~(1 << CRYPTO_ENCODE);
  690. pce->data = encr_cfg;
  691. /* we only support sha1-hmac and sha256-hmac at this point */
  692. _byte_stream_to_net_words(mackey32, q_req->authkey,
  693. q_req->authklen);
  694. pce = cmdlistinfo->auth_key;
  695. for (i = 0; i < authk_size_in_word; i++, pce++)
  696. pce->data = mackey32[i];
  697. pce = cmdlistinfo->auth_iv;
  698. if (q_req->auth_alg == QCE_HASH_SHA1_HMAC)
  699. for (i = 0; i < 5; i++, pce++)
  700. pce->data = _std_init_vector_sha1[i];
  701. else
  702. for (i = 0; i < 8; i++, pce++)
  703. pce->data = _std_init_vector_sha256[i];
  704. /* write auth_bytecnt 0/1, start with 0 */
  705. pce = cmdlistinfo->auth_bytecount;
  706. for (i = 0; i < 2; i++, pce++)
  707. pce->data = 0;
  708. pce = cmdlistinfo->auth_seg_cfg;
  709. a_cfg = pce->data;
  710. a_cfg &= ~(CRYPTO_AUTH_POS_MASK);
  711. if (q_req->dir == QCE_ENCRYPT)
  712. a_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
  713. else
  714. a_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  715. pce->data = a_cfg;
  716. /* write auth seg size */
  717. pce = cmdlistinfo->auth_seg_size;
  718. pce->data = totallen_in;
  719. /* write auth seg size start*/
  720. pce = cmdlistinfo->auth_seg_start;
  721. pce->data = 0;
  722. /* write seg size */
  723. pce = cmdlistinfo->seg_size;
  724. pce->data = totallen_in;
  725. /* write encr seg size */
  726. pce = cmdlistinfo->encr_seg_size;
  727. pce->data = q_req->cryptlen;
  728. /* write encr seg start */
  729. pce = cmdlistinfo->encr_seg_start;
  730. pce->data = (coffset & 0xffff);
  731. return 0;
  732. }
  733. static struct qce_cmdlist_info *_ce_get_cipher_cmdlistinfo(
  734. struct qce_device *pce_dev,
  735. int req_info, struct qce_req *creq)
  736. {
  737. struct ce_request_info *preq_info;
  738. struct ce_sps_data *pce_sps_data;
  739. struct qce_cmdlistptr_ops *cmdlistptr;
  740. preq_info = &pce_dev->ce_request_info[req_info];
  741. pce_sps_data = &preq_info->ce_sps;
  742. cmdlistptr = &pce_sps_data->cmdlistptr;
  743. if (creq->alg != CIPHER_ALG_AES) {
  744. switch (creq->alg) {
  745. case CIPHER_ALG_DES:
  746. if (creq->mode == QCE_MODE_ECB)
  747. return &cmdlistptr->cipher_des_ecb;
  748. return &cmdlistptr->cipher_des_cbc;
  749. case CIPHER_ALG_3DES:
  750. if (creq->mode == QCE_MODE_ECB)
  751. return &cmdlistptr->cipher_3des_ecb;
  752. return &cmdlistptr->cipher_3des_cbc;
  753. default:
  754. return NULL;
  755. }
  756. } else {
  757. switch (creq->mode) {
  758. case QCE_MODE_ECB:
  759. if (creq->encklen == AES128_KEY_SIZE)
  760. return &cmdlistptr->cipher_aes_128_ecb;
  761. return &cmdlistptr->cipher_aes_256_ecb;
  762. case QCE_MODE_CBC:
  763. case QCE_MODE_CTR:
  764. if (creq->encklen == AES128_KEY_SIZE)
  765. return &cmdlistptr->cipher_aes_128_cbc_ctr;
  766. return &cmdlistptr->cipher_aes_256_cbc_ctr;
  767. case QCE_MODE_XTS:
  768. if (creq->encklen/2 == AES128_KEY_SIZE)
  769. return &cmdlistptr->cipher_aes_128_xts;
  770. return &cmdlistptr->cipher_aes_256_xts;
  771. case QCE_MODE_CCM:
  772. if (creq->encklen == AES128_KEY_SIZE)
  773. return &cmdlistptr->aead_aes_128_ccm;
  774. return &cmdlistptr->aead_aes_256_ccm;
  775. default:
  776. return NULL;
  777. }
  778. }
  779. return NULL;
  780. }
  781. static int _ce_setup_cipher(struct qce_device *pce_dev, struct qce_req *creq,
  782. uint32_t totallen_in, uint32_t coffset,
  783. struct qce_cmdlist_info *cmdlistinfo)
  784. {
  785. uint32_t enckey32[(MAX_CIPHER_KEY_SIZE * 2)/sizeof(uint32_t)] = {
  786. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  787. uint32_t enciv32[MAX_IV_LENGTH / sizeof(uint32_t)] = {
  788. 0, 0, 0, 0};
  789. uint32_t enck_size_in_word = 0;
  790. uint32_t key_size;
  791. bool use_hw_key = false;
  792. bool use_pipe_key = false;
  793. uint32_t encr_cfg = 0;
  794. uint32_t ivsize = creq->ivsize;
  795. int i;
  796. struct sps_command_element *pce = NULL;
  797. bool is_des_cipher = false;
  798. if (creq->mode == QCE_MODE_XTS)
  799. key_size = creq->encklen/2;
  800. else
  801. key_size = creq->encklen;
  802. if (qce_crypto_config(pce_dev, creq->offload_op))
  803. return -EINVAL;
  804. pce = cmdlistinfo->crypto_cfg;
  805. pce->data = pce_dev->reg.crypto_cfg_be;
  806. pce = cmdlistinfo->crypto_cfg_le;
  807. pce->data = pce_dev->reg.crypto_cfg_le;
  808. pce = cmdlistinfo->go_proc;
  809. if ((creq->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) {
  810. use_hw_key = true;
  811. } else {
  812. if ((creq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
  813. QCRYPTO_CTX_USE_PIPE_KEY)
  814. use_pipe_key = true;
  815. }
  816. if (use_hw_key)
  817. pce->addr = (uint32_t)(CRYPTO_GOPROC_QC_KEY_REG +
  818. pce_dev->phy_iobase);
  819. else
  820. pce->addr = (uint32_t)(CRYPTO_GOPROC_REG +
  821. pce_dev->phy_iobase);
  822. if (!use_pipe_key && !use_hw_key) {
  823. _byte_stream_to_net_words(enckey32, creq->enckey, key_size);
  824. enck_size_in_word = key_size/sizeof(uint32_t);
  825. }
  826. if ((creq->op == QCE_REQ_AEAD) && (creq->mode == QCE_MODE_CCM)) {
  827. uint32_t authklen32 = creq->encklen/sizeof(uint32_t);
  828. uint32_t noncelen32 = MAX_NONCE/sizeof(uint32_t);
  829. uint32_t nonce32[MAX_NONCE/sizeof(uint32_t)] = {0, 0, 0, 0};
  830. uint32_t auth_cfg = 0;
  831. /* write nonce */
  832. _byte_stream_to_net_words(nonce32, creq->nonce, MAX_NONCE);
  833. pce = cmdlistinfo->auth_nonce_info;
  834. for (i = 0; i < noncelen32; i++, pce++)
  835. pce->data = nonce32[i];
  836. if (creq->authklen == AES128_KEY_SIZE)
  837. auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_128;
  838. else {
  839. if (creq->authklen == AES256_KEY_SIZE)
  840. auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_256;
  841. }
  842. if (creq->dir == QCE_ENCRYPT)
  843. auth_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  844. else
  845. auth_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
  846. auth_cfg |= ((creq->authsize - 1) << CRYPTO_AUTH_SIZE);
  847. if (use_hw_key) {
  848. auth_cfg |= (1 << CRYPTO_USE_HW_KEY_AUTH);
  849. } else {
  850. auth_cfg &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
  851. /* write auth key */
  852. pce = cmdlistinfo->auth_key;
  853. for (i = 0; i < authklen32; i++, pce++)
  854. pce->data = enckey32[i];
  855. }
  856. pce = cmdlistinfo->auth_seg_cfg;
  857. pce->data = auth_cfg;
  858. pce = cmdlistinfo->auth_seg_size;
  859. if (creq->dir == QCE_ENCRYPT)
  860. pce->data = totallen_in;
  861. else
  862. pce->data = totallen_in - creq->authsize;
  863. pce = cmdlistinfo->auth_seg_start;
  864. pce->data = 0;
  865. } else {
  866. if (creq->op != QCE_REQ_AEAD) {
  867. pce = cmdlistinfo->auth_seg_cfg;
  868. pce->data = 0;
  869. }
  870. }
  871. switch (creq->mode) {
  872. case QCE_MODE_ECB:
  873. if (key_size == AES128_KEY_SIZE)
  874. encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_128;
  875. else
  876. encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_256;
  877. break;
  878. case QCE_MODE_CBC:
  879. if (key_size == AES128_KEY_SIZE)
  880. encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_128;
  881. else
  882. encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_256;
  883. break;
  884. case QCE_MODE_XTS:
  885. if (key_size == AES128_KEY_SIZE)
  886. encr_cfg = pce_dev->reg.encr_cfg_aes_xts_128;
  887. else
  888. encr_cfg = pce_dev->reg.encr_cfg_aes_xts_256;
  889. break;
  890. case QCE_MODE_CCM:
  891. if (key_size == AES128_KEY_SIZE)
  892. encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_128;
  893. else
  894. encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_256;
  895. encr_cfg |= (CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE) |
  896. (CRYPTO_LAST_CCM_XFR << CRYPTO_LAST_CCM);
  897. break;
  898. case QCE_MODE_CTR:
  899. default:
  900. if (key_size == AES128_KEY_SIZE)
  901. encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_128;
  902. else
  903. encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_256;
  904. break;
  905. }
  906. switch (creq->alg) {
  907. case CIPHER_ALG_DES:
  908. if (creq->mode != QCE_MODE_ECB) {
  909. if (ivsize > MAX_IV_LENGTH) {
  910. pr_err("%s: error: Invalid length parameter\n",
  911. __func__);
  912. return -EINVAL;
  913. }
  914. _byte_stream_to_net_words(enciv32, creq->iv, ivsize);
  915. pce = cmdlistinfo->encr_cntr_iv;
  916. pce->data = enciv32[0];
  917. pce++;
  918. pce->data = enciv32[1];
  919. }
  920. if (!use_hw_key) {
  921. pce = cmdlistinfo->encr_key;
  922. pce->data = enckey32[0];
  923. pce++;
  924. pce->data = enckey32[1];
  925. }
  926. is_des_cipher = true;
  927. break;
  928. case CIPHER_ALG_3DES:
  929. if (creq->mode != QCE_MODE_ECB) {
  930. if (ivsize > MAX_IV_LENGTH) {
  931. pr_err("%s: error: Invalid length parameter\n",
  932. __func__);
  933. return -EINVAL;
  934. }
  935. _byte_stream_to_net_words(enciv32, creq->iv, ivsize);
  936. pce = cmdlistinfo->encr_cntr_iv;
  937. pce->data = enciv32[0];
  938. pce++;
  939. pce->data = enciv32[1];
  940. }
  941. if (!use_hw_key) {
  942. /* write encr key */
  943. pce = cmdlistinfo->encr_key;
  944. for (i = 0; i < 6; i++, pce++)
  945. pce->data = enckey32[i];
  946. }
  947. is_des_cipher = true;
  948. break;
  949. case CIPHER_ALG_AES:
  950. default:
  951. if (creq->mode == QCE_MODE_XTS) {
  952. uint32_t xtskey32[MAX_CIPHER_KEY_SIZE/sizeof(uint32_t)]
  953. = {0, 0, 0, 0, 0, 0, 0, 0};
  954. uint32_t xtsklen =
  955. creq->encklen/(2 * sizeof(uint32_t));
  956. if (!use_hw_key && !use_pipe_key) {
  957. _byte_stream_to_net_words(xtskey32,
  958. (creq->enckey + creq->encklen/2),
  959. creq->encklen/2);
  960. /* write xts encr key */
  961. pce = cmdlistinfo->encr_xts_key;
  962. for (i = 0; i < xtsklen; i++, pce++)
  963. pce->data = xtskey32[i];
  964. }
  965. /* write xts du size */
  966. pce = cmdlistinfo->encr_xts_du_size;
  967. switch (creq->flags & QCRYPTO_CTX_XTS_MASK) {
  968. case QCRYPTO_CTX_XTS_DU_SIZE_512B:
  969. pce->data = min((unsigned int)QCE_SECTOR_SIZE,
  970. creq->cryptlen);
  971. break;
  972. case QCRYPTO_CTX_XTS_DU_SIZE_1KB:
  973. pce->data =
  974. min((unsigned int)QCE_SECTOR_SIZE * 2,
  975. creq->cryptlen);
  976. break;
  977. default:
  978. pce->data = creq->cryptlen;
  979. break;
  980. }
  981. }
  982. if (creq->mode != QCE_MODE_ECB) {
  983. if (ivsize > MAX_IV_LENGTH) {
  984. pr_err("%s: error: Invalid length parameter\n",
  985. __func__);
  986. return -EINVAL;
  987. }
  988. if (creq->mode == QCE_MODE_XTS)
  989. _byte_stream_swap_to_net_words(enciv32,
  990. creq->iv, ivsize);
  991. else
  992. _byte_stream_to_net_words(enciv32, creq->iv,
  993. ivsize);
  994. /* write encr cntr iv */
  995. pce = cmdlistinfo->encr_cntr_iv;
  996. for (i = 0; i < 4; i++, pce++)
  997. pce->data = enciv32[i];
  998. if (creq->mode == QCE_MODE_CCM) {
  999. /* write cntr iv for ccm */
  1000. pce = cmdlistinfo->encr_ccm_cntr_iv;
  1001. for (i = 0; i < 4; i++, pce++)
  1002. pce->data = enciv32[i];
  1003. /* update cntr_iv[3] by one */
  1004. pce = cmdlistinfo->encr_cntr_iv;
  1005. pce += 3;
  1006. pce->data += 1;
  1007. }
  1008. }
  1009. if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) {
  1010. encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 <<
  1011. CRYPTO_ENCR_KEY_SZ);
  1012. } else {
  1013. if (!use_hw_key) {
  1014. /* write encr key */
  1015. pce = cmdlistinfo->encr_key;
  1016. for (i = 0; i < enck_size_in_word; i++, pce++)
  1017. pce->data = enckey32[i];
  1018. }
  1019. } /* else of if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) */
  1020. break;
  1021. } /* end of switch (creq->mode) */
  1022. if (use_pipe_key)
  1023. encr_cfg |= (CRYPTO_USE_PIPE_KEY_ENCR_ENABLED
  1024. << CRYPTO_USE_PIPE_KEY_ENCR);
  1025. /* write encr seg cfg */
  1026. pce = cmdlistinfo->encr_seg_cfg;
  1027. if ((creq->alg == CIPHER_ALG_DES) || (creq->alg == CIPHER_ALG_3DES)) {
  1028. if (creq->dir == QCE_ENCRYPT)
  1029. pce->data |= (1 << CRYPTO_ENCODE);
  1030. else
  1031. pce->data &= ~(1 << CRYPTO_ENCODE);
  1032. encr_cfg = pce->data;
  1033. } else {
  1034. encr_cfg |=
  1035. ((creq->dir == QCE_ENCRYPT) ? 1 : 0) << CRYPTO_ENCODE;
  1036. }
  1037. if (use_hw_key)
  1038. encr_cfg |= (CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
  1039. else
  1040. encr_cfg &= ~(CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
  1041. pce->data = encr_cfg;
  1042. /* write encr seg size */
  1043. pce = cmdlistinfo->encr_seg_size;
  1044. if (creq->is_copy_op) {
  1045. pce->data = 0;
  1046. } else {
  1047. if ((creq->mode == QCE_MODE_CCM) && (creq->dir == QCE_DECRYPT))
  1048. pce->data = (creq->cryptlen + creq->authsize);
  1049. else
  1050. pce->data = creq->cryptlen;
  1051. }
  1052. /* write encr seg start */
  1053. pce = cmdlistinfo->encr_seg_start;
  1054. pce->data = (coffset & 0xffff);
  1055. /* write seg size */
  1056. pce = cmdlistinfo->seg_size;
  1057. pce->data = totallen_in;
  1058. if (!is_des_cipher) {
  1059. /* pattern info */
  1060. pce = cmdlistinfo->pattern_info;
  1061. pce->data = creq->pattern_info;
  1062. /* block offset */
  1063. pce = cmdlistinfo->block_offset;
  1064. pce->data = (creq->block_offset << 4) |
  1065. (creq->block_offset ? 1: 0);
  1066. /* IV counter size */
  1067. qce_set_iv_ctr_mask(pce_dev, creq);
  1068. pce = cmdlistinfo->encr_mask_3;
  1069. pce->data = pce_dev->reg.encr_cntr_mask_3;
  1070. pce = cmdlistinfo->encr_mask_2;
  1071. pce->data = pce_dev->reg.encr_cntr_mask_2;
  1072. pce = cmdlistinfo->encr_mask_1;
  1073. pce->data = pce_dev->reg.encr_cntr_mask_1;
  1074. pce = cmdlistinfo->encr_mask_0;
  1075. pce->data = pce_dev->reg.encr_cntr_mask_0;
  1076. }
  1077. pce = cmdlistinfo->go_proc;
  1078. pce->data = 0;
  1079. if (is_offload_op(creq->offload_op))
  1080. pce->data = ((1 << CRYPTO_GO) | (1 << CRYPTO_CLR_CNTXT));
  1081. else
  1082. pce->data = ((1 << CRYPTO_GO) | (1 << CRYPTO_CLR_CNTXT) |
  1083. (1 << CRYPTO_RESULTS_DUMP));
  1084. return 0;
  1085. }
  1086. static int _ce_f9_setup(struct qce_device *pce_dev, struct qce_f9_req *req,
  1087. struct qce_cmdlist_info *cmdlistinfo)
  1088. {
  1089. uint32_t ikey32[OTA_KEY_SIZE/sizeof(uint32_t)];
  1090. uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
  1091. uint32_t cfg;
  1092. struct sps_command_element *pce;
  1093. int i;
  1094. switch (req->algorithm) {
  1095. case QCE_OTA_ALGO_KASUMI:
  1096. cfg = pce_dev->reg.auth_cfg_kasumi;
  1097. break;
  1098. case QCE_OTA_ALGO_SNOW3G:
  1099. default:
  1100. cfg = pce_dev->reg.auth_cfg_snow3g;
  1101. break;
  1102. }
  1103. if (qce_crypto_config(pce_dev, QCE_OFFLOAD_NONE))
  1104. return -EINVAL;
  1105. pce = cmdlistinfo->crypto_cfg;
  1106. pce->data = pce_dev->reg.crypto_cfg_be;
  1107. pce = cmdlistinfo->crypto_cfg_le;
  1108. pce->data = pce_dev->reg.crypto_cfg_le;
  1109. /* write key in CRYPTO_AUTH_IV0-3_REG */
  1110. _byte_stream_to_net_words(ikey32, &req->ikey[0], OTA_KEY_SIZE);
  1111. pce = cmdlistinfo->auth_iv;
  1112. for (i = 0; i < key_size_in_word; i++, pce++)
  1113. pce->data = ikey32[i];
  1114. /* write last bits in CRYPTO_AUTH_IV4_REG */
  1115. pce->data = req->last_bits;
  1116. /* write fresh to CRYPTO_AUTH_BYTECNT0_REG */
  1117. pce = cmdlistinfo->auth_bytecount;
  1118. pce->data = req->fresh;
  1119. /* write count-i to CRYPTO_AUTH_BYTECNT1_REG */
  1120. pce++;
  1121. pce->data = req->count_i;
  1122. /* write auth seg cfg */
  1123. pce = cmdlistinfo->auth_seg_cfg;
  1124. if (req->direction == QCE_OTA_DIR_DOWNLINK)
  1125. cfg |= BIT(CRYPTO_F9_DIRECTION);
  1126. pce->data = cfg;
  1127. /* write auth seg size */
  1128. pce = cmdlistinfo->auth_seg_size;
  1129. pce->data = req->msize;
  1130. /* write auth seg start*/
  1131. pce = cmdlistinfo->auth_seg_start;
  1132. pce->data = 0;
  1133. /* write seg size */
  1134. pce = cmdlistinfo->seg_size;
  1135. pce->data = req->msize;
  1136. /* write go */
  1137. pce = cmdlistinfo->go_proc;
  1138. pce->addr = (uint32_t)(CRYPTO_GOPROC_REG + pce_dev->phy_iobase);
  1139. return 0;
  1140. }
  1141. static int _ce_f8_setup(struct qce_device *pce_dev, struct qce_f8_req *req,
  1142. bool key_stream_mode, uint16_t npkts, uint16_t cipher_offset,
  1143. uint16_t cipher_size,
  1144. struct qce_cmdlist_info *cmdlistinfo)
  1145. {
  1146. uint32_t ckey32[OTA_KEY_SIZE/sizeof(uint32_t)];
  1147. uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
  1148. uint32_t cfg;
  1149. struct sps_command_element *pce;
  1150. int i;
  1151. switch (req->algorithm) {
  1152. case QCE_OTA_ALGO_KASUMI:
  1153. cfg = pce_dev->reg.encr_cfg_kasumi;
  1154. break;
  1155. case QCE_OTA_ALGO_SNOW3G:
  1156. default:
  1157. cfg = pce_dev->reg.encr_cfg_snow3g;
  1158. break;
  1159. }
  1160. if (qce_crypto_config(pce_dev, QCE_OFFLOAD_NONE))
  1161. return -EINVAL;
  1162. pce = cmdlistinfo->crypto_cfg;
  1163. pce->data = pce_dev->reg.crypto_cfg_be;
  1164. pce = cmdlistinfo->crypto_cfg_le;
  1165. pce->data = pce_dev->reg.crypto_cfg_le;
  1166. /* write key */
  1167. _byte_stream_to_net_words(ckey32, &req->ckey[0], OTA_KEY_SIZE);
  1168. pce = cmdlistinfo->encr_key;
  1169. for (i = 0; i < key_size_in_word; i++, pce++)
  1170. pce->data = ckey32[i];
  1171. /* write encr seg cfg */
  1172. pce = cmdlistinfo->encr_seg_cfg;
  1173. if (key_stream_mode)
  1174. cfg |= BIT(CRYPTO_F8_KEYSTREAM_ENABLE);
  1175. if (req->direction == QCE_OTA_DIR_DOWNLINK)
  1176. cfg |= BIT(CRYPTO_F8_DIRECTION);
  1177. pce->data = cfg;
  1178. /* write encr seg start */
  1179. pce = cmdlistinfo->encr_seg_start;
  1180. pce->data = (cipher_offset & 0xffff);
  1181. /* write encr seg size */
  1182. pce = cmdlistinfo->encr_seg_size;
  1183. pce->data = cipher_size;
  1184. /* write seg size */
  1185. pce = cmdlistinfo->seg_size;
  1186. pce->data = req->data_len;
  1187. /* write cntr0_iv0 for countC */
  1188. pce = cmdlistinfo->encr_cntr_iv;
  1189. pce->data = req->count_c;
  1190. /* write cntr1_iv1 for nPkts, and bearer */
  1191. pce++;
  1192. if (npkts == 1)
  1193. npkts = 0;
  1194. pce->data = req->bearer << CRYPTO_CNTR1_IV1_REG_F8_BEARER |
  1195. npkts << CRYPTO_CNTR1_IV1_REG_F8_PKT_CNT;
  1196. /* write go */
  1197. pce = cmdlistinfo->go_proc;
  1198. pce->addr = (uint32_t)(CRYPTO_GOPROC_REG + pce_dev->phy_iobase);
  1199. return 0;
  1200. }
  1201. static void _qce_dump_descr_fifos(struct qce_device *pce_dev, int req_info)
  1202. {
  1203. int i, j, ents;
  1204. struct ce_sps_data *pce_sps_data;
  1205. struct sps_iovec *iovec;
  1206. uint32_t cmd_flags = SPS_IOVEC_FLAG_CMD;
  1207. pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps;
  1208. iovec = pce_sps_data->in_transfer.iovec;
  1209. pr_info("==============================================\n");
  1210. pr_info("CONSUMER (TX/IN/DEST) PIPE DESCRIPTOR\n");
  1211. pr_info("==============================================\n");
  1212. for (i = 0; i < pce_sps_data->in_transfer.iovec_count; i++) {
  1213. pr_info(" [%d] addr=0x%x size=0x%x flags=0x%x\n", i,
  1214. iovec->addr, iovec->size, iovec->flags);
  1215. if (iovec->flags & cmd_flags) {
  1216. struct sps_command_element *pced;
  1217. pced = (struct sps_command_element *)
  1218. (GET_VIRT_ADDR(iovec->addr));
  1219. ents = iovec->size/(sizeof(struct sps_command_element));
  1220. for (j = 0; j < ents; j++) {
  1221. pr_info(" [%d] [0x%x] 0x%x\n", j,
  1222. pced->addr, pced->data);
  1223. pced++;
  1224. }
  1225. }
  1226. iovec++;
  1227. }
  1228. pr_info("==============================================\n");
  1229. pr_info("PRODUCER (RX/OUT/SRC) PIPE DESCRIPTOR\n");
  1230. pr_info("==============================================\n");
  1231. iovec = pce_sps_data->out_transfer.iovec;
  1232. for (i = 0; i < pce_sps_data->out_transfer.iovec_count; i++) {
  1233. pr_info(" [%d] addr=0x%x size=0x%x flags=0x%x\n", i,
  1234. iovec->addr, iovec->size, iovec->flags);
  1235. iovec++;
  1236. }
  1237. }
  1238. #ifdef QCE_DEBUG
  1239. static void _qce_dump_descr_fifos_dbg(struct qce_device *pce_dev, int req_info)
  1240. {
  1241. _qce_dump_descr_fifos(pce_dev, req_info);
  1242. }
  1243. #define QCE_WRITE_REG(val, addr) \
  1244. { \
  1245. pr_info(" [0x%pK] 0x%x\n", addr, (uint32_t)val); \
  1246. writel_relaxed(val, addr); \
  1247. }
  1248. #else
  1249. static void _qce_dump_descr_fifos_dbg(struct qce_device *pce_dev, int req_info)
  1250. {
  1251. }
  1252. #define QCE_WRITE_REG(val, addr) \
  1253. writel_relaxed(val, addr)
  1254. #endif
  1255. static int _ce_setup_hash_direct(struct qce_device *pce_dev,
  1256. struct qce_sha_req *sreq)
  1257. {
  1258. uint32_t auth32[SHA256_DIGEST_SIZE / sizeof(uint32_t)];
  1259. uint32_t diglen;
  1260. bool use_hw_key = false;
  1261. bool use_pipe_key = false;
  1262. int i;
  1263. uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {
  1264. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  1265. uint32_t authk_size_in_word = sreq->authklen/sizeof(uint32_t);
  1266. bool sha1 = false;
  1267. uint32_t auth_cfg = 0;
  1268. /* clear status */
  1269. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
  1270. if (qce_crypto_config(pce_dev, QCE_OFFLOAD_NONE))
  1271. return -EINVAL;
  1272. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
  1273. CRYPTO_CONFIG_REG));
  1274. /*
  1275. * Ensure previous instructions (setting the CONFIG register)
  1276. * was completed before issuing starting to set other config register
  1277. * This is to ensure the configurations are done in correct endian-ness
  1278. * as set in the CONFIG registers
  1279. */
  1280. mb();
  1281. if (sreq->alg == QCE_HASH_AES_CMAC) {
  1282. /* write seg_cfg */
  1283. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
  1284. /* write seg_cfg */
  1285. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
  1286. /* write seg_cfg */
  1287. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
  1288. /* Clear auth_ivn, auth_keyn registers */
  1289. for (i = 0; i < 16; i++) {
  1290. QCE_WRITE_REG(0, (pce_dev->iobase +
  1291. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
  1292. QCE_WRITE_REG(0, (pce_dev->iobase +
  1293. (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t))));
  1294. }
  1295. /* write auth_bytecnt 0/1/2/3, start with 0 */
  1296. for (i = 0; i < 4; i++)
  1297. QCE_WRITE_REG(0, pce_dev->iobase +
  1298. CRYPTO_AUTH_BYTECNT0_REG +
  1299. i * sizeof(uint32_t));
  1300. if (sreq->authklen == AES128_KEY_SIZE)
  1301. auth_cfg = pce_dev->reg.auth_cfg_cmac_128;
  1302. else
  1303. auth_cfg = pce_dev->reg.auth_cfg_cmac_256;
  1304. }
  1305. if ((sreq->alg == QCE_HASH_SHA1_HMAC) ||
  1306. (sreq->alg == QCE_HASH_SHA256_HMAC) ||
  1307. (sreq->alg == QCE_HASH_AES_CMAC)) {
  1308. _byte_stream_to_net_words(mackey32, sreq->authkey,
  1309. sreq->authklen);
  1310. /* no more check for null key. use flag to check*/
  1311. if ((sreq->flags & QCRYPTO_CTX_USE_HW_KEY) ==
  1312. QCRYPTO_CTX_USE_HW_KEY) {
  1313. use_hw_key = true;
  1314. } else if ((sreq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
  1315. QCRYPTO_CTX_USE_PIPE_KEY) {
  1316. use_pipe_key = true;
  1317. } else {
  1318. /* setup key */
  1319. for (i = 0; i < authk_size_in_word; i++)
  1320. QCE_WRITE_REG(mackey32[i], (pce_dev->iobase +
  1321. (CRYPTO_AUTH_KEY0_REG +
  1322. i*sizeof(uint32_t))));
  1323. }
  1324. }
  1325. if (sreq->alg == QCE_HASH_AES_CMAC)
  1326. goto go_proc;
  1327. /* if not the last, the size has to be on the block boundary */
  1328. if (!sreq->last_blk && (sreq->size % SHA256_BLOCK_SIZE))
  1329. return -EIO;
  1330. switch (sreq->alg) {
  1331. case QCE_HASH_SHA1:
  1332. auth_cfg = pce_dev->reg.auth_cfg_sha1;
  1333. diglen = SHA1_DIGEST_SIZE;
  1334. sha1 = true;
  1335. break;
  1336. case QCE_HASH_SHA1_HMAC:
  1337. auth_cfg = pce_dev->reg.auth_cfg_hmac_sha1;
  1338. diglen = SHA1_DIGEST_SIZE;
  1339. sha1 = true;
  1340. break;
  1341. case QCE_HASH_SHA256:
  1342. auth_cfg = pce_dev->reg.auth_cfg_sha256;
  1343. diglen = SHA256_DIGEST_SIZE;
  1344. break;
  1345. case QCE_HASH_SHA256_HMAC:
  1346. auth_cfg = pce_dev->reg.auth_cfg_hmac_sha256;
  1347. diglen = SHA256_DIGEST_SIZE;
  1348. break;
  1349. default:
  1350. return -EINVAL;
  1351. }
  1352. /* write 20/32 bytes, 5/8 words into auth_iv for SHA1/SHA256 */
  1353. if (sreq->first_blk) {
  1354. if (sha1) {
  1355. for (i = 0; i < 5; i++)
  1356. auth32[i] = _std_init_vector_sha1[i];
  1357. } else {
  1358. for (i = 0; i < 8; i++)
  1359. auth32[i] = _std_init_vector_sha256[i];
  1360. }
  1361. } else {
  1362. _byte_stream_to_net_words(auth32, sreq->digest, diglen);
  1363. }
  1364. /* Set auth_ivn, auth_keyn registers */
  1365. for (i = 0; i < 5; i++)
  1366. QCE_WRITE_REG(auth32[i], (pce_dev->iobase +
  1367. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
  1368. if ((sreq->alg == QCE_HASH_SHA256) ||
  1369. (sreq->alg == QCE_HASH_SHA256_HMAC)) {
  1370. for (i = 5; i < 8; i++)
  1371. QCE_WRITE_REG(auth32[i], (pce_dev->iobase +
  1372. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
  1373. }
  1374. /* write auth_bytecnt 0/1/2/3, start with 0 */
  1375. for (i = 0; i < 2; i++)
  1376. QCE_WRITE_REG(sreq->auth_data[i], pce_dev->iobase +
  1377. CRYPTO_AUTH_BYTECNT0_REG +
  1378. i * sizeof(uint32_t));
