dp_rx.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790
  1. /*
  2. * Copyright (c) 2016-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "dp_types.h"
  19. #include "dp_rx.h"
  20. #include "dp_peer.h"
  21. #include "hal_rx.h"
  22. #include "hal_api.h"
  23. #include "qdf_nbuf.h"
  24. #ifdef MESH_MODE_SUPPORT
  25. #include "if_meta_hdr.h"
  26. #endif
  27. #include "dp_internal.h"
  28. #include "dp_rx_mon.h"
  29. #ifdef RX_DESC_DEBUG_CHECK
  30. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  31. {
  32. rx_desc->magic = DP_RX_DESC_MAGIC;
  33. rx_desc->nbuf = nbuf;
  34. }
  35. #else
  36. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  37. {
  38. rx_desc->nbuf = nbuf;
  39. }
  40. #endif
  41. #ifdef CONFIG_WIN
  42. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  43. {
  44. return vdev->ap_bridge_enabled;
  45. }
  46. #else
  47. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  48. {
  49. if (vdev->opmode != wlan_op_mode_sta)
  50. return true;
  51. else
  52. return false;
  53. }
  54. #endif
  55. /*
  56. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  57. * called during dp rx initialization
  58. * and at the end of dp_rx_process.
  59. *
  60. * @soc: core txrx main context
  61. * @mac_id: mac_id which is one of 3 mac_ids
  62. * @dp_rxdma_srng: dp rxdma circular ring
  63. * @rx_desc_pool: Poiter to free Rx descriptor pool
  64. * @num_req_buffers: number of buffer to be replenished
  65. * @desc_list: list of descs if called from dp_rx_process
  66. * or NULL during dp rx initialization or out of buffer
  67. * interrupt.
  68. * @tail: tail of descs list
  69. * Return: return success or failure
  70. */
  71. QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  72. struct dp_srng *dp_rxdma_srng,
  73. struct rx_desc_pool *rx_desc_pool,
  74. uint32_t num_req_buffers,
  75. union dp_rx_desc_list_elem_t **desc_list,
  76. union dp_rx_desc_list_elem_t **tail)
  77. {
  78. uint32_t num_alloc_desc;
  79. uint16_t num_desc_to_free = 0;
  80. struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
  81. uint32_t num_entries_avail;
  82. uint32_t count;
  83. int sync_hw_ptr = 1;
  84. qdf_dma_addr_t paddr;
  85. qdf_nbuf_t rx_netbuf;
  86. void *rxdma_ring_entry;
  87. union dp_rx_desc_list_elem_t *next;
  88. QDF_STATUS ret;
  89. void *rxdma_srng;
  90. rxdma_srng = dp_rxdma_srng->hal_srng;
  91. if (!rxdma_srng) {
  92. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  93. "rxdma srng not initialized");
  94. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  95. return QDF_STATUS_E_FAILURE;
  96. }
  97. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  98. "requested %d buffers for replenish", num_req_buffers);
  99. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  100. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  101. rxdma_srng,
  102. sync_hw_ptr);
  103. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  104. "no of availble entries in rxdma ring: %d",
  105. num_entries_avail);
  106. if (!(*desc_list) && (num_entries_avail >
  107. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  108. num_req_buffers = num_entries_avail;
  109. } else if (num_entries_avail < num_req_buffers) {
  110. num_desc_to_free = num_req_buffers - num_entries_avail;
  111. num_req_buffers = num_entries_avail;
  112. }
  113. if (qdf_unlikely(!num_req_buffers)) {
  114. num_desc_to_free = num_req_buffers;
  115. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  116. goto free_descs;
  117. }
  118. /*
  119. * if desc_list is NULL, allocate the descs from freelist
  120. */
  121. if (!(*desc_list)) {
  122. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  123. rx_desc_pool,
  124. num_req_buffers,
  125. desc_list,
  126. tail);
  127. if (!num_alloc_desc) {
  128. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  129. "no free rx_descs in freelist");
  130. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  131. num_req_buffers);
  132. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  133. return QDF_STATUS_E_NOMEM;
  134. }
  135. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  136. "%d rx desc allocated", num_alloc_desc);
  137. num_req_buffers = num_alloc_desc;
  138. }
  139. count = 0;
  140. while (count < num_req_buffers) {
  141. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  142. RX_BUFFER_SIZE,
  143. RX_BUFFER_RESERVATION,
  144. RX_BUFFER_ALIGNMENT,
  145. FALSE);
  146. if (rx_netbuf == NULL) {
  147. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  148. continue;
  149. }
  150. ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
  151. QDF_DMA_BIDIRECTIONAL);
  152. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  153. qdf_nbuf_free(rx_netbuf);
  154. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  155. continue;
  156. }
  157. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  158. /*
  159. * check if the physical address of nbuf->data is
  160. * less then 0x50000000 then free the nbuf and try
  161. * allocating new nbuf. We can try for 100 times.
  162. * this is a temp WAR till we fix it properly.
  163. */
  164. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
  165. if (ret == QDF_STATUS_E_FAILURE) {
  166. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  167. break;
  168. }
  169. count++;
  170. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  171. rxdma_srng);
  172. qdf_assert_always(rxdma_ring_entry);
  173. next = (*desc_list)->next;
  174. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  175. (*desc_list)->rx_desc.in_use = 1;
  176. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  177. "rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
  178. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  179. (unsigned long long)paddr, (*desc_list)->rx_desc.cookie);
  180. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  181. (*desc_list)->rx_desc.cookie,
  182. rx_desc_pool->owner);
  183. *desc_list = next;
  184. }
  185. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  186. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  187. "successfully replenished %d buffers", num_req_buffers);
  188. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  189. "%d rx desc added back to free list", num_desc_to_free);
  190. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
  191. (RX_BUFFER_SIZE * num_req_buffers));
  192. free_descs:
  193. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  194. /*
  195. * add any available free desc back to the free list
  196. */
  197. if (*desc_list)
  198. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  199. mac_id, rx_desc_pool);
  200. return QDF_STATUS_SUCCESS;
  201. }
  202. /*
  203. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  204. * pkts to RAW mode simulation to
  205. * decapsulate the pkt.
  206. *
  207. * @vdev: vdev on which RAW mode is enabled
  208. * @nbuf_list: list of RAW pkts to process
  209. * @peer: peer object from which the pkt is rx
  210. *
  211. * Return: void
  212. */
  213. void
  214. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  215. struct dp_peer *peer)
  216. {
  217. qdf_nbuf_t deliver_list_head = NULL;
  218. qdf_nbuf_t deliver_list_tail = NULL;
  219. qdf_nbuf_t nbuf;
  220. nbuf = nbuf_list;
  221. while (nbuf) {
  222. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  223. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  224. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  225. /*
  226. * reset the chfrag_start and chfrag_end bits in nbuf cb
  227. * as this is a non-amsdu pkt and RAW mode simulation expects
  228. * these bit s to be 0 for non-amsdu pkt.
