hal_srng.c 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "hal_api.h"
  21. #include "hal_reo.h"
  22. #include "target_type.h"
  23. #include "qdf_module.h"
  24. #include "wcss_version.h"
  25. #include <qdf_tracepoint.h>
  26. struct tcl_data_cmd gtcl_data_symbol __attribute__((used));
  27. #ifdef QCA_WIFI_QCA8074
  28. void hal_qca6290_attach(struct hal_soc *hal);
  29. #endif
  30. #ifdef QCA_WIFI_QCA8074
  31. void hal_qca8074_attach(struct hal_soc *hal);
  32. #endif
  33. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
  34. defined(QCA_WIFI_QCA9574)
  35. void hal_qca8074v2_attach(struct hal_soc *hal);
  36. #endif
  37. #ifdef QCA_WIFI_QCA6390
  38. void hal_qca6390_attach(struct hal_soc *hal);
  39. #endif
  40. #ifdef QCA_WIFI_QCA6490
  41. void hal_qca6490_attach(struct hal_soc *hal);
  42. #endif
  43. #ifdef QCA_WIFI_QCN9000
  44. void hal_qcn9000_attach(struct hal_soc *hal);
  45. #endif
  46. #ifdef QCA_WIFI_QCN9224
  47. void hal_qcn9224v1_attach(struct hal_soc *hal);
  48. void hal_qcn9224v2_attach(struct hal_soc *hal);
  49. #endif
  50. #if defined(QCA_WIFI_QCN6122) || defined(QCA_WIFI_QCN9160)
  51. void hal_qcn6122_attach(struct hal_soc *hal);
  52. #endif
  53. #ifdef QCA_WIFI_QCA6750
  54. void hal_qca6750_attach(struct hal_soc *hal);
  55. #endif
  56. #ifdef QCA_WIFI_QCA5018
  57. void hal_qca5018_attach(struct hal_soc *hal);
  58. #endif
  59. #ifdef QCA_WIFI_QCA5332
  60. void hal_qca5332_attach(struct hal_soc *hal);
  61. #endif
  62. #ifdef QCA_WIFI_KIWI
  63. void hal_kiwi_attach(struct hal_soc *hal);
  64. #endif
  65. #ifdef ENABLE_VERBOSE_DEBUG
  66. bool is_hal_verbose_debug_enabled;
  67. #endif
  68. #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x) ((x) + 0x4)
  69. #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x) ((x) + 0x8)
  70. #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x) ((x) + 0xc)
  71. #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x) ((x) + 0x10)
  72. #ifdef ENABLE_HAL_REG_WR_HISTORY
  73. struct hal_reg_write_fail_history hal_reg_wr_hist;
  74. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  75. uint32_t offset,
  76. uint32_t wr_val, uint32_t rd_val)
  77. {
  78. struct hal_reg_write_fail_entry *record;
  79. int idx;
  80. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  81. HAL_REG_WRITE_HIST_SIZE);
  82. record = &hal_soc->reg_wr_fail_hist->record[idx];
  83. record->timestamp = qdf_get_log_timestamp();
  84. record->reg_offset = offset;
  85. record->write_val = wr_val;
  86. record->read_val = rd_val;
  87. }
  88. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  89. {
  90. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  91. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  92. }
  93. #else
  94. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  95. {
  96. }
  97. #endif
  98. /**
  99. * hal_get_srng_ring_id() - get the ring id of a described ring
  100. * @hal: hal_soc data structure
  101. * @ring_type: type enum describing the ring
  102. * @ring_num: which ring of the ring type
  103. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  104. *
  105. * Return: the ring id or -EINVAL if the ring does not exist.
  106. */
  107. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  108. int ring_num, int mac_id)
  109. {
  110. struct hal_hw_srng_config *ring_config =
  111. HAL_SRNG_CONFIG(hal, ring_type);
  112. int ring_id;
  113. if (ring_num >= ring_config->max_rings) {
  114. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  115. "%s: ring_num exceeded maximum no. of supported rings",
  116. __func__);
  117. /* TODO: This is a programming error. Assert if this happens */
  118. return -EINVAL;
  119. }
  120. /**
  121. * Some DMAC rings share a common source ring, hence don't provide them
  122. * with separate ring IDs per LMAC.
  123. */
  124. if (ring_config->lmac_ring && !ring_config->dmac_cmn_ring) {
  125. ring_id = (ring_config->start_ring_id + ring_num +
  126. (mac_id * HAL_MAX_RINGS_PER_LMAC));
  127. } else {
  128. ring_id = ring_config->start_ring_id + ring_num;
  129. }
  130. return ring_id;
  131. }
  132. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  133. {
  134. /* TODO: Should we allocate srng structures dynamically? */
  135. return &(hal->srng_list[ring_id]);
  136. }
  137. #ifndef SHADOW_REG_CONFIG_DISABLED
  138. #define HP_OFFSET_IN_REG_START 1
  139. #define OFFSET_FROM_HP_TO_TP 4
  140. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  141. int shadow_config_index,
  142. int ring_type,
  143. int ring_num)
  144. {
  145. struct hal_srng *srng;
  146. int ring_id;
  147. struct hal_hw_srng_config *ring_config =
  148. HAL_SRNG_CONFIG(hal_soc, ring_type);
  149. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  150. if (ring_id < 0)
  151. return;
  152. srng = hal_get_srng(hal_soc, ring_id);
  153. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  154. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  155. + hal_soc->dev_base_addr;
  156. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  157. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  158. shadow_config_index);
  159. } else {
  160. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  161. + hal_soc->dev_base_addr;
  162. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  163. srng->u.src_ring.hp_addr,
  164. hal_soc->dev_base_addr, shadow_config_index);
  165. }
  166. }
  167. #endif
  168. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  169. void hal_set_one_target_reg_config(struct hal_soc *hal,
  170. uint32_t target_reg_offset,
  171. int list_index)
  172. {
  173. int i = list_index;
  174. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  175. hal->list_shadow_reg_config[i].target_register =
  176. target_reg_offset;
  177. hal->num_generic_shadow_regs_configured++;
  178. }
  179. qdf_export_symbol(hal_set_one_target_reg_config);
  180. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  181. #define MAX_REO_REMAP_SHADOW_REGS 4
  182. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  183. {
  184. uint32_t target_reg_offset;
  185. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  186. int i;
  187. struct hal_hw_srng_config *srng_config =
  188. &hal->hw_srng_table[WBM2SW_RELEASE];
  189. uint32_t reo_reg_base;
  190. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
  191. target_reg_offset =
  192. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
  193. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  194. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  195. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  196. }
  197. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  198. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  199. * HAL_IPA_TX_COMP_RING_IDX);
  200. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  201. return QDF_STATUS_SUCCESS;
  202. }
  203. qdf_export_symbol(hal_set_shadow_regs);
  204. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  205. {
  206. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  207. int shadow_config_index = hal->num_shadow_registers_configured;
  208. int i;
  209. int num_regs = hal->num_generic_shadow_regs_configured;
  210. for (i = 0; i < num_regs; i++) {
  211. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  212. hal->shadow_config[shadow_config_index].addr =