  1379. /* Set/reset last bit in CFG register */
  1380. if (sreq->last_blk)
  1381. auth_cfg |= 1 << CRYPTO_LAST;
  1382. else
  1383. auth_cfg &= ~(1 << CRYPTO_LAST);
  1384. if (sreq->first_blk)
  1385. auth_cfg |= 1 << CRYPTO_FIRST;
  1386. else
  1387. auth_cfg &= ~(1 << CRYPTO_FIRST);
  1388. if (use_hw_key)
  1389. auth_cfg |= 1 << CRYPTO_USE_HW_KEY_AUTH;
  1390. if (use_pipe_key)
  1391. auth_cfg |= 1 << CRYPTO_USE_PIPE_KEY_AUTH;
  1392. go_proc:
  1393. /* write seg_cfg */
  1394. QCE_WRITE_REG(auth_cfg, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
  1395. /* write auth seg_size */
  1396. QCE_WRITE_REG(sreq->size, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
  1397. /* write auth_seg_start */
  1398. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
  1399. /* reset encr seg_cfg */
  1400. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
  1401. /* write seg_size */
  1402. QCE_WRITE_REG(sreq->size, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
  1403. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
  1404. CRYPTO_CONFIG_REG));
  1405. /* issue go to crypto */
  1406. if (!use_hw_key) {
  1407. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  1408. (1 << CRYPTO_CLR_CNTXT)),
  1409. pce_dev->iobase + CRYPTO_GOPROC_REG);
  1410. } else {
  1411. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
  1412. pce_dev->iobase + CRYPTO_GOPROC_QC_KEY_REG);
  1413. }
  1414. /*
  1415. * Ensure previous instructions (setting the GO register)
  1416. * was completed before issuing a DMA transfer request
  1417. */
  1418. mb();
  1419. return 0;
  1420. }
  1421. static int _ce_setup_aead_direct(struct qce_device *pce_dev,
  1422. struct qce_req *q_req, uint32_t totallen_in, uint32_t coffset)
  1423. {
  1424. int32_t authk_size_in_word = SHA_HMAC_KEY_SIZE/sizeof(uint32_t);
  1425. int i;
  1426. uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {0};
  1427. uint32_t a_cfg;
  1428. uint32_t enckey32[(MAX_CIPHER_KEY_SIZE*2)/sizeof(uint32_t)] = {0};
  1429. uint32_t enciv32[MAX_IV_LENGTH/sizeof(uint32_t)] = {0};
  1430. uint32_t enck_size_in_word = 0;
  1431. uint32_t enciv_in_word;
  1432. uint32_t key_size;
  1433. uint32_t ivsize = q_req->ivsize;
  1434. uint32_t encr_cfg;
  1435. /* clear status */
  1436. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
  1437. if (qce_crypto_config(pce_dev, q_req->offload_op))
  1438. return -EINVAL;
  1439. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
  1440. CRYPTO_CONFIG_REG));
  1441. /*
  1442. * Ensure previous instructions (setting the CONFIG register)
  1443. * was completed before issuing starting to set other config register
  1444. * This is to ensure the configurations are done in correct endian-ness
  1445. * as set in the CONFIG registers
  1446. */
  1447. mb();
  1448. key_size = q_req->encklen;
  1449. enck_size_in_word = key_size/sizeof(uint32_t);
  1450. switch (q_req->alg) {
  1451. case CIPHER_ALG_DES:
  1452. switch (q_req->mode) {
  1453. case QCE_MODE_CBC:
  1454. encr_cfg = pce_dev->reg.encr_cfg_des_cbc;
  1455. break;
  1456. default:
  1457. return -EINVAL;
  1458. }
  1459. enciv_in_word = 2;
  1460. break;
  1461. case CIPHER_ALG_3DES:
  1462. switch (q_req->mode) {
  1463. case QCE_MODE_CBC:
  1464. encr_cfg = pce_dev->reg.encr_cfg_3des_cbc;
  1465. break;
  1466. default:
  1467. return -EINVAL;
  1468. }
  1469. enciv_in_word = 2;
  1470. break;
  1471. case CIPHER_ALG_AES:
  1472. switch (q_req->mode) {
  1473. case QCE_MODE_CBC:
  1474. if (key_size == AES128_KEY_SIZE)
  1475. encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_128;
  1476. else if (key_size == AES256_KEY_SIZE)
  1477. encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_256;
  1478. else
  1479. return -EINVAL;
  1480. break;
  1481. default:
  1482. return -EINVAL;
  1483. }
  1484. enciv_in_word = 4;
  1485. break;
  1486. default:
  1487. return -EINVAL;
  1488. }
  1489. /* write CNTR0_IV0_REG */
  1490. if (q_req->mode != QCE_MODE_ECB) {
  1491. _byte_stream_to_net_words(enciv32, q_req->iv, ivsize);
  1492. for (i = 0; i < enciv_in_word; i++)
  1493. QCE_WRITE_REG(enciv32[i], pce_dev->iobase +
  1494. (CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)));
  1495. }
  1496. /*
  1497. * write encr key
  1498. * do not use hw key or pipe key
  1499. */
  1500. _byte_stream_to_net_words(enckey32, q_req->enckey, key_size);
  1501. for (i = 0; i < enck_size_in_word; i++)
  1502. QCE_WRITE_REG(enckey32[i], pce_dev->iobase +
  1503. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)));
  1504. /* write encr seg cfg */
  1505. if (q_req->dir == QCE_ENCRYPT)
  1506. encr_cfg |= (1 << CRYPTO_ENCODE);
  1507. QCE_WRITE_REG(encr_cfg, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
  1508. /* we only support sha1-hmac and sha256-hmac at this point */
  1509. _byte_stream_to_net_words(mackey32, q_req->authkey,
  1510. q_req->authklen);
  1511. for (i = 0; i < authk_size_in_word; i++)
  1512. QCE_WRITE_REG(mackey32[i], pce_dev->iobase +
  1513. (CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)));
  1514. if (q_req->auth_alg == QCE_HASH_SHA1_HMAC) {
  1515. for (i = 0; i < 5; i++)
  1516. QCE_WRITE_REG(_std_init_vector_sha1[i],
  1517. pce_dev->iobase +
  1518. (CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)));
  1519. } else {
  1520. for (i = 0; i < 8; i++)
  1521. QCE_WRITE_REG(_std_init_vector_sha256[i],
  1522. pce_dev->iobase +
  1523. (CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)));
  1524. }
  1525. /* write auth_bytecnt 0/1, start with 0 */
  1526. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_BYTECNT0_REG);
  1527. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_BYTECNT1_REG);
  1528. /* write encr seg size */
  1529. QCE_WRITE_REG(q_req->cryptlen, pce_dev->iobase +
  1530. CRYPTO_ENCR_SEG_SIZE_REG);
  1531. /* write encr start */
  1532. QCE_WRITE_REG(coffset & 0xffff, pce_dev->iobase +
  1533. CRYPTO_ENCR_SEG_START_REG);
  1534. if (q_req->auth_alg == QCE_HASH_SHA1_HMAC)
  1535. a_cfg = pce_dev->reg.auth_cfg_aead_sha1_hmac;
  1536. else
  1537. a_cfg = pce_dev->reg.auth_cfg_aead_sha256_hmac;
  1538. if (q_req->dir == QCE_ENCRYPT)
  1539. a_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
  1540. else
  1541. a_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  1542. /* write auth seg_cfg */
  1543. QCE_WRITE_REG(a_cfg, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
  1544. /* write auth seg_size */
  1545. QCE_WRITE_REG(totallen_in, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
  1546. /* write auth_seg_start */
  1547. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
  1548. /* write seg_size */
  1549. QCE_WRITE_REG(totallen_in, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
  1550. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
  1551. CRYPTO_CONFIG_REG));
  1552. /* issue go to crypto */
  1553. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  1554. (1 << CRYPTO_CLR_CNTXT)),
  1555. pce_dev->iobase + CRYPTO_GOPROC_REG);
  1556. /*
  1557. * Ensure previous instructions (setting the GO register)
  1558. * was completed before issuing a DMA transfer request
  1559. */
  1560. mb();
  1561. return 0;
  1562. }
  1563. static int _ce_setup_cipher_direct(struct qce_device *pce_dev,
  1564. struct qce_req *creq, uint32_t totallen_in, uint32_t coffset)
  1565. {
  1566. uint32_t enckey32[(MAX_CIPHER_KEY_SIZE * 2)/sizeof(uint32_t)] = {
  1567. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  1568. uint32_t enciv32[MAX_IV_LENGTH / sizeof(uint32_t)] = {
  1569. 0, 0, 0, 0};
  1570. uint32_t enck_size_in_word = 0;
  1571. uint32_t key_size;
  1572. bool use_hw_key = false;
  1573. bool use_pipe_key = false;
  1574. uint32_t encr_cfg = 0;
  1575. uint32_t ivsize = creq->ivsize;
  1576. int i;
  1577. /* clear status */
  1578. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
  1579. if (qce_crypto_config(pce_dev, creq->offload_op))
  1580. return -EINVAL;
  1581. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be,
  1582. (pce_dev->iobase + CRYPTO_CONFIG_REG));
  1583. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le,
  1584. (pce_dev->iobase + CRYPTO_CONFIG_REG));
  1585. /*
  1586. * Ensure previous instructions (setting the CONFIG register)
  1587. * was completed before issuing starting to set other config register
  1588. * This is to ensure the configurations are done in correct endian-ness
  1589. * as set in the CONFIG registers
  1590. */
  1591. mb();
  1592. if (creq->mode == QCE_MODE_XTS)
  1593. key_size = creq->encklen/2;
  1594. else
  1595. key_size = creq->encklen;
  1596. if ((creq->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) {
  1597. use_hw_key = true;
  1598. } else {
  1599. if ((creq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
  1600. QCRYPTO_CTX_USE_PIPE_KEY)
  1601. use_pipe_key = true;
  1602. }
  1603. if (!use_pipe_key && !use_hw_key) {
  1604. _byte_stream_to_net_words(enckey32, creq->enckey, key_size);
  1605. enck_size_in_word = key_size/sizeof(uint32_t);
  1606. }
  1607. if ((creq->op == QCE_REQ_AEAD) && (creq->mode == QCE_MODE_CCM)) {
  1608. uint32_t authklen32 = creq->encklen/sizeof(uint32_t);
  1609. uint32_t noncelen32 = MAX_NONCE/sizeof(uint32_t);
  1610. uint32_t nonce32[MAX_NONCE/sizeof(uint32_t)] = {0, 0, 0, 0};
  1611. uint32_t auth_cfg = 0;
  1612. /* Clear auth_ivn, auth_keyn registers */
  1613. for (i = 0; i < 16; i++) {
  1614. QCE_WRITE_REG(0, (pce_dev->iobase +
  1615. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
  1616. QCE_WRITE_REG(0, (pce_dev->iobase +
  1617. (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t))));
  1618. }
  1619. /* write auth_bytecnt 0/1/2/3, start with 0 */
  1620. for (i = 0; i < 4; i++)
  1621. QCE_WRITE_REG(0, pce_dev->iobase +
  1622. CRYPTO_AUTH_BYTECNT0_REG +
  1623. i * sizeof(uint32_t));
  1624. /* write nonce */
  1625. _byte_stream_to_net_words(nonce32, creq->nonce, MAX_NONCE);
  1626. for (i = 0; i < noncelen32; i++)
  1627. QCE_WRITE_REG(nonce32[i], pce_dev->iobase +
  1628. CRYPTO_AUTH_INFO_NONCE0_REG +
  1629. (i*sizeof(uint32_t)));
  1630. if (creq->authklen == AES128_KEY_SIZE)
  1631. auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_128;
  1632. else {
  1633. if (creq->authklen == AES256_KEY_SIZE)
  1634. auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_256;
  1635. }
  1636. if (creq->dir == QCE_ENCRYPT)
  1637. auth_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  1638. else
  1639. auth_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
  1640. auth_cfg |= ((creq->authsize - 1) << CRYPTO_AUTH_SIZE);
  1641. if (use_hw_key) {
  1642. auth_cfg |= (1 << CRYPTO_USE_HW_KEY_AUTH);
  1643. } else {
  1644. auth_cfg &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
  1645. /* write auth key */
  1646. for (i = 0; i < authklen32; i++)
  1647. QCE_WRITE_REG(enckey32[i], pce_dev->iobase +
  1648. CRYPTO_AUTH_KEY0_REG + (i*sizeof(uint32_t)));
  1649. }
  1650. QCE_WRITE_REG(auth_cfg, pce_dev->iobase +
  1651. CRYPTO_AUTH_SEG_CFG_REG);
  1652. if (creq->dir == QCE_ENCRYPT) {
  1653. QCE_WRITE_REG(totallen_in, pce_dev->iobase +
  1654. CRYPTO_AUTH_SEG_SIZE_REG);
  1655. } else {
  1656. QCE_WRITE_REG((totallen_in - creq->authsize),
  1657. pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
  1658. }
  1659. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
  1660. } else {
  1661. if (creq->op != QCE_REQ_AEAD)
  1662. QCE_WRITE_REG(0, pce_dev->iobase +
  1663. CRYPTO_AUTH_SEG_CFG_REG);
  1664. }
  1665. /*
  1666. * Ensure previous instructions (write to all AUTH registers)
  1667. * was completed before accessing a register that is not in
  1668. * in the same 1K range.
  1669. */
  1670. mb();
  1671. switch (creq->mode) {
  1672. case QCE_MODE_ECB:
  1673. if (key_size == AES128_KEY_SIZE)
  1674. encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_128;
  1675. else
  1676. encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_256;
  1677. break;
  1678. case QCE_MODE_CBC:
  1679. if (key_size == AES128_KEY_SIZE)
  1680. encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_128;
  1681. else
  1682. encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_256;
  1683. break;
  1684. case QCE_MODE_XTS:
  1685. if (key_size == AES128_KEY_SIZE)
  1686. encr_cfg = pce_dev->reg.encr_cfg_aes_xts_128;
  1687. else
  1688. encr_cfg = pce_dev->reg.encr_cfg_aes_xts_256;
  1689. break;
  1690. case QCE_MODE_CCM:
  1691. if (key_size == AES128_KEY_SIZE)
  1692. encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_128;
  1693. else
  1694. encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_256;
  1695. break;
  1696. case QCE_MODE_CTR:
  1697. default:
  1698. if (key_size == AES128_KEY_SIZE)
  1699. encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_128;
  1700. else
  1701. encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_256;
  1702. break;
  1703. }
  1704. switch (creq->alg) {
  1705. case CIPHER_ALG_DES:
  1706. if (creq->mode != QCE_MODE_ECB) {
  1707. encr_cfg = pce_dev->reg.encr_cfg_des_cbc;
  1708. _byte_stream_to_net_words(enciv32, creq->iv, ivsize);
  1709. QCE_WRITE_REG(enciv32[0], pce_dev->iobase +
  1710. CRYPTO_CNTR0_IV0_REG);
  1711. QCE_WRITE_REG(enciv32[1], pce_dev->iobase +
  1712. CRYPTO_CNTR1_IV1_REG);
  1713. } else {
  1714. encr_cfg = pce_dev->reg.encr_cfg_des_ecb;
  1715. }
  1716. if (!use_hw_key) {
  1717. QCE_WRITE_REG(enckey32[0], pce_dev->iobase +
  1718. CRYPTO_ENCR_KEY0_REG);
  1719. QCE_WRITE_REG(enckey32[1], pce_dev->iobase +
  1720. CRYPTO_ENCR_KEY1_REG);
  1721. }
  1722. break;
  1723. case CIPHER_ALG_3DES:
  1724. if (creq->mode != QCE_MODE_ECB) {
  1725. _byte_stream_to_net_words(enciv32, creq->iv, ivsize);
  1726. QCE_WRITE_REG(enciv32[0], pce_dev->iobase +
  1727. CRYPTO_CNTR0_IV0_REG);
  1728. QCE_WRITE_REG(enciv32[1], pce_dev->iobase +
  1729. CRYPTO_CNTR1_IV1_REG);
  1730. encr_cfg = pce_dev->reg.encr_cfg_3des_cbc;
  1731. } else {
  1732. encr_cfg = pce_dev->reg.encr_cfg_3des_ecb;
  1733. }
  1734. if (!use_hw_key) {
  1735. /* write encr key */
  1736. for (i = 0; i < 6; i++)
  1737. QCE_WRITE_REG(enckey32[0], (pce_dev->iobase +
  1738. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t))));
  1739. }
  1740. break;
  1741. case CIPHER_ALG_AES:
  1742. default:
  1743. if (creq->mode == QCE_MODE_XTS) {
  1744. uint32_t xtskey32[MAX_CIPHER_KEY_SIZE/sizeof(uint32_t)]
  1745. = {0, 0, 0, 0, 0, 0, 0, 0};
  1746. uint32_t xtsklen =
  1747. creq->encklen/(2 * sizeof(uint32_t));
  1748. if (!use_hw_key && !use_pipe_key) {
  1749. _byte_stream_to_net_words(xtskey32,
  1750. (creq->enckey + creq->encklen/2),
  1751. creq->encklen/2);
  1752. /* write xts encr key */
  1753. for (i = 0; i < xtsklen; i++)
  1754. QCE_WRITE_REG(xtskey32[i],
  1755. pce_dev->iobase +
  1756. CRYPTO_ENCR_XTS_KEY0_REG +
  1757. (i * sizeof(uint32_t)));
  1758. }
  1759. /* write xts du size */
  1760. switch (creq->flags & QCRYPTO_CTX_XTS_MASK) {
  1761. case QCRYPTO_CTX_XTS_DU_SIZE_512B:
  1762. QCE_WRITE_REG(
  1763. min((uint32_t)QCE_SECTOR_SIZE,
  1764. creq->cryptlen), pce_dev->iobase +
  1765. CRYPTO_ENCR_XTS_DU_SIZE_REG);
  1766. break;
  1767. case QCRYPTO_CTX_XTS_DU_SIZE_1KB:
  1768. QCE_WRITE_REG(
  1769. min((uint32_t)(QCE_SECTOR_SIZE * 2),
  1770. creq->cryptlen), pce_dev->iobase +
  1771. CRYPTO_ENCR_XTS_DU_SIZE_REG);
  1772. break;
  1773. default:
  1774. QCE_WRITE_REG(creq->cryptlen,
  1775. pce_dev->iobase +
  1776. CRYPTO_ENCR_XTS_DU_SIZE_REG);
  1777. break;
  1778. }
  1779. }
  1780. if (creq->mode != QCE_MODE_ECB) {
  1781. if (creq->mode == QCE_MODE_XTS)
  1782. _byte_stream_swap_to_net_words(enciv32,
  1783. creq->iv, ivsize);
  1784. else
  1785. _byte_stream_to_net_words(enciv32, creq->iv,
  1786. ivsize);
  1787. /* write encr cntr iv */
  1788. for (i = 0; i <= 3; i++)
  1789. QCE_WRITE_REG(enciv32[i], pce_dev->iobase +
  1790. CRYPTO_CNTR0_IV0_REG +
  1791. (i * sizeof(uint32_t)));
  1792. if (creq->mode == QCE_MODE_CCM) {
  1793. /* write cntr iv for ccm */
  1794. for (i = 0; i <= 3; i++)
  1795. QCE_WRITE_REG(enciv32[i],
  1796. pce_dev->iobase +
  1797. CRYPTO_ENCR_CCM_INT_CNTR0_REG +
  1798. (i * sizeof(uint32_t)));
  1799. /* update cntr_iv[3] by one */
  1800. QCE_WRITE_REG((enciv32[3] + 1),
  1801. pce_dev->iobase +
  1802. CRYPTO_CNTR0_IV0_REG +
  1803. (3 * sizeof(uint32_t)));
  1804. }
  1805. }
  1806. if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) {
  1807. encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 <<
  1808. CRYPTO_ENCR_KEY_SZ);
  1809. } else {
  1810. if (!use_hw_key && !use_pipe_key) {
  1811. for (i = 0; i < enck_size_in_word; i++)
  1812. QCE_WRITE_REG(enckey32[i],
  1813. pce_dev->iobase +
  1814. CRYPTO_ENCR_KEY0_REG +
  1815. (i * sizeof(uint32_t)));
  1816. }
  1817. } /* else of if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) */
  1818. break;
  1819. } /* end of switch (creq->mode) */
  1820. if (use_pipe_key)
  1821. encr_cfg |= (CRYPTO_USE_PIPE_KEY_ENCR_ENABLED
  1822. << CRYPTO_USE_PIPE_KEY_ENCR);
  1823. /* write encr seg cfg */
  1824. encr_cfg |= ((creq->dir == QCE_ENCRYPT) ? 1 : 0) << CRYPTO_ENCODE;
  1825. if (use_hw_key)
  1826. encr_cfg |= (CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
  1827. else
  1828. encr_cfg &= ~(CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
  1829. /* write encr seg cfg */
  1830. QCE_WRITE_REG(encr_cfg, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
  1831. /* write encr seg size */
  1832. if ((creq->mode == QCE_MODE_CCM) && (creq->dir == QCE_DECRYPT)) {
  1833. QCE_WRITE_REG((creq->cryptlen + creq->authsize),
  1834. pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
  1835. } else {
  1836. QCE_WRITE_REG(creq->cryptlen,
  1837. pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
  1838. }
  1839. /* write pattern */
  1840. if (creq->is_pattern_valid)
  1841. QCE_WRITE_REG(creq->pattern_info, pce_dev->iobase +
  1842. CRYPTO_DATA_PATT_PROC_CFG_REG);
  1843. /* write block offset to CRYPTO_DATA_PARTIAL_BLOCK_PROC_CFG? */
  1844. QCE_WRITE_REG(((creq->block_offset << 4) |
  1845. (creq->block_offset ? 1 : 0)),
  1846. pce_dev->iobase + CRYPTO_DATA_PARTIAL_BLOCK_PROC_CFG_REG);
  1847. /* write encr seg start */
  1848. QCE_WRITE_REG((coffset & 0xffff),
  1849. pce_dev->iobase + CRYPTO_ENCR_SEG_START_REG);
  1850. /* write encr counter mask */
  1851. qce_set_iv_ctr_mask(pce_dev, creq);
  1852. QCE_WRITE_REG(pce_dev->reg.encr_cntr_mask_3,
  1853. pce_dev->iobase + CRYPTO_CNTR_MASK_REG);
  1854. QCE_WRITE_REG(pce_dev->reg.encr_cntr_mask_2,
  1855. pce_dev->iobase + CRYPTO_CNTR_MASK_REG2);
  1856. QCE_WRITE_REG(pce_dev->reg.encr_cntr_mask_1,
  1857. pce_dev->iobase + CRYPTO_CNTR_MASK_REG1);
  1858. QCE_WRITE_REG(pce_dev->reg.encr_cntr_mask_0,
  1859. pce_dev->iobase + CRYPTO_CNTR_MASK_REG0);
  1860. /* write seg size */
  1861. QCE_WRITE_REG(totallen_in, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
  1862. /* issue go to crypto */
  1863. if (!use_hw_key) {
  1864. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  1865. (1 << CRYPTO_CLR_CNTXT)),
  1866. pce_dev->iobase + CRYPTO_GOPROC_REG);
  1867. } else {
  1868. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
  1869. pce_dev->iobase + CRYPTO_GOPROC_QC_KEY_REG);
  1870. }
  1871. /*
  1872. * Ensure previous instructions (setting the GO register)
  1873. * was completed before issuing a DMA transfer request
  1874. */
  1875. mb();
  1876. return 0;
  1877. }
  1878. static int _ce_f9_setup_direct(struct qce_device *pce_dev,
  1879. struct qce_f9_req *req)
  1880. {
  1881. uint32_t ikey32[OTA_KEY_SIZE/sizeof(uint32_t)];
  1882. uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
  1883. uint32_t auth_cfg;
  1884. int i;
  1885. switch (req->algorithm) {
  1886. case QCE_OTA_ALGO_KASUMI:
  1887. auth_cfg = pce_dev->reg.auth_cfg_kasumi;
  1888. break;
  1889. case QCE_OTA_ALGO_SNOW3G:
  1890. default:
  1891. auth_cfg = pce_dev->reg.auth_cfg_snow3g;
  1892. break;
  1893. }
  1894. if (qce_crypto_config(pce_dev, QCE_OFFLOAD_NONE))
  1895. return -EINVAL;
  1896. /* clear status */
  1897. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
  1898. /* set big endian configuration */
  1899. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
  1900. CRYPTO_CONFIG_REG));
  1901. /*
  1902. * Ensure previous instructions (setting the CONFIG register)
  1903. * was completed before issuing starting to set other config register
  1904. * This is to ensure the configurations are done in correct endian-ness
  1905. * as set in the CONFIG registers
  1906. */
  1907. mb();
  1908. /* write enc_seg_cfg */
  1909. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
  1910. /* write ecn_seg_size */
  1911. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
  1912. /* write key in CRYPTO_AUTH_IV0-3_REG */
  1913. _byte_stream_to_net_words(ikey32, &req->ikey[0], OTA_KEY_SIZE);
  1914. for (i = 0; i < key_size_in_word; i++)
  1915. QCE_WRITE_REG(ikey32[i], (pce_dev->iobase +
  1916. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
  1917. /* write last bits in CRYPTO_AUTH_IV4_REG */
  1918. QCE_WRITE_REG(req->last_bits, (pce_dev->iobase +
  1919. CRYPTO_AUTH_IV4_REG));
  1920. /* write fresh to CRYPTO_AUTH_BYTECNT0_REG */
  1921. QCE_WRITE_REG(req->fresh, (pce_dev->iobase +
  1922. CRYPTO_AUTH_BYTECNT0_REG));
  1923. /* write count-i to CRYPTO_AUTH_BYTECNT1_REG */
  1924. QCE_WRITE_REG(req->count_i, (pce_dev->iobase +
  1925. CRYPTO_AUTH_BYTECNT1_REG));
  1926. /* write auth seg cfg */
  1927. if (req->direction == QCE_OTA_DIR_DOWNLINK)
  1928. auth_cfg |= BIT(CRYPTO_F9_DIRECTION);
  1929. QCE_WRITE_REG(auth_cfg, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
  1930. /* write auth seg size */
  1931. QCE_WRITE_REG(req->msize, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
  1932. /* write auth seg start*/
  1933. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
  1934. /* write seg size */
  1935. QCE_WRITE_REG(req->msize, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
  1936. /* set little endian configuration before go*/
  1937. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
  1938. CRYPTO_CONFIG_REG));
  1939. /* write go */
  1940. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  1941. (1 << CRYPTO_CLR_CNTXT)),
  1942. pce_dev->iobase + CRYPTO_GOPROC_REG);
  1943. /*
  1944. * Ensure previous instructions (setting the GO register)
  1945. * was completed before issuing a DMA transfer request
  1946. */
  1947. mb();
  1948. return 0;
  1949. }
  1950. static int _ce_f8_setup_direct(struct qce_device *pce_dev,
  1951. struct qce_f8_req *req, bool key_stream_mode,
  1952. uint16_t npkts, uint16_t cipher_offset, uint16_t cipher_size)
  1953. {
  1954. int i = 0;
  1955. uint32_t encr_cfg = 0;
  1956. uint32_t ckey32[OTA_KEY_SIZE/sizeof(uint32_t)];
  1957. uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
  1958. switch (req->algorithm) {
  1959. case QCE_OTA_ALGO_KASUMI:
  1960. encr_cfg = pce_dev->reg.encr_cfg_kasumi;
  1961. break;
  1962. case QCE_OTA_ALGO_SNOW3G:
  1963. default:
  1964. encr_cfg = pce_dev->reg.encr_cfg_snow3g;
  1965. break;
  1966. }
  1967. /* clear status */
  1968. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
  1969. /* set big endian configuration */
  1970. if (qce_crypto_config(pce_dev, QCE_OFFLOAD_NONE))
  1971. return -EINVAL;
  1972. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
  1973. CRYPTO_CONFIG_REG));
  1974. /* write auth seg configuration */
  1975. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
  1976. /* write auth seg size */
  1977. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
  1978. /* write key */
  1979. _byte_stream_to_net_words(ckey32, &req->ckey[0], OTA_KEY_SIZE);
  1980. for (i = 0; i < key_size_in_word; i++)
  1981. QCE_WRITE_REG(ckey32[i], (pce_dev->iobase +
  1982. (CRYPTO_ENCR_KEY0_REG + i*sizeof(uint32_t))));
  1983. /* write encr seg cfg */
  1984. if (key_stream_mode)
  1985. encr_cfg |= BIT(CRYPTO_F8_KEYSTREAM_ENABLE);
  1986. if (req->direction == QCE_OTA_DIR_DOWNLINK)
  1987. encr_cfg |= BIT(CRYPTO_F8_DIRECTION);
  1988. QCE_WRITE_REG(encr_cfg, pce_dev->iobase +
  1989. CRYPTO_ENCR_SEG_CFG_REG);
  1990. /* write encr seg start */
  1991. QCE_WRITE_REG((cipher_offset & 0xffff), pce_dev->iobase +
  1992. CRYPTO_ENCR_SEG_START_REG);
  1993. /* write encr seg size */
  1994. QCE_WRITE_REG(cipher_size, pce_dev->iobase +
  1995. CRYPTO_ENCR_SEG_SIZE_REG);
  1996. /* write seg size */
  1997. QCE_WRITE_REG(req->data_len, pce_dev->iobase +
  1998. CRYPTO_SEG_SIZE_REG);
  1999. /* write cntr0_iv0 for countC */
  2000. QCE_WRITE_REG(req->count_c, pce_dev->iobase +
  2001. CRYPTO_CNTR0_IV0_REG);
  2002. /* write cntr1_iv1 for nPkts, and bearer */
  2003. if (npkts == 1)
  2004. npkts = 0;
  2005. QCE_WRITE_REG(req->bearer << CRYPTO_CNTR1_IV1_REG_F8_BEARER |
  2006. npkts << CRYPTO_CNTR1_IV1_REG_F8_PKT_CNT,
  2007. pce_dev->iobase + CRYPTO_CNTR1_IV1_REG);
  2008. /* set little endian configuration before go*/
  2009. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
  2010. CRYPTO_CONFIG_REG));
  2011. /* write go */
  2012. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  2013. (1 << CRYPTO_CLR_CNTXT)),
  2014. pce_dev->iobase + CRYPTO_GOPROC_REG);