  229. */
  230. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  231. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  232. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  233. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  234. }
  235. nbuf = next;
  236. }
  237. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  238. &deliver_list_tail, (struct cdp_peer*) peer);
  239. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  240. }
  241. #ifdef DP_LFR
  242. /*
  243. * In case of LFR, data of a new peer might be sent up
  244. * even before peer is added.
  245. */
  246. static inline struct dp_vdev *
  247. dp_get_vdev_from_peer(struct dp_soc *soc,
  248. uint16_t peer_id,
  249. struct dp_peer *peer,
  250. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  251. {
  252. struct dp_vdev *vdev;
  253. uint8_t vdev_id;
  254. if (unlikely(!peer)) {
  255. if (peer_id != HTT_INVALID_PEER) {
  256. vdev_id = DP_PEER_METADATA_ID_GET(
  257. mpdu_desc_info.peer_meta_data);
  258. QDF_TRACE(QDF_MODULE_ID_DP,
  259. QDF_TRACE_LEVEL_DEBUG,
  260. FL("PeerID %d not found use vdevID %d"),
  261. peer_id, vdev_id);
  262. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  263. vdev_id);
  264. } else {
  265. QDF_TRACE(QDF_MODULE_ID_DP,
  266. QDF_TRACE_LEVEL_DEBUG,
  267. FL("Invalid PeerID %d"),
  268. peer_id);
  269. return NULL;
  270. }
  271. } else {
  272. vdev = peer->vdev;
  273. }
  274. return vdev;
  275. }
  276. #else
  277. static inline struct dp_vdev *
  278. dp_get_vdev_from_peer(struct dp_soc *soc,
  279. uint16_t peer_id,
  280. struct dp_peer *peer,
  281. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  282. {
  283. if (unlikely(!peer)) {
  284. QDF_TRACE(QDF_MODULE_ID_DP,
  285. QDF_TRACE_LEVEL_DEBUG,
  286. FL("Peer not found for peerID %d"),
  287. peer_id);
  288. return NULL;
  289. } else {
  290. return peer->vdev;
  291. }
  292. }
  293. #endif
  294. /**
  295. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  296. *
  297. * @soc: core txrx main context
  298. * @sa_peer : source peer entry
  299. * @rx_tlv_hdr : start address of rx tlvs
  300. * @nbuf : nbuf that has to be intrabss forwarded
  301. *
  302. * Return: bool: true if it is forwarded else false
  303. */
  304. static bool
  305. dp_rx_intrabss_fwd(struct dp_soc *soc,
  306. struct dp_peer *sa_peer,
  307. uint8_t *rx_tlv_hdr,
  308. qdf_nbuf_t nbuf)
  309. {
  310. uint16_t da_idx;
  311. uint16_t len;
  312. struct dp_peer *da_peer;
  313. struct dp_ast_entry *ast_entry;
  314. qdf_nbuf_t nbuf_copy;
  315. struct dp_vdev *vdev = sa_peer->vdev;
  316. /*
  317. * intrabss forwarding is not applicable if
  318. * vap is nawds enabled or ap_bridge is false.
  319. */
  320. if (vdev->nawds_enabled)
  321. return false;
  322. /* check if the destination peer is available in peer table
  323. * and also check if the source peer and destination peer
  324. * belong to the same vap and destination peer is not bss peer.
  325. */
  326. if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
  327. !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  328. da_idx = hal_rx_msdu_end_da_idx_get(rx_tlv_hdr);
  329. ast_entry = soc->ast_table[da_idx];
  330. if (!ast_entry)
  331. return false;
  332. da_peer = ast_entry->peer;
  333. if (!da_peer)
  334. return false;
  335. if (da_peer->vdev == sa_peer->vdev && !da_peer->bss_peer) {
  336. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  337. len = qdf_nbuf_len(nbuf);
  338. /* linearize the nbuf just before we send to
  339. * dp_tx_send()
  340. */
  341. if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf))) {
  342. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  343. return false;
  344. nbuf = qdf_nbuf_unshare(nbuf);
  345. if (!nbuf) {
  346. DP_STATS_INC_PKT(sa_peer,
  347. rx.intra_bss.fail,
  348. 1,
  349. len);
  350. /* return true even though the pkt is
  351. * not forwarded. Basically skb_unshare
  352. * failed and we want to continue with
  353. * next nbuf.
  354. */
  355. return true;
  356. }
  357. }
  358. if (!dp_tx_send(sa_peer->vdev, nbuf)) {
  359. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts,
  360. 1, len);
  361. return true;
  362. } else {
  363. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1,
  364. len);
  365. return false;
  366. }
  367. }
  368. }
  369. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  370. * source, then clone the pkt and send the cloned pkt for
  371. * intra BSS forwarding and original pkt up the network stack
  372. * Note: how do we handle multicast pkts. do we forward
  373. * all multicast pkts as is or let a higher layer module
  374. * like igmpsnoop decide whether to forward or not with
  375. * Mcast enhancement.
  376. */
  377. else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  378. !sa_peer->bss_peer))) {
  379. nbuf_copy = qdf_nbuf_copy(nbuf);
  380. if (!nbuf_copy)
  381. return false;
  382. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  383. len = qdf_nbuf_len(nbuf_copy);
  384. if (dp_tx_send(sa_peer->vdev, nbuf_copy)) {
  385. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1, len);
  386. qdf_nbuf_free(nbuf_copy);
  387. } else
  388. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts, 1, len);
  389. }
  390. /* return false as we have to still send the original pkt
  391. * up the stack
  392. */
  393. return false;
  394. }
  395. #ifdef MESH_MODE_SUPPORT
  396. /**
  397. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  398. *
  399. * @vdev: DP Virtual device handle
  400. * @nbuf: Buffer pointer
  401. * @rx_tlv_hdr: start of rx tlv header
  402. * @peer: pointer to peer
  403. *
  404. * This function allocated memory for mesh receive stats and fill the
  405. * required stats. Stores the memory address in skb cb.