  213. hal->list_shadow_reg_config[i].target_register;
  214. hal->list_shadow_reg_config[i].shadow_config_index =
  215. shadow_config_index;
  216. hal->list_shadow_reg_config[i].va =
  217. SHADOW_REGISTER(shadow_config_index) +
  218. (uintptr_t)hal->dev_base_addr;
  219. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  220. hal->shadow_config[shadow_config_index].addr,
  221. SHADOW_REGISTER(shadow_config_index),
  222. shadow_config_index);
  223. shadow_config_index++;
  224. hal->num_shadow_registers_configured++;
  225. }
  226. return QDF_STATUS_SUCCESS;
  227. }
  228. qdf_export_symbol(hal_construct_shadow_regs);
  229. #endif
  230. #ifndef SHADOW_REG_CONFIG_DISABLED
  231. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  232. int ring_type,
  233. int ring_num)
  234. {
  235. uint32_t target_register;
  236. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  237. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  238. int shadow_config_index = hal->num_shadow_registers_configured;
  239. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  240. QDF_ASSERT(0);
  241. return QDF_STATUS_E_RESOURCES;
  242. }
  243. hal->num_shadow_registers_configured++;
  244. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  245. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  246. *ring_num);
  247. /* if the ring is a dst ring, we need to shadow the tail pointer */
  248. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  249. target_register += OFFSET_FROM_HP_TO_TP;
  250. hal->shadow_config[shadow_config_index].addr = target_register;
  251. /* update hp/tp addr in the hal_soc structure*/
  252. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  253. ring_num);
  254. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  255. target_register,
  256. SHADOW_REGISTER(shadow_config_index),
  257. shadow_config_index,
  258. ring_type, ring_num);
  259. return QDF_STATUS_SUCCESS;
  260. }
  261. qdf_export_symbol(hal_set_one_shadow_config);
  262. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  263. {
  264. int ring_type, ring_num;
  265. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  266. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  267. struct hal_hw_srng_config *srng_config =
  268. &hal->hw_srng_table[ring_type];
  269. if (ring_type == CE_SRC ||
  270. ring_type == CE_DST ||
  271. ring_type == CE_DST_STATUS)
  272. continue;
  273. if (srng_config->lmac_ring)
  274. continue;
  275. for (ring_num = 0; ring_num < srng_config->max_rings;
  276. ring_num++)
  277. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  278. }
  279. return QDF_STATUS_SUCCESS;
  280. }
  281. qdf_export_symbol(hal_construct_srng_shadow_regs);
  282. #else
  283. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  284. {
  285. return QDF_STATUS_SUCCESS;
  286. }
  287. qdf_export_symbol(hal_construct_srng_shadow_regs);
  288. QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
  289. int ring_num)
  290. {
  291. return QDF_STATUS_SUCCESS;
  292. }
  293. qdf_export_symbol(hal_set_one_shadow_config);
  294. #endif
  295. void hal_get_shadow_config(void *hal_soc,
  296. struct pld_shadow_reg_v2_cfg **shadow_config,
  297. int *num_shadow_registers_configured)
  298. {
  299. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  300. *shadow_config = &hal->shadow_config[0].v2;
  301. *num_shadow_registers_configured =
  302. hal->num_shadow_registers_configured;
  303. }
  304. qdf_export_symbol(hal_get_shadow_config);
  305. #ifdef CONFIG_SHADOW_V3
  306. void hal_get_shadow_v3_config(void *hal_soc,
  307. struct pld_shadow_reg_v3_cfg **shadow_config,
  308. int *num_shadow_registers_configured)
  309. {
  310. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  311. *shadow_config = &hal->shadow_config[0].v3;
  312. *num_shadow_registers_configured =
  313. hal->num_shadow_registers_configured;
  314. }
  315. qdf_export_symbol(hal_get_shadow_v3_config);
  316. #endif
  317. static bool hal_validate_shadow_register(struct hal_soc *hal,
  318. uint32_t *destination,
  319. uint32_t *shadow_address)
  320. {
  321. unsigned int index;
  322. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  323. int destination_ba_offset =
  324. ((char *)destination) - (char *)hal->dev_base_addr;
  325. index = shadow_address - shadow_0_offset;
  326. if (index >= MAX_SHADOW_REGISTERS) {
  327. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  328. "%s: index %x out of bounds", __func__, index);
  329. goto error;
  330. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  331. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  332. "%s: sanity check failure, expected %x, found %x",
  333. __func__, destination_ba_offset,
  334. hal->shadow_config[index].addr);
  335. goto error;
  336. }
  337. return true;
  338. error:
  339. qdf_print("baddr %pK, destination %pK, shadow_address %pK s0offset %pK index %x",
  340. hal->dev_base_addr, destination, shadow_address,
  341. shadow_0_offset, index);
  342. QDF_BUG(0);
  343. return false;
  344. }
  345. static void hal_target_based_configure(struct hal_soc *hal)
  346. {
  347. /**
  348. * Indicate Initialization of srngs to avoid force wake
  349. * as umac power collapse is not enabled yet
  350. */
  351. hal->init_phase = true;
  352. switch (hal->target_type) {
  353. #ifdef QCA_WIFI_QCA6290
  354. case TARGET_TYPE_QCA6290:
  355. hal->use_register_windowing = true;
  356. hal_qca6290_attach(hal);
  357. break;
  358. #endif
  359. #ifdef QCA_WIFI_QCA6390
  360. case TARGET_TYPE_QCA6390:
  361. hal->use_register_windowing = true;
  362. hal_qca6390_attach(hal);
  363. break;
  364. #endif
  365. #ifdef QCA_WIFI_QCA6490
  366. case TARGET_TYPE_QCA6490:
  367. hal->use_register_windowing = true;
  368. hal_qca6490_attach(hal);
  369. break;
  370. #endif
  371. #ifdef QCA_WIFI_QCA6750
  372. case TARGET_TYPE_QCA6750:
  373. hal->use_register_windowing = true;
  374. hal->static_window_map = true;
  375. hal_qca6750_attach(hal);
  376. break;
  377. #endif
  378. #ifdef QCA_WIFI_KIWI
  379. case TARGET_TYPE_KIWI:
  380. case TARGET_TYPE_MANGO:
  381. hal->use_register_windowing = true;
  382. hal_kiwi_attach(hal);
  383. break;
  384. #endif
  385. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  386. case TARGET_TYPE_QCA8074:
  387. hal_qca8074_attach(hal);
  388. break;
  389. #endif
  390. #if defined(QCA_WIFI_QCA8074V2)
  391. case TARGET_TYPE_QCA8074V2:
  392. hal_qca8074v2_attach(hal);
  393. break;
  394. #endif
  395. #if defined(QCA_WIFI_QCA6018)
  396. case TARGET_TYPE_QCA6018:
  397. hal_qca8074v2_attach(hal);
  398. break;
  399. #endif
  400. #if defined(QCA_WIFI_QCA9574)
  401. case TARGET_TYPE_QCA9574:
  402. hal_qca8074v2_attach(hal);
  403. break;
  404. #endif
  405. #if defined(QCA_WIFI_QCN6122)
  406. case TARGET_TYPE_QCN6122:
  407. hal->use_register_windowing = true;
  408. /*
  409. * Static window map is enabled for qcn9000 to use 2mb bar
  410. * size and use multiple windows to write into registers.
  411. */
  412. hal->static_window_map = true;
  413. hal_qcn6122_attach(hal);
  414. break;
  415. #endif
  416. #if defined(QCA_WIFI_QCN9160)
  417. case TARGET_TYPE_QCN9160:
  418. hal->use_register_windowing = true;
  419. /*
  420. * Static window map is enabled for qcn9160 to use 2mb bar
  421. * size and use multiple windows to write into registers.