  2015. /*
  2016. * Ensure previous instructions (setting the GO register)
  2017. * was completed before issuing a DMA transfer request
  2018. */
  2019. mb();
  2020. return 0;
  2021. }
  2022. static int _qce_unlock_other_pipes(struct qce_device *pce_dev, int req_info)
  2023. {
  2024. int rc = 0;
  2025. struct ce_sps_data *pce_sps_data = &pce_dev->ce_request_info
  2026. [req_info].ce_sps;
  2027. uint16_t op = pce_dev->ce_request_info[req_info].offload_op;
  2028. if (pce_dev->no_get_around || !pce_dev->support_cmd_dscr)
  2029. return rc;
  2030. rc = sps_transfer_one(pce_dev->ce_bam_info.consumer[op].pipe,
  2031. GET_PHYS_ADDR(
  2032. pce_sps_data->cmdlistptr.unlock_all_pipes.cmdlist),
  2033. 0, NULL, (SPS_IOVEC_FLAG_CMD | SPS_IOVEC_FLAG_UNLOCK));
  2034. if (rc) {
  2035. pr_err("sps_xfr_one() fail rc=%d\n", rc);
  2036. rc = -EINVAL;
  2037. }
  2038. return rc;
  2039. }
  2040. static int qce_sps_set_irqs(struct qce_device *pce_dev, bool enable)
  2041. {
  2042. if (enable)
  2043. return sps_bam_enable_irqs(pce_dev->ce_bam_info.bam_handle);
  2044. else
  2045. return sps_bam_disable_irqs(pce_dev->ce_bam_info.bam_handle);
  2046. }
  2047. int qce_set_irqs(void *handle, bool enable)
  2048. {
  2049. return qce_sps_set_irqs(handle, enable);
  2050. }
  2051. EXPORT_SYMBOL(qce_set_irqs);
  2052. static inline void qce_free_req_info(struct qce_device *pce_dev, int req_info,
  2053. bool is_complete);
  2054. static int qce_sps_pipe_reset(struct qce_device *pce_dev, int op)
  2055. {
  2056. int rc = -1;
  2057. struct sps_pipe *sps_pipe_info = NULL;
  2058. struct sps_connect *sps_connect_info = NULL;
  2059. /* Reset both the pipe sets in the pipe group */
  2060. sps_pipe_reset(pce_dev->ce_bam_info.bam_handle,
  2061. pce_dev->ce_bam_info.dest_pipe_index[op]);
  2062. sps_pipe_reset(pce_dev->ce_bam_info.bam_handle,
  2063. pce_dev->ce_bam_info.src_pipe_index[op]);
  2064. /* Reconnect to consumer pipe */
  2065. sps_pipe_info = pce_dev->ce_bam_info.consumer[op].pipe;
  2066. sps_connect_info = &pce_dev->ce_bam_info.consumer[op].connect;
  2067. rc = sps_disconnect(sps_pipe_info);
  2068. if (rc) {
  2069. pr_err("sps_disconnect() fail pipe=0x%lx, rc = %d\n",
  2070. (uintptr_t)sps_pipe_info, rc);
  2071. goto exit;
  2072. }
  2073. memset(sps_connect_info->desc.base, 0x00,
  2074. sps_connect_info->desc.size);
  2075. rc = sps_connect(sps_pipe_info, sps_connect_info);
  2076. if (rc) {
  2077. pr_err("sps_connect() fail pipe=0x%lx, rc = %d\n",
  2078. (uintptr_t)sps_pipe_info, rc);
  2079. goto exit;
  2080. }
  2081. /* Reconnect to producer pipe */
  2082. sps_pipe_info = pce_dev->ce_bam_info.producer[op].pipe;
  2083. sps_connect_info = &pce_dev->ce_bam_info.producer[op].connect;
  2084. rc = sps_disconnect(sps_pipe_info);
  2085. if (rc) {
  2086. pr_err("sps_connect() fail pipe=0x%lx, rc = %d\n",
  2087. (uintptr_t)sps_pipe_info, rc);
  2088. goto exit;
  2089. }
  2090. memset(sps_connect_info->desc.base, 0x00,
  2091. sps_connect_info->desc.size);
  2092. rc = sps_connect(sps_pipe_info, sps_connect_info);
  2093. if (rc) {
  2094. pr_err("sps_connect() fail pipe=0x%lx, rc = %d\n",
  2095. (uintptr_t)sps_pipe_info, rc);
  2096. goto exit;
  2097. }
  2098. /* Register producer callback */
  2099. rc = sps_register_event(sps_pipe_info,
  2100. &pce_dev->ce_bam_info.producer[op].event);
  2101. if (rc)
  2102. pr_err("Producer cb registration failed rc = %d\n",
  2103. rc);
  2104. exit:
  2105. return rc;
  2106. }
  2107. #define MAX_RESET_TIME_RETRIES 1000
  2108. int qce_manage_timeout(void *handle, int req_info)
  2109. {
  2110. struct qce_device *pce_dev = (struct qce_device *) handle;
  2111. struct skcipher_request *areq;
  2112. struct ce_request_info *preq_info;
  2113. qce_comp_func_ptr_t qce_callback;
  2114. uint16_t op = pce_dev->ce_request_info[req_info].offload_op;
  2115. struct qce_error error = {0};
  2116. int retries = 0;
  2117. preq_info = &pce_dev->ce_request_info[req_info];
  2118. qce_callback = preq_info->qce_cb;
  2119. areq = (struct skcipher_request *) preq_info->areq;
  2120. pr_info("%s: req info = %d, offload op = %d\n", __func__, req_info, op);
  2121. if (qce_sps_pipe_reset(pce_dev, op))
  2122. pr_err("%s: pipe reset failed\n", __func__);
  2123. qce_get_crypto_status(pce_dev, &error);
  2124. while (!error.no_error && retries < MAX_RESET_TIME_RETRIES) {
  2125. usleep_range(3000, 5000);
  2126. retries++;
  2127. qce_get_crypto_status(pce_dev, &error);
  2128. pr_info("%s: waiting for reset to complete\n", __func__);
  2129. }
  2130. // Write memory barrier
  2131. wmb();
  2132. if (_qce_unlock_other_pipes(pce_dev, req_info))
  2133. pr_err("%s: fail unlock other pipes\n", __func__);
  2134. qce_enable_clock_gating(pce_dev);
  2135. if (!atomic_read(&preq_info->in_use)) {
  2136. pr_err("request information %d already done\n", req_info);
  2137. return -ENXIO;
  2138. }
  2139. qce_free_req_info(pce_dev, req_info, true);
  2140. return 0;
  2141. }
  2142. EXPORT_SYMBOL(qce_manage_timeout);
  2143. static int _aead_complete(struct qce_device *pce_dev, int req_info)
  2144. {
  2145. struct aead_request *areq;
  2146. unsigned char mac[SHA256_DIGEST_SIZE];
  2147. uint32_t ccm_fail_status = 0;
  2148. uint32_t result_dump_status = 0;
  2149. int32_t result_status = 0;
  2150. struct ce_request_info *preq_info;
  2151. struct ce_sps_data *pce_sps_data;
  2152. qce_comp_func_ptr_t qce_callback;
  2153. preq_info = &pce_dev->ce_request_info[req_info];
  2154. pce_sps_data = &preq_info->ce_sps;
  2155. qce_callback = preq_info->qce_cb;
  2156. areq = (struct aead_request *) preq_info->areq;
  2157. if (areq->src != areq->dst) {
  2158. qce_dma_unmap_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
  2159. DMA_FROM_DEVICE);
  2160. }
  2161. qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
  2162. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  2163. DMA_TO_DEVICE);
  2164. if (preq_info->asg)
  2165. qce_dma_unmap_sg(pce_dev->pdev, preq_info->asg,
  2166. preq_info->assoc_nents, DMA_TO_DEVICE);
  2167. /* check MAC */
  2168. memcpy(mac, (char *)(&pce_sps_data->result->auth_iv[0]),
  2169. SHA256_DIGEST_SIZE);
  2170. /* read status before unlock */
  2171. if (preq_info->dir == QCE_DECRYPT) {
  2172. if (pce_dev->no_get_around)
  2173. if (pce_dev->no_ccm_mac_status_get_around)
  2174. ccm_fail_status =
  2175. be32_to_cpu(pce_sps_data->result->status);
  2176. else
  2177. ccm_fail_status =
  2178. be32_to_cpu(pce_sps_data->result_null->status);
  2179. else
  2180. ccm_fail_status = readl_relaxed(pce_dev->iobase +
  2181. CRYPTO_STATUS_REG);
  2182. }
  2183. if (_qce_unlock_other_pipes(pce_dev, req_info)) {
  2184. qce_free_req_info(pce_dev, req_info, true);
  2185. qce_callback(areq, mac, NULL, -ENXIO);
  2186. return -ENXIO;
  2187. }
  2188. result_dump_status = be32_to_cpu(pce_sps_data->result->status);
  2189. pce_sps_data->result->status = 0;
  2190. if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
  2191. | (1 << CRYPTO_HSD_ERR))) {
  2192. pr_err("aead operation error. Status %x\n", result_dump_status);
  2193. result_status = -ENXIO;
  2194. } else if (pce_sps_data->consumer_status |
  2195. pce_sps_data->producer_status) {
  2196. pr_err("aead sps operation error. sps status %x %x\n",
  2197. pce_sps_data->consumer_status,
  2198. pce_sps_data->producer_status);
  2199. result_status = -ENXIO;
  2200. }
  2201. if (!atomic_read(&preq_info->in_use)) {
  2202. pr_err("request information %d already done\n", req_info);
  2203. return -ENXIO;
  2204. }
  2205. if (preq_info->mode == QCE_MODE_CCM) {
  2206. /*
  2207. * Not from result dump, instead, use the status we just
  2208. * read of device for MAC_FAILED.
  2209. */
  2210. if (result_status == 0 && (preq_info->dir == QCE_DECRYPT) &&
  2211. (ccm_fail_status & (1 << CRYPTO_MAC_FAILED)))
  2212. result_status = -EBADMSG;
  2213. qce_free_req_info(pce_dev, req_info, true);
  2214. qce_callback(areq, mac, NULL, result_status);
  2215. } else {
  2216. uint32_t ivsize = 0;
  2217. struct crypto_aead *aead;
  2218. unsigned char iv[NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE];
  2219. aead = crypto_aead_reqtfm(areq);
  2220. ivsize = crypto_aead_ivsize(aead);
  2221. memcpy(iv, (char *)(pce_sps_data->result->encr_cntr_iv),
  2222. sizeof(iv));
  2223. qce_free_req_info(pce_dev, req_info, true);
  2224. qce_callback(areq, mac, iv, result_status);
  2225. }
  2226. return 0;
  2227. }
  2228. static int _sha_complete(struct qce_device *pce_dev, int req_info)
  2229. {
  2230. struct ahash_request *areq;
  2231. unsigned char digest[SHA256_DIGEST_SIZE];
  2232. uint32_t bytecount32[2];
  2233. int32_t result_status = 0;
  2234. uint32_t result_dump_status;
  2235. struct ce_request_info *preq_info;
  2236. struct ce_sps_data *pce_sps_data;
  2237. qce_comp_func_ptr_t qce_callback;
  2238. preq_info = &pce_dev->ce_request_info[req_info];
  2239. pce_sps_data = &preq_info->ce_sps;
  2240. qce_callback = preq_info->qce_cb;
  2241. areq = (struct ahash_request *) preq_info->areq;
  2242. if (!areq) {
  2243. pr_err("sha operation error. areq is NULL\n");
  2244. return -ENXIO;
  2245. }
  2246. qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
  2247. DMA_TO_DEVICE);
  2248. memcpy(digest, (char *)(&pce_sps_data->result->auth_iv[0]),
  2249. SHA256_DIGEST_SIZE);
  2250. _byte_stream_to_net_words(bytecount32,
  2251. (unsigned char *)pce_sps_data->result->auth_byte_count,
  2252. 2 * CRYPTO_REG_SIZE);
  2253. if (_qce_unlock_other_pipes(pce_dev, req_info)) {
  2254. qce_free_req_info(pce_dev, req_info, true);
  2255. qce_callback(areq, digest, (char *)bytecount32,
  2256. -ENXIO);
  2257. return -ENXIO;
  2258. }
  2259. result_dump_status = be32_to_cpu(pce_sps_data->result->status);
  2260. pce_sps_data->result->status = 0;
  2261. if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
  2262. | (1 << CRYPTO_HSD_ERR))) {
  2263. pr_err("sha operation error. Status %x\n", result_dump_status);
  2264. result_status = -ENXIO;
  2265. } else if (pce_sps_data->consumer_status) {
  2266. pr_err("sha sps operation error. sps status %x\n",
  2267. pce_sps_data->consumer_status);
  2268. result_status = -ENXIO;
  2269. }
  2270. if (!atomic_read(&preq_info->in_use)) {
  2271. pr_err("request information %d already done\n", req_info);
  2272. return -ENXIO;
  2273. }
  2274. qce_free_req_info(pce_dev, req_info, true);
  2275. qce_callback(areq, digest, (char *)bytecount32, result_status);
  2276. return 0;
  2277. }
  2278. static int _f9_complete(struct qce_device *pce_dev, int req_info)
  2279. {
  2280. uint32_t mac_i;
  2281. int32_t result_status = 0;
  2282. uint32_t result_dump_status;
  2283. struct ce_request_info *preq_info;
  2284. struct ce_sps_data *pce_sps_data;
  2285. qce_comp_func_ptr_t qce_callback;
  2286. void *areq;
  2287. preq_info = &pce_dev->ce_request_info[req_info];
  2288. pce_sps_data = &preq_info->ce_sps;
  2289. qce_callback = preq_info->qce_cb;
  2290. areq = preq_info->areq;
  2291. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src,
  2292. preq_info->ota_size, DMA_TO_DEVICE);
  2293. _byte_stream_to_net_words(&mac_i,
  2294. (char *)(&pce_sps_data->result->auth_iv[0]),
  2295. CRYPTO_REG_SIZE);
  2296. if (_qce_unlock_other_pipes(pce_dev, req_info)) {
  2297. qce_free_req_info(pce_dev, req_info, true);
  2298. qce_callback(areq, NULL, NULL, -ENXIO);
  2299. return -ENXIO;
  2300. }
  2301. result_dump_status = be32_to_cpu(pce_sps_data->result->status);
  2302. pce_sps_data->result->status = 0;
  2303. if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
  2304. | (1 << CRYPTO_HSD_ERR))) {
  2305. pr_err("f9 operation error. Status %x\n", result_dump_status);
  2306. result_status = -ENXIO;
  2307. } else if (pce_sps_data->consumer_status |
  2308. pce_sps_data->producer_status) {
  2309. pr_err("f9 sps operation error. sps status %x %x\n",
  2310. pce_sps_data->consumer_status,
  2311. pce_sps_data->producer_status);
  2312. result_status = -ENXIO;
  2313. }
  2314. qce_free_req_info(pce_dev, req_info, true);
  2315. qce_callback(areq, (char *)&mac_i, NULL, result_status);
  2316. return 0;
  2317. }
  2318. static int _ablk_cipher_complete(struct qce_device *pce_dev, int req_info)
  2319. {
  2320. struct skcipher_request *areq;
  2321. unsigned char iv[NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE];
  2322. int32_t result_status = 0;
  2323. uint32_t result_dump_status;
  2324. struct ce_request_info *preq_info;
  2325. struct ce_sps_data *pce_sps_data;
  2326. qce_comp_func_ptr_t qce_callback;
  2327. preq_info = &pce_dev->ce_request_info[req_info];
  2328. pce_sps_data = &preq_info->ce_sps;
  2329. qce_callback = preq_info->qce_cb;
  2330. areq = (struct skcipher_request *) preq_info->areq;
  2331. if (!is_offload_op(preq_info->offload_op)) {
  2332. if (areq->src != areq->dst)
  2333. qce_dma_unmap_sg(pce_dev->pdev, areq->dst,
  2334. preq_info->dst_nents, DMA_FROM_DEVICE);
  2335. qce_dma_unmap_sg(pce_dev->pdev, areq->src,
  2336. preq_info->src_nents,
  2337. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  2338. DMA_TO_DEVICE);
  2339. }
  2340. if (_qce_unlock_other_pipes(pce_dev, req_info)) {
  2341. qce_free_req_info(pce_dev, req_info, true);
  2342. qce_callback(areq, NULL, NULL, -ENXIO);
  2343. return -ENXIO;
  2344. }
  2345. result_dump_status = be32_to_cpu(pce_sps_data->result->status);
  2346. pce_sps_data->result->status = 0;
  2347. if (!is_offload_op(preq_info->offload_op)) {
  2348. if (result_dump_status & ((1 << CRYPTO_SW_ERR) |
  2349. (1 << CRYPTO_AXI_ERR) | (1 << CRYPTO_HSD_ERR))) {
  2350. pr_err("ablk_cipher operation error. Status %x\n",
  2351. result_dump_status);
  2352. result_status = -ENXIO;
  2353. }
  2354. }
  2355. if (pce_sps_data->consumer_status |
  2356. pce_sps_data->producer_status) {
  2357. pr_err("ablk_cipher sps operation error. sps status %x %x\n",
  2358. pce_sps_data->consumer_status,
  2359. pce_sps_data->producer_status);
  2360. result_status = -ENXIO;
  2361. }
  2362. if (preq_info->mode == QCE_MODE_ECB) {
  2363. qce_free_req_info(pce_dev, req_info, true);
  2364. qce_callback(areq, NULL, NULL, pce_sps_data->consumer_status |
  2365. result_status);
  2366. } else {
  2367. if (pce_dev->ce_bam_info.minor_version == 0) {
  2368. if (preq_info->mode == QCE_MODE_CBC) {
  2369. if (preq_info->dir == QCE_DECRYPT)
  2370. memcpy(iv, (char *)preq_info->dec_iv,
  2371. sizeof(iv));
  2372. else
  2373. memcpy(iv, (unsigned char *)
  2374. (sg_virt(areq->src) +
  2375. areq->src->length - 16),
  2376. sizeof(iv));
  2377. }
  2378. if ((preq_info->mode == QCE_MODE_CTR) ||
  2379. (preq_info->mode == QCE_MODE_XTS)) {
  2380. uint32_t num_blk = 0;
  2381. uint32_t cntr_iv3 = 0;
  2382. unsigned long long cntr_iv64 = 0;
  2383. unsigned char *b = (unsigned char *)(&cntr_iv3);
  2384. memcpy(iv, areq->iv, sizeof(iv));
  2385. if (preq_info->mode != QCE_MODE_XTS)
  2386. num_blk = areq->cryptlen/16;
  2387. else
  2388. num_blk = 1;
  2389. cntr_iv3 = ((*(iv + 12) << 24) & 0xff000000) |
  2390. (((*(iv + 13)) << 16) & 0xff0000) |
  2391. (((*(iv + 14)) << 8) & 0xff00) |
  2392. (*(iv + 15) & 0xff);
  2393. cntr_iv64 =
  2394. (((unsigned long long)cntr_iv3 &
  2395. 0xFFFFFFFFULL) +
  2396. (unsigned long long)num_blk) %
  2397. (unsigned long long)(0x100000000ULL);
  2398. cntr_iv3 = (u32)(cntr_iv64 & 0xFFFFFFFF);
  2399. *(iv + 15) = (char)(*b);
  2400. *(iv + 14) = (char)(*(b + 1));
  2401. *(iv + 13) = (char)(*(b + 2));
  2402. *(iv + 12) = (char)(*(b + 3));
  2403. }
  2404. } else {
  2405. memcpy(iv,
  2406. (char *)(pce_sps_data->result->encr_cntr_iv),
  2407. sizeof(iv));
  2408. }
  2409. if (!atomic_read(&preq_info->in_use)) {
  2410. pr_err("request information %d already done\n", req_info);
  2411. return -ENXIO;
  2412. }
  2413. qce_free_req_info(pce_dev, req_info, true);
  2414. qce_callback(areq, NULL, iv, result_status);
  2415. }
  2416. return 0;
  2417. }
  2418. static int _f8_complete(struct qce_device *pce_dev, int req_info)
  2419. {
  2420. int32_t result_status = 0;
  2421. uint32_t result_dump_status;
  2422. uint32_t result_dump_status2;
  2423. struct ce_request_info *preq_info;
  2424. struct ce_sps_data *pce_sps_data;
  2425. qce_comp_func_ptr_t qce_callback;
  2426. void *areq;
  2427. preq_info = &pce_dev->ce_request_info[req_info];
  2428. pce_sps_data = &preq_info->ce_sps;
  2429. qce_callback = preq_info->qce_cb;
  2430. areq = preq_info->areq;
  2431. if (preq_info->phy_ota_dst)
  2432. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_dst,
  2433. preq_info->ota_size, DMA_FROM_DEVICE);
  2434. if (preq_info->phy_ota_src)
  2435. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src,
  2436. preq_info->ota_size, (preq_info->phy_ota_dst) ?
  2437. DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
  2438. if (_qce_unlock_other_pipes(pce_dev, req_info)) {
  2439. qce_free_req_info(pce_dev, req_info, true);
  2440. qce_callback(areq, NULL, NULL, -ENXIO);
  2441. return -ENXIO;
  2442. }
  2443. result_dump_status = be32_to_cpu(pce_sps_data->result->status);
  2444. result_dump_status2 = be32_to_cpu(pce_sps_data->result->status2);
  2445. if ((result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
  2446. | (1 << CRYPTO_HSD_ERR)))) {
  2447. pr_err(
  2448. "f8 oper error. Dump Sta %x Sta2 %x req %d\n",
  2449. result_dump_status, result_dump_status2, req_info);
  2450. result_status = -ENXIO;
  2451. } else if (pce_sps_data->consumer_status |
  2452. pce_sps_data->producer_status) {
  2453. pr_err("f8 sps operation error. sps status %x %x\n",
  2454. pce_sps_data->consumer_status,
  2455. pce_sps_data->producer_status);
  2456. result_status = -ENXIO;
  2457. }
  2458. pce_sps_data->result->status = 0;
  2459. pce_sps_data->result->status2 = 0;
  2460. qce_free_req_info(pce_dev, req_info, true);
  2461. qce_callback(areq, NULL, NULL, result_status);
  2462. return 0;
  2463. }
  2464. static void _qce_sps_iovec_count_init(struct qce_device *pce_dev, int req_info)
  2465. {
  2466. struct ce_sps_data *pce_sps_data = &pce_dev->ce_request_info[req_info]
  2467. .ce_sps;
  2468. pce_sps_data->in_transfer.iovec_count = 0;
  2469. pce_sps_data->out_transfer.iovec_count = 0;
  2470. }
  2471. static void _qce_set_flag(struct sps_transfer *sps_bam_pipe, uint32_t flag)
  2472. {
  2473. struct sps_iovec *iovec;
  2474. if (sps_bam_pipe->iovec_count == 0)
  2475. return;
  2476. iovec = sps_bam_pipe->iovec + (sps_bam_pipe->iovec_count - 1);
  2477. iovec->flags |= flag;
  2478. }
  2479. static int _qce_sps_add_data(dma_addr_t paddr, uint32_t len,
  2480. struct sps_transfer *sps_bam_pipe)
  2481. {
  2482. struct sps_iovec *iovec = sps_bam_pipe->iovec +
  2483. sps_bam_pipe->iovec_count;
  2484. uint32_t data_cnt;
  2485. while (len > 0) {
  2486. if (sps_bam_pipe->iovec_count == QCE_MAX_NUM_DSCR) {
  2487. pr_err("Num of descrptor %d exceed max (%d)\n",
  2488. sps_bam_pipe->iovec_count,
  2489. (uint32_t)QCE_MAX_NUM_DSCR);
  2490. return -ENOMEM;
  2491. }
  2492. if (len > SPS_MAX_PKT_SIZE)
  2493. data_cnt = SPS_MAX_PKT_SIZE;
  2494. else
  2495. data_cnt = len;
  2496. iovec->size = data_cnt;
  2497. iovec->addr = SPS_GET_LOWER_ADDR(paddr);
  2498. iovec->flags = SPS_GET_UPPER_ADDR(paddr);
  2499. sps_bam_pipe->iovec_count++;
  2500. iovec++;
  2501. paddr += data_cnt;
  2502. len -= data_cnt;
  2503. }
  2504. return 0;
  2505. }
  2506. static int _qce_sps_add_sg_data(struct qce_device *pce_dev,
  2507. struct scatterlist *sg_src, uint32_t nbytes,
  2508. struct sps_transfer *sps_bam_pipe)
  2509. {
  2510. uint32_t data_cnt, len;
  2511. dma_addr_t addr;
  2512. struct sps_iovec *iovec = sps_bam_pipe->iovec +
  2513. sps_bam_pipe->iovec_count;
  2514. while (nbytes > 0 && sg_src) {
  2515. len = min(nbytes, sg_dma_len(sg_src));
  2516. nbytes -= len;
  2517. addr = sg_dma_address(sg_src);
  2518. if (pce_dev->ce_bam_info.minor_version == 0)
  2519. len = ALIGN(len, pce_dev->ce_bam_info.ce_burst_size);
  2520. while (len > 0) {
  2521. if (sps_bam_pipe->iovec_count == QCE_MAX_NUM_DSCR) {
  2522. pr_err("Num of descrptor %d exceed max (%d)\n",
  2523. sps_bam_pipe->iovec_count,
  2524. (uint32_t)QCE_MAX_NUM_DSCR);
  2525. return -ENOMEM;
  2526. }
  2527. if (len > SPS_MAX_PKT_SIZE) {
  2528. data_cnt = SPS_MAX_PKT_SIZE;
  2529. iovec->size = data_cnt;
  2530. iovec->addr = SPS_GET_LOWER_ADDR(addr);
  2531. iovec->flags = SPS_GET_UPPER_ADDR(addr);
  2532. } else {
  2533. data_cnt = len;
  2534. iovec->size = data_cnt;
  2535. iovec->addr = SPS_GET_LOWER_ADDR(addr);
  2536. iovec->flags = SPS_GET_UPPER_ADDR(addr);
  2537. }
  2538. iovec++;
  2539. sps_bam_pipe->iovec_count++;
  2540. addr += data_cnt;
  2541. len -= data_cnt;
  2542. }
  2543. sg_src = sg_next(sg_src);
  2544. }
  2545. return 0;
  2546. }
  2547. static int _qce_sps_add_sg_data_off(struct qce_device *pce_dev,
  2548. struct scatterlist *sg_src, uint32_t nbytes, uint32_t off,
  2549. struct sps_transfer *sps_bam_pipe)
  2550. {
  2551. uint32_t data_cnt, len;
  2552. dma_addr_t addr;
  2553. struct sps_iovec *iovec = sps_bam_pipe->iovec +
  2554. sps_bam_pipe->iovec_count;
  2555. unsigned int res_within_sg;
  2556. if (!sg_src)
  2557. return -ENOENT;
  2558. res_within_sg = sg_dma_len(sg_src);
  2559. while (off > 0) {
  2560. if (!sg_src) {
  2561. pr_err("broken sg list off %d nbytes %d\n",
  2562. off, nbytes);
  2563. return -ENOENT;
  2564. }
  2565. len = sg_dma_len(sg_src);
  2566. if (off < len) {
  2567. res_within_sg = len - off;
  2568. break;
  2569. }
  2570. off -= len;
  2571. sg_src = sg_next(sg_src);
  2572. if (sg_src)
  2573. res_within_sg = sg_dma_len(sg_src);
  2574. }
  2575. while (nbytes > 0 && sg_src) {
  2576. len = min(nbytes, res_within_sg);
  2577. nbytes -= len;
  2578. addr = sg_dma_address(sg_src) + off;
  2579. if (pce_dev->ce_bam_info.minor_version == 0)
  2580. len = ALIGN(len, pce_dev->ce_bam_info.ce_burst_size);
  2581. while (len > 0) {
  2582. if (sps_bam_pipe->iovec_count == QCE_MAX_NUM_DSCR) {
  2583. pr_err("Num of descrptor %d exceed max (%d)\n",
  2584. sps_bam_pipe->iovec_count,
  2585. (uint32_t)QCE_MAX_NUM_DSCR);
  2586. return -ENOMEM;
  2587. }
  2588. if (len > SPS_MAX_PKT_SIZE) {
  2589. data_cnt = SPS_MAX_PKT_SIZE;
  2590. iovec->size = data_cnt;
  2591. iovec->addr = SPS_GET_LOWER_ADDR(addr);
  2592. iovec->flags = SPS_GET_UPPER_ADDR(addr);
  2593. } else {
  2594. data_cnt = len;
  2595. iovec->size = data_cnt;
  2596. iovec->addr = SPS_GET_LOWER_ADDR(addr);
  2597. iovec->flags = SPS_GET_UPPER_ADDR(addr);
  2598. }
  2599. iovec++;
  2600. sps_bam_pipe->iovec_count++;
  2601. addr += data_cnt;
  2602. len -= data_cnt;
  2603. }
  2604. if (nbytes) {
  2605. sg_src = sg_next(sg_src);
  2606. if (!sg_src) {
  2607. pr_err("more data bytes %d\n", nbytes);
  2608. return -ENOMEM;
  2609. }
  2610. res_within_sg = sg_dma_len(sg_src);
  2611. off = 0;
  2612. }
  2613. }
  2614. return 0;
  2615. }
  2616. static int _qce_sps_add_cmd(struct qce_device *pce_dev, uint32_t flag,
  2617. struct qce_cmdlist_info *cmdptr,
  2618. struct sps_transfer *sps_bam_pipe)
  2619. {
  2620. dma_addr_t paddr = GET_PHYS_ADDR(cmdptr->cmdlist);
  2621. struct sps_iovec *iovec = sps_bam_pipe->iovec +
  2622. sps_bam_pipe->iovec_count;
  2623. iovec->size = cmdptr->size;
  2624. iovec->addr = SPS_GET_LOWER_ADDR(paddr);
  2625. iovec->flags = SPS_GET_UPPER_ADDR(paddr) | SPS_IOVEC_FLAG_CMD | flag;
  2626. sps_bam_pipe->iovec_count++;
  2627. if (sps_bam_pipe->iovec_count >= QCE_MAX_NUM_DSCR) {
  2628. pr_err("Num of descrptor %d exceed max (%d)\n",
  2629. sps_bam_pipe->iovec_count, (uint32_t)QCE_MAX_NUM_DSCR);
  2630. return -ENOMEM;
  2631. }
  2632. return 0;
  2633. }
  2634. static int _qce_sps_transfer(struct qce_device *pce_dev, int req_info)
  2635. {
  2636. int rc = 0;
  2637. struct ce_sps_data *pce_sps_data;
  2638. uint16_t op = pce_dev->ce_request_info[req_info].offload_op;
  2639. pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps;
  2640. pce_sps_data->out_transfer.user =
  2641. (void *)((uintptr_t)(CRYPTO_REQ_USER_PAT |
  2642. (unsigned int) req_info));
  2643. pce_sps_data->in_transfer.user =
  2644. (void *)((uintptr_t)(CRYPTO_REQ_USER_PAT |
  2645. (unsigned int) req_info));
  2646. _qce_dump_descr_fifos_dbg(pce_dev, req_info);
  2647. if (pce_sps_data->in_transfer.iovec_count) {
  2648. rc = sps_transfer(pce_dev->ce_bam_info.consumer[op].pipe,
  2649. &pce_sps_data->in_transfer);
  2650. if (rc) {
  2651. pr_err("sps_xfr() fail (cons pipe=0x%lx) rc = %d\n",
  2652. (uintptr_t)pce_dev->ce_bam_info.consumer[op].pipe,
  2653. rc);
  2654. goto ret;
  2655. }
  2656. }
  2657. rc = sps_transfer(pce_dev->ce_bam_info.producer[op].pipe,
  2658. &pce_sps_data->out_transfer);
  2659. if (rc)
  2660. pr_err("sps_xfr() fail (producer pipe=0x%lx) rc = %d\n",
  2661. (uintptr_t)pce_dev->ce_bam_info.producer[op].pipe, rc);
  2662. ret:
  2663. if (rc)
  2664. _qce_dump_descr_fifos(pce_dev, req_info);
  2665. return rc;
  2666. }
  2667. /**
  2668. * Allocate and Connect a CE peripheral's SPS endpoint
  2669. *
  2670. * This function allocates endpoint context and
  2671. * connect it with memory endpoint by calling
  2672. * appropriate SPS driver APIs.