  406. *
  407. * Return: void
  408. */
  409. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  410. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  411. {
  412. struct mesh_recv_hdr_s *rx_info = NULL;
  413. uint32_t pkt_type;
  414. uint32_t nss;
  415. uint32_t rate_mcs;
  416. uint32_t bw;
  417. /* fill recv mesh stats */
  418. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  419. /* upper layers are resposible to free this memory */
  420. if (rx_info == NULL) {
  421. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  422. "Memory allocation failed for mesh rx stats");
  423. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  424. return;
  425. }
  426. rx_info->rs_flags = MESH_RXHDR_VER1;
  427. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  428. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  429. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  430. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  431. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  432. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  433. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  434. if (vdev->osif_get_key)
  435. vdev->osif_get_key(vdev->osif_vdev,
  436. &rx_info->rs_decryptkey[0],
  437. &peer->mac_addr.raw[0],
  438. rx_info->rs_keyix);
  439. }
  440. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  441. rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  442. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  443. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  444. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  445. nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
  446. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  447. (bw << 24);
  448. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  449. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  450. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  451. rx_info->rs_flags,
  452. rx_info->rs_rssi,
  453. rx_info->rs_channel,
  454. rx_info->rs_ratephy1,
  455. rx_info->rs_keyix);
  456. }
  457. /**
  458. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  459. *
  460. * @vdev: DP Virtual device handle
  461. * @nbuf: Buffer pointer
  462. * @rx_tlv_hdr: start of rx tlv header
  463. *
  464. * This checks if the received packet is matching any filter out
  465. * catogery and and drop the packet if it matches.
  466. *
  467. * Return: status(0 indicates drop, 1 indicate to no drop)
  468. */
  469. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  470. uint8_t *rx_tlv_hdr)
  471. {
  472. union dp_align_mac_addr mac_addr;
  473. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  474. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  475. if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
  476. return QDF_STATUS_SUCCESS;
  477. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  478. if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  479. return QDF_STATUS_SUCCESS;
  480. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  481. if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
  482. && !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  483. return QDF_STATUS_SUCCESS;
  484. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  485. if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
  486. &mac_addr.raw[0]))
  487. return QDF_STATUS_E_FAILURE;
  488. if (!qdf_mem_cmp(&mac_addr.raw[0],
  489. &vdev->mac_addr.raw[0],
  490. DP_MAC_ADDR_LEN))
  491. return QDF_STATUS_SUCCESS;
  492. }
  493. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  494. if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
  495. &mac_addr.raw[0]))
  496. return QDF_STATUS_E_FAILURE;
  497. if (!qdf_mem_cmp(&mac_addr.raw[0],
  498. &vdev->mac_addr.raw[0],
  499. DP_MAC_ADDR_LEN))
  500. return QDF_STATUS_SUCCESS;
  501. }
  502. }
  503. return QDF_STATUS_E_FAILURE;
  504. }
  505. #else
  506. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  507. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  508. {
  509. }
  510. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  511. uint8_t *rx_tlv_hdr)
  512. {
  513. return QDF_STATUS_E_FAILURE;
  514. }
  515. #endif
  516. #ifdef CONFIG_WIN
  517. /**
  518. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  519. * clients
  520. * @pdev: DP pdev handle
  521. * @rx_pkt_hdr: Rx packet Header
  522. *
  523. * return: dp_vdev*
  524. */
  525. static
  526. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  527. uint8_t *rx_pkt_hdr)
  528. {
  529. struct ieee80211_frame *wh;
  530. struct dp_neighbour_peer *peer = NULL;
  531. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  532. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  533. return NULL;
  534. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  535. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  536. neighbour_peer_list_elem) {
  537. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  538. wh->i_addr2, DP_MAC_ADDR_LEN) == 0) {
  539. QDF_TRACE(
  540. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  541. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  542. peer->neighbour_peers_macaddr.raw[0],
  543. peer->neighbour_peers_macaddr.raw[1],
  544. peer->neighbour_peers_macaddr.raw[2],
  545. peer->neighbour_peers_macaddr.raw[3],
  546. peer->neighbour_peers_macaddr.raw[4],
  547. peer->neighbour_peers_macaddr.raw[5]);
  548. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  549. return pdev->monitor_vdev;
  550. }
  551. }
  552. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  553. return NULL;
  554. }
  555. /**
  556. * dp_rx_process_nac_rssi_frames(): Store RSSI for configured NAC
  557. * @pdev: DP pdev handle
  558. * @rx_tlv_hdr: tlv hdr buf
  559. *
  560. * return: None
  561. */
  562. #ifdef ATH_SUPPORT_NAC_RSSI
  563. static void dp_rx_process_nac_rssi_frames(struct dp_pdev *pdev, uint8_t *rx_tlv_hdr)
  564. {
  565. struct dp_vdev *vdev = NULL;
  566. struct dp_soc *soc = pdev->soc;
  567. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  568. struct ieee80211_frame *wh = (struct ieee80211_frame *)rx_pkt_hdr;
  569. if (pdev->nac_rssi_filtering) {
  570. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  571. if (vdev->cdp_nac_rssi_enabled &&
  572. (qdf_mem_cmp(vdev->cdp_nac_rssi.client_mac,
  573. wh->i_addr1, DP_MAC_ADDR_LEN) == 0)) {
  574. QDF_TRACE(QDF_MODULE_ID_DP,
  575. QDF_TRACE_LEVEL_DEBUG, "RSSI updated");
  576. vdev->cdp_nac_rssi.vdev_id = vdev->vdev_id;
  577. vdev->cdp_nac_rssi.client_rssi =
  578. hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  579. dp_wdi_event_handler(WDI_EVENT_NAC_RSSI, soc,
  580. (void *)&vdev->cdp_nac_rssi,
  581. HTT_INVALID_PEER, WDI_NO_VAL,
  582. pdev->pdev_id);
  583. }
  584. }
  585. }
  586. }
  587. #else
  588. static void dp_rx_process_nac_rssi_frames(struct dp_pdev *pdev, uint8_t *rx_tlv_hdr)
  589. {
  590. }
  591. #endif
  592. /**
  593. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  594. * @soc: DP SOC handle
  595. * @mpdu: mpdu for which peer is invalid
  596. *
  597. * return: integer type
  598. */
  599. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  600. {
  601. struct dp_invalid_peer_msg msg;
  602. struct dp_vdev *vdev = NULL;
  603. struct dp_pdev *pdev = NULL;
  604. struct ieee80211_frame *wh;
  605. uint8_t i;
  606. qdf_nbuf_t curr_nbuf, next_nbuf;
  607. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  608. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  609. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  610. if (!DP_FRAME_IS_DATA(wh)) {
  611. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  612. "NAWDS valid only for data frames");
  613. goto free;
  614. }
  615. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  616. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  617. "Invalid nbuf length");
  618. goto free;
  619. }
  620. for (i = 0; i < MAX_PDEV_CNT; i++) {
  621. pdev = soc->pdev_list[i];
  622. if (!pdev) {