  422. */
  423. hal->static_window_map = true;
  424. hal_qcn6122_attach(hal);
  425. break;
  426. #endif
  427. #ifdef QCA_WIFI_QCN9000
  428. case TARGET_TYPE_QCN9000:
  429. hal->use_register_windowing = true;
  430. /*
  431. * Static window map is enabled for qcn9000 to use 2mb bar
  432. * size and use multiple windows to write into registers.
  433. */
  434. hal->static_window_map = true;
  435. hal_qcn9000_attach(hal);
  436. break;
  437. #endif
  438. #ifdef QCA_WIFI_QCA5018
  439. case TARGET_TYPE_QCA5018:
  440. hal->use_register_windowing = true;
  441. hal->static_window_map = true;
  442. hal_qca5018_attach(hal);
  443. break;
  444. #endif
  445. #ifdef QCA_WIFI_QCN9224
  446. case TARGET_TYPE_QCN9224:
  447. hal->use_register_windowing = true;
  448. hal->static_window_map = true;
  449. if (hal->version == 1)
  450. hal_qcn9224v1_attach(hal);
  451. else
  452. hal_qcn9224v2_attach(hal);
  453. break;
  454. #endif
  455. #ifdef QCA_WIFI_QCA5332
  456. case TARGET_TYPE_QCA5332:
  457. hal->use_register_windowing = true;
  458. hal->static_window_map = true;
  459. hal_qca5332_attach(hal);
  460. break;
  461. #endif
  462. default:
  463. break;
  464. }
  465. }
  466. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  467. {
  468. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  469. struct hif_target_info *tgt_info =
  470. hif_get_target_info_handle(hal_soc->hif_handle);
  471. return tgt_info->target_type;
  472. }
  473. qdf_export_symbol(hal_get_target_type);
  474. #if defined(FEATURE_HAL_DELAYED_REG_WRITE)
  475. /**
  476. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  477. * @hal: hal_soc pointer
  478. *
  479. * Return: true if throughput is high, else false.
  480. */
  481. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  482. {
  483. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  484. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  485. }
  486. static inline
  487. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  488. char *buf, qdf_size_t size)
  489. {
  490. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  491. srng->wstats.enqueues, srng->wstats.dequeues,
  492. srng->wstats.coalesces, srng->wstats.direct);
  493. return buf;
  494. }
  495. /* bytes for local buffer */
  496. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  497. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  498. {
  499. struct hal_srng *srng;
  500. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  501. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  502. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  503. hal_debug("SW2TCL1: %s",
  504. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  505. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  506. hal_debug("WBM2SW0: %s",
  507. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  508. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  509. hal_debug("REO2SW1: %s",
  510. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  511. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  512. hal_debug("REO2SW2: %s",
  513. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  514. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  515. hal_debug("REO2SW3: %s",
  516. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  517. }
  518. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  519. {
  520. uint32_t *hist;
  521. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  522. hist = hal->stats.wstats.sched_delay;
  523. hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  524. qdf_atomic_read(&hal->stats.wstats.enqueues),
  525. hal->stats.wstats.dequeues,
  526. qdf_atomic_read(&hal->stats.wstats.coalesces),
  527. qdf_atomic_read(&hal->stats.wstats.direct),
  528. qdf_atomic_read(&hal->stats.wstats.q_depth),
  529. hal->stats.wstats.max_q_depth,
  530. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  531. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  532. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  533. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  534. }
  535. int hal_get_reg_write_pending_work(void *hal_soc)
  536. {
  537. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  538. return qdf_atomic_read(&hal->active_work_cnt);
  539. }
  540. #endif
  541. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  542. #ifdef MEMORY_DEBUG
  543. /*
  544. * Length of the queue(array) used to hold delayed register writes.
  545. * Must be a multiple of 2.
  546. */
  547. #define HAL_REG_WRITE_QUEUE_LEN 128
  548. #else
  549. #define HAL_REG_WRITE_QUEUE_LEN 32
  550. #endif
  551. /**
  552. * hal_process_reg_write_q_elem() - process a register write queue element
  553. * @hal: hal_soc pointer
  554. * @q_elem: pointer to hal register write queue element
  555. *
  556. * Return: The value which was written to the address
  557. */
  558. static uint32_t
  559. hal_process_reg_write_q_elem(struct hal_soc *hal,
  560. struct hal_reg_write_q_elem *q_elem)
  561. {
  562. struct hal_srng *srng = q_elem->srng;
  563. uint32_t write_val;
  564. SRNG_LOCK(&srng->lock);
  565. srng->reg_write_in_progress = false;
  566. srng->wstats.dequeues++;
  567. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  568. q_elem->dequeue_val = srng->u.src_ring.hp;
  569. hal_write_address_32_mb(hal,
  570. srng->u.src_ring.hp_addr,
  571. srng->u.src_ring.hp, false);
  572. write_val = srng->u.src_ring.hp;
  573. } else {
  574. q_elem->dequeue_val = srng->u.dst_ring.tp;
  575. hal_write_address_32_mb(hal,
  576. srng->u.dst_ring.tp_addr,
  577. srng->u.dst_ring.tp, false);
  578. write_val = srng->u.dst_ring.tp;
  579. }
  580. q_elem->valid = 0;
  581. srng->last_dequeue_time = q_elem->dequeue_time;
  582. SRNG_UNLOCK(&srng->lock);
  583. return write_val;
  584. }
  585. /**
  586. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  587. * @hal: hal_soc pointer
  588. * @delay: delay in us
  589. *
  590. * Return: None
  591. */
  592. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  593. uint64_t delay_us)
  594. {
  595. uint32_t *hist;
  596. hist = hal->stats.wstats.sched_delay;
  597. if (delay_us < 100)
  598. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  599. else if (delay_us < 1000)
  600. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  601. else if (delay_us < 5000)
  602. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  603. else
  604. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  605. }
  606. #ifdef SHADOW_WRITE_DELAY
  607. #define SHADOW_WRITE_MIN_DELTA_US 5
  608. #define SHADOW_WRITE_DELAY_US 50
  609. /*
  610. * Never add those srngs which are performance relate.
  611. * The delay itself will hit performance heavily.