  2673. *
  2674. * Also registers a SPS callback function with
  2675. * SPS driver
  2676. *
  2677. * This function should only be called once typically
  2678. * during driver probe.
  2679. *
  2680. * @pce_dev - Pointer to qce_device structure
  2681. * @ep - Pointer to sps endpoint data structure
  2682. * @index - Points to crypto use case
  2683. * @is_produce - 1 means Producer endpoint
  2684. * 0 means Consumer endpoint
  2685. *
  2686. * @return - 0 if successful else negative value.
  2687. *
  2688. */
  2689. static int qce_sps_init_ep_conn(struct qce_device *pce_dev,
  2690. struct qce_sps_ep_conn_data *ep,
  2691. int index,
  2692. bool is_producer)
  2693. {
  2694. int rc = 0;
  2695. struct sps_pipe *sps_pipe_info;
  2696. struct sps_connect *sps_connect_info = &ep->connect;
  2697. struct sps_register_event *sps_event = &ep->event;
  2698. /* Allocate endpoint context */
  2699. sps_pipe_info = sps_alloc_endpoint();
  2700. if (!sps_pipe_info) {
  2701. pr_err("sps_alloc_endpoint() failed!!! is_producer=%d\n",
  2702. is_producer);
  2703. rc = -ENOMEM;
  2704. goto out;
  2705. }
  2706. /* Now save the sps pipe handle */
  2707. ep->pipe = sps_pipe_info;
  2708. /* Get default connection configuration for an endpoint */
  2709. rc = sps_get_config(sps_pipe_info, sps_connect_info);
  2710. if (rc) {
  2711. pr_err("sps_get_config() fail pipe_handle=0x%lx, rc = %d\n",
  2712. (uintptr_t)sps_pipe_info, rc);
  2713. goto get_config_err;
  2714. }
  2715. /* Modify the default connection configuration */
  2716. if (is_producer) {
  2717. /*
  2718. * For CE producer transfer, source should be
  2719. * CE peripheral where as destination should
  2720. * be system memory.
  2721. */
  2722. sps_connect_info->source = pce_dev->ce_bam_info.bam_handle;
  2723. sps_connect_info->destination = SPS_DEV_HANDLE_MEM;
  2724. /* Producer pipe will handle this connection */
  2725. sps_connect_info->mode = SPS_MODE_SRC;
  2726. sps_connect_info->options =
  2727. SPS_O_AUTO_ENABLE | SPS_O_DESC_DONE;
  2728. } else {
  2729. /* For CE consumer transfer, source should be
  2730. * system memory where as destination should
  2731. * CE peripheral
  2732. */
  2733. sps_connect_info->source = SPS_DEV_HANDLE_MEM;
  2734. sps_connect_info->destination = pce_dev->ce_bam_info.bam_handle;
  2735. sps_connect_info->mode = SPS_MODE_DEST;
  2736. sps_connect_info->options =
  2737. SPS_O_AUTO_ENABLE;
  2738. }
  2739. /* Producer pipe index */
  2740. sps_connect_info->src_pipe_index =
  2741. pce_dev->ce_bam_info.src_pipe_index[index];
  2742. /* Consumer pipe index */
  2743. sps_connect_info->dest_pipe_index =
  2744. pce_dev->ce_bam_info.dest_pipe_index[index];
  2745. /* Set pipe group */
  2746. sps_connect_info->lock_group =
  2747. pce_dev->ce_bam_info.pipe_pair_index[index];
  2748. sps_connect_info->event_thresh = 0x10;
  2749. /*
  2750. * Max. no of scatter/gather buffers that can
  2751. * be passed by block layer = 32 (NR_SG).
  2752. * Each BAM descritor needs 64 bits (8 bytes).
  2753. * One BAM descriptor is required per buffer transfer.
  2754. * So we would require total 256 (32 * 8) bytes of descriptor FIFO.
  2755. * But due to HW limitation we need to allocate atleast one extra
  2756. * descriptor memory (256 bytes + 8 bytes). But in order to be
  2757. * in power of 2, we are allocating 512 bytes of memory.
  2758. */
  2759. sps_connect_info->desc.size = QCE_MAX_NUM_DSCR * MAX_QCE_ALLOC_BAM_REQ *
  2760. sizeof(struct sps_iovec);
  2761. if (sps_connect_info->desc.size > MAX_SPS_DESC_FIFO_SIZE)
  2762. sps_connect_info->desc.size = MAX_SPS_DESC_FIFO_SIZE;
  2763. sps_connect_info->desc.base = dma_alloc_coherent(pce_dev->pdev,
  2764. sps_connect_info->desc.size,
  2765. &sps_connect_info->desc.phys_base,
  2766. GFP_KERNEL | __GFP_ZERO);
  2767. if (sps_connect_info->desc.base == NULL) {
  2768. rc = -ENOMEM;
  2769. pr_err("Can not allocate coherent memory for sps data\n");
  2770. goto get_config_err;
  2771. }
  2772. /* Establish connection between peripheral and memory endpoint */
  2773. rc = sps_connect(sps_pipe_info, sps_connect_info);
  2774. if (rc) {
  2775. pr_err("sps_connect() fail pipe_handle=0x%lx, rc = %d\n",
  2776. (uintptr_t)sps_pipe_info, rc);
  2777. goto sps_connect_err;
  2778. }
  2779. sps_event->mode = SPS_TRIGGER_CALLBACK;
  2780. sps_event->xfer_done = NULL;
  2781. sps_event->user = (void *)pce_dev;
  2782. if (is_producer) {
  2783. sps_event->options = SPS_O_EOT | SPS_O_DESC_DONE;
  2784. sps_event->callback = _sps_producer_callback;
  2785. rc = sps_register_event(ep->pipe, sps_event);
  2786. if (rc) {
  2787. pr_err("Producer callback registration failed rc=%d\n",
  2788. rc);
  2789. goto sps_connect_err;
  2790. }
  2791. } else {
  2792. sps_event->options = SPS_O_EOT;
  2793. sps_event->callback = NULL;
  2794. }
  2795. pr_debug("success, %s : pipe_handle=0x%lx, desc fifo base (phy) = 0x%pK\n",
  2796. is_producer ? "PRODUCER(RX/OUT)" : "CONSUMER(TX/IN)",
  2797. (uintptr_t)sps_pipe_info, &sps_connect_info->desc.phys_base);
  2798. goto out;
  2799. sps_connect_err:
  2800. dma_free_coherent(pce_dev->pdev,
  2801. sps_connect_info->desc.size,
  2802. sps_connect_info->desc.base,
  2803. sps_connect_info->desc.phys_base);
  2804. get_config_err:
  2805. sps_free_endpoint(sps_pipe_info);
  2806. out:
  2807. return rc;
  2808. }
  2809. /**
  2810. * Disconnect and Deallocate a CE peripheral's SPS endpoint
  2811. *
  2812. * This function disconnect endpoint and deallocates
  2813. * endpoint context.
  2814. *
  2815. * This function should only be called once typically
  2816. * during driver remove.
  2817. *
  2818. * @pce_dev - Pointer to qce_device structure
  2819. * @ep - Pointer to sps endpoint data structure
  2820. *
  2821. */
  2822. static void qce_sps_exit_ep_conn(struct qce_device *pce_dev,
  2823. struct qce_sps_ep_conn_data *ep)
  2824. {
  2825. struct sps_pipe *sps_pipe_info = ep->pipe;
  2826. struct sps_connect *sps_connect_info = &ep->connect;
  2827. sps_disconnect(sps_pipe_info);
  2828. dma_free_coherent(pce_dev->pdev,
  2829. sps_connect_info->desc.size,
  2830. sps_connect_info->desc.base,
  2831. sps_connect_info->desc.phys_base);
  2832. sps_free_endpoint(sps_pipe_info);
  2833. }
  2834. static void qce_sps_release_bam(struct qce_device *pce_dev)
  2835. {
  2836. struct bam_registration_info *pbam;
  2837. mutex_lock(&bam_register_lock);
  2838. pbam = pce_dev->pbam;
  2839. if (pbam == NULL)
  2840. goto ret;
  2841. pbam->cnt--;
  2842. if (pbam->cnt > 0)
  2843. goto ret;
  2844. if (pce_dev->ce_bam_info.bam_handle) {
  2845. sps_deregister_bam_device(pce_dev->ce_bam_info.bam_handle);
  2846. pr_debug("deregister bam handle 0x%lx\n",
  2847. pce_dev->ce_bam_info.bam_handle);
  2848. pce_dev->ce_bam_info.bam_handle = 0;
  2849. }
  2850. iounmap(pbam->bam_iobase);
  2851. pr_debug("delete bam 0x%x\n", pbam->bam_mem);
  2852. list_del(&pbam->qlist);
  2853. kfree(pbam);
  2854. ret:
  2855. pce_dev->pbam = NULL;
  2856. mutex_unlock(&bam_register_lock);
  2857. }
  2858. static int qce_sps_get_bam(struct qce_device *pce_dev)
  2859. {
  2860. int rc = 0;
  2861. struct sps_bam_props bam = {0};
  2862. struct bam_registration_info *pbam = NULL;
  2863. struct bam_registration_info *p;
  2864. uint32_t bam_cfg = 0;
  2865. mutex_lock(&bam_register_lock);
  2866. list_for_each_entry(p, &qce50_bam_list, qlist) {
  2867. if (p->bam_mem == pce_dev->bam_mem) {
  2868. pbam = p; /* found */
  2869. break;
  2870. }
  2871. }
  2872. if (pbam) {
  2873. pr_debug("found bam 0x%x\n", pbam->bam_mem);
  2874. pbam->cnt++;
  2875. pce_dev->ce_bam_info.bam_handle = pbam->handle;
  2876. pce_dev->ce_bam_info.bam_mem = pbam->bam_mem;
  2877. pce_dev->ce_bam_info.bam_iobase = pbam->bam_iobase;
  2878. pce_dev->pbam = pbam;
  2879. pce_dev->support_cmd_dscr = pbam->support_cmd_dscr;
  2880. goto ret;
  2881. }
  2882. pbam = kzalloc(sizeof(struct bam_registration_info), GFP_KERNEL);
  2883. if (!pbam) {
  2884. rc = -ENOMEM;
  2885. goto ret;
  2886. }
  2887. pbam->cnt = 1;
  2888. pbam->bam_mem = pce_dev->bam_mem;
  2889. pbam->bam_iobase = ioremap(pce_dev->bam_mem,
  2890. pce_dev->bam_mem_size);
  2891. if (!pbam->bam_iobase) {
  2892. kfree(pbam);
  2893. rc = -ENOMEM;
  2894. pr_err("Can not map BAM io memory\n");
  2895. goto ret;
  2896. }
  2897. pce_dev->ce_bam_info.bam_mem = pbam->bam_mem;
  2898. pce_dev->ce_bam_info.bam_iobase = pbam->bam_iobase;
  2899. pbam->handle = 0;
  2900. pr_debug("allocate bam 0x%x\n", pbam->bam_mem);
  2901. bam_cfg = readl_relaxed(pce_dev->ce_bam_info.bam_iobase +
  2902. CRYPTO_BAM_CNFG_BITS_REG);
  2903. pbam->support_cmd_dscr = (bam_cfg & CRYPTO_BAM_CD_ENABLE_MASK) ?
  2904. true : false;
  2905. if (!pbam->support_cmd_dscr) {
  2906. pr_info("qce50 don't support command descriptor. bam_cfg%x\n",
  2907. bam_cfg);
  2908. pce_dev->no_get_around = false;
  2909. }
  2910. pce_dev->support_cmd_dscr = pbam->support_cmd_dscr;
  2911. bam.phys_addr = pce_dev->ce_bam_info.bam_mem;
  2912. bam.virt_addr = pce_dev->ce_bam_info.bam_iobase;
  2913. /*
  2914. * This event threshold value is only significant for BAM-to-BAM
  2915. * transfer. It's ignored for BAM-to-System mode transfer.
  2916. */
  2917. bam.event_threshold = 0x10; /* Pipe event threshold */
  2918. /*
  2919. * This threshold controls when the BAM publish
  2920. * the descriptor size on the sideband interface.
  2921. * SPS HW will only be used when
  2922. * data transfer size > 64 bytes.
  2923. */
  2924. bam.summing_threshold = 64;
  2925. /* SPS driver wll handle the crypto BAM IRQ */
  2926. bam.irq = (u32)pce_dev->ce_bam_info.bam_irq;
  2927. /*
  2928. * Set flag to indicate BAM global device control is managed
  2929. * remotely.
  2930. */
  2931. if (!pce_dev->support_cmd_dscr || pce_dev->is_shared)
  2932. bam.manage = SPS_BAM_MGR_DEVICE_REMOTE;
  2933. else
  2934. bam.manage = SPS_BAM_MGR_LOCAL;
  2935. bam.ee = pce_dev->ce_bam_info.bam_ee;
  2936. bam.ipc_loglevel = QCE_BAM_DEFAULT_IPC_LOGLVL;
  2937. bam.options |= SPS_BAM_CACHED_WP;
  2938. pr_debug("bam physical base=0x%lx\n", (uintptr_t)bam.phys_addr);
  2939. pr_debug("bam virtual base=0x%pK\n", bam.virt_addr);
  2940. /* Register CE Peripheral BAM device to SPS driver */
  2941. rc = sps_register_bam_device(&bam, &pbam->handle);
  2942. if (rc) {
  2943. pr_err("sps_register_bam_device() failed! err=%d\n", rc);
  2944. rc = -EIO;
  2945. iounmap(pbam->bam_iobase);
  2946. kfree(pbam);
  2947. goto ret;
  2948. }
  2949. pce_dev->pbam = pbam;
  2950. list_add_tail(&pbam->qlist, &qce50_bam_list);
  2951. pce_dev->ce_bam_info.bam_handle = pbam->handle;
  2952. ret:
  2953. mutex_unlock(&bam_register_lock);
  2954. return rc;
  2955. }
  2956. /**
  2957. * Initialize SPS HW connected with CE core
  2958. *
  2959. * This function register BAM HW resources with
  2960. * SPS driver and then initialize 2 SPS endpoints
  2961. *
  2962. * This function should only be called once typically
  2963. * during driver probe.
  2964. *
  2965. * @pce_dev - Pointer to qce_device structure
  2966. *
  2967. * @return - 0 if successful else negative value.
  2968. *
  2969. */
  2970. static int qce_sps_init(struct qce_device *pce_dev)
  2971. {
  2972. int rc = 0, i = 0;
  2973. rc = qce_sps_get_bam(pce_dev);
  2974. if (rc)
  2975. return rc;
  2976. pr_debug("BAM device registered. bam_handle=0x%lx\n",
  2977. pce_dev->ce_bam_info.bam_handle);
  2978. for (i = 0; i < QCE_OFFLOAD_OPER_LAST; i++) {
  2979. if (i == QCE_OFFLOAD_NONE && !(pce_dev->kernel_pipes_support))
  2980. continue;
  2981. else if ((i > 0) && !(pce_dev->offload_pipes_support))
  2982. break;
  2983. if (!pce_dev->ce_bam_info.pipe_pair_index[i])
  2984. continue;
  2985. rc = qce_sps_init_ep_conn(pce_dev,
  2986. &pce_dev->ce_bam_info.producer[i], i, true);
  2987. if (rc)
  2988. goto sps_connect_producer_err;
  2989. rc = qce_sps_init_ep_conn(pce_dev,
  2990. &pce_dev->ce_bam_info.consumer[i], i, false);
  2991. if (rc)
  2992. goto sps_connect_consumer_err;
  2993. }
  2994. pr_info(" QTI MSM CE-BAM at 0x%016llx irq %d\n",
  2995. (unsigned long long)pce_dev->ce_bam_info.bam_mem,
  2996. (unsigned int)pce_dev->ce_bam_info.bam_irq);
  2997. return rc;
  2998. sps_connect_consumer_err:
  2999. qce_sps_exit_ep_conn(pce_dev, &pce_dev->ce_bam_info.producer[i]);
  3000. sps_connect_producer_err:
  3001. qce_sps_release_bam(pce_dev);
  3002. return rc;
  3003. }
  3004. static inline int qce_alloc_req_info(struct qce_device *pce_dev)
  3005. {
  3006. int i;
  3007. int request_index = pce_dev->ce_request_index;
  3008. for (i = 0; i < MAX_QCE_BAM_REQ; i++) {
  3009. request_index++;
  3010. if (request_index >= MAX_QCE_BAM_REQ)
  3011. request_index = 0;
  3012. if (!atomic_xchg(
  3013. &pce_dev->ce_request_info[request_index].in_use,
  3014. true)) {
  3015. pce_dev->ce_request_index = request_index;
  3016. return request_index;
  3017. }
  3018. }
  3019. pr_warn("pcedev %d no reqs available no_of_queued_req %d\n",
  3020. pce_dev->dev_no, atomic_read(
  3021. &pce_dev->no_of_queued_req));
  3022. return -EBUSY;
  3023. }
  3024. static inline void qce_free_req_info(struct qce_device *pce_dev, int req_info,
  3025. bool is_complete)
  3026. {
  3027. pce_dev->ce_request_info[req_info].xfer_type = QCE_XFER_TYPE_LAST;
  3028. if (atomic_xchg(&pce_dev->ce_request_info[req_info].in_use,
  3029. false)) {
  3030. if (req_info < MAX_QCE_BAM_REQ && is_complete)
  3031. atomic_dec(&pce_dev->no_of_queued_req);
  3032. } else
  3033. pr_warn("request info %d free already\n", req_info);
  3034. }
  3035. static void print_notify_debug(struct sps_event_notify *notify)
  3036. {
  3037. phys_addr_t addr =
  3038. DESC_FULL_ADDR((phys_addr_t) notify->data.transfer.iovec.flags,
  3039. notify->data.transfer.iovec.addr);
  3040. pr_debug("sps ev_id=%d, addr=0x%pa, size=0x%x, flags=0x%x user=0x%pK\n",
  3041. notify->event_id, &addr,
  3042. notify->data.transfer.iovec.size,
  3043. notify->data.transfer.iovec.flags,
  3044. notify->data.transfer.user);
  3045. }
  3046. static void _qce_req_complete(struct qce_device *pce_dev, unsigned int req_info)
  3047. {
  3048. struct ce_request_info *preq_info;
  3049. preq_info = &pce_dev->ce_request_info[req_info];
  3050. switch (preq_info->xfer_type) {
  3051. case QCE_XFER_CIPHERING:
  3052. _ablk_cipher_complete(pce_dev, req_info);
  3053. break;
  3054. case QCE_XFER_HASHING:
  3055. _sha_complete(pce_dev, req_info);
  3056. break;
  3057. case QCE_XFER_AEAD:
  3058. _aead_complete(pce_dev, req_info);
  3059. break;
  3060. case QCE_XFER_F8:
  3061. _f8_complete(pce_dev, req_info);
  3062. break;
  3063. case QCE_XFER_F9:
  3064. _f9_complete(pce_dev, req_info);
  3065. break;
  3066. default:
  3067. qce_free_req_info(pce_dev, req_info, true);
  3068. break;
  3069. }
  3070. }
  3071. static void qce_multireq_timeout(struct timer_list *data)
  3072. {
  3073. struct qce_device *pce_dev = from_timer(pce_dev, data, timer);
  3074. int ret = 0;
  3075. int last_seq;
  3076. unsigned long flags;
  3077. last_seq = atomic_read(&pce_dev->bunch_cmd_seq);
  3078. if (last_seq == 0 ||
  3079. last_seq != atomic_read(&pce_dev->last_intr_seq)) {
  3080. atomic_set(&pce_dev->last_intr_seq, last_seq);
  3081. mod_timer(&(pce_dev->timer), (jiffies + DELAY_IN_JIFFIES));
  3082. return;
  3083. }
  3084. /* last bunch mode command time out */
  3085. /*
  3086. * From here to dummy request finish sps request and set owner back
  3087. * to none, we disable interrupt.
  3088. * So it won't get preempted or interrupted. If bam inerrupts happen
  3089. * between, and completion callback gets called from BAM, a new
  3090. * request may be issued by the client driver. Deadlock may happen.
  3091. */
  3092. local_irq_save(flags);
  3093. if (cmpxchg(&pce_dev->owner, QCE_OWNER_NONE, QCE_OWNER_TIMEOUT)
  3094. != QCE_OWNER_NONE) {
  3095. local_irq_restore(flags);
  3096. mod_timer(&(pce_dev->timer), (jiffies + DELAY_IN_JIFFIES));
  3097. return;
  3098. }
  3099. ret = qce_dummy_req(pce_dev);
  3100. if (ret)
  3101. pr_warn("pcedev %d: Failed to insert dummy req\n",
  3102. pce_dev->dev_no);
  3103. cmpxchg(&pce_dev->owner, QCE_OWNER_TIMEOUT, QCE_OWNER_NONE);
  3104. pce_dev->mode = IN_INTERRUPT_MODE;
  3105. local_irq_restore(flags);
  3106. del_timer(&(pce_dev->timer));
  3107. pce_dev->qce_stats.no_of_timeouts++;
  3108. pr_debug("pcedev %d mode switch to INTR\n", pce_dev->dev_no);
  3109. }
  3110. void qce_get_driver_stats(void *handle)
  3111. {
  3112. struct qce_device *pce_dev = (struct qce_device *) handle;
  3113. if (!_qce50_disp_stats)
  3114. return;
  3115. pr_info("Engine %d timeout occuured %d\n", pce_dev->dev_no,
  3116. pce_dev->qce_stats.no_of_timeouts);
  3117. pr_info("Engine %d dummy request inserted %d\n", pce_dev->dev_no,
  3118. pce_dev->qce_stats.no_of_dummy_reqs);
  3119. if (pce_dev->mode)
  3120. pr_info("Engine %d is in BUNCH MODE\n", pce_dev->dev_no);
  3121. else
  3122. pr_info("Engine %d is in INTERRUPT MODE\n", pce_dev->dev_no);
  3123. pr_info("Engine %d outstanding request %d\n", pce_dev->dev_no,
  3124. atomic_read(&pce_dev->no_of_queued_req));
  3125. }
  3126. EXPORT_SYMBOL(qce_get_driver_stats);
  3127. void qce_clear_driver_stats(void *handle)
  3128. {
  3129. struct qce_device *pce_dev = (struct qce_device *) handle;
  3130. pce_dev->qce_stats.no_of_timeouts = 0;
  3131. pce_dev->qce_stats.no_of_dummy_reqs = 0;
  3132. }
  3133. EXPORT_SYMBOL(qce_clear_driver_stats);
  3134. static void _sps_producer_callback(struct sps_event_notify *notify)
  3135. {
  3136. struct qce_device *pce_dev = (struct qce_device *)
  3137. ((struct sps_event_notify *)notify)->user;
  3138. int rc = 0;
  3139. unsigned int req_info;
  3140. struct ce_sps_data *pce_sps_data;
  3141. struct ce_request_info *preq_info;
  3142. uint16_t op;
  3143. print_notify_debug(notify);
  3144. req_info = (unsigned int)((uintptr_t)notify->data.transfer.user);
  3145. if ((req_info & 0xffff0000) != CRYPTO_REQ_USER_PAT) {
  3146. pr_warn("request information %d out of range\n", req_info);
  3147. return;
  3148. }
  3149. req_info = req_info & 0x00ff;
  3150. if (req_info < 0 || req_info >= MAX_QCE_ALLOC_BAM_REQ) {
  3151. pr_warn("request information %d out of range\n", req_info);
  3152. return;
  3153. }
  3154. preq_info = &pce_dev->ce_request_info[req_info];
  3155. if (!atomic_read(&preq_info->in_use)) {
  3156. pr_err("request information %d already done\n", req_info);
  3157. return;
  3158. }
  3159. op = pce_dev->ce_request_info[req_info].offload_op;
  3160. pce_sps_data = &preq_info->ce_sps;
  3161. if ((preq_info->xfer_type == QCE_XFER_CIPHERING ||
  3162. preq_info->xfer_type == QCE_XFER_AEAD) &&
  3163. pce_sps_data->producer_state == QCE_PIPE_STATE_IDLE) {
  3164. pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
  3165. if (!is_offload_op(op) && (op < QCE_OFFLOAD_OPER_LAST)) {
  3166. pce_sps_data->out_transfer.iovec_count = 0;
  3167. _qce_sps_add_data(GET_PHYS_ADDR(
  3168. pce_sps_data->result_dump),
  3169. CRYPTO_RESULT_DUMP_SIZE,
  3170. &pce_sps_data->out_transfer);
  3171. _qce_set_flag(&pce_sps_data->out_transfer,
  3172. SPS_IOVEC_FLAG_INT);
  3173. rc = sps_transfer(
  3174. pce_dev->ce_bam_info.producer[op].pipe,
  3175. &pce_sps_data->out_transfer);
  3176. if (rc) {
  3177. pr_err("sps_xfr fail (prod pipe=0x%lx) rc = %d\n",
  3178. (uintptr_t)pce_dev->ce_bam_info.producer[op].pipe,
  3179. rc);
  3180. }
  3181. }
  3182. return;
  3183. }
  3184. _qce_req_complete(pce_dev, req_info);
  3185. }
  3186. /**
  3187. * De-initialize SPS HW connected with CE core
  3188. *
  3189. * This function deinitialize SPS endpoints and then
  3190. * deregisters BAM resources from SPS driver.
  3191. *
  3192. * This function should only be called once typically
  3193. * during driver remove.
  3194. *
  3195. * @pce_dev - Pointer to qce_device structure
  3196. *
  3197. */
  3198. static void qce_sps_exit(struct qce_device *pce_dev)
  3199. {
  3200. int i = 0;
  3201. for (i = 0; i < QCE_OFFLOAD_OPER_LAST; i++) {
  3202. if (i == QCE_OFFLOAD_NONE && !(pce_dev->kernel_pipes_support))
  3203. continue;
  3204. else if ((i > 0) && !(pce_dev->offload_pipes_support))
  3205. break;
  3206. if (!pce_dev->ce_bam_info.pipe_pair_index[i])
  3207. continue;
  3208. qce_sps_exit_ep_conn(pce_dev,
  3209. &pce_dev->ce_bam_info.consumer[i]);
  3210. qce_sps_exit_ep_conn(pce_dev,
  3211. &pce_dev->ce_bam_info.producer[i]);
  3212. }
  3213. qce_sps_release_bam(pce_dev);
  3214. }
  3215. static void qce_add_cmd_element(struct qce_device *pdev,
  3216. struct sps_command_element **cmd_ptr, u32 addr,
  3217. u32 data, struct sps_command_element **populate)
  3218. {
  3219. (*cmd_ptr)->addr = (uint32_t)(addr + pdev->phy_iobase);
  3220. (*cmd_ptr)->command = 0;
  3221. (*cmd_ptr)->data = data;
  3222. (*cmd_ptr)->mask = 0xFFFFFFFF;
  3223. (*cmd_ptr)->reserved = 0;
  3224. if (populate != NULL)
  3225. *populate = *cmd_ptr;
  3226. (*cmd_ptr)++;
  3227. }
  3228. static int _setup_cipher_aes_cmdlistptrs(struct qce_device *pdev, int cri_index,
  3229. unsigned char **pvaddr, enum qce_cipher_mode_enum mode,
  3230. bool key_128)
  3231. {
  3232. struct sps_command_element *ce_vaddr;
  3233. uintptr_t ce_vaddr_start;
  3234. struct qce_cmdlistptr_ops *cmdlistptr;
  3235. struct qce_cmdlist_info *pcl_info = NULL;
  3236. int i = 0;
  3237. uint32_t encr_cfg = 0;
  3238. uint32_t key_reg = 0;
  3239. uint32_t xts_key_reg = 0;
  3240. uint32_t iv_reg = 0;
  3241. cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  3242. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3243. pdev->ce_bam_info.ce_burst_size);
  3244. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3245. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3246. /*
  3247. * Designate chunks of the allocated memory to various
  3248. * command list pointers related to AES cipher operations defined
  3249. * in ce_cmdlistptrs_ops structure.