  623. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  624. "PDEV not found");
  625. continue;
  626. }
  627. if (pdev->filter_neighbour_peers) {
  628. /* Next Hop scenario not yet handle */
  629. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  630. if (vdev) {
  631. dp_rx_mon_deliver(soc, i,
  632. pdev->invalid_peer_head_msdu,
  633. pdev->invalid_peer_tail_msdu);
  634. pdev->invalid_peer_head_msdu = NULL;
  635. pdev->invalid_peer_tail_msdu = NULL;
  636. return 0;
  637. }
  638. }
  639. dp_rx_process_nac_rssi_frames(pdev, rx_tlv_hdr);
  640. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  641. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  642. DP_MAC_ADDR_LEN) == 0) {
  643. goto out;
  644. }
  645. }
  646. }
  647. if (!vdev) {
  648. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  649. "VDEV not found");
  650. goto free;
  651. }
  652. out:
  653. msg.wh = wh;
  654. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  655. msg.nbuf = mpdu;
  656. msg.vdev_id = vdev->vdev_id;
  657. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  658. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->osif_pdev, &msg);
  659. free:
  660. /* Drop and free packet */
  661. curr_nbuf = mpdu;
  662. while (curr_nbuf) {
  663. next_nbuf = qdf_nbuf_next(curr_nbuf);
  664. qdf_nbuf_free(curr_nbuf);
  665. curr_nbuf = next_nbuf;
  666. }
  667. return 0;
  668. }
  669. /**
  670. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  671. * @soc: DP SOC handle
  672. * @mpdu: mpdu for which peer is invalid
  673. * @mpdu_done: if an mpdu is completed
  674. *
  675. * return: integer type
  676. */
  677. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  678. qdf_nbuf_t mpdu, bool mpdu_done)
  679. {
  680. /* Only trigger the process when mpdu is completed */
  681. if (mpdu_done)
  682. dp_rx_process_invalid_peer(soc, mpdu);
  683. }
  684. #else
  685. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  686. {
  687. qdf_nbuf_t curr_nbuf, next_nbuf;
  688. struct dp_pdev *pdev;
  689. uint8_t i;
  690. curr_nbuf = mpdu;
  691. while (curr_nbuf) {
  692. next_nbuf = qdf_nbuf_next(curr_nbuf);
  693. /* Drop and free packet */
  694. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  695. qdf_nbuf_len(curr_nbuf));
  696. qdf_nbuf_free(curr_nbuf);
  697. curr_nbuf = next_nbuf;
  698. }
  699. /* reset the head and tail pointers */
  700. for (i = 0; i < MAX_PDEV_CNT; i++) {
  701. pdev = soc->pdev_list[i];
  702. if (!pdev) {
  703. QDF_TRACE(QDF_MODULE_ID_DP,
  704. QDF_TRACE_LEVEL_ERROR,
  705. "PDEV not found");
  706. continue;
  707. }
  708. pdev->invalid_peer_head_msdu = NULL;
  709. pdev->invalid_peer_tail_msdu = NULL;
  710. }
  711. return 0;
  712. }
  713. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  714. qdf_nbuf_t mpdu, bool mpdu_done)
  715. {
  716. /* To avoid compiler warning */
  717. mpdu_done = mpdu_done;
  718. /* Process the nbuf */
  719. dp_rx_process_invalid_peer(soc, mpdu);
  720. }
  721. #endif
  722. #if defined(FEATURE_LRO)
  723. static void dp_rx_print_lro_info(uint8_t *rx_tlv)
  724. {
  725. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  726. FL("----------------------RX DESC LRO----------------------\n"));
  727. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  728. FL("lro_eligible 0x%x"), HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  729. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  730. FL("pure_ack 0x%x"), HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  731. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  732. FL("chksum 0x%x"), HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
  733. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  734. FL("TCP seq num 0x%x"), HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  735. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  736. FL("TCP ack num 0x%x"), HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  737. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  738. FL("TCP window 0x%x"), HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  739. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  740. FL("TCP protocol 0x%x"), HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  741. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  742. FL("TCP offset 0x%x"), HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  743. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  744. FL("toeplitz 0x%x"), HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  745. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  746. FL("---------------------------------------------------------\n"));
  747. }
  748. /**
  749. * dp_rx_lro() - LRO related processing
  750. * @rx_tlv: TLV data extracted from the rx packet
  751. * @peer: destination peer of the msdu
  752. * @msdu: network buffer
  753. * @ctx: LRO context
  754. *
  755. * This function performs the LRO related processing of the msdu
  756. *
  757. * Return: true: LRO enabled false: LRO is not enabled
  758. */
  759. static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
  760. qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
  761. {
  762. if (!peer || !peer->vdev || !peer->vdev->lro_enable) {
  763. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  764. FL("no peer, no vdev or LRO disabled"));
  765. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = 0;
  766. return;
  767. }
  768. qdf_assert(rx_tlv);
  769. dp_rx_print_lro_info(rx_tlv);
  770. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  771. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  772. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  773. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  774. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  775. HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
  776. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  777. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  778. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  779. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  780. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  781. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  782. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  783. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  784. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  785. HAL_RX_TLV_GET_IPV6(rx_tlv);
  786. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  787. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  788. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  789. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  790. QDF_NBUF_CB_RX_LRO_CTX(msdu) = (unsigned char *)ctx;
  791. }
  792. #else
  793. static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
  794. qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
  795. {
  796. }
  797. #endif
  798. /**
  799. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  800. *
  801. * @nbuf: pointer to msdu.
  802. * @mpdu_len: mpdu length
  803. *
  804. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  805. */
  806. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  807. {
  808. bool last_nbuf;
  809. if (*mpdu_len >= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  810. qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
  811. last_nbuf = false;
  812. } else {
  813. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  814. last_nbuf = true;
  815. }
  816. *mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  817. return last_nbuf;
  818. }
  819. /**
  820. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  821. * multiple nbufs.
  822. * @nbuf: pointer to the first msdu of an amsdu.
  823. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  824. *
  825. *
  826. * This function implements the creation of RX frag_list for cases
  827. * where an MSDU is spread across multiple nbufs.
  828. *
  829. * Return: returns the head nbuf which contains complete frag_list.