  612. */
  613. #define IS_SRNG_MATCH(s) ((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
  614. (s)->ring_id == HAL_SRNG_CE_1_DST)
  615. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  616. {
  617. struct hal_srng *srng = elem->srng;
  618. struct hal_soc *hal;
  619. qdf_time_t now;
  620. qdf_iomem_t real_addr;
  621. if (qdf_unlikely(!srng))
  622. return false;
  623. hal = srng->hal_soc;
  624. if (qdf_unlikely(!hal))
  625. return false;
  626. /* Check if it is target srng, and valid shadow reg */
  627. if (qdf_likely(!IS_SRNG_MATCH(srng)))
  628. return false;
  629. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  630. real_addr = SRNG_SRC_ADDR(srng, HP);
  631. else
  632. real_addr = SRNG_DST_ADDR(srng, TP);
  633. if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
  634. return false;
  635. /* Check the time delta from last write of same srng */
  636. now = qdf_get_log_timestamp();
  637. if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
  638. SHADOW_WRITE_MIN_DELTA_US)
  639. return false;
  640. /* Delay dequeue, and record */
  641. qdf_udelay(SHADOW_WRITE_DELAY_US);
  642. srng->wstats.dequeue_delay++;
  643. hal->stats.wstats.dequeue_delay++;
  644. return true;
  645. }
  646. #else
  647. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  648. {
  649. return false;
  650. }
  651. #endif
  652. /**
  653. * hal_reg_write_work() - Worker to process delayed writes
  654. * @arg: hal_soc pointer
  655. *
  656. * Return: None
  657. */
  658. static void hal_reg_write_work(void *arg)
  659. {
  660. int32_t q_depth, write_val;
  661. struct hal_soc *hal = arg;
  662. struct hal_reg_write_q_elem *q_elem;
  663. uint64_t delta_us;
  664. uint8_t ring_id;
  665. uint32_t *addr;
  666. uint32_t num_processed = 0;
  667. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  668. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  669. q_elem->cpu_id = qdf_get_cpu();
  670. /* Make sure q_elem consistent in the memory for multi-cores */
  671. qdf_rmb();
  672. if (!q_elem->valid)
  673. return;
  674. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  675. if (q_depth > hal->stats.wstats.max_q_depth)
  676. hal->stats.wstats.max_q_depth = q_depth;
  677. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  678. hal->stats.wstats.prevent_l1_fails++;
  679. return;
  680. }
  681. while (true) {
  682. qdf_rmb();
  683. if (!q_elem->valid)
  684. break;
  685. q_elem->dequeue_time = qdf_get_log_timestamp();
  686. ring_id = q_elem->srng->ring_id;
  687. addr = q_elem->addr;
  688. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  689. q_elem->enqueue_time);
  690. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  691. hal->stats.wstats.dequeues++;
  692. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  693. if (hal_reg_write_need_delay(q_elem))
  694. hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
  695. q_elem->srng->ring_id, q_elem->addr);
  696. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  697. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  698. hal->read_idx, ring_id, addr, write_val, delta_us);
  699. qdf_trace_dp_del_reg_write(ring_id, q_elem->enqueue_val,
  700. q_elem->dequeue_val,
  701. q_elem->enqueue_time,
  702. q_elem->dequeue_time);
  703. num_processed++;
  704. hal->read_idx = (hal->read_idx + 1) &
  705. (HAL_REG_WRITE_QUEUE_LEN - 1);
  706. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  707. }
  708. hif_allow_link_low_power_states(hal->hif_handle);
  709. /*
  710. * Decrement active_work_cnt by the number of elements dequeued after
  711. * hif_allow_link_low_power_states.
  712. * This makes sure that hif_try_complete_tasks will wait till we make
  713. * the bus access in hif_allow_link_low_power_states. This will avoid
  714. * race condition between delayed register worker and bus suspend
  715. * (system suspend or runtime suspend).
  716. *
  717. * The following decrement should be done at the end!
  718. */
  719. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  720. }
  721. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  722. {
  723. qdf_flush_work(&hal->reg_write_work);
  724. qdf_disable_work(&hal->reg_write_work);
  725. }
  726. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  727. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  728. }
  729. /**
  730. * hal_reg_write_enqueue() - enqueue register writes into kworker
  731. * @hal_soc: hal_soc pointer
  732. * @srng: srng pointer
  733. * @addr: iomem address of register
  734. * @value: value to be written to iomem address
  735. *
  736. * This function executes from within the SRNG LOCK
  737. *
  738. * Return: None
  739. */
  740. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  741. struct hal_srng *srng,
  742. void __iomem *addr,
  743. uint32_t value)
  744. {
  745. struct hal_reg_write_q_elem *q_elem;
  746. uint32_t write_idx;
  747. if (srng->reg_write_in_progress) {
  748. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  749. srng->ring_id, addr, value);
  750. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  751. srng->wstats.coalesces++;
  752. return;
  753. }
  754. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  755. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  756. q_elem = &hal_soc->reg_write_queue[write_idx];
  757. if (q_elem->valid) {
  758. hal_err("queue full");
  759. QDF_BUG(0);
  760. return;
  761. }
  762. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  763. srng->wstats.enqueues++;
  764. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  765. q_elem->srng = srng;
  766. q_elem->addr = addr;
  767. q_elem->enqueue_val = value;
  768. q_elem->enqueue_time = qdf_get_log_timestamp();
  769. /*
  770. * Before the valid flag is set to true, all the other
  771. * fields in the q_elem needs to be updated in memory.
  772. * Else there is a chance that the dequeuing worker thread
  773. * might read stale entries and process incorrect srng.
  774. */
  775. qdf_wmb();
  776. q_elem->valid = true;
  777. /*
  778. * After all other fields in the q_elem has been updated
  779. * in memory successfully, the valid flag needs to be updated
  780. * in memory in time too.
  781. * Else there is a chance that the dequeuing worker thread
  782. * might read stale valid flag and the work will be bypassed
  783. * for this round. And if there is no other work scheduled
  784. * later, this hal register writing won't be updated any more.
  785. */
  786. qdf_wmb();
  787. srng->reg_write_in_progress = true;
  788. qdf_atomic_inc(&hal_soc->active_work_cnt);
  789. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  790. write_idx, srng->ring_id, addr, value);
  791. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  792. &hal_soc->reg_write_work);
  793. }
  794. /**
  795. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  796. * @hal_soc: hal_soc pointer
  797. *
  798. * Initialize main data structures to process register writes in a delayed
  799. * workqueue.
  800. *
  801. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  802. */
  803. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  804. {
  805. hal->reg_write_wq =
  806. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  807. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  808. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  809. sizeof(*hal->reg_write_queue));
  810. if (!hal->reg_write_queue) {
  811. hal_err("unable to allocate memory");
  812. QDF_BUG(0);
  813. return QDF_STATUS_E_NOMEM;
  814. }
  815. /* Initial value of indices */
  816. hal->read_idx = 0;
  817. qdf_atomic_set(&hal->write_idx, -1);
  818. return QDF_STATUS_SUCCESS;
  819. }
  820. /**
  821. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  822. * @hal_soc: hal_soc pointer
  823. *
  824. * De-initialize main data structures to process register writes in a delayed
  825. * workqueue.