  3250. */
  3251. switch (mode) {
  3252. case QCE_MODE_CBC:
  3253. case QCE_MODE_CTR:
  3254. if (key_128) {
  3255. cmdlistptr->cipher_aes_128_cbc_ctr.cmdlist =
  3256. (uintptr_t)ce_vaddr;
  3257. pcl_info = &(cmdlistptr->cipher_aes_128_cbc_ctr);
  3258. if (mode == QCE_MODE_CBC)
  3259. encr_cfg = pdev->reg.encr_cfg_aes_cbc_128;
  3260. else
  3261. encr_cfg = pdev->reg.encr_cfg_aes_ctr_128;
  3262. iv_reg = 4;
  3263. key_reg = 4;
  3264. xts_key_reg = 0;
  3265. } else {
  3266. cmdlistptr->cipher_aes_256_cbc_ctr.cmdlist =
  3267. (uintptr_t)ce_vaddr;
  3268. pcl_info = &(cmdlistptr->cipher_aes_256_cbc_ctr);
  3269. if (mode == QCE_MODE_CBC)
  3270. encr_cfg = pdev->reg.encr_cfg_aes_cbc_256;
  3271. else
  3272. encr_cfg = pdev->reg.encr_cfg_aes_ctr_256;
  3273. iv_reg = 4;
  3274. key_reg = 8;
  3275. xts_key_reg = 0;
  3276. }
  3277. break;
  3278. case QCE_MODE_ECB:
  3279. if (key_128) {
  3280. cmdlistptr->cipher_aes_128_ecb.cmdlist =
  3281. (uintptr_t)ce_vaddr;
  3282. pcl_info = &(cmdlistptr->cipher_aes_128_ecb);
  3283. encr_cfg = pdev->reg.encr_cfg_aes_ecb_128;
  3284. iv_reg = 0;
  3285. key_reg = 4;
  3286. xts_key_reg = 0;
  3287. } else {
  3288. cmdlistptr->cipher_aes_256_ecb.cmdlist =
  3289. (uintptr_t)ce_vaddr;
  3290. pcl_info = &(cmdlistptr->cipher_aes_256_ecb);
  3291. encr_cfg = pdev->reg.encr_cfg_aes_ecb_256;
  3292. iv_reg = 0;
  3293. key_reg = 8;
  3294. xts_key_reg = 0;
  3295. }
  3296. break;
  3297. case QCE_MODE_XTS:
  3298. if (key_128) {
  3299. cmdlistptr->cipher_aes_128_xts.cmdlist =
  3300. (uintptr_t)ce_vaddr;
  3301. pcl_info = &(cmdlistptr->cipher_aes_128_xts);
  3302. encr_cfg = pdev->reg.encr_cfg_aes_xts_128;
  3303. iv_reg = 4;
  3304. key_reg = 4;
  3305. xts_key_reg = 4;
  3306. } else {
  3307. cmdlistptr->cipher_aes_256_xts.cmdlist =
  3308. (uintptr_t)ce_vaddr;
  3309. pcl_info = &(cmdlistptr->cipher_aes_256_xts);
  3310. encr_cfg = pdev->reg.encr_cfg_aes_xts_256;
  3311. iv_reg = 4;
  3312. key_reg = 8;
  3313. xts_key_reg = 8;
  3314. }
  3315. break;
  3316. default:
  3317. pr_err("Unknown mode of operation %d received, exiting now\n",
  3318. mode);
  3319. return -EINVAL;
  3320. break;
  3321. }
  3322. /* clear status register */
  3323. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
  3324. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS2_REG, 0, NULL);
  3325. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS3_REG, 0, NULL);
  3326. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS4_REG, 0, NULL);
  3327. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS5_REG, 0, NULL);
  3328. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS6_REG, 0, NULL);
  3329. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3330. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3331. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  3332. &pcl_info->seg_size);
  3333. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
  3334. &pcl_info->encr_seg_cfg);
  3335. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
  3336. &pcl_info->encr_seg_size);
  3337. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3338. &pcl_info->encr_seg_start);
  3339. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG,
  3340. pdev->reg.encr_cntr_mask_3, &pcl_info->encr_mask_3);
  3341. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG2,
  3342. pdev->reg.encr_cntr_mask_2, &pcl_info->encr_mask_2);
  3343. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG1,
  3344. pdev->reg.encr_cntr_mask_1, &pcl_info->encr_mask_1);
  3345. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG0,
  3346. pdev->reg.encr_cntr_mask_0, &pcl_info->encr_mask_0);
  3347. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0,
  3348. &pcl_info->auth_seg_cfg);
  3349. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_DATA_PATT_PROC_CFG_REG, 0,
  3350. &pcl_info->pattern_info);
  3351. qce_add_cmd_element(pdev, &ce_vaddr,
  3352. CRYPTO_DATA_PARTIAL_BLOCK_PROC_CFG_REG, 0,
  3353. &pcl_info->block_offset);
  3354. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
  3355. &pcl_info->encr_key);
  3356. for (i = 1; i < key_reg; i++)
  3357. qce_add_cmd_element(pdev, &ce_vaddr,
  3358. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
  3359. 0, NULL);
  3360. if (xts_key_reg) {
  3361. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_XTS_KEY0_REG,
  3362. 0, &pcl_info->encr_xts_key);
  3363. for (i = 1; i < xts_key_reg; i++)
  3364. qce_add_cmd_element(pdev, &ce_vaddr,
  3365. (CRYPTO_ENCR_XTS_KEY0_REG +
  3366. i * sizeof(uint32_t)), 0, NULL);
  3367. qce_add_cmd_element(pdev, &ce_vaddr,
  3368. CRYPTO_ENCR_XTS_DU_SIZE_REG, 0,
  3369. &pcl_info->encr_xts_du_size);
  3370. }
  3371. if (iv_reg) {
  3372. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
  3373. &pcl_info->encr_cntr_iv);
  3374. for (i = 1; i < iv_reg; i++)
  3375. qce_add_cmd_element(pdev, &ce_vaddr,
  3376. (CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)),
  3377. 0, NULL);
  3378. }
  3379. /* Add dummy to align size to burst-size multiple */
  3380. if (mode == QCE_MODE_XTS) {
  3381. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
  3382. 0, &pcl_info->auth_seg_size);
  3383. } else {
  3384. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
  3385. 0, &pcl_info->auth_seg_size);
  3386. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG,
  3387. 0, &pcl_info->auth_seg_size);
  3388. }
  3389. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3390. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  3391. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3392. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3393. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3394. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3395. *pvaddr = (unsigned char *) ce_vaddr;
  3396. return 0;
  3397. }
  3398. static int _setup_cipher_des_cmdlistptrs(struct qce_device *pdev, int cri_index,
  3399. unsigned char **pvaddr, enum qce_cipher_alg_enum alg,
  3400. bool mode_cbc)
  3401. {
  3402. struct sps_command_element *ce_vaddr;
  3403. uintptr_t ce_vaddr_start;
  3404. struct qce_cmdlistptr_ops *cmdlistptr;
  3405. struct qce_cmdlist_info *pcl_info = NULL;
  3406. int i = 0;
  3407. uint32_t encr_cfg = 0;
  3408. uint32_t key_reg = 0;
  3409. uint32_t iv_reg = 0;
  3410. cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  3411. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3412. pdev->ce_bam_info.ce_burst_size);
  3413. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3414. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3415. /*
  3416. * Designate chunks of the allocated memory to various
  3417. * command list pointers related to cipher operations defined
  3418. * in ce_cmdlistptrs_ops structure.
  3419. */
  3420. switch (alg) {
  3421. case CIPHER_ALG_DES:
  3422. if (mode_cbc) {
  3423. cmdlistptr->cipher_des_cbc.cmdlist =
  3424. (uintptr_t)ce_vaddr;
  3425. pcl_info = &(cmdlistptr->cipher_des_cbc);
  3426. encr_cfg = pdev->reg.encr_cfg_des_cbc;
  3427. iv_reg = 2;
  3428. key_reg = 2;
  3429. } else {
  3430. cmdlistptr->cipher_des_ecb.cmdlist =
  3431. (uintptr_t)ce_vaddr;
  3432. pcl_info = &(cmdlistptr->cipher_des_ecb);
  3433. encr_cfg = pdev->reg.encr_cfg_des_ecb;
  3434. iv_reg = 0;
  3435. key_reg = 2;
  3436. }
  3437. break;
  3438. case CIPHER_ALG_3DES:
  3439. if (mode_cbc) {
  3440. cmdlistptr->cipher_3des_cbc.cmdlist =
  3441. (uintptr_t)ce_vaddr;
  3442. pcl_info = &(cmdlistptr->cipher_3des_cbc);
  3443. encr_cfg = pdev->reg.encr_cfg_3des_cbc;
  3444. iv_reg = 2;
  3445. key_reg = 6;
  3446. } else {
  3447. cmdlistptr->cipher_3des_ecb.cmdlist =
  3448. (uintptr_t)ce_vaddr;
  3449. pcl_info = &(cmdlistptr->cipher_3des_ecb);
  3450. encr_cfg = pdev->reg.encr_cfg_3des_ecb;
  3451. iv_reg = 0;
  3452. key_reg = 6;
  3453. }
  3454. break;
  3455. default:
  3456. pr_err("Unknown algorithms %d received, exiting now\n", alg);
  3457. return -EINVAL;
  3458. break;
  3459. }
  3460. /* clear status register */
  3461. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
  3462. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3463. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3464. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  3465. &pcl_info->seg_size);
  3466. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
  3467. &pcl_info->encr_seg_cfg);
  3468. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
  3469. &pcl_info->encr_seg_size);
  3470. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3471. &pcl_info->encr_seg_start);
  3472. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0,
  3473. &pcl_info->auth_seg_cfg);
  3474. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
  3475. &pcl_info->encr_key);
  3476. for (i = 1; i < key_reg; i++)
  3477. qce_add_cmd_element(pdev, &ce_vaddr,
  3478. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
  3479. 0, NULL);
  3480. if (iv_reg) {
  3481. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
  3482. &pcl_info->encr_cntr_iv);
  3483. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR1_IV1_REG, 0,
  3484. NULL);
  3485. }
  3486. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3487. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  3488. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3489. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3490. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3491. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3492. *pvaddr = (unsigned char *) ce_vaddr;
  3493. return 0;
  3494. }
  3495. static int _setup_cipher_null_cmdlistptrs(struct qce_device *pdev,
  3496. int cri_index, unsigned char **pvaddr)
  3497. {
  3498. struct sps_command_element *ce_vaddr;
  3499. uintptr_t ce_vaddr_start;
  3500. struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_request_info
  3501. [cri_index].ce_sps.cmdlistptr;
  3502. struct qce_cmdlist_info *pcl_info = NULL;
  3503. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3504. pdev->ce_bam_info.ce_burst_size);
  3505. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3506. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3507. cmdlistptr->cipher_null.cmdlist = (uintptr_t)ce_vaddr;
  3508. pcl_info = &(cmdlistptr->cipher_null);
  3509. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG,
  3510. pdev->ce_bam_info.ce_burst_size, NULL);
  3511. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG,
  3512. pdev->reg.encr_cfg_aes_ecb_128, NULL);
  3513. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
  3514. NULL);
  3515. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3516. NULL);
  3517. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
  3518. 0, NULL);
  3519. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
  3520. 0, NULL);
  3521. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
  3522. NULL);
  3523. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3524. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3525. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3526. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3527. *pvaddr = (unsigned char *) ce_vaddr;
  3528. return 0;
  3529. }
  3530. static int _setup_auth_cmdlistptrs(struct qce_device *pdev, int cri_index,
  3531. unsigned char **pvaddr, enum qce_hash_alg_enum alg,
  3532. bool key_128)
  3533. {
  3534. struct sps_command_element *ce_vaddr;
  3535. uintptr_t ce_vaddr_start;
  3536. struct qce_cmdlistptr_ops *cmdlistptr;
  3537. struct qce_cmdlist_info *pcl_info = NULL;
  3538. int i = 0;
  3539. uint32_t key_reg = 0;
  3540. uint32_t auth_cfg = 0;
  3541. uint32_t iv_reg = 0;
  3542. cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  3543. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3544. pdev->ce_bam_info.ce_burst_size);
  3545. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3546. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3547. /*
  3548. * Designate chunks of the allocated memory to various
  3549. * command list pointers related to authentication operations
  3550. * defined in ce_cmdlistptrs_ops structure.
  3551. */
  3552. switch (alg) {
  3553. case QCE_HASH_SHA1:
  3554. cmdlistptr->auth_sha1.cmdlist = (uintptr_t)ce_vaddr;
  3555. pcl_info = &(cmdlistptr->auth_sha1);
  3556. auth_cfg = pdev->reg.auth_cfg_sha1;
  3557. iv_reg = 5;
  3558. /* clear status register */
  3559. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
  3560. 0, NULL);
  3561. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3562. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3563. break;
  3564. case QCE_HASH_SHA256:
  3565. cmdlistptr->auth_sha256.cmdlist = (uintptr_t)ce_vaddr;
  3566. pcl_info = &(cmdlistptr->auth_sha256);
  3567. auth_cfg = pdev->reg.auth_cfg_sha256;
  3568. iv_reg = 8;
  3569. /* clear status register */
  3570. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
  3571. 0, NULL);
  3572. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3573. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3574. /* 1 dummy write */
  3575. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
  3576. 0, NULL);
  3577. break;
  3578. case QCE_HASH_SHA1_HMAC:
  3579. cmdlistptr->auth_sha1_hmac.cmdlist = (uintptr_t)ce_vaddr;
  3580. pcl_info = &(cmdlistptr->auth_sha1_hmac);
  3581. auth_cfg = pdev->reg.auth_cfg_hmac_sha1;
  3582. key_reg = 16;
  3583. iv_reg = 5;
  3584. /* clear status register */
  3585. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
  3586. 0, NULL);
  3587. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3588. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3589. break;
  3590. case QCE_HASH_SHA256_HMAC:
  3591. cmdlistptr->auth_sha256_hmac.cmdlist = (uintptr_t)ce_vaddr;
  3592. pcl_info = &(cmdlistptr->auth_sha256_hmac);
  3593. auth_cfg = pdev->reg.auth_cfg_hmac_sha256;
  3594. key_reg = 16;
  3595. iv_reg = 8;
  3596. /* clear status register */
  3597. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0,
  3598. NULL);
  3599. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3600. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3601. /* 1 dummy write */
  3602. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
  3603. 0, NULL);
  3604. break;
  3605. case QCE_HASH_AES_CMAC:
  3606. if (key_128) {
  3607. cmdlistptr->auth_aes_128_cmac.cmdlist =
  3608. (uintptr_t)ce_vaddr;
  3609. pcl_info = &(cmdlistptr->auth_aes_128_cmac);
  3610. auth_cfg = pdev->reg.auth_cfg_cmac_128;
  3611. key_reg = 4;
  3612. } else {
  3613. cmdlistptr->auth_aes_256_cmac.cmdlist =
  3614. (uintptr_t)ce_vaddr;
  3615. pcl_info = &(cmdlistptr->auth_aes_256_cmac);
  3616. auth_cfg = pdev->reg.auth_cfg_cmac_256;
  3617. key_reg = 8;
  3618. }
  3619. /* clear status register */
  3620. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0,
  3621. NULL);
  3622. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3623. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3624. /* 1 dummy write */
  3625. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
  3626. 0, NULL);
  3627. break;
  3628. default:
  3629. pr_err("Unknown algorithms %d received, exiting now\n", alg);
  3630. return -EINVAL;
  3631. break;
  3632. }
  3633. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  3634. &pcl_info->seg_size);
  3635. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0,
  3636. &pcl_info->encr_seg_cfg);
  3637. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
  3638. auth_cfg, &pcl_info->auth_seg_cfg);
  3639. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
  3640. &pcl_info->auth_seg_size);
  3641. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
  3642. &pcl_info->auth_seg_start);
  3643. if (alg == QCE_HASH_AES_CMAC) {
  3644. /* reset auth iv, bytecount and key registers */
  3645. for (i = 0; i < 16; i++)
  3646. qce_add_cmd_element(pdev, &ce_vaddr,
  3647. (CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)),
  3648. 0, NULL);
  3649. for (i = 0; i < 16; i++)
  3650. qce_add_cmd_element(pdev, &ce_vaddr,
  3651. (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)),
  3652. 0, NULL);
  3653. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
  3654. 0, NULL);
  3655. } else {
  3656. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0,
  3657. &pcl_info->auth_iv);
  3658. for (i = 1; i < iv_reg; i++)
  3659. qce_add_cmd_element(pdev, &ce_vaddr,
  3660. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)),
  3661. 0, NULL);
  3662. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
  3663. 0, &pcl_info->auth_bytecount);
  3664. }
  3665. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL);
  3666. if (key_reg) {
  3667. qce_add_cmd_element(pdev, &ce_vaddr,
  3668. CRYPTO_AUTH_KEY0_REG, 0, &pcl_info->auth_key);
  3669. for (i = 1; i < key_reg; i++)
  3670. qce_add_cmd_element(pdev, &ce_vaddr,
  3671. (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)),
  3672. 0, NULL);
  3673. }
  3674. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3675. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  3676. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3677. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3678. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3679. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3680. *pvaddr = (unsigned char *) ce_vaddr;
  3681. return 0;
  3682. }
  3683. static int _setup_aead_cmdlistptrs(struct qce_device *pdev,
  3684. int cri_index,
  3685. unsigned char **pvaddr,
  3686. uint32_t alg,
  3687. uint32_t mode,
  3688. uint32_t key_size,
  3689. bool sha1)
  3690. {
  3691. struct sps_command_element *ce_vaddr;
  3692. uintptr_t ce_vaddr_start;
  3693. struct qce_cmdlistptr_ops *cmd;
  3694. struct qce_cmdlist_info *pcl_info = NULL;
  3695. uint32_t key_reg;
  3696. uint32_t iv_reg;
  3697. uint32_t i;
  3698. uint32_t enciv_in_word;
  3699. uint32_t encr_cfg;
  3700. cmd = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  3701. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3702. pdev->ce_bam_info.ce_burst_size);
  3703. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3704. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3705. switch (alg) {
  3706. case CIPHER_ALG_DES:
  3707. switch (mode) {
  3708. case QCE_MODE_CBC:
  3709. if (sha1) {
  3710. cmd->aead_hmac_sha1_cbc_des.cmdlist =
  3711. (uintptr_t)ce_vaddr;
  3712. pcl_info =
  3713. &(cmd->aead_hmac_sha1_cbc_des);
  3714. } else {
  3715. cmd->aead_hmac_sha256_cbc_des.cmdlist =
  3716. (uintptr_t)ce_vaddr;
  3717. pcl_info =
  3718. &(cmd->aead_hmac_sha256_cbc_des);
  3719. }
  3720. encr_cfg = pdev->reg.encr_cfg_des_cbc;
  3721. break;
  3722. default:
  3723. return -EINVAL;
  3724. }
  3725. enciv_in_word = 2;
  3726. break;
  3727. case CIPHER_ALG_3DES:
  3728. switch (mode) {
  3729. case QCE_MODE_CBC:
  3730. if (sha1) {
  3731. cmd->aead_hmac_sha1_cbc_3des.cmdlist =
  3732. (uintptr_t)ce_vaddr;
  3733. pcl_info =
  3734. &(cmd->aead_hmac_sha1_cbc_3des);
  3735. } else {
  3736. cmd->aead_hmac_sha256_cbc_3des.cmdlist =
  3737. (uintptr_t)ce_vaddr;
  3738. pcl_info =
  3739. &(cmd->aead_hmac_sha256_cbc_3des);
  3740. }
  3741. encr_cfg = pdev->reg.encr_cfg_3des_cbc;
  3742. break;
  3743. default:
  3744. return -EINVAL;
  3745. }
  3746. enciv_in_word = 2;
  3747. break;
  3748. case CIPHER_ALG_AES:
  3749. switch (mode) {
  3750. case QCE_MODE_CBC:
  3751. if (key_size == AES128_KEY_SIZE) {
  3752. if (sha1) {
  3753. cmd->aead_hmac_sha1_cbc_aes_128.cmdlist =
  3754. (uintptr_t)ce_vaddr;
  3755. pcl_info =
  3756. &(cmd->aead_hmac_sha1_cbc_aes_128);
  3757. } else {
  3758. cmd->aead_hmac_sha256_cbc_aes_128.cmdlist
  3759. = (uintptr_t)ce_vaddr;
  3760. pcl_info =
  3761. &(cmd->aead_hmac_sha256_cbc_aes_128);
  3762. }
  3763. encr_cfg = pdev->reg.encr_cfg_aes_cbc_128;
  3764. } else if (key_size == AES256_KEY_SIZE) {
  3765. if (sha1) {
  3766. cmd->aead_hmac_sha1_cbc_aes_256.cmdlist =
  3767. (uintptr_t)ce_vaddr;
  3768. pcl_info =
  3769. &(cmd->aead_hmac_sha1_cbc_aes_256);
  3770. } else {
  3771. cmd->aead_hmac_sha256_cbc_aes_256.cmdlist =
  3772. (uintptr_t)ce_vaddr;
  3773. pcl_info =
  3774. &(cmd->aead_hmac_sha256_cbc_aes_256);
  3775. }
  3776. encr_cfg = pdev->reg.encr_cfg_aes_cbc_256;
  3777. } else {
  3778. return -EINVAL;
  3779. }
  3780. break;
  3781. default:
  3782. return -EINVAL;
  3783. }
  3784. enciv_in_word = 4;
  3785. break;
  3786. default:
  3787. return -EINVAL;
  3788. }
  3789. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
  3790. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3791. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3792. key_reg = key_size/sizeof(uint32_t);
  3793. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
  3794. &pcl_info->encr_key);
  3795. for (i = 1; i < key_reg; i++)
  3796. qce_add_cmd_element(pdev, &ce_vaddr,
  3797. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
  3798. 0, NULL);
  3799. if (mode != QCE_MODE_ECB) {
  3800. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
  3801. &pcl_info->encr_cntr_iv);
  3802. for (i = 1; i < enciv_in_word; i++)
  3803. qce_add_cmd_element(pdev, &ce_vaddr,
  3804. (CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)),
  3805. 0, NULL);
  3806. }
  3807. if (sha1)
  3808. iv_reg = 5;
  3809. else
  3810. iv_reg = 8;
  3811. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0,
  3812. &pcl_info->auth_iv);
  3813. for (i = 1; i < iv_reg; i++)
  3814. qce_add_cmd_element(pdev, &ce_vaddr,
  3815. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)),
  3816. 0, NULL);
  3817. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
  3818. 0, &pcl_info->auth_bytecount);
  3819. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL);
  3820. key_reg = SHA_HMAC_KEY_SIZE/sizeof(uint32_t);
  3821. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_KEY0_REG, 0,
  3822. &pcl_info->auth_key);
  3823. for (i = 1; i < key_reg; i++)
  3824. qce_add_cmd_element(pdev, &ce_vaddr,
  3825. (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)), 0, NULL);
  3826. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  3827. &pcl_info->seg_size);
  3828. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
  3829. &pcl_info->encr_seg_cfg);
  3830. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
  3831. &pcl_info->encr_seg_size);
  3832. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3833. &pcl_info->encr_seg_start);
  3834. if (sha1)
  3835. qce_add_cmd_element(
  3836. pdev,
  3837. &ce_vaddr,
  3838. CRYPTO_AUTH_SEG_CFG_REG,
  3839. pdev->reg.auth_cfg_aead_sha1_hmac,
  3840. &pcl_info->auth_seg_cfg);
  3841. else
  3842. qce_add_cmd_element(
  3843. pdev,
  3844. &ce_vaddr,
  3845. CRYPTO_AUTH_SEG_CFG_REG,
  3846. pdev->reg.auth_cfg_aead_sha256_hmac,
  3847. &pcl_info->auth_seg_cfg);
  3848. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
  3849. &pcl_info->auth_seg_size);
  3850. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
  3851. &pcl_info->auth_seg_start);
  3852. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3853. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  3854. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3855. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3856. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3857. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3858. *pvaddr = (unsigned char *) ce_vaddr;
  3859. return 0;
  3860. }
  3861. static int _setup_aead_ccm_cmdlistptrs(struct qce_device *pdev, int cri_index,
  3862. unsigned char **pvaddr, bool key_128)
  3863. {
  3864. struct sps_command_element *ce_vaddr;
  3865. uintptr_t ce_vaddr_start;
  3866. struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_request_info
  3867. [cri_index].ce_sps.cmdlistptr;
  3868. struct qce_cmdlist_info *pcl_info = NULL;
  3869. int i = 0;
  3870. uint32_t encr_cfg = 0;
  3871. uint32_t auth_cfg = 0;
  3872. uint32_t key_reg = 0;
  3873. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3874. pdev->ce_bam_info.ce_burst_size);
  3875. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3876. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3877. /*
  3878. * Designate chunks of the allocated memory to various
  3879. * command list pointers related to aead operations
  3880. * defined in ce_cmdlistptrs_ops structure.
  3881. */
  3882. if (key_128) {
  3883. cmdlistptr->aead_aes_128_ccm.cmdlist =
  3884. (uintptr_t)ce_vaddr;
  3885. pcl_info = &(cmdlistptr->aead_aes_128_ccm);
  3886. auth_cfg = pdev->reg.auth_cfg_aes_ccm_128;
  3887. encr_cfg = pdev->reg.encr_cfg_aes_ccm_128;
  3888. key_reg = 4;
  3889. } else {
  3890. cmdlistptr->aead_aes_256_ccm.cmdlist =
  3891. (uintptr_t)ce_vaddr;
  3892. pcl_info = &(cmdlistptr->aead_aes_256_ccm);
  3893. auth_cfg = pdev->reg.auth_cfg_aes_ccm_256;
  3894. encr_cfg = pdev->reg.encr_cfg_aes_ccm_256;
  3895. key_reg = 8;
  3896. }
  3897. /* clear status register */
  3898. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
  3899. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3900. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3901. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0, NULL);
  3902. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3903. NULL);
  3904. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  3905. &pcl_info->seg_size);
  3906. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG,
  3907. encr_cfg, &pcl_info->encr_seg_cfg);
  3908. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
  3909. &pcl_info->encr_seg_size);
  3910. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3911. &pcl_info->encr_seg_start);
  3912. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG,
  3913. pdev->reg.encr_cntr_mask_3, &pcl_info->encr_mask_3);
  3914. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG0,
  3915. pdev->reg.encr_cntr_mask_2, &pcl_info->encr_mask_2);
  3916. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG1,
  3917. pdev->reg.encr_cntr_mask_1, &pcl_info->encr_mask_1);
  3918. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG2,
  3919. pdev->reg.encr_cntr_mask_0, &pcl_info->encr_mask_0);
  3920. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
  3921. auth_cfg, &pcl_info->auth_seg_cfg);
  3922. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
  3923. &pcl_info->auth_seg_size);
  3924. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
  3925. &pcl_info->auth_seg_start);
  3926. /* reset auth iv, bytecount and key registers */
  3927. for (i = 0; i < 8; i++)
  3928. qce_add_cmd_element(pdev, &ce_vaddr,
  3929. (CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)),
  3930. 0, NULL);
  3931. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
  3932. 0, NULL);
  3933. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG,
  3934. 0, NULL);
  3935. for (i = 0; i < 16; i++)
  3936. qce_add_cmd_element(pdev, &ce_vaddr,
  3937. (CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)),
  3938. 0, NULL);
  3939. /* set auth key */
  3940. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_KEY0_REG, 0,
  3941. &pcl_info->auth_key);
  3942. for (i = 1; i < key_reg; i++)
  3943. qce_add_cmd_element(pdev, &ce_vaddr,
  3944. (CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)),
  3945. 0, NULL);
  3946. /* set NONCE info */
  3947. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_INFO_NONCE0_REG, 0,
  3948. &pcl_info->auth_nonce_info);
  3949. for (i = 1; i < 4; i++)
  3950. qce_add_cmd_element(pdev, &ce_vaddr,
  3951. (CRYPTO_AUTH_INFO_NONCE0_REG +
  3952. i * sizeof(uint32_t)), 0, NULL);
  3953. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
  3954. &pcl_info->encr_key);
  3955. for (i = 1; i < key_reg; i++)
  3956. qce_add_cmd_element(pdev, &ce_vaddr,
  3957. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
  3958. 0, NULL);
  3959. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
  3960. &pcl_info->encr_cntr_iv);
  3961. for (i = 1; i < 4; i++)
  3962. qce_add_cmd_element(pdev, &ce_vaddr,
  3963. (CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)),
  3964. 0, NULL);
  3965. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_CCM_INT_CNTR0_REG, 0,
  3966. &pcl_info->encr_ccm_cntr_iv);
  3967. for (i = 1; i < 4; i++)
  3968. qce_add_cmd_element(pdev, &ce_vaddr,
  3969. (CRYPTO_ENCR_CCM_INT_CNTR0_REG + i * sizeof(uint32_t)),
  3970. 0, NULL);
  3971. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3972. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  3973. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3974. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3975. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3976. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3977. *pvaddr = (unsigned char *) ce_vaddr;
  3978. return 0;
  3979. }
  3980. static int _setup_f8_cmdlistptrs(struct qce_device *pdev, int cri_index,
  3981. unsigned char **pvaddr, enum qce_ota_algo_enum alg)
  3982. {
  3983. struct sps_command_element *ce_vaddr;
  3984. uintptr_t ce_vaddr_start;
  3985. struct qce_cmdlistptr_ops *cmdlistptr;
  3986. struct qce_cmdlist_info *pcl_info = NULL;
  3987. int i = 0;
  3988. uint32_t encr_cfg = 0;
  3989. uint32_t key_reg = 4;
  3990. cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  3991. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3992. pdev->ce_bam_info.ce_burst_size);
  3993. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3994. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3995. /*
  3996. * Designate chunks of the allocated memory to various
  3997. * command list pointers related to f8 cipher algorithm defined
  3998. * in ce_cmdlistptrs_ops structure.
  3999. */
  4000. switch (alg) {
  4001. case QCE_OTA_ALGO_KASUMI:
  4002. cmdlistptr->f8_kasumi.cmdlist = (uintptr_t)ce_vaddr;
  4003. pcl_info = &(cmdlistptr->f8_kasumi);
  4004. encr_cfg = pdev->reg.encr_cfg_kasumi;
  4005. break;
  4006. case QCE_OTA_ALGO_SNOW3G:
  4007. default:
  4008. cmdlistptr->f8_snow3g.cmdlist = (uintptr_t)ce_vaddr;
  4009. pcl_info = &(cmdlistptr->f8_snow3g);
  4010. encr_cfg = pdev->reg.encr_cfg_snow3g;
  4011. break;
  4012. }
  4013. /* clear status register */
  4014. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
  4015. 0, NULL);
  4016. /* set config to big endian */
  4017. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  4018. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  4019. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  4020. &pcl_info->seg_size);
  4021. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
  4022. &pcl_info->encr_seg_cfg);
  4023. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
  4024. &pcl_info->encr_seg_size);
  4025. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  4026. &pcl_info->encr_seg_start);
  4027. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0,
  4028. &pcl_info->auth_seg_cfg);
  4029. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
  4030. 0, &pcl_info->auth_seg_size);
  4031. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG,
  4032. 0, &pcl_info->auth_seg_start);
  4033. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
  4034. &pcl_info->encr_key);
  4035. for (i = 1; i < key_reg; i++)
  4036. qce_add_cmd_element(pdev, &ce_vaddr,
  4037. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
  4038. 0, NULL);
  4039. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
  4040. &pcl_info->encr_cntr_iv);
  4041. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR1_IV1_REG, 0,
  4042. NULL);
  4043. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  4044. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  4045. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  4046. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  4047. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  4048. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  4049. *pvaddr = (unsigned char *) ce_vaddr;
  4050. return 0;
  4051. }
  4052. static int _setup_f9_cmdlistptrs(struct qce_device *pdev, int cri_index,
  4053. unsigned char **pvaddr, enum qce_ota_algo_enum alg)
  4054. {
  4055. struct sps_command_element *ce_vaddr;
  4056. uintptr_t ce_vaddr_start;
  4057. struct qce_cmdlistptr_ops *cmdlistptr;
  4058. struct qce_cmdlist_info *pcl_info = NULL;
  4059. int i = 0;
  4060. uint32_t auth_cfg = 0;
  4061. uint32_t iv_reg = 0;
  4062. cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  4063. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  4064. pdev->ce_bam_info.ce_burst_size);
  4065. ce_vaddr_start = (uintptr_t)(*pvaddr);
  4066. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  4067. /*
  4068. * Designate chunks of the allocated memory to various
  4069. * command list pointers related to authentication operations
  4070. * defined in ce_cmdlistptrs_ops structure.