  830. */
  831. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
  832. {
  833. qdf_nbuf_t parent, next, frag_list;
  834. uint16_t frag_list_len = 0;
  835. uint16_t mpdu_len;
  836. bool last_nbuf;
  837. /*
  838. * this is a case where the complete msdu fits in one single nbuf.
  839. * in this case HW sets both start and end bit and we only need to
  840. * reset these bits for RAW mode simulator to decap the pkt
  841. */
  842. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  843. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  844. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  845. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  846. return nbuf;
  847. }
  848. /*
  849. * This is a case where we have multiple msdus (A-MSDU) spread across
  850. * multiple nbufs. here we create a fraglist out of these nbufs.
  851. *
  852. * the moment we encounter a nbuf with continuation bit set we
  853. * know for sure we have an MSDU which is spread across multiple
  854. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  855. */
  856. parent = nbuf;
  857. frag_list = nbuf->next;
  858. nbuf = nbuf->next;
  859. /*
  860. * set the start bit in the first nbuf we encounter with continuation
  861. * bit set. This has the proper mpdu length set as it is the first
  862. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  863. * nbufs will form the frag_list of the parent nbuf.
  864. */
  865. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  866. mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  867. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  868. /*
  869. * this is where we set the length of the fragments which are
  870. * associated to the parent nbuf. We iterate through the frag_list
  871. * till we hit the last_nbuf of the list.
  872. */
  873. do {
  874. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  875. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  876. frag_list_len += qdf_nbuf_len(nbuf);
  877. if (last_nbuf) {
  878. next = nbuf->next;
  879. nbuf->next = NULL;
  880. break;
  881. }
  882. nbuf = nbuf->next;
  883. } while (!last_nbuf);
  884. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  885. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  886. parent->next = next;
  887. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  888. return parent;
  889. }
  890. static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
  891. struct dp_peer *peer,
  892. qdf_nbuf_t nbuf_head,
  893. qdf_nbuf_t nbuf_tail)
  894. {
  895. /*
  896. * highly unlikely to have a vdev without a registerd rx
  897. * callback function. if so let us free the nbuf_list.
  898. */
  899. if (qdf_unlikely(!vdev->osif_rx)) {
  900. qdf_nbuf_t nbuf;
  901. do {
  902. nbuf = nbuf_head;
  903. nbuf_head = nbuf_head->next;
  904. qdf_nbuf_free(nbuf);
  905. } while (nbuf_head);
  906. return;
  907. }
  908. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  909. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  910. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  911. &nbuf_tail, (struct cdp_peer *) peer);
  912. }
  913. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  914. }
  915. /**
  916. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  917. * @nbuf: pointer to the first msdu of an amsdu.
  918. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  919. *
  920. * The ipsumed field of the skb is set based on whether HW validated the
  921. * IP/TCP/UDP checksum.
  922. *
  923. * Return: void
  924. */
  925. static inline void dp_rx_cksum_offload(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
  926. {
  927. qdf_nbuf_rx_cksum_t cksum = {0};
  928. if (qdf_likely(!hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr) &&
  929. !hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr))) {
  930. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  931. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  932. }
  933. }
  934. /**
  935. * dp_rx_msdu_stats_update() - update per msdu stats.
  936. * @soc: core txrx main context
  937. * @nbuf: pointer to the first msdu of an amsdu.
  938. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  939. * @peer: pointer to the peer object.
  940. * @ring_id: reo dest ring number on which pkt is reaped.
  941. *
  942. * update all the per msdu stats for that nbuf.
  943. * Return: void
  944. */
  945. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  946. qdf_nbuf_t nbuf,
  947. uint8_t *rx_tlv_hdr,
  948. struct dp_peer *peer,
  949. uint8_t ring_id)
  950. {
  951. bool is_ampdu, is_not_amsdu;
  952. uint16_t peer_id;
  953. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  954. struct dp_vdev *vdev = peer->vdev;
  955. struct ether_header *eh;
  956. uint16_t msdu_len = qdf_nbuf_len(nbuf);
  957. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  958. hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr));
  959. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  960. qdf_nbuf_is_rx_chfrag_end(nbuf);
  961. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  962. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  963. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  964. if (qdf_unlikely(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  965. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  966. eh = (struct ether_header *)qdf_nbuf_data(nbuf);
  967. if (IEEE80211_IS_BROADCAST(eh->ether_dhost)) {
  968. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  969. } else {
  970. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  971. }
  972. }
  973. /*
  974. * currently we can return from here as we have similar stats
  975. * updated at per ppdu level instead of msdu level
  976. */
  977. if (!soc->process_rx_status)
  978. return;
  979. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  980. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  981. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  982. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  983. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  984. tid = hal_rx_mpdu_start_tid_get(rx_tlv_hdr);
  985. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  986. reception_type = hal_rx_msdu_start_reception_type_get(rx_tlv_hdr);
  987. nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
  988. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  989. /* Save tid to skb->priority */
  990. DP_RX_TID_SAVE(nbuf, tid);
  991. DP_STATS_INC(vdev->pdev, rx.bw[bw], 1);
  992. DP_STATS_INC(vdev->pdev, rx.reception_type[reception_type], 1);
  993. DP_STATS_INC(peer, rx.nss[nss], 1);
  994. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  995. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  996. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  997. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  998. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  999. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1000. DP_STATS_INC(peer, rx.bw[bw], 1);
  1001. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1002. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1003. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1004. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1005. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1006. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1007. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1008. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1009. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1010. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1011. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1012. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1013. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1014. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1015. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1016. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1017. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1018. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1019. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1020. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1021. ((mcs <= MAX_MCS) && (pkt_type == DOT11_AX)));
  1022. if ((soc->process_rx_status) &&
  1023. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1024. if (soc->cdp_soc.ol_ops->update_dp_stats) {
  1025. soc->cdp_soc.ol_ops->update_dp_stats(
  1026. vdev->pdev->osif_pdev,
  1027. &peer->stats,
  1028. peer_id,
  1029. UPDATE_PEER_STATS);
  1030. }
  1031. }
  1032. }
  1033. #ifdef WDS_VENDOR_EXTENSION
  1034. int dp_wds_rx_policy_check(
  1035. uint8_t *rx_tlv_hdr,
  1036. struct dp_vdev *vdev,
  1037. struct dp_peer *peer,
  1038. int rx_mcast
  1039. )
  1040. {
  1041. struct dp_peer *bss_peer;
  1042. int fr_ds, to_ds, rx_3addr, rx_4addr;
  1043. int rx_policy_ucast, rx_policy_mcast;
  1044. if (vdev->opmode == wlan_op_mode_ap) {
  1045. TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
  1046. if (bss_peer->bss_peer) {
  1047. /* if wds policy check is not enabled on this vdev, accept all frames */
  1048. if (!bss_peer->wds_ecm.wds_rx_filter) {
  1049. return 1;
  1050. }
  1051. break;
  1052. }
  1053. }
  1054. rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
  1055. rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
  1056. } else { /* sta mode */
  1057. if (!peer->wds_ecm.wds_rx_filter) {
  1058. return 1;
  1059. }
  1060. rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
  1061. rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
  1062. }
  1063. /* ------------------------------------------------
  1064. * self
  1065. * peer- rx rx-
  1066. * wds ucast mcast dir policy accept note
  1067. * ------------------------------------------------
  1068. * 1 1 0 11 x1 1 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
  1069. * 1 1 0 01 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1070. * 1 1 0 10 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1071. * 1 1 0 00 x1 0 bad frame, won't see it
  1072. * 1 0 1 11 1x 1 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
  1073. * 1 0 1 01 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1074. * 1 0 1 10 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1075. * 1 0 1 00 1x 0 bad frame, won't see it
  1076. * 1 1 0 11 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1077. * 1 1 0 01 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1078. * 1 1 0 10 x0 1 AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
  1079. * 1 1 0 00 x0 0 bad frame, won't see it
  1080. * 1 0 1 11 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1081. * 1 0 1 01 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1082. * 1 0 1 10 0x 1 AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
  1083. * 1 0 1 00 0x 0 bad frame, won't see it
  1084. *
  1085. * 0 x x 11 xx 0 we only accept td-ds Rx frames from non-wds peers in mode.