  826. *
  827. * Return: None
  828. */
  829. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  830. {
  831. __hal_flush_reg_write_work(hal);
  832. qdf_flush_workqueue(0, hal->reg_write_wq);
  833. qdf_destroy_workqueue(0, hal->reg_write_wq);
  834. qdf_mem_free(hal->reg_write_queue);
  835. }
  836. #else
  837. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  838. {
  839. return QDF_STATUS_SUCCESS;
  840. }
  841. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  842. {
  843. }
  844. #endif
  845. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  846. #ifdef HAL_RECORD_SUSPEND_WRITE
  847. static struct hal_suspend_write_history
  848. g_hal_suspend_write_history[HAL_SUSPEND_WRITE_HISTORY_MAX];
  849. static
  850. void hal_event_suspend_record(uint8_t ring_id, uint32_t value, uint32_t count)
  851. {
  852. uint32_t index = qdf_atomic_read(g_hal_suspend_write_history.index) &
  853. (HAL_SUSPEND_WRITE_HISTORY_MAX - 1);
  854. struct hal_suspend_write_record *cur_event =
  855. &hal_suspend_write_event.record[index];
  856. cur_event->ts = qdf_get_log_timestamp();
  857. cur_event->ring_id = ring_id;
  858. cur_event->value = value;
  859. cur_event->direct_wcount = count;
  860. qdf_atomic_inc(g_hal_suspend_write_history.index);
  861. }
  862. static inline
  863. void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
  864. {
  865. if (hif_rtpm_get_state() >= HIF_RTPM_STATE_SUSPENDING)
  866. hal_event_suspend_record(ring_id, value, count);
  867. }
  868. #else
  869. static inline
  870. void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
  871. {
  872. }
  873. #endif
  874. #ifdef QCA_WIFI_QCA6750
  875. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  876. struct hal_srng *srng,
  877. void __iomem *addr,
  878. uint32_t value)
  879. {
  880. uint8_t vote_access;
  881. switch (srng->ring_type) {
  882. case CE_SRC:
  883. case CE_DST:
  884. case CE_DST_STATUS:
  885. vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
  886. HIF_EP_VOTE_NONDP_ACCESS);
  887. if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
  888. (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
  889. PLD_MHI_STATE_L0 ==
  890. pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
  891. hal_write_address_32_mb(hal_soc, addr, value, false);
  892. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  893. srng->wstats.direct++;
  894. } else {
  895. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  896. }
  897. break;
  898. default:
  899. if (hif_get_ep_vote_access(hal_soc->hif_handle,
  900. HIF_EP_VOTE_DP_ACCESS) ==
  901. HIF_EP_VOTE_ACCESS_DISABLE ||
  902. hal_is_reg_write_tput_level_high(hal_soc) ||
  903. PLD_MHI_STATE_L0 ==
  904. pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
  905. hal_write_address_32_mb(hal_soc, addr, value, false);
  906. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  907. srng->wstats.direct++;
  908. } else {
  909. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  910. }
  911. break;
  912. }
  913. }
  914. #else
  915. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  916. struct hal_srng *srng,
  917. void __iomem *addr,
  918. uint32_t value)
  919. {
  920. if (hal_is_reg_write_tput_level_high(hal_soc) ||
  921. pld_is_device_awake(hal_soc->qdf_dev->dev)) {
  922. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  923. srng->wstats.direct++;
  924. hal_write_address_32_mb(hal_soc, addr, value, false);
  925. } else {
  926. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  927. }
  928. hal_record_suspend_write(srng->ring_id, value, srng->wstats.direct);
  929. }
  930. #endif
  931. #endif
  932. /**
  933. * hal_attach - Initialize HAL layer
  934. * @hif_handle: Opaque HIF handle
  935. * @qdf_dev: QDF device
  936. *
  937. * Return: Opaque HAL SOC handle
  938. * NULL on failure (if given ring is not available)
  939. *
  940. * This function should be called as part of HIF initialization (for accessing
  941. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  942. *
  943. */
  944. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  945. {
  946. struct hal_soc *hal;
  947. int i;
  948. hal = qdf_mem_malloc(sizeof(*hal));
  949. if (!hal) {
  950. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  951. "%s: hal_soc allocation failed", __func__);
  952. goto fail0;
  953. }
  954. hal->hif_handle = hif_handle;
  955. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  956. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  957. hal->dev_base_addr_cmem = hif_get_dev_ba_cmem(hif_handle); /* CMEM */
  958. hal->qdf_dev = qdf_dev;
  959. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  960. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  961. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  962. if (!hal->shadow_rdptr_mem_paddr) {
  963. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  964. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  965. __func__);
  966. goto fail1;
  967. }
  968. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  969. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  970. hal->shadow_wrptr_mem_vaddr =
  971. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  972. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  973. &(hal->shadow_wrptr_mem_paddr));
  974. if (!hal->shadow_wrptr_mem_vaddr) {
  975. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  976. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  977. __func__);
  978. goto fail2;
  979. }
  980. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  981. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  982. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  983. hal->srng_list[i].initialized = 0;
  984. hal->srng_list[i].ring_id = i;
  985. }
  986. qdf_spinlock_create(&hal->register_access_lock);
  987. hal->register_window = 0;
  988. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  989. hal->version = hif_get_soc_version(hif_handle);
  990. hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
  991. if (!hal->ops) {
  992. hal_err("unable to allocable memory for HAL ops");
  993. goto fail3;
  994. }
  995. hal_target_based_configure(hal);
  996. hal_reg_write_fail_history_init(hal);
  997. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  998. qdf_atomic_init(&hal->active_work_cnt);
  999. hal_delayed_reg_write_init(hal);
  1000. hal_reo_shared_qaddr_setup((hal_soc_handle_t)hal);
  1001. hif_rtpm_register(HIF_RTPM_ID_HAL_REO_CMD, NULL);
  1002. return (void *)hal;
  1003. fail3:
  1004. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1005. sizeof(*hal->shadow_wrptr_mem_vaddr) *
  1006. HAL_MAX_LMAC_RINGS,
  1007. hal->shadow_wrptr_mem_vaddr,
  1008. hal->shadow_wrptr_mem_paddr, 0);
  1009. fail2:
  1010. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1011. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1012. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1013. fail1:
  1014. qdf_mem_free(hal);
  1015. fail0:
  1016. return NULL;
  1017. }
  1018. qdf_export_symbol(hal_attach);
  1019. /**
  1020. * hal_mem_info - Retrieve hal memory base address
  1021. *
  1022. * @hal_soc: Opaque HAL SOC handle
  1023. * @mem: pointer to structure to be updated with hal mem info
  1024. */
  1025. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  1026. {
  1027. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1028. mem->dev_base_addr = (void *)hal->dev_base_addr;
  1029. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  1030. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  1031. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  1032. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  1033. hif_read_phy_mem_base((void *)hal->hif_handle,
  1034. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  1035. mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
  1036. return;
  1037. }
  1038. qdf_export_symbol(hal_get_meminfo);
  1039. /**
  1040. * hal_detach - Detach HAL layer
  1041. * @hal_soc: HAL SOC handle
  1042. *
  1043. * Return: Opaque HAL SOC handle
  1044. * NULL on failure (if given ring is not available)
  1045. *
  1046. * This function should be called as part of HIF initialization (for accessing
  1047. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  1048. *
  1049. */
  1050. extern void hal_detach(void *hal_soc)
  1051. {
  1052. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1053. hif_rtpm_deregister(HIF_RTPM_ID_HAL_REO_CMD);
  1054. hal_delayed_reg_write_deinit(hal);
  1055. hal_reo_shared_qaddr_detach((hal_soc_handle_t)hal);
  1056. qdf_mem_free(hal->ops);
  1057. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1058. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1059. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1060. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1061. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1062. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  1063. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  1064. qdf_mem_free(hal);
  1065. return;
  1066. }
  1067. qdf_export_symbol(hal_detach);
  1068. #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x) ((x) + 0x000000b0)
  1069. #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK 0x0000ffff
  1070. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x) ((x) + 0x00000040)
  1071. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK 0x00000007
  1072. /**
  1073. * hal_ce_dst_setup - Initialize CE destination ring registers
  1074. * @hal_soc: HAL SOC handle
  1075. * @srng: SRNG ring pointer
  1076. */
  1077. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  1078. int ring_num)
  1079. {
  1080. uint32_t reg_val = 0;
  1081. uint32_t reg_addr;
  1082. struct hal_hw_srng_config *ring_config =
  1083. HAL_SRNG_CONFIG(hal, CE_DST);
  1084. /* set DEST_MAX_LENGTH according to ce assignment */
  1085. reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