  4071. */
  4072. switch (alg) {
  4073. case QCE_OTA_ALGO_KASUMI:
  4074. cmdlistptr->f9_kasumi.cmdlist = (uintptr_t)ce_vaddr;
  4075. pcl_info = &(cmdlistptr->f9_kasumi);
  4076. auth_cfg = pdev->reg.auth_cfg_kasumi;
  4077. break;
  4078. case QCE_OTA_ALGO_SNOW3G:
  4079. default:
  4080. cmdlistptr->f9_snow3g.cmdlist = (uintptr_t)ce_vaddr;
  4081. pcl_info = &(cmdlistptr->f9_snow3g);
  4082. auth_cfg = pdev->reg.auth_cfg_snow3g;
  4083. }
  4084. /* clear status register */
  4085. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
  4086. 0, NULL);
  4087. /* set config to big endian */
  4088. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  4089. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  4090. iv_reg = 5;
  4091. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  4092. &pcl_info->seg_size);
  4093. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0,
  4094. &pcl_info->encr_seg_cfg);
  4095. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
  4096. auth_cfg, &pcl_info->auth_seg_cfg);
  4097. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
  4098. &pcl_info->auth_seg_size);
  4099. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
  4100. &pcl_info->auth_seg_start);
  4101. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0,
  4102. &pcl_info->auth_iv);
  4103. for (i = 1; i < iv_reg; i++) {
  4104. qce_add_cmd_element(pdev, &ce_vaddr,
  4105. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)),
  4106. 0, NULL);
  4107. }
  4108. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
  4109. 0, &pcl_info->auth_bytecount);
  4110. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL);
  4111. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  4112. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  4113. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  4114. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  4115. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  4116. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  4117. *pvaddr = (unsigned char *) ce_vaddr;
  4118. return 0;
  4119. }
  4120. static int _setup_unlock_pipe_cmdlistptrs(struct qce_device *pdev,
  4121. int cri_index, unsigned char **pvaddr)
  4122. {
  4123. struct sps_command_element *ce_vaddr;
  4124. uintptr_t ce_vaddr_start = (uintptr_t)(*pvaddr);
  4125. struct qce_cmdlistptr_ops *cmdlistptr;
  4126. struct qce_cmdlist_info *pcl_info = NULL;
  4127. cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  4128. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  4129. pdev->ce_bam_info.ce_burst_size);
  4130. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  4131. cmdlistptr->unlock_all_pipes.cmdlist = (uintptr_t)ce_vaddr;
  4132. pcl_info = &(cmdlistptr->unlock_all_pipes);
  4133. /*
  4134. * Designate chunks of the allocated memory to command list
  4135. * to unlock pipes.
  4136. */
  4137. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  4138. CRYPTO_CONFIG_RESET, NULL);
  4139. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  4140. *pvaddr = (unsigned char *) ce_vaddr;
  4141. return 0;
  4142. }
  4143. static int qce_setup_cmdlistptrs(struct qce_device *pdev, int cri_index,
  4144. unsigned char **pvaddr)
  4145. {
  4146. struct sps_command_element *ce_vaddr =
  4147. (struct sps_command_element *)(*pvaddr);
  4148. /*
  4149. * Designate chunks of the allocated memory to various
  4150. * command list pointers related to operations defined
  4151. * in ce_cmdlistptrs_ops structure.
  4152. */
  4153. ce_vaddr =
  4154. (struct sps_command_element *)ALIGN(((uintptr_t) ce_vaddr),
  4155. pdev->ce_bam_info.ce_burst_size);
  4156. *pvaddr = (unsigned char *) ce_vaddr;
  4157. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CBC,
  4158. true);
  4159. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CTR,
  4160. true);
  4161. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_ECB,
  4162. true);
  4163. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_XTS,
  4164. true);
  4165. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CBC,
  4166. false);
  4167. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CTR,
  4168. false);
  4169. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_ECB,
  4170. false);
  4171. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_XTS,
  4172. false);
  4173. _setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES,
  4174. true);
  4175. _setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES,
  4176. false);
  4177. _setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES,
  4178. true);
  4179. _setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES,
  4180. false);
  4181. _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA1,
  4182. false);
  4183. _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA256,
  4184. false);
  4185. _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA1_HMAC,
  4186. false);
  4187. _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA256_HMAC,
  4188. false);
  4189. _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_AES_CMAC,
  4190. true);
  4191. _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_AES_CMAC,
  4192. false);
  4193. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES,
  4194. QCE_MODE_CBC, DES_KEY_SIZE, true);
  4195. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES,
  4196. QCE_MODE_CBC, DES3_EDE_KEY_SIZE, true);
  4197. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES,
  4198. QCE_MODE_CBC, AES128_KEY_SIZE, true);
  4199. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES,
  4200. QCE_MODE_CBC, AES256_KEY_SIZE, true);
  4201. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES,
  4202. QCE_MODE_CBC, DES_KEY_SIZE, false);
  4203. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES,
  4204. QCE_MODE_CBC, DES3_EDE_KEY_SIZE, false);
  4205. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES,
  4206. QCE_MODE_CBC, AES128_KEY_SIZE, false);
  4207. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES,
  4208. QCE_MODE_CBC, AES256_KEY_SIZE, false);
  4209. _setup_cipher_null_cmdlistptrs(pdev, cri_index, pvaddr);
  4210. _setup_aead_ccm_cmdlistptrs(pdev, cri_index, pvaddr, true);
  4211. _setup_aead_ccm_cmdlistptrs(pdev, cri_index, pvaddr, false);
  4212. _setup_f8_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_KASUMI);
  4213. _setup_f8_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_SNOW3G);
  4214. _setup_f9_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_KASUMI);
  4215. _setup_f9_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_SNOW3G);
  4216. _setup_unlock_pipe_cmdlistptrs(pdev, cri_index, pvaddr);
  4217. return 0;
  4218. }
  4219. static int qce_setup_ce_sps_data(struct qce_device *pce_dev)
  4220. {
  4221. unsigned char *vaddr;
  4222. int i;
  4223. unsigned char *iovec_vaddr;
  4224. int iovec_memsize;
  4225. vaddr = pce_dev->coh_vmem;
  4226. vaddr = (unsigned char *)ALIGN(((uintptr_t)vaddr),
  4227. pce_dev->ce_bam_info.ce_burst_size);
  4228. iovec_vaddr = pce_dev->iovec_vmem;
  4229. iovec_memsize = pce_dev->iovec_memsize;
  4230. for (i = 0; i < MAX_QCE_ALLOC_BAM_REQ; i++) {
  4231. /* Allow for 256 descriptor (cmd and data) entries per pipe */
  4232. pce_dev->ce_request_info[i].ce_sps.in_transfer.iovec =
  4233. (struct sps_iovec *)iovec_vaddr;
  4234. pce_dev->ce_request_info[i].ce_sps.in_transfer.iovec_phys =
  4235. virt_to_phys(
  4236. pce_dev->ce_request_info[i].ce_sps.in_transfer.iovec);
  4237. iovec_vaddr += TOTAL_IOVEC_SPACE_PER_PIPE;
  4238. iovec_memsize -= TOTAL_IOVEC_SPACE_PER_PIPE;
  4239. pce_dev->ce_request_info[i].ce_sps.out_transfer.iovec =
  4240. (struct sps_iovec *)iovec_vaddr;
  4241. pce_dev->ce_request_info[i].ce_sps.out_transfer.iovec_phys =
  4242. virt_to_phys(
  4243. pce_dev->ce_request_info[i].ce_sps.out_transfer.iovec);
  4244. iovec_vaddr += TOTAL_IOVEC_SPACE_PER_PIPE;
  4245. iovec_memsize -= TOTAL_IOVEC_SPACE_PER_PIPE;
  4246. if (pce_dev->support_cmd_dscr)
  4247. qce_setup_cmdlistptrs(pce_dev, i, &vaddr);
  4248. vaddr = (unsigned char *)ALIGN(((uintptr_t)vaddr),
  4249. pce_dev->ce_bam_info.ce_burst_size);
  4250. pce_dev->ce_request_info[i].ce_sps.result_dump =
  4251. (uintptr_t)vaddr;
  4252. pce_dev->ce_request_info[i].ce_sps.result_dump_phy =
  4253. GET_PHYS_ADDR((uintptr_t)vaddr);
  4254. pce_dev->ce_request_info[i].ce_sps.result =
  4255. (struct ce_result_dump_format *)vaddr;
  4256. vaddr += CRYPTO_RESULT_DUMP_SIZE;
  4257. pce_dev->ce_request_info[i].ce_sps.result_dump_null =
  4258. (uintptr_t)vaddr;
  4259. pce_dev->ce_request_info[i].ce_sps.result_dump_null_phy =
  4260. GET_PHYS_ADDR((uintptr_t)vaddr);
  4261. pce_dev->ce_request_info[i].ce_sps.result_null =
  4262. (struct ce_result_dump_format *)vaddr;
  4263. vaddr += CRYPTO_RESULT_DUMP_SIZE;
  4264. pce_dev->ce_request_info[i].ce_sps.ignore_buffer =
  4265. (uintptr_t)vaddr;
  4266. vaddr += pce_dev->ce_bam_info.ce_burst_size * 2;
  4267. }
  4268. if ((vaddr - pce_dev->coh_vmem) > pce_dev->memsize ||
  4269. iovec_memsize < 0)
  4270. panic("qce50: Not enough coherent memory. Allocate %x , need %lx\n",
  4271. pce_dev->memsize, (uintptr_t)vaddr -
  4272. (uintptr_t)pce_dev->coh_vmem);
  4273. return 0;
  4274. }
  4275. static int qce_init_ce_cfg_val(struct qce_device *pce_dev)
  4276. {
  4277. uint32_t pipe_pair =
  4278. pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_NONE];
  4279. pce_dev->reg.crypto_cfg_be = qce_get_config_be(pce_dev, pipe_pair);
  4280. pce_dev->reg.crypto_cfg_le =
  4281. (pce_dev->reg.crypto_cfg_be | CRYPTO_LITTLE_ENDIAN_MASK);
  4282. /* Initialize encr_cfg register for AES alg */
  4283. pce_dev->reg.encr_cfg_aes_cbc_128 =
  4284. (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
  4285. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4286. (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
  4287. pce_dev->reg.encr_cfg_aes_cbc_256 =
  4288. (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
  4289. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4290. (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
  4291. pce_dev->reg.encr_cfg_aes_ctr_128 =
  4292. (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
  4293. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4294. (CRYPTO_ENCR_MODE_CTR << CRYPTO_ENCR_MODE);
  4295. pce_dev->reg.encr_cfg_aes_ctr_256 =
  4296. (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
  4297. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4298. (CRYPTO_ENCR_MODE_CTR << CRYPTO_ENCR_MODE);
  4299. pce_dev->reg.encr_cfg_aes_xts_128 =
  4300. (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
  4301. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4302. (CRYPTO_ENCR_MODE_XTS << CRYPTO_ENCR_MODE);
  4303. pce_dev->reg.encr_cfg_aes_xts_256 =
  4304. (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
  4305. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4306. (CRYPTO_ENCR_MODE_XTS << CRYPTO_ENCR_MODE);
  4307. pce_dev->reg.encr_cfg_aes_ecb_128 =
  4308. (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
  4309. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4310. (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
  4311. pce_dev->reg.encr_cfg_aes_ecb_256 =
  4312. (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
  4313. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4314. (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
  4315. pce_dev->reg.encr_cfg_aes_ccm_128 =
  4316. (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
  4317. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4318. (CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE)|
  4319. (CRYPTO_LAST_CCM_XFR << CRYPTO_LAST_CCM);
  4320. pce_dev->reg.encr_cfg_aes_ccm_256 =
  4321. (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
  4322. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4323. (CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE) |
  4324. (CRYPTO_LAST_CCM_XFR << CRYPTO_LAST_CCM);
  4325. /* Initialize encr_cfg register for DES alg */
  4326. pce_dev->reg.encr_cfg_des_ecb =
  4327. (CRYPTO_ENCR_KEY_SZ_DES << CRYPTO_ENCR_KEY_SZ) |
  4328. (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
  4329. (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
  4330. pce_dev->reg.encr_cfg_des_cbc =
  4331. (CRYPTO_ENCR_KEY_SZ_DES << CRYPTO_ENCR_KEY_SZ) |
  4332. (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
  4333. (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
  4334. pce_dev->reg.encr_cfg_3des_ecb =
  4335. (CRYPTO_ENCR_KEY_SZ_3DES << CRYPTO_ENCR_KEY_SZ) |
  4336. (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
  4337. (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
  4338. pce_dev->reg.encr_cfg_3des_cbc =
  4339. (CRYPTO_ENCR_KEY_SZ_3DES << CRYPTO_ENCR_KEY_SZ) |
  4340. (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
  4341. (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
  4342. /* Initialize encr_cfg register for kasumi/snow3g alg */
  4343. pce_dev->reg.encr_cfg_kasumi =
  4344. (CRYPTO_ENCR_ALG_KASUMI << CRYPTO_ENCR_ALG);
  4345. pce_dev->reg.encr_cfg_snow3g =
  4346. (CRYPTO_ENCR_ALG_SNOW_3G << CRYPTO_ENCR_ALG);
  4347. /* Initialize auth_cfg register for CMAC alg */
  4348. pce_dev->reg.auth_cfg_cmac_128 =
  4349. (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
  4350. (CRYPTO_AUTH_MODE_CMAC << CRYPTO_AUTH_MODE)|
  4351. (CRYPTO_AUTH_SIZE_ENUM_16_BYTES << CRYPTO_AUTH_SIZE) |
  4352. (CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
  4353. (CRYPTO_AUTH_KEY_SZ_AES128 << CRYPTO_AUTH_KEY_SIZE);
  4354. pce_dev->reg.auth_cfg_cmac_256 =
  4355. (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
  4356. (CRYPTO_AUTH_MODE_CMAC << CRYPTO_AUTH_MODE)|
  4357. (CRYPTO_AUTH_SIZE_ENUM_16_BYTES << CRYPTO_AUTH_SIZE) |
  4358. (CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
  4359. (CRYPTO_AUTH_KEY_SZ_AES256 << CRYPTO_AUTH_KEY_SIZE);
  4360. /* Initialize auth_cfg register for HMAC alg */
  4361. pce_dev->reg.auth_cfg_hmac_sha1 =
  4362. (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
  4363. (CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
  4364. (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
  4365. (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  4366. pce_dev->reg.auth_cfg_hmac_sha256 =
  4367. (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
  4368. (CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) |
  4369. (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
  4370. (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  4371. /* Initialize auth_cfg register for SHA1/256 alg */
  4372. pce_dev->reg.auth_cfg_sha1 =
  4373. (CRYPTO_AUTH_MODE_HASH << CRYPTO_AUTH_MODE)|
  4374. (CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
  4375. (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
  4376. (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  4377. pce_dev->reg.auth_cfg_sha256 =
  4378. (CRYPTO_AUTH_MODE_HASH << CRYPTO_AUTH_MODE)|
  4379. (CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) |
  4380. (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
  4381. (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  4382. /* Initialize auth_cfg register for AEAD alg */
  4383. pce_dev->reg.auth_cfg_aead_sha1_hmac =
  4384. (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
  4385. (CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
  4386. (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
  4387. (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST);
  4388. pce_dev->reg.auth_cfg_aead_sha256_hmac =
  4389. (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
  4390. (CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) |
  4391. (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
  4392. (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST);
  4393. pce_dev->reg.auth_cfg_aes_ccm_128 =
  4394. (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
  4395. (CRYPTO_AUTH_MODE_CCM << CRYPTO_AUTH_MODE)|
  4396. (CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
  4397. (CRYPTO_AUTH_KEY_SZ_AES128 << CRYPTO_AUTH_KEY_SIZE) |
  4398. ((MAX_NONCE/sizeof(uint32_t)) << CRYPTO_AUTH_NONCE_NUM_WORDS);
  4399. pce_dev->reg.auth_cfg_aes_ccm_128 &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
  4400. pce_dev->reg.auth_cfg_aes_ccm_256 =
  4401. (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
  4402. (CRYPTO_AUTH_MODE_CCM << CRYPTO_AUTH_MODE)|
  4403. (CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
  4404. (CRYPTO_AUTH_KEY_SZ_AES256 << CRYPTO_AUTH_KEY_SIZE) |
  4405. ((MAX_NONCE/sizeof(uint32_t)) << CRYPTO_AUTH_NONCE_NUM_WORDS);
  4406. pce_dev->reg.auth_cfg_aes_ccm_256 &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
  4407. /* Initialize auth_cfg register for kasumi/snow3g */
  4408. pce_dev->reg.auth_cfg_kasumi =
  4409. (CRYPTO_AUTH_ALG_KASUMI << CRYPTO_AUTH_ALG) |
  4410. BIT(CRYPTO_FIRST) | BIT(CRYPTO_LAST);
  4411. pce_dev->reg.auth_cfg_snow3g =
  4412. (CRYPTO_AUTH_ALG_SNOW3G << CRYPTO_AUTH_ALG) |
  4413. BIT(CRYPTO_FIRST) | BIT(CRYPTO_LAST);
  4414. /* Initialize IV counter mask values */
  4415. pce_dev->reg.encr_cntr_mask_3 = 0xFFFFFFFF;
  4416. pce_dev->reg.encr_cntr_mask_2 = 0xFFFFFFFF;
  4417. pce_dev->reg.encr_cntr_mask_1 = 0xFFFFFFFF;
  4418. pce_dev->reg.encr_cntr_mask_0 = 0xFFFFFFFF;
  4419. return 0;
  4420. }
  4421. static void _qce_ccm_get_around_input(struct qce_device *pce_dev,
  4422. struct ce_request_info *preq_info, enum qce_cipher_dir_enum dir)
  4423. {
  4424. struct qce_cmdlist_info *cmdlistinfo;
  4425. struct ce_sps_data *pce_sps_data;
  4426. pce_sps_data = &preq_info->ce_sps;
  4427. if ((dir == QCE_DECRYPT) && pce_dev->no_get_around &&
  4428. !(pce_dev->no_ccm_mac_status_get_around)) {
  4429. cmdlistinfo = &pce_sps_data->cmdlistptr.cipher_null;
  4430. _qce_sps_add_cmd(pce_dev, 0, cmdlistinfo,
  4431. &pce_sps_data->in_transfer);
  4432. _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
  4433. pce_dev->ce_bam_info.ce_burst_size,
  4434. &pce_sps_data->in_transfer);
  4435. _qce_set_flag(&pce_sps_data->in_transfer,
  4436. SPS_IOVEC_FLAG_EOT | SPS_IOVEC_FLAG_NWD);
  4437. }
  4438. }
  4439. static void _qce_ccm_get_around_output(struct qce_device *pce_dev,
  4440. struct ce_request_info *preq_info, enum qce_cipher_dir_enum dir)
  4441. {
  4442. struct ce_sps_data *pce_sps_data;
  4443. pce_sps_data = &preq_info->ce_sps;
  4444. if ((dir == QCE_DECRYPT) && pce_dev->no_get_around &&
  4445. !(pce_dev->no_ccm_mac_status_get_around)) {
  4446. _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
  4447. pce_dev->ce_bam_info.ce_burst_size,
  4448. &pce_sps_data->out_transfer);
  4449. _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump_null),
  4450. CRYPTO_RESULT_DUMP_SIZE, &pce_sps_data->out_transfer);
  4451. }
  4452. }
  4453. /* QCE_DUMMY_REQ */
  4454. static void qce_dummy_complete(void *cookie, unsigned char *digest,
  4455. unsigned char *authdata, int ret)
  4456. {
  4457. if (!cookie)
  4458. pr_err("invalid cookie\n");
  4459. }
  4460. static int qce_dummy_req(struct qce_device *pce_dev)
  4461. {
  4462. int ret = 0;
  4463. if (atomic_xchg(
  4464. &pce_dev->ce_request_info[DUMMY_REQ_INDEX].in_use, true))
  4465. return -EBUSY;
  4466. ret = qce_process_sha_req(pce_dev, NULL);
  4467. pce_dev->qce_stats.no_of_dummy_reqs++;
  4468. return ret;
  4469. }
  4470. static int select_mode(struct qce_device *pce_dev,
  4471. struct ce_request_info *preq_info)
  4472. {
  4473. struct ce_sps_data *pce_sps_data = &preq_info->ce_sps;
  4474. unsigned int no_of_queued_req;
  4475. unsigned int cadence;
  4476. if (!pce_dev->no_get_around) {
  4477. _qce_set_flag(&pce_sps_data->out_transfer, SPS_IOVEC_FLAG_INT);
  4478. return 0;
  4479. }
  4480. /*
  4481. * claim ownership of device
  4482. */
  4483. again:
  4484. if (cmpxchg(&pce_dev->owner, QCE_OWNER_NONE, QCE_OWNER_CLIENT)
  4485. != QCE_OWNER_NONE) {
  4486. ndelay(40);
  4487. goto again;
  4488. }
  4489. no_of_queued_req = atomic_inc_return(&pce_dev->no_of_queued_req);
  4490. if (pce_dev->mode == IN_INTERRUPT_MODE) {
  4491. if (no_of_queued_req >= MAX_BUNCH_MODE_REQ) {
  4492. pce_dev->mode = IN_BUNCH_MODE;
  4493. pr_debug("pcedev %d mode switch to BUNCH\n",
  4494. pce_dev->dev_no);
  4495. _qce_set_flag(&pce_sps_data->out_transfer,
  4496. SPS_IOVEC_FLAG_INT);
  4497. pce_dev->intr_cadence = 0;
  4498. atomic_set(&pce_dev->bunch_cmd_seq, 1);
  4499. atomic_set(&pce_dev->last_intr_seq, 1);
  4500. mod_timer(&(pce_dev->timer),
  4501. (jiffies + DELAY_IN_JIFFIES));
  4502. } else {
  4503. _qce_set_flag(&pce_sps_data->out_transfer,
  4504. SPS_IOVEC_FLAG_INT);
  4505. }
  4506. } else {
  4507. pce_dev->intr_cadence++;
  4508. cadence = (preq_info->req_len >> 7) + 1;
  4509. if (cadence > SET_INTR_AT_REQ)
  4510. cadence = SET_INTR_AT_REQ;
  4511. if (pce_dev->intr_cadence < cadence || ((pce_dev->intr_cadence
  4512. == cadence) && pce_dev->cadence_flag))
  4513. atomic_inc(&pce_dev->bunch_cmd_seq);
  4514. else {
  4515. _qce_set_flag(&pce_sps_data->out_transfer,
  4516. SPS_IOVEC_FLAG_INT);
  4517. pce_dev->intr_cadence = 0;
  4518. atomic_set(&pce_dev->bunch_cmd_seq, 0);
  4519. atomic_set(&pce_dev->last_intr_seq, 0);
  4520. pce_dev->cadence_flag = !pce_dev->cadence_flag;
  4521. }
  4522. }
  4523. return 0;
  4524. }
  4525. static int _qce_aead_ccm_req(void *handle, struct qce_req *q_req)
  4526. {
  4527. int rc = 0;
  4528. struct qce_device *pce_dev = (struct qce_device *) handle;
  4529. struct aead_request *areq = (struct aead_request *) q_req->areq;
  4530. uint32_t authsize = q_req->authsize;
  4531. uint32_t totallen_in, out_len;
  4532. uint32_t hw_pad_out = 0;
  4533. int ce_burst_size;
  4534. struct qce_cmdlist_info *cmdlistinfo = NULL;
  4535. int req_info = -1;
  4536. struct ce_request_info *preq_info;
  4537. struct ce_sps_data *pce_sps_data;
  4538. req_info = qce_alloc_req_info(pce_dev);
  4539. if (req_info < 0)
  4540. return -EBUSY;
  4541. q_req->current_req_info = req_info;
  4542. preq_info = &pce_dev->ce_request_info[req_info];
  4543. pce_sps_data = &preq_info->ce_sps;
  4544. ce_burst_size = pce_dev->ce_bam_info.ce_burst_size;
  4545. totallen_in = areq->cryptlen + q_req->assoclen;
  4546. if (q_req->dir == QCE_ENCRYPT) {
  4547. q_req->cryptlen = areq->cryptlen;
  4548. out_len = areq->cryptlen + authsize;
  4549. hw_pad_out = ALIGN(authsize, ce_burst_size) - authsize;
  4550. } else {
  4551. q_req->cryptlen = areq->cryptlen - authsize;
  4552. out_len = q_req->cryptlen;
  4553. hw_pad_out = authsize;
  4554. }
  4555. /*
  4556. * For crypto 5.0 that has burst size alignment requirement
  4557. * for data descritpor,
  4558. * the agent above(qcrypto) prepares the src scatter list with
  4559. * memory starting with associated data, followed by
  4560. * data stream to be ciphered.
  4561. * The destination scatter list is pointing to the same
  4562. * data area as source.
  4563. */
  4564. if (pce_dev->ce_bam_info.minor_version == 0)
  4565. preq_info->src_nents = count_sg(areq->src, totallen_in);
  4566. else
  4567. preq_info->src_nents = count_sg(areq->src, areq->cryptlen +
  4568. areq->assoclen);
  4569. if (q_req->assoclen) {
  4570. preq_info->assoc_nents = count_sg(q_req->asg, q_req->assoclen);
  4571. /* formatted associated data input */
  4572. qce_dma_map_sg(pce_dev->pdev, q_req->asg,
  4573. preq_info->assoc_nents, DMA_TO_DEVICE);
  4574. preq_info->asg = q_req->asg;
  4575. } else {
  4576. preq_info->assoc_nents = 0;
  4577. preq_info->asg = NULL;
  4578. }
  4579. /* cipher input */
  4580. qce_dma_map_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
  4581. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  4582. DMA_TO_DEVICE);
  4583. /* cipher + mac output for encryption */
  4584. if (areq->src != areq->dst) {
  4585. /*
  4586. * The destination scatter list is pointing to the same
  4587. * data area as src.
  4588. * Note, the associated data will be pass-through
  4589. * at the beginning of destination area.