  1086. * 0 x x 01 xx 1
  1087. * 0 x x 10 xx 0
  1088. * 0 x x 00 xx 0 bad frame, won't see it
  1089. * ------------------------------------------------
  1090. */
  1091. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  1092. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  1093. rx_3addr = fr_ds ^ to_ds;
  1094. rx_4addr = fr_ds & to_ds;
  1095. if (vdev->opmode == wlan_op_mode_ap) {
  1096. if ((!peer->wds_enabled && rx_3addr && to_ds) ||
  1097. (peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1098. (peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1099. return 1;
  1100. }
  1101. } else { /* sta mode */
  1102. if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1103. (rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1104. return 1;
  1105. }
  1106. }
  1107. return 0;
  1108. }
  1109. #else
  1110. int dp_wds_rx_policy_check(
  1111. uint8_t *rx_tlv_hdr,
  1112. struct dp_vdev *vdev,
  1113. struct dp_peer *peer,
  1114. int rx_mcast
  1115. )
  1116. {
  1117. return 1;
  1118. }
  1119. #endif
  1120. /**
  1121. * dp_rx_process() - Brain of the Rx processing functionality
  1122. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1123. * @soc: core txrx main context
  1124. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1125. * @quota: No. of units (packets) that can be serviced in one shot.
  1126. *
  1127. * This function implements the core of Rx functionality. This is
  1128. * expected to handle only non-error frames.
  1129. *
  1130. * Return: uint32_t: No. of elements processed
  1131. */
  1132. uint32_t
  1133. dp_rx_process(struct dp_intr *int_ctx, void *hal_ring, uint32_t quota)
  1134. {
  1135. void *hal_soc;
  1136. void *ring_desc;
  1137. struct dp_rx_desc *rx_desc = NULL;
  1138. qdf_nbuf_t nbuf, next;
  1139. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
  1140. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
  1141. uint32_t rx_bufs_used = 0, rx_buf_cookie, l2_hdr_offset;
  1142. uint16_t msdu_len;
  1143. uint16_t peer_id;
  1144. struct dp_peer *peer = NULL;
  1145. struct dp_vdev *vdev = NULL;
  1146. uint32_t pkt_len;
  1147. struct hal_rx_mpdu_desc_info mpdu_desc_info = { 0 };
  1148. struct hal_rx_msdu_desc_info msdu_desc_info = { 0 };
  1149. enum hal_reo_error_status error;
  1150. uint32_t peer_mdata;
  1151. uint8_t *rx_tlv_hdr;
  1152. uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
  1153. uint8_t mac_id = 0;
  1154. struct dp_pdev *pdev;
  1155. struct dp_srng *dp_rxdma_srng;
  1156. struct rx_desc_pool *rx_desc_pool;
  1157. struct dp_soc *soc = int_ctx->soc;
  1158. uint8_t ring_id = 0;
  1159. uint8_t core_id = 0;
  1160. qdf_nbuf_t nbuf_head = NULL;
  1161. qdf_nbuf_t nbuf_tail = NULL;
  1162. qdf_nbuf_t deliver_list_head = NULL;
  1163. qdf_nbuf_t deliver_list_tail = NULL;
  1164. DP_HIST_INIT();
  1165. /* Debug -- Remove later */
  1166. qdf_assert(soc && hal_ring);
  1167. hal_soc = soc->hal_soc;
  1168. /* Debug -- Remove later */
  1169. qdf_assert(hal_soc);
  1170. hif_pm_runtime_mark_last_busy(soc->osdev->dev);
  1171. if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
  1172. /*
  1173. * Need API to convert from hal_ring pointer to
  1174. * Ring Type / Ring Id combo
  1175. */
  1176. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1177. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1178. FL("HAL RING Access Failed -- %pK"), hal_ring);
  1179. hal_srng_access_end(hal_soc, hal_ring);
  1180. goto done;
  1181. }
  1182. /*
  1183. * start reaping the buffers from reo ring and queue
  1184. * them in per vdev queue.
  1185. * Process the received pkts in a different per vdev loop.
  1186. */
  1187. while (qdf_likely(quota && (ring_desc =
  1188. hal_srng_dst_get_next(hal_soc, hal_ring)))) {
  1189. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1190. ring_id = hal_srng_ring_id_get(hal_ring);
  1191. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1192. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1193. FL("HAL RING 0x%pK:error %d"), hal_ring, error);
  1194. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1195. /* Don't know how to deal with this -- assert */
  1196. qdf_assert(0);
  1197. }
  1198. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1199. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1200. qdf_assert(rx_desc);
  1201. rx_bufs_reaped[rx_desc->pool_id]++;
  1202. /* TODO */
  1203. /*
  1204. * Need a separate API for unmapping based on
  1205. * phyiscal address
  1206. */
  1207. qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
  1208. QDF_DMA_BIDIRECTIONAL);
  1209. core_id = smp_processor_id();
  1210. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  1211. /* Get MPDU DESC info */
  1212. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  1213. hal_rx_mpdu_peer_meta_data_set(qdf_nbuf_data(rx_desc->nbuf),
  1214. mpdu_desc_info.peer_meta_data);
  1215. /* Get MSDU DESC info */
  1216. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  1217. /*
  1218. * save msdu flags first, last and continuation msdu in
  1219. * nbuf->cb
  1220. */
  1221. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  1222. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  1223. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  1224. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  1225. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1226. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  1227. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1228. /*
  1229. * if continuation bit is set then we have MSDU spread
  1230. * across multiple buffers, let us not decrement quota
  1231. * till we reap all buffers of that MSDU.