  1086. ring_config->reg_start[R0_INDEX] +
  1087. (ring_num * ring_config->reg_size[R0_INDEX]));
  1088. reg_val = HAL_REG_READ(hal, reg_addr);
  1089. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1090. reg_val |= srng->u.dst_ring.max_buffer_length &
  1091. HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1092. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1093. if (srng->prefetch_timer) {
  1094. reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  1095. ring_config->reg_start[R0_INDEX] +
  1096. (ring_num * ring_config->reg_size[R0_INDEX]));
  1097. reg_val = HAL_REG_READ(hal, reg_addr);
  1098. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  1099. reg_val |= srng->prefetch_timer;
  1100. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1101. reg_val = HAL_REG_READ(hal, reg_addr);
  1102. }
  1103. }
  1104. /**
  1105. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  1106. * @hal: HAL SOC handle
  1107. * @read: boolean value to indicate if read or write
  1108. * @ix0: pointer to store IX0 reg value
  1109. * @ix1: pointer to store IX1 reg value
  1110. * @ix2: pointer to store IX2 reg value
  1111. * @ix3: pointer to store IX3 reg value
  1112. */
  1113. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1114. uint32_t *ix0, uint32_t *ix1,
  1115. uint32_t *ix2, uint32_t *ix3)
  1116. {
  1117. uint32_t reg_offset;
  1118. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1119. uint32_t reo_reg_base;
  1120. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
  1121. if (read) {
  1122. if (ix0) {
  1123. reg_offset =
  1124. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1125. reo_reg_base);
  1126. *ix0 = HAL_REG_READ(hal, reg_offset);
  1127. }
  1128. if (ix1) {
  1129. reg_offset =
  1130. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1131. reo_reg_base);
  1132. *ix1 = HAL_REG_READ(hal, reg_offset);
  1133. }
  1134. if (ix2) {
  1135. reg_offset =
  1136. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1137. reo_reg_base);
  1138. *ix2 = HAL_REG_READ(hal, reg_offset);
  1139. }
  1140. if (ix3) {
  1141. reg_offset =
  1142. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1143. reo_reg_base);
  1144. *ix3 = HAL_REG_READ(hal, reg_offset);
  1145. }
  1146. } else {
  1147. if (ix0) {
  1148. reg_offset =
  1149. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1150. reo_reg_base);
  1151. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1152. *ix0, true);
  1153. }
  1154. if (ix1) {
  1155. reg_offset =
  1156. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1157. reo_reg_base);
  1158. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1159. *ix1, true);
  1160. }
  1161. if (ix2) {
  1162. reg_offset =
  1163. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1164. reo_reg_base);
  1165. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1166. *ix2, true);
  1167. }
  1168. if (ix3) {
  1169. reg_offset =
  1170. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1171. reo_reg_base);
  1172. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1173. *ix3, true);
  1174. }
  1175. }
  1176. }
  1177. qdf_export_symbol(hal_reo_read_write_ctrl_ix);
  1178. /**
  1179. * hal_srng_dst_set_hp_paddr_confirm() - Set physical address to dest ring head
  1180. * pointer and confirm that write went through by reading back the value
  1181. * @srng: sring pointer
  1182. * @paddr: physical address
  1183. *
  1184. * Return: None
  1185. */
  1186. void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
  1187. {
  1188. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
  1189. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
  1190. }
  1191. qdf_export_symbol(hal_srng_dst_set_hp_paddr_confirm);
  1192. /**
  1193. * hal_srng_dst_init_hp() - Initialize destination ring head
  1194. * pointer
  1195. * @hal_soc: hal_soc handle
  1196. * @srng: sring pointer
  1197. * @vaddr: virtual address
  1198. */
  1199. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1200. struct hal_srng *srng,
  1201. uint32_t *vaddr)
  1202. {
  1203. uint32_t reg_offset;
  1204. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1205. if (!srng)
  1206. return;
  1207. srng->u.dst_ring.hp_addr = vaddr;
  1208. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  1209. HAL_REG_WRITE_CONFIRM_RETRY(
  1210. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  1211. if (vaddr) {
  1212. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  1213. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1214. "hp_addr=%pK, cached_hp=%d, hp=%d",
  1215. (void *)srng->u.dst_ring.hp_addr,
  1216. srng->u.dst_ring.cached_hp,
  1217. *srng->u.dst_ring.hp_addr);
  1218. }
  1219. }
  1220. qdf_export_symbol(hal_srng_dst_init_hp);
  1221. /**
  1222. * hal_srng_hw_init - Private function to initialize SRNG HW
  1223. * @hal_soc: HAL SOC handle
  1224. * @srng: SRNG ring pointer
  1225. * @idle_check: Check if ring is idle
  1226. */
  1227. static inline void hal_srng_hw_init(struct hal_soc *hal,
  1228. struct hal_srng *srng, bool idle_check)
  1229. {
  1230. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1231. hal_srng_src_hw_init(hal, srng, idle_check);
  1232. else
  1233. hal_srng_dst_hw_init(hal, srng, idle_check);
  1234. }
  1235. #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
  1236. /**
  1237. * hal_srng_is_near_full_irq_supported() - Check if near full irq is
  1238. * supported on this SRNG
  1239. * @hal_soc: HAL SoC handle
  1240. * @ring_type: SRNG type
  1241. * @ring_num: ring number
  1242. *
  1243. * Return: true, if near full irq is supported for this SRNG
  1244. * false, if near full irq is not supported for this SRNG
  1245. */
  1246. bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
  1247. int ring_type, int ring_num)
  1248. {
  1249. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1250. struct hal_hw_srng_config *ring_config =
  1251. HAL_SRNG_CONFIG(hal, ring_type);
  1252. return ring_config->nf_irq_support;
  1253. }
  1254. /**
  1255. * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
  1256. * ring params
  1257. * @srng: SRNG handle
  1258. * @ring_params: ring params for this SRNG
  1259. *
  1260. * Return: None
  1261. */
  1262. static inline void
  1263. hal_srng_set_msi2_params(struct hal_srng *srng,
  1264. struct hal_srng_params *ring_params)
  1265. {
  1266. srng->msi2_addr = ring_params->msi2_addr;
  1267. srng->msi2_data = ring_params->msi2_data;
  1268. }
  1269. /**
  1270. * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
  1271. * @srng: SRNG handle
  1272. * @ring_params: ring params for this SRNG
  1273. *
  1274. * Return: None
  1275. */
  1276. static inline void
  1277. hal_srng_get_nf_params(struct hal_srng *srng,
  1278. struct hal_srng_params *ring_params)
  1279. {
  1280. ring_params->msi2_addr = srng->msi2_addr;
  1281. ring_params->msi2_data = srng->msi2_data;
  1282. }
  1283. /**
  1284. * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
  1285. * @srng: SRNG handle where the params are to be set
  1286. * @ring_params: ring params, from where threshold is to be fetched
  1287. *
  1288. * Return: None
  1289. */
  1290. static inline void
  1291. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1292. struct hal_srng_params *ring_params)
  1293. {
  1294. srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
  1295. srng->u.dst_ring.high_thresh = ring_params->high_thresh;
  1296. }
  1297. #else
  1298. static inline void
  1299. hal_srng_set_msi2_params(struct hal_srng *srng,
  1300. struct hal_srng_params *ring_params)
  1301. {
  1302. }
  1303. static inline void
  1304. hal_srng_get_nf_params(struct hal_srng *srng,
  1305. struct hal_srng_params *ring_params)
  1306. {
  1307. }
  1308. static inline void
  1309. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1310. struct hal_srng_params *ring_params)
  1311. {
  1312. }
  1313. #endif
  1314. #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
  1315. /**
  1316. * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
  1317. *
  1318. * @srng: Source ring pointer
  1319. *
  1320. * Return: None
  1321. */
  1322. static inline
  1323. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1324. {
  1325. srng->last_desc_cleared = srng->ring_size - srng->entry_size;
  1326. }
  1327. #else
  1328. static inline
  1329. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1330. {
  1331. }
  1332. #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
  1333. #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
  1334. static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
  1335. {
  1336. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100] =
  1337. ((srng->num_entries * 90) / 100);
  1338. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90] =
  1339. ((srng->num_entries * 80) / 100);
  1340. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80] =
  1341. ((srng->num_entries * 70) / 100);
  1342. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70] =
  1343. ((srng->num_entries * 60) / 100);
  1344. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60] =
  1345. ((srng->num_entries * 50) / 100);
  1346. /* Below 50% threshold is not needed */
  1347. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT] = 0;
  1348. hal_info("ring_id: %u, wm_thresh- <50:%u, 50-60:%u, 60-70:%u, 70-80:%u, 80-90:%u, 90-100:%u",
  1349. srng->ring_id,
  1350. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT],
  1351. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60],
  1352. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70],
  1353. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80],
  1354. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90],
  1355. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100]);
  1356. }
  1357. #else
  1358. static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
  1359. {
  1360. }
  1361. #endif
  1362. /**
  1363. * hal_srng_setup - Initialize HW SRNG ring.