  4590. */
  4591. preq_info->dst_nents = count_sg(areq->dst,
  4592. out_len + areq->assoclen);
  4593. qce_dma_map_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
  4594. DMA_FROM_DEVICE);
  4595. } else {
  4596. preq_info->dst_nents = preq_info->src_nents;
  4597. }
  4598. if (pce_dev->support_cmd_dscr) {
  4599. cmdlistinfo = _ce_get_cipher_cmdlistinfo(pce_dev, req_info,
  4600. q_req);
  4601. if (cmdlistinfo == NULL) {
  4602. pr_err("Unsupported cipher algorithm %d, mode %d\n",
  4603. q_req->alg, q_req->mode);
  4604. qce_free_req_info(pce_dev, req_info, false);
  4605. return -EINVAL;
  4606. }
  4607. /* set up crypto device */
  4608. rc = _ce_setup_cipher(pce_dev, q_req, totallen_in,
  4609. q_req->assoclen, cmdlistinfo);
  4610. } else {
  4611. /* set up crypto device */
  4612. rc = _ce_setup_cipher_direct(pce_dev, q_req, totallen_in,
  4613. q_req->assoclen);
  4614. }
  4615. if (rc < 0)
  4616. goto bad;
  4617. preq_info->mode = q_req->mode;
  4618. /* setup for callback, and issue command to bam */
  4619. preq_info->areq = q_req->areq;
  4620. preq_info->qce_cb = q_req->qce_cb;
  4621. preq_info->dir = q_req->dir;
  4622. /* setup xfer type for producer callback handling */
  4623. preq_info->xfer_type = QCE_XFER_AEAD;
  4624. preq_info->req_len = totallen_in;
  4625. _qce_sps_iovec_count_init(pce_dev, req_info);
  4626. if (pce_dev->support_cmd_dscr && cmdlistinfo) {
  4627. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK,
  4628. cmdlistinfo, &pce_sps_data->in_transfer);
  4629. if (rc)
  4630. goto bad;
  4631. }
  4632. if (pce_dev->ce_bam_info.minor_version == 0) {
  4633. goto bad;
  4634. } else {
  4635. if (q_req->assoclen) {
  4636. rc = _qce_sps_add_sg_data(pce_dev, q_req->asg,
  4637. q_req->assoclen, &pce_sps_data->in_transfer);
  4638. if (rc)
  4639. goto bad;
  4640. }
  4641. rc = _qce_sps_add_sg_data_off(pce_dev, areq->src, areq->cryptlen,
  4642. areq->assoclen,
  4643. &pce_sps_data->in_transfer);
  4644. if (rc)
  4645. goto bad;
  4646. _qce_set_flag(&pce_sps_data->in_transfer,
  4647. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  4648. _qce_ccm_get_around_input(pce_dev, preq_info, q_req->dir);
  4649. if (pce_dev->no_get_around) {
  4650. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  4651. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  4652. &pce_sps_data->in_transfer);
  4653. if (rc)
  4654. goto bad;
  4655. }
  4656. /* Pass through to ignore associated data*/
  4657. rc = _qce_sps_add_data(
  4658. GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
  4659. q_req->assoclen,
  4660. &pce_sps_data->out_transfer);
  4661. if (rc)
  4662. goto bad;
  4663. rc = _qce_sps_add_sg_data_off(pce_dev, areq->dst, out_len,
  4664. areq->assoclen,
  4665. &pce_sps_data->out_transfer);
  4666. if (rc)
  4667. goto bad;
  4668. /* Pass through to ignore hw_pad (padding of the MAC data) */
  4669. rc = _qce_sps_add_data(
  4670. GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
  4671. hw_pad_out, &pce_sps_data->out_transfer);
  4672. if (rc)
  4673. goto bad;
  4674. if (pce_dev->no_get_around ||
  4675. totallen_in <= SPS_MAX_PKT_SIZE) {
  4676. rc = _qce_sps_add_data(
  4677. GET_PHYS_ADDR(pce_sps_data->result_dump),
  4678. CRYPTO_RESULT_DUMP_SIZE,
  4679. &pce_sps_data->out_transfer);
  4680. if (rc)
  4681. goto bad;
  4682. pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
  4683. } else {
  4684. pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE;
  4685. }
  4686. _qce_ccm_get_around_output(pce_dev, preq_info, q_req->dir);
  4687. select_mode(pce_dev, preq_info);
  4688. rc = _qce_sps_transfer(pce_dev, req_info);
  4689. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  4690. }
  4691. if (rc)
  4692. goto bad;
  4693. return 0;
  4694. bad:
  4695. if (preq_info->assoc_nents) {
  4696. qce_dma_unmap_sg(pce_dev->pdev, q_req->asg,
  4697. preq_info->assoc_nents, DMA_TO_DEVICE);
  4698. }
  4699. if (preq_info->src_nents) {
  4700. qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
  4701. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  4702. DMA_TO_DEVICE);
  4703. }
  4704. if (areq->src != areq->dst) {
  4705. qce_dma_unmap_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
  4706. DMA_FROM_DEVICE);
  4707. }
  4708. qce_free_req_info(pce_dev, req_info, false);
  4709. return rc;
  4710. }
  4711. static int _qce_suspend(void *handle)
  4712. {
  4713. struct qce_device *pce_dev = (struct qce_device *)handle;
  4714. struct sps_pipe *sps_pipe_info;
  4715. int i = 0;
  4716. if (handle == NULL)
  4717. return -ENODEV;
  4718. for (i = 0; i < QCE_OFFLOAD_OPER_LAST; i++) {
  4719. if (i == QCE_OFFLOAD_NONE && !(pce_dev->kernel_pipes_support))
  4720. continue;
  4721. else if ((i > 0) && !(pce_dev->offload_pipes_support))
  4722. break;
  4723. if (!pce_dev->ce_bam_info.pipe_pair_index[i])
  4724. continue;
  4725. sps_pipe_info = pce_dev->ce_bam_info.consumer[i].pipe;
  4726. sps_disconnect(sps_pipe_info);
  4727. sps_pipe_info = pce_dev->ce_bam_info.producer[i].pipe;
  4728. sps_disconnect(sps_pipe_info);
  4729. }
  4730. return 0;
  4731. }
  4732. static int _qce_resume(void *handle)
  4733. {
  4734. struct qce_device *pce_dev = (struct qce_device *)handle;
  4735. struct sps_pipe *sps_pipe_info;
  4736. struct sps_connect *sps_connect_info;
  4737. int rc, i;
  4738. rc = -ENODEV;
  4739. if (handle == NULL)
  4740. return rc;
  4741. for (i = 0; i < QCE_OFFLOAD_OPER_LAST; i++) {
  4742. if (i == QCE_OFFLOAD_NONE && !(pce_dev->kernel_pipes_support))
  4743. continue;
  4744. else if ((i > 0) && !(pce_dev->offload_pipes_support))
  4745. break;
  4746. if (!pce_dev->ce_bam_info.pipe_pair_index[i])
  4747. continue;
  4748. sps_pipe_info = pce_dev->ce_bam_info.consumer[i].pipe;
  4749. sps_connect_info = &pce_dev->ce_bam_info.consumer[i].connect;
  4750. memset(sps_connect_info->desc.base, 0x00,
  4751. sps_connect_info->desc.size);
  4752. rc = sps_connect(sps_pipe_info, sps_connect_info);
  4753. if (rc) {
  4754. pr_err("sps_connect() fail pipe=0x%lx, rc = %d\n",
  4755. (uintptr_t)sps_pipe_info, rc);
  4756. return rc;
  4757. }
  4758. sps_pipe_info = pce_dev->ce_bam_info.producer[i].pipe;
  4759. sps_connect_info = &pce_dev->ce_bam_info.producer[i].connect;
  4760. memset(sps_connect_info->desc.base, 0x00,
  4761. sps_connect_info->desc.size);
  4762. rc = sps_connect(sps_pipe_info, sps_connect_info);
  4763. if (rc)
  4764. pr_err("sps_connect() fail pipe=0x%lx, rc = %d\n",
  4765. (uintptr_t)sps_pipe_info, rc);
  4766. rc = sps_register_event(sps_pipe_info,
  4767. &pce_dev->ce_bam_info.producer[i].event);
  4768. if (rc)
  4769. pr_err("Producer cb registration failed rc = %d\n",
  4770. rc);
  4771. }
  4772. qce_enable_clock_gating(pce_dev);
  4773. return rc;
  4774. }
  4775. struct qce_pm_table qce_pm_table = {_qce_suspend, _qce_resume};
  4776. EXPORT_SYMBOL(qce_pm_table);
  4777. int qce_aead_req(void *handle, struct qce_req *q_req)
  4778. {
  4779. struct qce_device *pce_dev = (struct qce_device *)handle;
  4780. struct aead_request *areq;
  4781. uint32_t authsize;
  4782. struct crypto_aead *aead;
  4783. uint32_t ivsize;
  4784. uint32_t totallen;
  4785. int rc = 0;
  4786. struct qce_cmdlist_info *cmdlistinfo = NULL;
  4787. int req_info = -1;
  4788. struct ce_sps_data *pce_sps_data;
  4789. struct ce_request_info *preq_info;
  4790. if (q_req->mode == QCE_MODE_CCM)
  4791. return _qce_aead_ccm_req(handle, q_req);
  4792. req_info = qce_alloc_req_info(pce_dev);
  4793. if (req_info < 0)
  4794. return -EBUSY;
  4795. q_req->current_req_info = req_info;
  4796. preq_info = &pce_dev->ce_request_info[req_info];
  4797. pce_sps_data = &preq_info->ce_sps;
  4798. areq = (struct aead_request *) q_req->areq;
  4799. aead = crypto_aead_reqtfm(areq);
  4800. ivsize = crypto_aead_ivsize(aead);
  4801. q_req->ivsize = ivsize;
  4802. authsize = q_req->authsize;
  4803. if (q_req->dir == QCE_ENCRYPT)
  4804. q_req->cryptlen = areq->cryptlen;
  4805. else
  4806. q_req->cryptlen = areq->cryptlen - authsize;
  4807. if (q_req->cryptlen > UINT_MAX - areq->assoclen) {
  4808. pr_err("Integer overflow on total aead req length.\n");
  4809. return -EINVAL;
  4810. }
  4811. totallen = q_req->cryptlen + areq->assoclen;
  4812. if (pce_dev->support_cmd_dscr) {
  4813. cmdlistinfo = _ce_get_aead_cmdlistinfo(pce_dev,
  4814. req_info, q_req);
  4815. if (cmdlistinfo == NULL) {
  4816. pr_err("Unsupported aead ciphering algorithm %d, mode %d, ciphering key length %d, auth digest size %d\n",
  4817. q_req->alg, q_req->mode, q_req->encklen,
  4818. q_req->authsize);
  4819. qce_free_req_info(pce_dev, req_info, false);
  4820. return -EINVAL;
  4821. }
  4822. /* set up crypto device */
  4823. rc = _ce_setup_aead(pce_dev, q_req, totallen,
  4824. areq->assoclen, cmdlistinfo);
  4825. if (rc < 0) {
  4826. qce_free_req_info(pce_dev, req_info, false);
  4827. return -EINVAL;
  4828. }
  4829. }
  4830. /*
  4831. * For crypto 5.0 that has burst size alignment requirement
  4832. * for data descritpor,
  4833. * the agent above(qcrypto) prepares the src scatter list with
  4834. * memory starting with associated data, followed by
  4835. * iv, and data stream to be ciphered.
  4836. */
  4837. preq_info->src_nents = count_sg(areq->src, totallen);
  4838. /* cipher input */
  4839. qce_dma_map_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
  4840. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  4841. DMA_TO_DEVICE);
  4842. /* cipher output for encryption */
  4843. if (areq->src != areq->dst) {
  4844. preq_info->dst_nents = count_sg(areq->dst, totallen);
  4845. qce_dma_map_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
  4846. DMA_FROM_DEVICE);
  4847. }
  4848. /* setup for callback, and issue command to bam */
  4849. preq_info->areq = q_req->areq;
  4850. preq_info->qce_cb = q_req->qce_cb;
  4851. preq_info->dir = q_req->dir;
  4852. preq_info->asg = NULL;
  4853. preq_info->offload_op = QCE_OFFLOAD_NONE;
  4854. /* setup xfer type for producer callback handling */
  4855. preq_info->xfer_type = QCE_XFER_AEAD;
  4856. preq_info->req_len = totallen;
  4857. _qce_sps_iovec_count_init(pce_dev, req_info);
  4858. if (pce_dev->support_cmd_dscr) {
  4859. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK,
  4860. cmdlistinfo, &pce_sps_data->in_transfer);
  4861. if (rc)
  4862. goto bad;
  4863. } else {
  4864. rc = _ce_setup_aead_direct(pce_dev, q_req, totallen,
  4865. areq->assoclen);
  4866. if (rc)
  4867. goto bad;
  4868. }
  4869. preq_info->mode = q_req->mode;
  4870. if (pce_dev->ce_bam_info.minor_version == 0) {
  4871. rc = _qce_sps_add_sg_data(pce_dev, areq->src, totallen,
  4872. &pce_sps_data->in_transfer);
  4873. if (rc)
  4874. goto bad;
  4875. _qce_set_flag(&pce_sps_data->in_transfer,
  4876. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  4877. rc = _qce_sps_add_sg_data(pce_dev, areq->dst, totallen,
  4878. &pce_sps_data->out_transfer);
  4879. if (rc)
  4880. goto bad;
  4881. if (totallen > SPS_MAX_PKT_SIZE) {
  4882. _qce_set_flag(&pce_sps_data->out_transfer,
  4883. SPS_IOVEC_FLAG_INT);
  4884. pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE;
  4885. } else {
  4886. rc = _qce_sps_add_data(GET_PHYS_ADDR(
  4887. pce_sps_data->result_dump),
  4888. CRYPTO_RESULT_DUMP_SIZE,
  4889. &pce_sps_data->out_transfer);
  4890. if (rc)
  4891. goto bad;
  4892. _qce_set_flag(&pce_sps_data->out_transfer,
  4893. SPS_IOVEC_FLAG_INT);
  4894. pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
  4895. }
  4896. rc = _qce_sps_transfer(pce_dev, req_info);
  4897. } else {
  4898. rc = _qce_sps_add_sg_data(pce_dev, areq->src, totallen,
  4899. &pce_sps_data->in_transfer);
  4900. if (rc)
  4901. goto bad;
  4902. _qce_set_flag(&pce_sps_data->in_transfer,
  4903. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  4904. if (pce_dev->no_get_around) {
  4905. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  4906. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  4907. &pce_sps_data->in_transfer);
  4908. if (rc)
  4909. goto bad;
  4910. }
  4911. rc = _qce_sps_add_sg_data(pce_dev, areq->dst, totallen,
  4912. &pce_sps_data->out_transfer);
  4913. if (rc)
  4914. goto bad;
  4915. if (pce_dev->no_get_around || totallen <= SPS_MAX_PKT_SIZE) {
  4916. rc = _qce_sps_add_data(
  4917. GET_PHYS_ADDR(pce_sps_data->result_dump),
  4918. CRYPTO_RESULT_DUMP_SIZE,
  4919. &pce_sps_data->out_transfer);
  4920. if (rc)
  4921. goto bad;
  4922. pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
  4923. } else {
  4924. pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE;
  4925. }
  4926. select_mode(pce_dev, preq_info);
  4927. rc = _qce_sps_transfer(pce_dev, req_info);
  4928. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  4929. }
  4930. if (rc)
  4931. goto bad;
  4932. return 0;
  4933. bad:
  4934. if (preq_info->src_nents)
  4935. qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
  4936. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  4937. DMA_TO_DEVICE);
  4938. if (areq->src != areq->dst)
  4939. qce_dma_unmap_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
  4940. DMA_FROM_DEVICE);
  4941. qce_free_req_info(pce_dev, req_info, false);
  4942. return rc;
  4943. }
  4944. EXPORT_SYMBOL(qce_aead_req);
  4945. int qce_ablk_cipher_req(void *handle, struct qce_req *c_req)
  4946. {
  4947. int rc = 0;
  4948. struct qce_device *pce_dev = (struct qce_device *) handle;
  4949. struct skcipher_request *areq = (struct skcipher_request *)
  4950. c_req->areq;
  4951. struct qce_cmdlist_info *cmdlistinfo = NULL;
  4952. int req_info = -1;
  4953. struct ce_sps_data *pce_sps_data;
  4954. struct ce_request_info *preq_info;
  4955. req_info = qce_alloc_req_info(pce_dev);
  4956. if (req_info < 0)
  4957. return -EBUSY;
  4958. c_req->current_req_info = req_info;
  4959. preq_info = &pce_dev->ce_request_info[req_info];
  4960. pce_sps_data = &preq_info->ce_sps;
  4961. preq_info->src_nents = 0;
  4962. preq_info->dst_nents = 0;
  4963. /* cipher input */
  4964. preq_info->src_nents = count_sg(areq->src, areq->cryptlen);
  4965. if (!is_offload_op(c_req->offload_op))
  4966. qce_dma_map_sg(pce_dev->pdev, areq->src,
  4967. preq_info->src_nents,
  4968. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  4969. DMA_TO_DEVICE);
  4970. /* cipher output */
  4971. if (areq->src != areq->dst) {
  4972. preq_info->dst_nents = count_sg(areq->dst, areq->cryptlen);
  4973. if (!is_offload_op(c_req->offload_op))
  4974. qce_dma_map_sg(pce_dev->pdev, areq->dst,
  4975. preq_info->dst_nents, DMA_FROM_DEVICE);
  4976. } else {
  4977. preq_info->dst_nents = preq_info->src_nents;
  4978. }
  4979. preq_info->dir = c_req->dir;
  4980. if ((pce_dev->ce_bam_info.minor_version == 0) &&
  4981. (preq_info->dir == QCE_DECRYPT) &&
  4982. (c_req->mode == QCE_MODE_CBC)) {
  4983. memcpy(preq_info->dec_iv, (unsigned char *)
  4984. sg_virt(areq->src) + areq->src->length - 16,
  4985. NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE);
  4986. }
  4987. /* set up crypto device */
  4988. if (pce_dev->support_cmd_dscr) {
  4989. cmdlistinfo = _ce_get_cipher_cmdlistinfo(pce_dev,
  4990. req_info, c_req);
  4991. if (cmdlistinfo == NULL) {
  4992. pr_err("Unsupported cipher algorithm %d, mode %d\n",
  4993. c_req->alg, c_req->mode);
  4994. qce_free_req_info(pce_dev, req_info, false);
  4995. return -EINVAL;
  4996. }
  4997. rc = _ce_setup_cipher(pce_dev, c_req, areq->cryptlen, 0,
  4998. cmdlistinfo);
  4999. } else {
  5000. rc = _ce_setup_cipher_direct(pce_dev, c_req, areq->cryptlen, 0);
  5001. }
  5002. if (rc < 0)
  5003. goto bad;
  5004. preq_info->mode = c_req->mode;
  5005. preq_info->offload_op = c_req->offload_op;
  5006. /* setup for client callback, and issue command to BAM */
  5007. preq_info->areq = areq;
  5008. preq_info->qce_cb = c_req->qce_cb;
  5009. /* setup xfer type for producer callback handling */
  5010. preq_info->xfer_type = QCE_XFER_CIPHERING;
  5011. preq_info->req_len = areq->cryptlen;
  5012. _qce_sps_iovec_count_init(pce_dev, req_info);
  5013. if (pce_dev->support_cmd_dscr && cmdlistinfo) {
  5014. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK,
  5015. cmdlistinfo, &pce_sps_data->in_transfer);
  5016. if (rc)
  5017. goto bad;
  5018. }
  5019. rc = _qce_sps_add_data(areq->src->dma_address, areq->cryptlen,
  5020. &pce_sps_data->in_transfer);
  5021. if (rc)
  5022. goto bad;
  5023. _qce_set_flag(&pce_sps_data->in_transfer,
  5024. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  5025. if (pce_dev->no_get_around) {
  5026. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  5027. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  5028. &pce_sps_data->in_transfer);
  5029. if (rc)
  5030. goto bad;
  5031. }
  5032. rc = _qce_sps_add_data(areq->dst->dma_address, areq->cryptlen,
  5033. &pce_sps_data->out_transfer);
  5034. if (rc)
  5035. goto bad;
  5036. if (pce_dev->no_get_around || areq->cryptlen <= SPS_MAX_PKT_SIZE) {
  5037. pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
  5038. if (!is_offload_op(c_req->offload_op)) {
  5039. rc = _qce_sps_add_data(
  5040. GET_PHYS_ADDR(pce_sps_data->result_dump),
  5041. CRYPTO_RESULT_DUMP_SIZE,
  5042. &pce_sps_data->out_transfer);
  5043. if (rc)
  5044. goto bad;
  5045. }
  5046. } else {
  5047. pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE;
  5048. }
  5049. select_mode(pce_dev, preq_info);
  5050. rc = _qce_sps_transfer(pce_dev, req_info);
  5051. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  5052. if (rc)
  5053. goto bad;
  5054. return 0;
  5055. bad:
  5056. if (!is_offload_op(c_req->offload_op)) {
  5057. if (areq->src != areq->dst)
  5058. if (preq_info->dst_nents)
  5059. qce_dma_unmap_sg(pce_dev->pdev, areq->dst,
  5060. preq_info->dst_nents, DMA_FROM_DEVICE);
  5061. if (preq_info->src_nents)
  5062. qce_dma_unmap_sg(pce_dev->pdev, areq->src,
  5063. preq_info->src_nents,
  5064. (areq->src == areq->dst) ?
  5065. DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
  5066. }
  5067. qce_free_req_info(pce_dev, req_info, false);
  5068. return rc;
  5069. }
  5070. EXPORT_SYMBOL(qce_ablk_cipher_req);
  5071. int qce_process_sha_req(void *handle, struct qce_sha_req *sreq)
  5072. {
  5073. struct qce_device *pce_dev = (struct qce_device *) handle;
  5074. int rc;
  5075. struct ahash_request *areq;
  5076. struct qce_cmdlist_info *cmdlistinfo = NULL;
  5077. int req_info = -1;
  5078. struct ce_sps_data *pce_sps_data;
  5079. struct ce_request_info *preq_info;
  5080. bool is_dummy = false;
  5081. if (!sreq) {
  5082. sreq = &(pce_dev->dummyreq.sreq);
  5083. req_info = DUMMY_REQ_INDEX;
  5084. is_dummy = true;
  5085. } else {
  5086. req_info = qce_alloc_req_info(pce_dev);
  5087. if (req_info < 0)
  5088. return -EBUSY;
  5089. }
  5090. sreq->current_req_info = req_info;
  5091. areq = (struct ahash_request *)sreq->areq;
  5092. preq_info = &pce_dev->ce_request_info[req_info];
  5093. pce_sps_data = &preq_info->ce_sps;
  5094. preq_info->src_nents = count_sg(sreq->src, sreq->size);
  5095. qce_dma_map_sg(pce_dev->pdev, sreq->src, preq_info->src_nents,
  5096. DMA_TO_DEVICE);
  5097. if (pce_dev->support_cmd_dscr) {
  5098. cmdlistinfo = _ce_get_hash_cmdlistinfo(pce_dev, req_info, sreq);
  5099. if (cmdlistinfo == NULL) {
  5100. pr_err("Unsupported hash algorithm %d\n", sreq->alg);
  5101. qce_free_req_info(pce_dev, req_info, false);
  5102. return -EINVAL;
  5103. }
  5104. rc = _ce_setup_hash(pce_dev, sreq, cmdlistinfo);
  5105. } else {
  5106. rc = _ce_setup_hash_direct(pce_dev, sreq);
  5107. }
  5108. if (rc < 0)
  5109. goto bad;
  5110. preq_info->areq = areq;
  5111. preq_info->qce_cb = sreq->qce_cb;
  5112. preq_info->offload_op = QCE_OFFLOAD_NONE;
  5113. /* setup xfer type for producer callback handling */
  5114. preq_info->xfer_type = QCE_XFER_HASHING;
  5115. preq_info->req_len = sreq->size;
  5116. _qce_sps_iovec_count_init(pce_dev, req_info);
  5117. if (pce_dev->support_cmd_dscr && cmdlistinfo) {
  5118. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK,
  5119. cmdlistinfo, &pce_sps_data->in_transfer);
  5120. if (rc)
  5121. goto bad;
  5122. }
  5123. rc = _qce_sps_add_sg_data(pce_dev, areq->src, areq->nbytes,
  5124. &pce_sps_data->in_transfer);
  5125. if (rc)
  5126. goto bad;
  5127. /* always ensure there is input data. ZLT does not work for bam-ndp */
  5128. if (!areq->nbytes) {
  5129. rc = _qce_sps_add_data(
  5130. GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
  5131. pce_dev->ce_bam_info.ce_burst_size,
  5132. &pce_sps_data->in_transfer);
  5133. if (rc)
  5134. goto bad;
  5135. }
  5136. _qce_set_flag(&pce_sps_data->in_transfer,
  5137. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  5138. if (pce_dev->no_get_around) {
  5139. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  5140. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  5141. &pce_sps_data->in_transfer);
  5142. if (rc)
  5143. goto bad;
  5144. }
  5145. rc = _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump),
  5146. CRYPTO_RESULT_DUMP_SIZE,
  5147. &pce_sps_data->out_transfer);
  5148. if (rc)
  5149. goto bad;
  5150. if (is_dummy) {
  5151. _qce_set_flag(&pce_sps_data->out_transfer, SPS_IOVEC_FLAG_INT);
  5152. rc = _qce_sps_transfer(pce_dev, req_info);
  5153. } else {
  5154. select_mode(pce_dev, preq_info);
  5155. rc = _qce_sps_transfer(pce_dev, req_info);
  5156. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  5157. }
  5158. if (rc)
  5159. goto bad;
  5160. return 0;
  5161. bad:
  5162. if (preq_info->src_nents) {
  5163. qce_dma_unmap_sg(pce_dev->pdev, sreq->src,
  5164. preq_info->src_nents, DMA_TO_DEVICE);
  5165. }
  5166. qce_free_req_info(pce_dev, req_info, false);
  5167. return rc;
  5168. }
  5169. EXPORT_SYMBOL(qce_process_sha_req);
  5170. int qce_f8_req(void *handle, struct qce_f8_req *req,
  5171. void *cookie, qce_comp_func_ptr_t qce_cb)
  5172. {
  5173. struct qce_device *pce_dev = (struct qce_device *) handle;
  5174. bool key_stream_mode;
  5175. dma_addr_t dst;
  5176. int rc;
  5177. struct qce_cmdlist_info *cmdlistinfo;
  5178. int req_info = -1;
  5179. struct ce_request_info *preq_info;
  5180. struct ce_sps_data *pce_sps_data;
  5181. req_info = qce_alloc_req_info(pce_dev);
  5182. if (req_info < 0)
  5183. return -EBUSY;
  5184. req->current_req_info = req_info;
  5185. preq_info = &pce_dev->ce_request_info[req_info];
  5186. pce_sps_data = &preq_info->ce_sps;
  5187. switch (req->algorithm) {
  5188. case QCE_OTA_ALGO_KASUMI:
  5189. cmdlistinfo = &pce_sps_data->cmdlistptr.f8_kasumi;
  5190. break;
  5191. case QCE_OTA_ALGO_SNOW3G:
  5192. cmdlistinfo = &pce_sps_data->cmdlistptr.f8_snow3g;
  5193. break;
  5194. default:
  5195. qce_free_req_info(pce_dev, req_info, false);
  5196. return -EINVAL;
  5197. }
  5198. key_stream_mode = (req->data_in == NULL);
  5199. /* don't support key stream mode */
  5200. if (key_stream_mode || (req->bearer >= QCE_OTA_MAX_BEARER)) {
  5201. qce_free_req_info(pce_dev, req_info, false);
  5202. return -EINVAL;
  5203. }
  5204. /* F8 cipher input */
  5205. preq_info->phy_ota_src = dma_map_single(pce_dev->pdev,
  5206. req->data_in, req->data_len,
  5207. (req->data_in == req->data_out) ?
  5208. DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
  5209. /* F8 cipher output */
  5210. if (req->data_in != req->data_out) {
  5211. dst = dma_map_single(pce_dev->pdev, req->data_out,
  5212. req->data_len, DMA_FROM_DEVICE);
  5213. preq_info->phy_ota_dst = dst;
  5214. } else {
  5215. /* in place ciphering */
  5216. dst = preq_info->phy_ota_src;
  5217. preq_info->phy_ota_dst = 0;
  5218. }
  5219. preq_info->ota_size = req->data_len;
  5220. /* set up crypto device */
  5221. if (pce_dev->support_cmd_dscr)
  5222. rc = _ce_f8_setup(pce_dev, req, key_stream_mode, 1, 0,
  5223. req->data_len, cmdlistinfo);
  5224. else
  5225. rc = _ce_f8_setup_direct(pce_dev, req, key_stream_mode, 1, 0,
  5226. req->data_len);
  5227. if (rc < 0)
  5228. goto bad;
  5229. /* setup for callback, and issue command to sps */
  5230. preq_info->areq = cookie;
  5231. preq_info->qce_cb = qce_cb;
  5232. preq_info->offload_op = QCE_OFFLOAD_NONE;
  5233. /* setup xfer type for producer callback handling */
  5234. preq_info->xfer_type = QCE_XFER_F8;
  5235. preq_info->req_len = req->data_len;
  5236. _qce_sps_iovec_count_init(pce_dev, req_info);
  5237. if (pce_dev->support_cmd_dscr) {
  5238. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK,
  5239. cmdlistinfo, &pce_sps_data->in_transfer);
  5240. if (rc)
  5241. goto bad;
  5242. }
  5243. rc = _qce_sps_add_data((uint32_t)preq_info->phy_ota_src, req->data_len,
  5244. &pce_sps_data->in_transfer);
  5245. if (rc)
  5246. goto bad;
  5247. _qce_set_flag(&pce_sps_data->in_transfer,
  5248. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  5249. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  5250. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  5251. &pce_sps_data->in_transfer);
  5252. if (rc)
  5253. goto bad;
  5254. rc = _qce_sps_add_data((uint32_t)dst, req->data_len,
  5255. &pce_sps_data->out_transfer);
  5256. if (rc)
  5257. goto bad;
  5258. rc = _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump),
  5259. CRYPTO_RESULT_DUMP_SIZE,
  5260. &pce_sps_data->out_transfer);
  5261. if (rc)
  5262. goto bad;
  5263. select_mode(pce_dev, preq_info);
  5264. rc = _qce_sps_transfer(pce_dev, req_info);
  5265. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  5266. if (rc)
  5267. goto bad;
  5268. return 0;
  5269. bad:
  5270. if (preq_info->phy_ota_dst != 0)
  5271. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_dst,
  5272. req->data_len, DMA_FROM_DEVICE);
  5273. if (preq_info->phy_ota_src != 0)
  5274. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src,
  5275. req->data_len,
  5276. (req->data_in == req->data_out) ?
  5277. DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
  5278. qce_free_req_info(pce_dev, req_info, false);
  5279. return rc;
  5280. }
  5281. EXPORT_SYMBOL(qce_f8_req);
  5282. int qce_f8_multi_pkt_req(void *handle, struct qce_f8_multi_pkt_req *mreq,
  5283. void *cookie, qce_comp_func_ptr_t qce_cb)
  5284. {
  5285. struct qce_device *pce_dev = (struct qce_device *) handle;
  5286. uint16_t num_pkt = mreq->num_pkt;
  5287. uint16_t cipher_start = mreq->cipher_start;
  5288. uint16_t cipher_size = mreq->cipher_size;
  5289. struct qce_f8_req *req = &mreq->qce_f8_req;
  5290. uint32_t total;
  5291. dma_addr_t dst = 0;
  5292. int rc = 0;
  5293. struct qce_cmdlist_info *cmdlistinfo;
  5294. int req_info = -1;
  5295. struct ce_request_info *preq_info;
  5296. struct ce_sps_data *pce_sps_data;
  5297. req_info = qce_alloc_req_info(pce_dev);
  5298. if (req_info < 0)
  5299. return -EBUSY;
  5300. req->current_req_info = req_info;
  5301. preq_info = &pce_dev->ce_request_info[req_info];
  5302. pce_sps_data = &preq_info->ce_sps;
  5303. switch (req->algorithm) {
  5304. case QCE_OTA_ALGO_KASUMI:
  5305. cmdlistinfo = &pce_sps_data->cmdlistptr.f8_kasumi;
  5306. break;
  5307. case QCE_OTA_ALGO_SNOW3G:
  5308. cmdlistinfo = &pce_sps_data->cmdlistptr.f8_snow3g;
  5309. break;
  5310. default:
  5311. qce_free_req_info(pce_dev, req_info, false);
  5312. return -EINVAL;
  5313. }
  5314. total = num_pkt * req->data_len;
  5315. /* F8 cipher input */
  5316. preq_info->phy_ota_src = dma_map_single(pce_dev->pdev,
  5317. req->data_in, total,
  5318. (req->data_in == req->data_out) ?
  5319. DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
  5320. /* F8 cipher output */
  5321. if (req->data_in != req->data_out) {
  5322. dst = dma_map_single(pce_dev->pdev, req->data_out, total,
  5323. DMA_FROM_DEVICE);
  5324. preq_info->phy_ota_dst = dst;
  5325. } else {
  5326. /* in place ciphering */
  5327. dst = preq_info->phy_ota_src;
  5328. preq_info->phy_ota_dst = 0;
  5329. }
  5330. preq_info->ota_size = total;
  5331. /* set up crypto device */
  5332. if (pce_dev->support_cmd_dscr)
  5333. rc = _ce_f8_setup(pce_dev, req, false, num_pkt, cipher_start,
  5334. cipher_size, cmdlistinfo);
  5335. else
  5336. rc = _ce_f8_setup_direct(pce_dev, req, false, num_pkt,
  5337. cipher_start, cipher_size);
  5338. if (rc)
  5339. goto bad;
  5340. /* setup for callback, and issue command to sps */
  5341. preq_info->areq = cookie;
  5342. preq_info->qce_cb = qce_cb;
  5343. preq_info->offload_op = QCE_OFFLOAD_NONE;
  5344. /* setup xfer type for producer callback handling */
  5345. preq_info->xfer_type = QCE_XFER_F8;
  5346. preq_info->req_len = total;
  5347. _qce_sps_iovec_count_init(pce_dev, req_info);
  5348. if (pce_dev->support_cmd_dscr) {
  5349. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK,
  5350. cmdlistinfo, &pce_sps_data->in_transfer);
  5351. goto bad;
  5352. }
  5353. rc = _qce_sps_add_data((uint32_t)preq_info->phy_ota_src, total,
  5354. &pce_sps_data->in_transfer);
  5355. if (rc)
  5356. goto bad;
  5357. _qce_set_flag(&pce_sps_data->in_transfer,
  5358. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  5359. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  5360. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  5361. &pce_sps_data->in_transfer);
  5362. if (rc)
  5363. goto bad;
  5364. rc = _qce_sps_add_data((uint32_t)dst, total,
  5365. &pce_sps_data->out_transfer);
  5366. if (rc)
  5367. goto bad;
  5368. rc = _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump),
  5369. CRYPTO_RESULT_DUMP_SIZE,
  5370. &pce_sps_data->out_transfer);
  5371. if (rc)
  5372. goto bad;
  5373. select_mode(pce_dev, preq_info);
  5374. rc = _qce_sps_transfer(pce_dev, req_info);
  5375. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  5376. if (rc == 0)
  5377. return 0;
  5378. bad:
  5379. if (preq_info->phy_ota_dst)
  5380. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_dst, total,
  5381. DMA_FROM_DEVICE);
  5382. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src, total,
  5383. (req->data_in == req->data_out) ?