  1232. */
  1233. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1234. quota -= 1;
  1235. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1236. &tail[rx_desc->pool_id],
  1237. rx_desc);
  1238. }
  1239. done:
  1240. hal_srng_access_end(hal_soc, hal_ring);
  1241. /* Update histogram statistics by looping through pdev's */
  1242. DP_RX_HIST_STATS_PER_PDEV();
  1243. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1244. /*
  1245. * continue with next mac_id if no pkts were reaped
  1246. * from that pool
  1247. */
  1248. if (!rx_bufs_reaped[mac_id])
  1249. continue;
  1250. pdev = soc->pdev_list[mac_id];
  1251. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1252. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1253. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1254. rx_desc_pool, rx_bufs_reaped[mac_id],
  1255. &head[mac_id], &tail[mac_id]);
  1256. }
  1257. /* Peer can be NULL is case of LFR */
  1258. if (qdf_likely(peer != NULL))
  1259. vdev = NULL;
  1260. /*
  1261. * BIG loop where each nbuf is dequeued from global queue,
  1262. * processed and queued back on a per vdev basis. These nbufs
  1263. * are sent to stack as and when we run out of nbufs
  1264. * or a new nbuf dequeued from global queue has a different
  1265. * vdev when compared to previous nbuf.
  1266. */
  1267. nbuf = nbuf_head;
  1268. while (nbuf) {
  1269. next = nbuf->next;
  1270. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1271. /*
  1272. * Check if DMA completed -- msdu_done is the last bit
  1273. * to be written
  1274. */
  1275. if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  1276. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1277. FL("MSDU DONE failure"));
  1278. hal_rx_dump_pkt_tlvs(rx_tlv_hdr, QDF_TRACE_LEVEL_INFO);
  1279. qdf_assert(0);
  1280. }
  1281. peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr);
  1282. peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1283. peer = dp_peer_find_by_id(soc, peer_id);
  1284. rx_bufs_used++;
  1285. if (deliver_list_head && peer && (vdev != peer->vdev)) {
  1286. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1287. deliver_list_tail);
  1288. deliver_list_head = NULL;
  1289. deliver_list_tail = NULL;
  1290. }
  1291. if (qdf_likely(peer != NULL)) {
  1292. vdev = peer->vdev;
  1293. } else {
  1294. qdf_nbuf_free(nbuf);
  1295. nbuf = next;
  1296. continue;
  1297. }
  1298. if (qdf_unlikely(vdev == NULL)) {
  1299. qdf_nbuf_free(nbuf);
  1300. nbuf = next;
  1301. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  1302. continue;
  1303. }
  1304. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  1305. /*
  1306. * The below condition happens when an MSDU is spread
  1307. * across multiple buffers. This can happen in two cases
  1308. * 1. The nbuf size is smaller then the received msdu.
  1309. * ex: we have set the nbuf size to 2048 during
  1310. * nbuf_alloc. but we received an msdu which is
  1311. * 2304 bytes in size then this msdu is spread
  1312. * across 2 nbufs.
  1313. *
  1314. * 2. AMSDUs when RAW mode is enabled.
  1315. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  1316. * across 1st nbuf and 2nd nbuf and last MSDU is
  1317. * spread across 2nd nbuf and 3rd nbuf.
  1318. *
  1319. * for these scenarios let us create a skb frag_list and
  1320. * append these buffers till the last MSDU of the AMSDU
  1321. */
  1322. if (qdf_unlikely(vdev->rx_decap_type ==
  1323. htt_cmn_pkt_type_raw)) {
  1324. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  1325. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  1326. nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
  1327. next = nbuf->next;
  1328. }
  1329. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer,
  1330. hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  1331. QDF_TRACE(QDF_MODULE_ID_DP,
  1332. QDF_TRACE_LEVEL_ERROR,
  1333. FL("Policy Check Drop pkt"));
  1334. /* Drop & free packet */
  1335. qdf_nbuf_free(nbuf);
  1336. /* Statistics */
  1337. nbuf = next;
  1338. continue;
  1339. }
  1340. if (qdf_unlikely(peer && peer->bss_peer)) {
  1341. QDF_TRACE(QDF_MODULE_ID_DP,
  1342. QDF_TRACE_LEVEL_ERROR,
  1343. FL("received pkt with same src MAC"));
  1344. DP_STATS_INC(vdev->pdev, dropped.mec, 1);
  1345. /* Drop & free packet */
  1346. qdf_nbuf_free(nbuf);
  1347. /* Statistics */
  1348. nbuf = next;
  1349. continue;
  1350. }
  1351. if (qdf_unlikely(peer && (peer->nawds_enabled == true) &&
  1352. (hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr)) &&
  1353. (hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) == false))) {
  1354. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  1355. qdf_nbuf_free(nbuf);
  1356. nbuf = next;
  1357. continue;
  1358. }
  1359. dp_rx_cksum_offload(nbuf, rx_tlv_hdr);
  1360. dp_set_rx_queue(nbuf, ring_id);
  1361. /*
  1362. * HW structures call this L3 header padding --
  1363. * even though this is actually the offset from
  1364. * the buffer beginning where the L2 header
  1365. * begins.