  1364. * @hal_soc: Opaque HAL SOC handle
  1365. * @ring_type: one of the types from hal_ring_type
  1366. * @ring_num: Ring number if there are multiple rings of same type (staring
  1367. * from 0)
  1368. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1369. * @ring_params: SRNG ring params in hal_srng_params structure.
  1370. * @idle_check: Check if ring is idle
  1371. *
  1372. * Callers are expected to allocate contiguous ring memory of size
  1373. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1374. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1375. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1376. * and size of each ring entry should be queried using the API
  1377. * hal_srng_get_entrysize
  1378. *
  1379. * Return: Opaque pointer to ring on success
  1380. * NULL on failure (if given ring is not available)
  1381. */
  1382. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1383. int mac_id, struct hal_srng_params *ring_params, bool idle_check)
  1384. {
  1385. int ring_id;
  1386. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1387. struct hal_srng *srng;
  1388. struct hal_hw_srng_config *ring_config =
  1389. HAL_SRNG_CONFIG(hal, ring_type);
  1390. void *dev_base_addr;
  1391. int i;
  1392. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1393. if (ring_id < 0)
  1394. return NULL;
  1395. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1396. srng = hal_get_srng(hal_soc, ring_id);
  1397. if (srng->initialized) {
  1398. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1399. return NULL;
  1400. }
  1401. dev_base_addr = hal->dev_base_addr;
  1402. srng->ring_id = ring_id;
  1403. srng->ring_type = ring_type;
  1404. srng->ring_dir = ring_config->ring_dir;
  1405. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1406. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1407. srng->entry_size = ring_config->entry_size;
  1408. srng->num_entries = ring_params->num_entries;
  1409. srng->ring_size = srng->num_entries * srng->entry_size;
  1410. srng->ring_size_mask = srng->ring_size - 1;
  1411. srng->ring_vaddr_end = srng->ring_base_vaddr + srng->ring_size;
  1412. srng->msi_addr = ring_params->msi_addr;
  1413. srng->msi_data = ring_params->msi_data;
  1414. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1415. srng->intr_batch_cntr_thres_entries =
  1416. ring_params->intr_batch_cntr_thres_entries;
  1417. if (!idle_check)
  1418. srng->prefetch_timer = ring_params->prefetch_timer;
  1419. srng->hal_soc = hal_soc;
  1420. hal_srng_set_msi2_params(srng, ring_params);
  1421. hal_srng_update_high_wm_thresholds(srng);
  1422. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1423. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1424. + (ring_num * ring_config->reg_size[i]);
  1425. }
  1426. /* Zero out the entire ring memory */
  1427. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1428. srng->num_entries) << 2);
  1429. srng->flags = ring_params->flags;
  1430. /* For cached descriptors flush and invalidate the memory*/
  1431. if (srng->flags & HAL_SRNG_CACHED_DESC) {
  1432. qdf_nbuf_dma_clean_range(
  1433. srng->ring_base_vaddr,
  1434. srng->ring_base_vaddr +
  1435. ((srng->entry_size * srng->num_entries)));
  1436. qdf_nbuf_dma_inv_range(
  1437. srng->ring_base_vaddr,
  1438. srng->ring_base_vaddr +
  1439. ((srng->entry_size * srng->num_entries)));
  1440. }
  1441. #ifdef BIG_ENDIAN_HOST
  1442. /* TODO: See if we should we get these flags from caller */
  1443. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1444. srng->flags |= HAL_SRNG_MSI_SWAP;
  1445. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1446. #endif
  1447. hal_srng_last_desc_cleared_init(srng);
  1448. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1449. srng->u.src_ring.hp = 0;
  1450. srng->u.src_ring.reap_hp = srng->ring_size -
  1451. srng->entry_size;
  1452. srng->u.src_ring.tp_addr =
  1453. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1454. srng->u.src_ring.low_threshold =
  1455. ring_params->low_threshold * srng->entry_size;
  1456. if (srng->u.src_ring.tp_addr)
  1457. qdf_mem_zero(srng->u.src_ring.tp_addr,
  1458. sizeof(*hal->shadow_rdptr_mem_vaddr));
  1459. if (ring_config->lmac_ring) {
  1460. /* For LMAC rings, head pointer updates will be done
  1461. * through FW by writing to a shared memory location
  1462. */
  1463. srng->u.src_ring.hp_addr =
  1464. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1465. HAL_SRNG_LMAC1_ID_START]);
  1466. srng->flags |= HAL_SRNG_LMAC_RING;
  1467. if (srng->u.src_ring.hp_addr)
  1468. qdf_mem_zero(srng->u.src_ring.hp_addr,
  1469. sizeof(*hal->shadow_wrptr_mem_vaddr));
  1470. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1471. srng->u.src_ring.hp_addr =
  1472. hal_get_window_address(hal,
  1473. SRNG_SRC_ADDR(srng, HP));
  1474. if (CHECK_SHADOW_REGISTERS) {
  1475. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1476. QDF_TRACE_LEVEL_ERROR,
  1477. "%s: Ring (%d, %d) missing shadow config",
  1478. __func__, ring_type, ring_num);
  1479. }
  1480. } else {
  1481. hal_validate_shadow_register(hal,
  1482. SRNG_SRC_ADDR(srng, HP),
  1483. srng->u.src_ring.hp_addr);
  1484. }
  1485. } else {
  1486. /* During initialization loop count in all the descriptors
  1487. * will be set to zero, and HW will set it to 1 on completing
  1488. * descriptor update in first loop, and increments it by 1 on
  1489. * subsequent loops (loop count wraps around after reaching
  1490. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1491. * loop count in descriptors updated by HW (to be processed
  1492. * by SW).