  5384. DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
  5385. qce_free_req_info(pce_dev, req_info, false);
  5386. return rc;
  5387. }
  5388. EXPORT_SYMBOL(qce_f8_multi_pkt_req);
  5389. int qce_f9_req(void *handle, struct qce_f9_req *req, void *cookie,
  5390. qce_comp_func_ptr_t qce_cb)
  5391. {
  5392. struct qce_device *pce_dev = (struct qce_device *) handle;
  5393. int rc;
  5394. struct qce_cmdlist_info *cmdlistinfo;
  5395. int req_info = -1;
  5396. struct ce_sps_data *pce_sps_data;
  5397. struct ce_request_info *preq_info;
  5398. req_info = qce_alloc_req_info(pce_dev);
  5399. if (req_info < 0)
  5400. return -EBUSY;
  5401. req->current_req_info = req_info;
  5402. preq_info = &pce_dev->ce_request_info[req_info];
  5403. pce_sps_data = &preq_info->ce_sps;
  5404. switch (req->algorithm) {
  5405. case QCE_OTA_ALGO_KASUMI:
  5406. cmdlistinfo = &pce_sps_data->cmdlistptr.f9_kasumi;
  5407. break;
  5408. case QCE_OTA_ALGO_SNOW3G:
  5409. cmdlistinfo = &pce_sps_data->cmdlistptr.f9_snow3g;
  5410. break;
  5411. default:
  5412. qce_free_req_info(pce_dev, req_info, false);
  5413. return -EINVAL;
  5414. }
  5415. preq_info->phy_ota_src = dma_map_single(pce_dev->pdev, req->message,
  5416. req->msize, DMA_TO_DEVICE);
  5417. preq_info->ota_size = req->msize;
  5418. if (pce_dev->support_cmd_dscr)
  5419. rc = _ce_f9_setup(pce_dev, req, cmdlistinfo);
  5420. else
  5421. rc = _ce_f9_setup_direct(pce_dev, req);
  5422. if (rc < 0)
  5423. goto bad;
  5424. /* setup for callback, and issue command to sps */
  5425. preq_info->areq = cookie;
  5426. preq_info->qce_cb = qce_cb;
  5427. preq_info->offload_op = QCE_OFFLOAD_NONE;
  5428. /* setup xfer type for producer callback handling */
  5429. preq_info->xfer_type = QCE_XFER_F9;
  5430. preq_info->req_len = req->msize;
  5431. _qce_sps_iovec_count_init(pce_dev, req_info);
  5432. if (pce_dev->support_cmd_dscr) {
  5433. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK,
  5434. cmdlistinfo, &pce_sps_data->in_transfer);
  5435. if (rc)
  5436. goto bad;
  5437. }
  5438. rc = _qce_sps_add_data((uint32_t)preq_info->phy_ota_src, req->msize,
  5439. &pce_sps_data->in_transfer);
  5440. if (rc)
  5441. goto bad;
  5442. _qce_set_flag(&pce_sps_data->in_transfer,
  5443. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  5444. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  5445. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  5446. &pce_sps_data->in_transfer);
  5447. if (rc)
  5448. goto bad;
  5449. rc = _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump),
  5450. CRYPTO_RESULT_DUMP_SIZE,
  5451. &pce_sps_data->out_transfer);
  5452. if (rc)
  5453. goto bad;
  5454. select_mode(pce_dev, preq_info);
  5455. rc = _qce_sps_transfer(pce_dev, req_info);
  5456. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  5457. if (rc)
  5458. goto bad;
  5459. return 0;
  5460. bad:
  5461. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src,
  5462. req->msize, DMA_TO_DEVICE);
  5463. qce_free_req_info(pce_dev, req_info, false);
  5464. return rc;
  5465. }
  5466. EXPORT_SYMBOL(qce_f9_req);
  5467. static int __qce_get_device_tree_data(struct platform_device *pdev,
  5468. struct qce_device *pce_dev)
  5469. {
  5470. struct resource *resource;
  5471. int rc = 0, i = 0;
  5472. pce_dev->is_shared = of_property_read_bool((&pdev->dev)->of_node,
  5473. "qcom,ce-hw-shared");
  5474. pce_dev->support_hw_key = of_property_read_bool((&pdev->dev)->of_node,
  5475. "qcom,ce-hw-key");
  5476. pce_dev->use_sw_aes_cbc_ecb_ctr_algo =
  5477. of_property_read_bool((&pdev->dev)->of_node,
  5478. "qcom,use-sw-aes-cbc-ecb-ctr-algo");
  5479. pce_dev->use_sw_aead_algo =
  5480. of_property_read_bool((&pdev->dev)->of_node,
  5481. "qcom,use-sw-aead-algo");
  5482. pce_dev->use_sw_aes_xts_algo =
  5483. of_property_read_bool((&pdev->dev)->of_node,
  5484. "qcom,use-sw-aes-xts-algo");
  5485. pce_dev->use_sw_ahash_algo =
  5486. of_property_read_bool((&pdev->dev)->of_node,
  5487. "qcom,use-sw-ahash-algo");
  5488. pce_dev->use_sw_hmac_algo =
  5489. of_property_read_bool((&pdev->dev)->of_node,
  5490. "qcom,use-sw-hmac-algo");
  5491. pce_dev->use_sw_aes_ccm_algo =
  5492. of_property_read_bool((&pdev->dev)->of_node,
  5493. "qcom,use-sw-aes-ccm-algo");
  5494. pce_dev->support_clk_mgmt_sus_res = of_property_read_bool(
  5495. (&pdev->dev)->of_node, "qcom,clk-mgmt-sus-res");
  5496. pce_dev->support_only_core_src_clk = of_property_read_bool(
  5497. (&pdev->dev)->of_node, "qcom,support-core-clk-only");
  5498. pce_dev->request_bw_before_clk = of_property_read_bool(
  5499. (&pdev->dev)->of_node, "qcom,request-bw-before-clk");
  5500. for (i = 0; i < QCE_OFFLOAD_OPER_LAST; i++)
  5501. pce_dev->ce_bam_info.pipe_pair_index[i] = 0;
  5502. pce_dev->kernel_pipes_support = true;
  5503. if (of_property_read_u32((&pdev->dev)->of_node,
  5504. "qcom,bam-pipe-pair",
  5505. &pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_NONE])) {
  5506. pr_warn("Kernel pipes not supported.\n");
  5507. //Unused pipe, just as failsafe.
  5508. pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_NONE] = 2;
  5509. pce_dev->kernel_pipes_support = false;
  5510. }
  5511. if (of_property_read_bool((&pdev->dev)->of_node,
  5512. "qcom,offload-ops-support")) {
  5513. pce_dev->offload_pipes_support = true;
  5514. if (of_property_read_u32((&pdev->dev)->of_node,
  5515. "qcom,bam-pipe-offload-cpb-hlos",
  5516. &pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_CPB_HLOS])) {
  5517. pr_err("Fail to get bam offload cpb-hlos pipe pair info.\n");
  5518. return -EINVAL;
  5519. }
  5520. if (of_property_read_u32((&pdev->dev)->of_node,
  5521. "qcom,bam-pipe-offload-hlos-hlos",
  5522. &pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_HLOS_HLOS])) {
  5523. pr_err("Fail to get bam offload hlos-hlos info.\n");
  5524. return -EINVAL;
  5525. }
  5526. if (of_property_read_u32((&pdev->dev)->of_node,
  5527. "qcom,bam-pipe-offload-hlos-hlos-1",
  5528. &pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_HLOS_HLOS_1])) {
  5529. pr_info("No bam offload hlos-hlos-1 info.\n");
  5530. }
  5531. if (of_property_read_u32((&pdev->dev)->of_node,
  5532. "qcom,bam-pipe-offload-hlos-cpb",
  5533. &pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_HLOS_CPB])) {
  5534. pr_err("Fail to get bam offload hlos-cpb info\n");
  5535. return -EINVAL;
  5536. }
  5537. if (of_property_read_u32((&pdev->dev)->of_node,
  5538. "qcom,bam-pipe-offload-hlos-cpb-1",
  5539. &pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_HLOS_CPB_1])) {
  5540. pr_info("No bam offload hlos-cpb-1 info\n");
  5541. }
  5542. }
  5543. if (of_property_read_u32((&pdev->dev)->of_node,
  5544. "qcom,ce-device",
  5545. &pce_dev->ce_bam_info.ce_device)) {
  5546. pr_err("Fail to get CE device information.\n");
  5547. return -EINVAL;
  5548. }
  5549. if (of_property_read_u32((&pdev->dev)->of_node,
  5550. "qcom,ce-hw-instance",
  5551. &pce_dev->ce_bam_info.ce_hw_instance)) {
  5552. pr_err("Fail to get CE hw instance information.\n");
  5553. return -EINVAL;
  5554. }
  5555. if (of_property_read_u32((&pdev->dev)->of_node,
  5556. "qcom,bam-ee",
  5557. &pce_dev->ce_bam_info.bam_ee)) {
  5558. pr_info("BAM Apps EE is not defined, setting to default 1\n");
  5559. pce_dev->ce_bam_info.bam_ee = 1;
  5560. }
  5561. if (of_property_read_u32((&pdev->dev)->of_node,
  5562. "qcom,ce-opp-freq",
  5563. &pce_dev->ce_opp_freq_hz)) {
  5564. pr_info("CE operating frequency is not defined, setting to default 100MHZ\n");
  5565. pce_dev->ce_opp_freq_hz = CE_CLK_100MHZ;
  5566. }
  5567. if (of_property_read_bool((&pdev->dev)->of_node, "qcom,smmu-s1-enable"))
  5568. pce_dev->enable_s1_smmu = true;
  5569. pce_dev->no_clock_support = of_property_read_bool((&pdev->dev)->of_node,
  5570. "qcom,no-clock-support");
  5571. for (i = 0; i < QCE_OFFLOAD_OPER_LAST; i++) {
  5572. /* Source/destination pipes for all usecases */
  5573. pce_dev->ce_bam_info.dest_pipe_index[i] =
  5574. 2 * pce_dev->ce_bam_info.pipe_pair_index[i];
  5575. pce_dev->ce_bam_info.src_pipe_index[i] =
  5576. pce_dev->ce_bam_info.dest_pipe_index[i] + 1;
  5577. }
  5578. resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  5579. "crypto-base");
  5580. if (resource) {
  5581. pce_dev->phy_iobase = resource->start;
  5582. pce_dev->iobase = ioremap(resource->start,
  5583. resource_size(resource));
  5584. if (!pce_dev->iobase) {
  5585. pr_err("Can not map CRYPTO io memory\n");
  5586. return -ENOMEM;
  5587. }
  5588. } else {
  5589. pr_err("CRYPTO HW mem unavailable.\n");
  5590. return -ENODEV;
  5591. }
  5592. resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  5593. "crypto-bam-base");
  5594. if (resource) {
  5595. pce_dev->bam_mem = resource->start;
  5596. pce_dev->bam_mem_size = resource_size(resource);
  5597. } else {
  5598. pr_err("CRYPTO BAM mem unavailable.\n");
  5599. rc = -ENODEV;
  5600. goto err_getting_bam_info;
  5601. }
  5602. pce_dev->ce_bam_info.bam_irq = platform_get_irq(pdev,0);
  5603. if (pce_dev->ce_bam_info.bam_irq < 0) {
  5604. pr_err("CRYPTO BAM IRQ unavailable.\n");
  5605. goto err_dev;
  5606. }
  5607. return rc;
  5608. err_dev:
  5609. if (pce_dev->ce_bam_info.bam_iobase)
  5610. iounmap(pce_dev->ce_bam_info.bam_iobase);
  5611. err_getting_bam_info:
  5612. if (pce_dev->iobase)
  5613. iounmap(pce_dev->iobase);
  5614. return rc;
  5615. }
  5616. static int __qce_init_clk(struct qce_device *pce_dev)
  5617. {
  5618. int rc = 0;
  5619. if (pce_dev->no_clock_support) {
  5620. pr_debug("No clock support defined in dts\n");
  5621. return rc;
  5622. }
  5623. pce_dev->ce_core_src_clk = clk_get(pce_dev->pdev, "core_clk_src");
  5624. if (!IS_ERR(pce_dev->ce_core_src_clk)) {
  5625. if (pce_dev->request_bw_before_clk)
  5626. goto skip_set_rate;
  5627. rc = clk_set_rate(pce_dev->ce_core_src_clk,
  5628. pce_dev->ce_opp_freq_hz);
  5629. if (rc) {
  5630. pr_err("Unable to set the core src clk @%uMhz.\n",
  5631. pce_dev->ce_opp_freq_hz/CE_CLK_DIV);
  5632. goto exit_put_core_src_clk;
  5633. }
  5634. } else {
  5635. if (pce_dev->support_only_core_src_clk) {
  5636. rc = PTR_ERR(pce_dev->ce_core_src_clk);
  5637. pce_dev->ce_core_src_clk = NULL;
  5638. pr_err("Unable to get CE core src clk\n");
  5639. return rc;
  5640. }
  5641. pr_warn("Unable to get CE core src clk, set to NULL\n");
  5642. pce_dev->ce_core_src_clk = NULL;
  5643. }
  5644. skip_set_rate:
  5645. if (pce_dev->support_only_core_src_clk) {
  5646. pce_dev->ce_core_clk = NULL;
  5647. pce_dev->ce_clk = NULL;
  5648. pce_dev->ce_bus_clk = NULL;
  5649. } else {
  5650. pce_dev->ce_core_clk = clk_get(pce_dev->pdev, "core_clk");
  5651. if (IS_ERR(pce_dev->ce_core_clk)) {
  5652. rc = PTR_ERR(pce_dev->ce_core_clk);
  5653. pr_err("Unable to get CE core clk\n");
  5654. goto exit_put_core_src_clk;
  5655. }
  5656. pce_dev->ce_clk = clk_get(pce_dev->pdev, "iface_clk");
  5657. if (IS_ERR(pce_dev->ce_clk)) {
  5658. rc = PTR_ERR(pce_dev->ce_clk);
  5659. pr_err("Unable to get CE interface clk\n");
  5660. goto exit_put_core_clk;
  5661. }
  5662. pce_dev->ce_bus_clk = clk_get(pce_dev->pdev, "bus_clk");
  5663. if (IS_ERR(pce_dev->ce_bus_clk)) {
  5664. rc = PTR_ERR(pce_dev->ce_bus_clk);
  5665. pr_err("Unable to get CE BUS interface clk\n");
  5666. goto exit_put_iface_clk;
  5667. }
  5668. }
  5669. return rc;
  5670. exit_put_iface_clk:
  5671. if (pce_dev->ce_clk)
  5672. clk_put(pce_dev->ce_clk);
  5673. exit_put_core_clk:
  5674. if (pce_dev->ce_core_clk)
  5675. clk_put(pce_dev->ce_core_clk);
  5676. exit_put_core_src_clk:
  5677. if (pce_dev->ce_core_src_clk)
  5678. clk_put(pce_dev->ce_core_src_clk);
  5679. pr_err("Unable to init CE clks, rc = %d\n", rc);
  5680. return rc;
  5681. }
  5682. static void __qce_deinit_clk(struct qce_device *pce_dev)
  5683. {
  5684. if (pce_dev->no_clock_support) {
  5685. pr_debug("No clock support defined in dts\n");
  5686. return;
  5687. }
  5688. if (pce_dev->ce_bus_clk)
  5689. clk_put(pce_dev->ce_bus_clk);
  5690. if (pce_dev->ce_clk)
  5691. clk_put(pce_dev->ce_clk);
  5692. if (pce_dev->ce_core_clk)
  5693. clk_put(pce_dev->ce_core_clk);
  5694. if (pce_dev->ce_core_src_clk)
  5695. clk_put(pce_dev->ce_core_src_clk);
  5696. }
  5697. int qce_enable_clk(void *handle)
  5698. {
  5699. struct qce_device *pce_dev = (struct qce_device *)handle;
  5700. int rc = 0;
  5701. if (pce_dev->no_clock_support) {
  5702. pr_debug("No clock support defined in dts\n");
  5703. return rc;
  5704. }
  5705. if (pce_dev->ce_core_src_clk) {
  5706. rc = clk_prepare_enable(pce_dev->ce_core_src_clk);
  5707. if (rc) {
  5708. pr_err("Unable to enable/prepare CE core src clk\n");
  5709. return rc;
  5710. }
  5711. }
  5712. if (pce_dev->support_only_core_src_clk)
  5713. return rc;
  5714. if (pce_dev->ce_core_clk) {
  5715. rc = clk_prepare_enable(pce_dev->ce_core_clk);
  5716. if (rc) {
  5717. pr_err("Unable to enable/prepare CE core clk\n");
  5718. goto exit_disable_core_src_clk;
  5719. }
  5720. }
  5721. if (pce_dev->ce_clk) {
  5722. rc = clk_prepare_enable(pce_dev->ce_clk);
  5723. if (rc) {
  5724. pr_err("Unable to enable/prepare CE iface clk\n");
  5725. goto exit_disable_core_clk;
  5726. }
  5727. }
  5728. if (pce_dev->ce_bus_clk) {
  5729. rc = clk_prepare_enable(pce_dev->ce_bus_clk);
  5730. if (rc) {
  5731. pr_err("Unable to enable/prepare CE BUS clk\n");
  5732. goto exit_disable_ce_clk;
  5733. }
  5734. }
  5735. return rc;
  5736. exit_disable_ce_clk:
  5737. if (pce_dev->ce_clk)
  5738. clk_disable_unprepare(pce_dev->ce_clk);
  5739. exit_disable_core_clk:
  5740. if (pce_dev->ce_core_clk)
  5741. clk_disable_unprepare(pce_dev->ce_core_clk);
  5742. exit_disable_core_src_clk:
  5743. if (pce_dev->ce_core_src_clk)
  5744. clk_disable_unprepare(pce_dev->ce_core_src_clk);
  5745. return rc;
  5746. }
  5747. EXPORT_SYMBOL(qce_enable_clk);
  5748. int qce_disable_clk(void *handle)
  5749. {
  5750. struct qce_device *pce_dev = (struct qce_device *) handle;
  5751. if (pce_dev->no_clock_support) {
  5752. pr_debug("No clock support defined in dts\n");
  5753. return 0;
  5754. }
  5755. if (pce_dev->ce_bus_clk)
  5756. clk_disable_unprepare(pce_dev->ce_bus_clk);
  5757. if (pce_dev->ce_clk)
  5758. clk_disable_unprepare(pce_dev->ce_clk);
  5759. if (pce_dev->ce_core_clk)
  5760. clk_disable_unprepare(pce_dev->ce_core_clk);
  5761. if (pce_dev->ce_core_src_clk)
  5762. clk_disable_unprepare(pce_dev->ce_core_src_clk);
  5763. return 0;
  5764. }
  5765. EXPORT_SYMBOL(qce_disable_clk);
  5766. /* dummy req setup */
  5767. static int setup_dummy_req(struct qce_device *pce_dev)
  5768. {
  5769. char *input =
  5770. "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopqopqrpqrs";
  5771. int len = DUMMY_REQ_DATA_LEN;
  5772. memcpy(pce_dev->dummyreq_in_buf, input, len);
  5773. sg_init_one(&pce_dev->dummyreq.sg, pce_dev->dummyreq_in_buf, len);
  5774. pce_dev->dummyreq.sreq.alg = QCE_HASH_SHA1;
  5775. pce_dev->dummyreq.sreq.qce_cb = qce_dummy_complete;
  5776. pce_dev->dummyreq.sreq.src = &pce_dev->dummyreq.sg;
  5777. pce_dev->dummyreq.sreq.auth_data[0] = 0;
  5778. pce_dev->dummyreq.sreq.auth_data[1] = 0;
  5779. pce_dev->dummyreq.sreq.auth_data[2] = 0;
  5780. pce_dev->dummyreq.sreq.auth_data[3] = 0;
  5781. pce_dev->dummyreq.sreq.first_blk = true;
  5782. pce_dev->dummyreq.sreq.last_blk = true;
  5783. pce_dev->dummyreq.sreq.size = len;
  5784. pce_dev->dummyreq.sreq.areq = &pce_dev->dummyreq.areq;
  5785. pce_dev->dummyreq.sreq.flags = 0;
  5786. pce_dev->dummyreq.sreq.authkey = NULL;
  5787. pce_dev->dummyreq.areq.src = pce_dev->dummyreq.sreq.src;
  5788. pce_dev->dummyreq.areq.nbytes = pce_dev->dummyreq.sreq.size;
  5789. return 0;
  5790. }
  5791. static int qce_smmu_init(struct qce_device *pce_dev)
  5792. {
  5793. struct device *dev = pce_dev->pdev;
  5794. if (!dev->dma_parms) {
  5795. dev->dma_parms = devm_kzalloc(dev,
  5796. sizeof(*dev->dma_parms), GFP_KERNEL);
  5797. if (!dev->dma_parms)
  5798. return -ENOMEM;
  5799. }
  5800. dma_set_max_seg_size(dev, DMA_BIT_MASK(32));
  5801. dma_set_seg_boundary(dev, (unsigned long)DMA_BIT_MASK(64));
  5802. return 0;
  5803. }
  5804. /* crypto engine open function. */
  5805. void *qce_open(struct platform_device *pdev, int *rc)
  5806. {
  5807. struct qce_device *pce_dev;
  5808. int i;
  5809. static int pcedev_no = 1;
  5810. pce_dev = kzalloc(sizeof(struct qce_device), GFP_KERNEL);
  5811. if (!pce_dev) {
  5812. *rc = -ENOMEM;
  5813. pr_err("Can not allocate memory: %d\n", *rc);
  5814. return NULL;
  5815. }
  5816. pce_dev->pdev = &pdev->dev;
  5817. mutex_lock(&qce_iomap_mutex);
  5818. if (pdev->dev.of_node) {
  5819. *rc = __qce_get_device_tree_data(pdev, pce_dev);
  5820. if (*rc)
  5821. goto err_pce_dev;
  5822. } else {
  5823. *rc = -EINVAL;
  5824. pr_err("Device Node not found.\n");
  5825. goto err_pce_dev;
  5826. }
  5827. if (pce_dev->enable_s1_smmu) {
  5828. if (qce_smmu_init(pce_dev)) {
  5829. *rc = -EIO;
  5830. goto err_pce_dev;
  5831. }
  5832. }
  5833. for (i = 0; i < MAX_QCE_ALLOC_BAM_REQ; i++)
  5834. atomic_set(&pce_dev->ce_request_info[i].in_use, false);
  5835. pce_dev->ce_request_index = 0;
  5836. pce_dev->memsize = 10 * PAGE_SIZE * MAX_QCE_ALLOC_BAM_REQ;
  5837. pce_dev->coh_vmem = dma_alloc_coherent(pce_dev->pdev,
  5838. pce_dev->memsize, &pce_dev->coh_pmem, GFP_KERNEL);
  5839. if (pce_dev->coh_vmem == NULL) {
  5840. *rc = -ENOMEM;
  5841. pr_err("Can not allocate coherent memory for sps data\n");
  5842. goto err_iobase;
  5843. }
  5844. pce_dev->iovec_memsize = TOTAL_IOVEC_SPACE_PER_PIPE *
  5845. MAX_QCE_ALLOC_BAM_REQ * 2;
  5846. pce_dev->iovec_vmem = kzalloc(pce_dev->iovec_memsize, GFP_KERNEL);
  5847. if (pce_dev->iovec_vmem == NULL)
  5848. goto err_mem;
  5849. pce_dev->dummyreq_in_buf = kzalloc(DUMMY_REQ_DATA_LEN, GFP_KERNEL);
  5850. if (pce_dev->dummyreq_in_buf == NULL)
  5851. goto err_mem;
  5852. *rc = __qce_init_clk(pce_dev);
  5853. if (*rc)
  5854. goto err_mem;
  5855. *rc = qce_enable_clk(pce_dev);
  5856. if (*rc)
  5857. goto err_enable_clk;
  5858. if (_probe_ce_engine(pce_dev)) {
  5859. *rc = -ENXIO;
  5860. goto err;
  5861. }
  5862. *rc = 0;
  5863. qce_init_ce_cfg_val(pce_dev);
  5864. *rc = qce_sps_init(pce_dev);
  5865. if (*rc)
  5866. goto err;
  5867. qce_setup_ce_sps_data(pce_dev);
  5868. qce_disable_clk(pce_dev);
  5869. setup_dummy_req(pce_dev);
  5870. atomic_set(&pce_dev->no_of_queued_req, 0);
  5871. pce_dev->mode = IN_INTERRUPT_MODE;
  5872. timer_setup(&(pce_dev->timer), qce_multireq_timeout, 0);
  5873. //pce_dev->timer.function = qce_multireq_timeout;
  5874. //pce_dev->timer.data = (unsigned long)pce_dev;
  5875. pce_dev->timer.expires = jiffies + DELAY_IN_JIFFIES;
  5876. pce_dev->intr_cadence = 0;
  5877. pce_dev->dev_no = pcedev_no;
  5878. pcedev_no++;
  5879. pce_dev->owner = QCE_OWNER_NONE;
  5880. qce_enable_clock_gating(pce_dev);
  5881. mutex_unlock(&qce_iomap_mutex);
  5882. return pce_dev;
  5883. err:
  5884. qce_disable_clk(pce_dev);
  5885. err_enable_clk:
  5886. __qce_deinit_clk(pce_dev);
  5887. err_mem:
  5888. kfree(pce_dev->dummyreq_in_buf);
  5889. kfree(pce_dev->iovec_vmem);
  5890. if (pce_dev->coh_vmem)
  5891. dma_free_coherent(pce_dev->pdev, pce_dev->memsize,
  5892. pce_dev->coh_vmem, pce_dev->coh_pmem);
  5893. err_iobase:
  5894. if (pce_dev->iobase)
  5895. iounmap(pce_dev->iobase);
  5896. err_pce_dev:
  5897. mutex_unlock(&qce_iomap_mutex);
  5898. kfree(pce_dev);
  5899. return NULL;
  5900. }
  5901. EXPORT_SYMBOL(qce_open);
  5902. /* crypto engine close function. */
  5903. int qce_close(void *handle)
  5904. {
  5905. struct qce_device *pce_dev = (struct qce_device *) handle;
  5906. if (handle == NULL)
  5907. return -ENODEV;
  5908. mutex_lock(&qce_iomap_mutex);
  5909. qce_enable_clk(pce_dev);
  5910. qce_sps_exit(pce_dev);
  5911. if (pce_dev->iobase)
  5912. iounmap(pce_dev->iobase);
  5913. if (pce_dev->coh_vmem)
  5914. dma_free_coherent(pce_dev->pdev, pce_dev->memsize,
  5915. pce_dev->coh_vmem, pce_dev->coh_pmem);
  5916. kfree(pce_dev->dummyreq_in_buf);
  5917. kfree(pce_dev->iovec_vmem);
  5918. qce_disable_clk(pce_dev);
  5919. __qce_deinit_clk(pce_dev);
  5920. mutex_unlock(&qce_iomap_mutex);
  5921. kfree(handle);
  5922. return 0;
  5923. }
  5924. EXPORT_SYMBOL(qce_close);
  5925. #define OTA_SUPPORT_MASK (1 << CRYPTO_ENCR_SNOW3G_SEL |\
  5926. 1 << CRYPTO_ENCR_KASUMI_SEL |\
  5927. 1 << CRYPTO_AUTH_SNOW3G_SEL |\
  5928. 1 << CRYPTO_AUTH_KASUMI_SEL)
  5929. int qce_hw_support(void *handle, struct ce_hw_support *ce_support)
  5930. {
  5931. struct qce_device *pce_dev = (struct qce_device *)handle;
  5932. if (ce_support == NULL)
  5933. return -EINVAL;
  5934. ce_support->sha1_hmac_20 = false;
  5935. ce_support->sha1_hmac = false;
  5936. ce_support->sha256_hmac = false;
  5937. ce_support->sha_hmac = true;
  5938. ce_support->cmac = true;
  5939. ce_support->aes_key_192 = false;
  5940. ce_support->aes_xts = true;
  5941. if ((pce_dev->engines_avail & OTA_SUPPORT_MASK) == OTA_SUPPORT_MASK)
  5942. ce_support->ota = true;
  5943. else
  5944. ce_support->ota = false;
  5945. ce_support->bam = true;
  5946. ce_support->is_shared = (pce_dev->is_shared == 1) ? true : false;
  5947. ce_support->hw_key = pce_dev->support_hw_key;
  5948. ce_support->aes_ccm = true;
  5949. ce_support->clk_mgmt_sus_res = pce_dev->support_clk_mgmt_sus_res;
  5950. ce_support->req_bw_before_clk = pce_dev->request_bw_before_clk;
  5951. if (pce_dev->ce_bam_info.minor_version)
  5952. ce_support->aligned_only = false;
  5953. else
  5954. ce_support->aligned_only = true;
  5955. ce_support->use_sw_aes_cbc_ecb_ctr_algo =
  5956. pce_dev->use_sw_aes_cbc_ecb_ctr_algo;
  5957. ce_support->use_sw_aead_algo =
  5958. pce_dev->use_sw_aead_algo;
  5959. ce_support->use_sw_aes_xts_algo =
  5960. pce_dev->use_sw_aes_xts_algo;
  5961. ce_support->use_sw_ahash_algo =
  5962. pce_dev->use_sw_ahash_algo;
  5963. ce_support->use_sw_hmac_algo =
  5964. pce_dev->use_sw_hmac_algo;
  5965. ce_support->use_sw_aes_ccm_algo =
  5966. pce_dev->use_sw_aes_ccm_algo;
  5967. ce_support->ce_device = pce_dev->ce_bam_info.ce_device;
  5968. ce_support->ce_hw_instance = pce_dev->ce_bam_info.ce_hw_instance;
  5969. if (pce_dev->no_get_around)
  5970. ce_support->max_request = MAX_QCE_BAM_REQ;
  5971. else
  5972. ce_support->max_request = 1;
  5973. return 0;
  5974. }
  5975. EXPORT_SYMBOL(qce_hw_support);
  5976. void qce_dump_req(void *handle)
  5977. {
  5978. int i;
  5979. bool req_in_use;
  5980. struct qce_device *pce_dev = (struct qce_device *)handle;
  5981. for (i = 0; i < MAX_QCE_BAM_REQ; i++) {
  5982. req_in_use = atomic_read(&pce_dev->ce_request_info[i].in_use);
  5983. pr_info("%s: %d %d\n", __func__, i, req_in_use);
  5984. if (req_in_use)
  5985. _qce_dump_descr_fifos(pce_dev, i);
  5986. }
  5987. }
  5988. EXPORT_SYMBOL(qce_dump_req);
  5989. MODULE_LICENSE("GPL v2");
  5990. MODULE_DESCRIPTION("Crypto Engine driver");