  1366. */
  1367. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1368. FL("rxhash: flow id toeplitz: 0x%x\n"),
  1369. hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
  1370. l2_hdr_offset =
  1371. hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
  1372. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  1373. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1374. if (unlikely(qdf_nbuf_get_ext_list(nbuf)))
  1375. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1376. else {
  1377. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1378. qdf_nbuf_pull_head(nbuf,
  1379. RX_PKT_TLVS_LEN +
  1380. l2_hdr_offset);
  1381. }
  1382. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer, ring_id);
  1383. if (qdf_unlikely(vdev->mesh_vdev)) {
  1384. if (dp_rx_filter_mesh_packets(vdev, nbuf,
  1385. rx_tlv_hdr)
  1386. == QDF_STATUS_SUCCESS) {
  1387. QDF_TRACE(QDF_MODULE_ID_DP,
  1388. QDF_TRACE_LEVEL_INFO_MED,
  1389. FL("mesh pkt filtered"));
  1390. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  1391. 1);
  1392. qdf_nbuf_free(nbuf);
  1393. nbuf = next;
  1394. continue;
  1395. }
  1396. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  1397. }
  1398. #ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
  1399. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1400. "p_id %d msdu_len %d hdr_off %d",
  1401. peer_id, msdu_len, l2_hdr_offset);
  1402. print_hex_dump(KERN_ERR,
  1403. "\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
  1404. qdf_nbuf_data(nbuf), 128, false);
  1405. #endif /* NAPIER_EMULATION */
  1406. if (qdf_likely(vdev->rx_decap_type ==
  1407. htt_cmn_pkt_type_ethernet) &&
  1408. (qdf_likely(!vdev->mesh_vdev))) {
  1409. /* WDS Source Port Learning */
  1410. dp_rx_wds_srcport_learn(soc,
  1411. rx_tlv_hdr,
  1412. peer,
  1413. nbuf);
  1414. /* Intrabss-fwd */
  1415. if (dp_rx_check_ap_bridge(vdev))
  1416. if (dp_rx_intrabss_fwd(soc,
  1417. peer,
  1418. rx_tlv_hdr,
  1419. nbuf)) {
  1420. nbuf = next;
  1421. continue; /* Get next desc */
  1422. }
  1423. }
  1424. dp_rx_lro(rx_tlv_hdr, peer, nbuf, int_ctx->lro_ctx);
  1425. DP_RX_LIST_APPEND(deliver_list_head,
  1426. deliver_list_tail,
  1427. nbuf);
  1428. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  1429. qdf_nbuf_len(nbuf));
  1430. nbuf = next;
  1431. }
  1432. if (deliver_list_head)
  1433. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1434. deliver_list_tail);
  1435. return rx_bufs_used; /* Assume no scale factor for now */
  1436. }
  1437. /**
  1438. * dp_rx_detach() - detach dp rx
  1439. * @pdev: core txrx pdev context
  1440. *
  1441. * This function will detach DP RX into main device context
  1442. * will free DP Rx resources.
  1443. *
  1444. * Return: void
  1445. */
  1446. void
  1447. dp_rx_pdev_detach(struct dp_pdev *pdev)
  1448. {
  1449. uint8_t pdev_id = pdev->pdev_id;
  1450. struct dp_soc *soc = pdev->soc;
  1451. struct rx_desc_pool *rx_desc_pool;
  1452. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1453. if (rx_desc_pool->pool_size != 0) {
  1454. dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
  1455. }
  1456. return;
  1457. }
  1458. /**
  1459. * dp_rx_attach() - attach DP RX
  1460. * @pdev: core txrx pdev context
  1461. *
  1462. * This function will attach a DP RX instance into the main
  1463. * device (SOC) context. Will allocate dp rx resource and
  1464. * initialize resources.
  1465. *
  1466. * Return: QDF_STATUS_SUCCESS: success
  1467. * QDF_STATUS_E_RESOURCES: Error return
  1468. */
  1469. QDF_STATUS
  1470. dp_rx_pdev_attach(struct dp_pdev *pdev)
  1471. {
  1472. uint8_t pdev_id = pdev->pdev_id;
  1473. struct dp_soc *soc = pdev->soc;
  1474. struct dp_srng rxdma_srng;
  1475. uint32_t rxdma_entries;
  1476. union dp_rx_desc_list_elem_t *desc_list = NULL;
  1477. union dp_rx_desc_list_elem_t *tail = NULL;
  1478. struct dp_srng *dp_rxdma_srng;
  1479. struct rx_desc_pool *rx_desc_pool;
  1480. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  1481. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1482. "nss-wifi<4> skip Rx refil %d", pdev_id);
  1483. return QDF_STATUS_SUCCESS;
  1484. }
  1485. pdev = soc->pdev_list[pdev_id];
  1486. rxdma_srng = pdev->rx_refill_buf_ring;
  1487. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  1488. rxdma_entries = rxdma_srng.alloc_size/hal_srng_get_entrysize(
  1489. soc->hal_soc, RXDMA_BUF);
  1490. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1491. dp_rx_desc_pool_alloc(soc, pdev_id, rxdma_entries*3, rx_desc_pool);
  1492. rx_desc_pool->owner = DP_WBM2SW_RBM;
  1493. /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
  1494. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1495. dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool,
  1496. 0, &desc_list, &tail);
  1497. return QDF_STATUS_SUCCESS;
  1498. }
  1499. /*
  1500. * dp_rx_nbuf_prepare() - prepare RX nbuf
  1501. * @soc: core txrx main context
  1502. * @pdev: core txrx pdev context
  1503. *
  1504. * This function alloc & map nbuf for RX dma usage, retry it if failed
  1505. * until retry times reaches max threshold or succeeded.
  1506. *
  1507. * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
  1508. */
  1509. qdf_nbuf_t
  1510. dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
  1511. {
  1512. uint8_t *buf;
  1513. int32_t nbuf_retry_count;
  1514. QDF_STATUS ret;
  1515. qdf_nbuf_t nbuf = NULL;
  1516. for (nbuf_retry_count = 0; nbuf_retry_count <
  1517. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
  1518. nbuf_retry_count++) {
  1519. /* Allocate a new skb */
  1520. nbuf = qdf_nbuf_alloc(soc->osdev,
  1521. RX_BUFFER_SIZE,
  1522. RX_BUFFER_RESERVATION,
  1523. RX_BUFFER_ALIGNMENT,
  1524. FALSE);
  1525. if (nbuf == NULL) {
  1526. DP_STATS_INC(pdev,
  1527. replenish.nbuf_alloc_fail, 1);
  1528. continue;
  1529. }
  1530. buf = qdf_nbuf_data(nbuf);
  1531. memset(buf, 0, RX_BUFFER_SIZE);
  1532. ret = qdf_nbuf_map_single(soc->osdev, nbuf,
  1533. QDF_DMA_BIDIRECTIONAL);
  1534. /* nbuf map failed */
  1535. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  1536. qdf_nbuf_free(nbuf);
  1537. DP_STATS_INC(pdev, replenish.map_err, 1);
  1538. continue;
  1539. }
  1540. /* qdf_nbuf alloc and map succeeded */
  1541. break;
  1542. }
  1543. /* qdf_nbuf still alloc or map failed */
  1544. if (qdf_unlikely(nbuf_retry_count >=
  1545. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
  1546. return NULL;
  1547. return nbuf;
  1548. }