  1493. */
  1494. hal_srng_set_nf_thresholds(srng, ring_params);
  1495. srng->u.dst_ring.loop_cnt = 1;
  1496. srng->u.dst_ring.tp = 0;
  1497. srng->u.dst_ring.hp_addr =
  1498. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1499. if (srng->u.dst_ring.hp_addr)
  1500. qdf_mem_zero(srng->u.dst_ring.hp_addr,
  1501. sizeof(*hal->shadow_rdptr_mem_vaddr));
  1502. if (ring_config->lmac_ring) {
  1503. /* For LMAC rings, tail pointer updates will be done
  1504. * through FW by writing to a shared memory location
  1505. */
  1506. srng->u.dst_ring.tp_addr =
  1507. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1508. HAL_SRNG_LMAC1_ID_START]);
  1509. srng->flags |= HAL_SRNG_LMAC_RING;
  1510. if (srng->u.dst_ring.tp_addr)
  1511. qdf_mem_zero(srng->u.dst_ring.tp_addr,
  1512. sizeof(*hal->shadow_wrptr_mem_vaddr));
  1513. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1514. srng->u.dst_ring.tp_addr =
  1515. hal_get_window_address(hal,
  1516. SRNG_DST_ADDR(srng, TP));
  1517. if (CHECK_SHADOW_REGISTERS) {
  1518. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1519. QDF_TRACE_LEVEL_ERROR,
  1520. "%s: Ring (%d, %d) missing shadow config",
  1521. __func__, ring_type, ring_num);
  1522. }
  1523. } else {
  1524. hal_validate_shadow_register(hal,
  1525. SRNG_DST_ADDR(srng, TP),
  1526. srng->u.dst_ring.tp_addr);
  1527. }
  1528. }
  1529. if (!(ring_config->lmac_ring)) {
  1530. hal_srng_hw_init(hal, srng, idle_check);
  1531. if (ring_type == CE_DST) {
  1532. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1533. hal_ce_dst_setup(hal, srng, ring_num);
  1534. }
  1535. }
  1536. SRNG_LOCK_INIT(&srng->lock);
  1537. srng->srng_event = 0;
  1538. srng->initialized = true;
  1539. return (void *)srng;
  1540. }
  1541. qdf_export_symbol(hal_srng_setup);
  1542. /**
  1543. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1544. * @hal_soc: Opaque HAL SOC handle
  1545. * @hal_srng: Opaque HAL SRNG pointer
  1546. */
  1547. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1548. {
  1549. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1550. SRNG_LOCK_DESTROY(&srng->lock);
  1551. srng->initialized = 0;
  1552. hal_srng_hw_disable(hal_soc, srng);
  1553. }
  1554. qdf_export_symbol(hal_srng_cleanup);
  1555. /**
  1556. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1557. * @hal_soc: Opaque HAL SOC handle
  1558. * @ring_type: one of the types from hal_ring_type
  1559. *
  1560. */
  1561. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1562. {
  1563. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1564. struct hal_hw_srng_config *ring_config =
  1565. HAL_SRNG_CONFIG(hal, ring_type);
  1566. return ring_config->entry_size << 2;
  1567. }
  1568. qdf_export_symbol(hal_srng_get_entrysize);
  1569. /**
  1570. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1571. * @hal_soc: Opaque HAL SOC handle
  1572. * @ring_type: one of the types from hal_ring_type
  1573. *
  1574. * Return: Maximum number of entries for the given ring_type
  1575. */
  1576. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1577. {
  1578. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1579. struct hal_hw_srng_config *ring_config =
  1580. HAL_SRNG_CONFIG(hal, ring_type);
  1581. return ring_config->max_size / ring_config->entry_size;
  1582. }
  1583. qdf_export_symbol(hal_srng_max_entries);
  1584. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1585. {
  1586. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1587. struct hal_hw_srng_config *ring_config =
  1588. HAL_SRNG_CONFIG(hal, ring_type);
  1589. return ring_config->ring_dir;
  1590. }
  1591. /**
  1592. * hal_srng_dump - Dump ring status
  1593. * @srng: hal srng pointer
  1594. */
  1595. void hal_srng_dump(struct hal_srng *srng)
  1596. {
  1597. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1598. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1599. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1600. srng->u.src_ring.hp,
  1601. srng->u.src_ring.reap_hp,
  1602. *srng->u.src_ring.tp_addr,
  1603. srng->u.src_ring.cached_tp);
  1604. } else {
  1605. hal_debug("=== DST RING %d ===", srng->ring_id);
  1606. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1607. srng->u.dst_ring.tp,
  1608. *srng->u.dst_ring.hp_addr,
  1609. srng->u.dst_ring.cached_hp,
  1610. srng->u.dst_ring.loop_cnt);
  1611. }
  1612. }
  1613. /**
  1614. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1615. *
  1616. * @hal_soc: Opaque HAL SOC handle
  1617. * @hal_ring: Ring pointer (Source or Destination ring)
  1618. * @ring_params: SRNG parameters will be returned through this structure
  1619. */
  1620. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1621. hal_ring_handle_t hal_ring_hdl,
  1622. struct hal_srng_params *ring_params)
  1623. {
  1624. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1625. int i =0;
  1626. ring_params->ring_id = srng->ring_id;
  1627. ring_params->ring_dir = srng->ring_dir;
  1628. ring_params->entry_size = srng->entry_size;
  1629. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1630. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1631. ring_params->num_entries = srng->num_entries;
  1632. ring_params->msi_addr = srng->msi_addr;
  1633. ring_params->msi_data = srng->msi_data;
  1634. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1635. ring_params->intr_batch_cntr_thres_entries =
  1636. srng->intr_batch_cntr_thres_entries;
  1637. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1638. ring_params->flags = srng->flags;
  1639. ring_params->ring_id = srng->ring_id;
  1640. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1641. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1642. hal_srng_get_nf_params(srng, ring_params);
  1643. }
  1644. qdf_export_symbol(hal_get_srng_params);
  1645. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1646. uint32_t low_threshold)
  1647. {
  1648. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1649. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1650. }
  1651. qdf_export_symbol(hal_set_low_threshold);
  1652. #ifdef FEATURE_RUNTIME_PM
  1653. void
  1654. hal_srng_rtpm_access_end(hal_soc_handle_t hal_soc_hdl,
  1655. hal_ring_handle_t hal_ring_hdl,
  1656. uint32_t rtpm_id)
  1657. {
  1658. if (qdf_unlikely(!hal_ring_hdl)) {
  1659. qdf_print("Error: Invalid hal_ring\n");
  1660. return;
  1661. }
  1662. if (hif_rtpm_get(HIF_RTPM_GET_ASYNC, rtpm_id) == 0) {
  1663. hal_srng_access_end(hal_soc_hdl, hal_ring_hdl);
  1664. hif_rtpm_put(HIF_RTPM_PUT_ASYNC, rtpm_id);
  1665. } else {
  1666. hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
  1667. hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
  1668. hal_srng_inc_flush_cnt(hal_ring_hdl);
  1669. }
  1670. }
  1671. qdf_export_symbol(hal_srng_rtpm_access_end);
  1672. #endif /* FEATURE_RUNTIME_PM */
  1673. #ifdef FORCE_WAKE
  1674. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1675. {
  1676. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1677. hal_soc->init_phase = init_phase;
  1678. }
  1679. #endif /* FORCE_WAKE */