hal_srng.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "hal_api.h"
  20. #include "target_type.h"
  21. #include "wcss_version.h"
  22. #include "qdf_module.h"
  23. #ifdef QCA_WIFI_QCA8074
  24. void hal_qca6290_attach(struct hal_soc *hal);
  25. #endif
  26. #ifdef QCA_WIFI_QCA8074
  27. void hal_qca8074_attach(struct hal_soc *hal);
  28. #endif
  29. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018)
  30. void hal_qca8074v2_attach(struct hal_soc *hal);
  31. #endif
  32. #ifdef QCA_WIFI_QCA6390
  33. void hal_qca6390_attach(struct hal_soc *hal);
  34. #endif
  35. #ifdef QCA_WIFI_QCA6490
  36. void hal_qca6490_attach(struct hal_soc *hal);
  37. #endif
  38. #ifdef QCA_WIFI_QCN9000
  39. void hal_qcn9000_attach(struct hal_soc *hal);
  40. #endif
  41. #ifdef QCA_WIFI_QCN9100
  42. void hal_qcn9100_attach(struct hal_soc *hal);
  43. #endif
  44. #ifdef QCA_WIFI_QCA6750
  45. void hal_qca6750_attach(struct hal_soc *hal);
  46. #endif
  47. #ifdef QCA_WIFI_QCA5018
  48. void hal_qca5018_attach(struct hal_soc *hal);
  49. #endif
  50. #ifdef ENABLE_VERBOSE_DEBUG
  51. bool is_hal_verbose_debug_enabled;
  52. #endif
  53. #ifdef ENABLE_HAL_REG_WR_HISTORY
  54. struct hal_reg_write_fail_history hal_reg_wr_hist;
  55. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  56. uint32_t offset,
  57. uint32_t wr_val, uint32_t rd_val)
  58. {
  59. struct hal_reg_write_fail_entry *record;
  60. int idx;
  61. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  62. HAL_REG_WRITE_HIST_SIZE);
  63. record = &hal_soc->reg_wr_fail_hist->record[idx];
  64. record->timestamp = qdf_get_log_timestamp();
  65. record->reg_offset = offset;
  66. record->write_val = wr_val;
  67. record->read_val = rd_val;
  68. }
  69. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  70. {
  71. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  72. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  73. }
  74. #else
  75. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  76. {
  77. }
  78. #endif
  79. /**
  80. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  81. * @hal: hal_soc data structure
  82. * @ring_type: type enum describing the ring
  83. * @ring_num: which ring of the ring type
  84. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  85. *
  86. * Return: the ring id or -EINVAL if the ring does not exist.
  87. */
  88. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  89. int ring_num, int mac_id)
  90. {
  91. struct hal_hw_srng_config *ring_config =
  92. HAL_SRNG_CONFIG(hal, ring_type);
  93. int ring_id;
  94. if (ring_num >= ring_config->max_rings) {
  95. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  96. "%s: ring_num exceeded maximum no. of supported rings",
  97. __func__);
  98. /* TODO: This is a programming error. Assert if this happens */
  99. return -EINVAL;
  100. }
  101. if (ring_config->lmac_ring) {
  102. ring_id = ring_config->start_ring_id + ring_num +
  103. (mac_id * HAL_MAX_RINGS_PER_LMAC);
  104. } else {
  105. ring_id = ring_config->start_ring_id + ring_num;
  106. }
  107. return ring_id;
  108. }
  109. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  110. {
  111. /* TODO: Should we allocate srng structures dynamically? */
  112. return &(hal->srng_list[ring_id]);
  113. }
  114. #define HP_OFFSET_IN_REG_START 1
  115. #define OFFSET_FROM_HP_TO_TP 4
  116. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  117. int shadow_config_index,
  118. int ring_type,
  119. int ring_num)
  120. {
  121. struct hal_srng *srng;
  122. int ring_id;
  123. struct hal_hw_srng_config *ring_config =
  124. HAL_SRNG_CONFIG(hal_soc, ring_type);
  125. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  126. if (ring_id < 0)
  127. return;
  128. srng = hal_get_srng(hal_soc, ring_id);
  129. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  130. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  131. + hal_soc->dev_base_addr;
  132. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  133. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  134. shadow_config_index);
  135. } else {
  136. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  137. + hal_soc->dev_base_addr;
  138. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  139. srng->u.src_ring.hp_addr,
  140. hal_soc->dev_base_addr, shadow_config_index);
  141. }
  142. }
  143. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  144. void hal_set_one_target_reg_config(struct hal_soc *hal,
  145. uint32_t target_reg_offset,
  146. int list_index)
  147. {
  148. int i = list_index;
  149. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  150. hal->list_shadow_reg_config[i].target_register =
  151. target_reg_offset;
  152. hal->num_generic_shadow_regs_configured++;
  153. }
  154. qdf_export_symbol(hal_set_one_target_reg_config);
  155. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  156. #define MAX_REO_REMAP_SHADOW_REGS 4
  157. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  158. {
  159. uint32_t target_reg_offset;
  160. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  161. int i;
  162. struct hal_hw_srng_config *srng_config =
  163. &hal->hw_srng_table[WBM2SW_RELEASE];
  164. target_reg_offset =
  165. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  166. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  167. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  168. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  169. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  170. }
  171. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  172. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  173. * HAL_IPA_TX_COMP_RING_IDX);
  174. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  175. return QDF_STATUS_SUCCESS;
  176. }
  177. qdf_export_symbol(hal_set_shadow_regs);
  178. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  179. {
  180. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  181. int shadow_config_index = hal->num_shadow_registers_configured;
  182. int i;
  183. int num_regs = hal->num_generic_shadow_regs_configured;
  184. for (i = 0; i < num_regs; i++) {
  185. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  186. hal->shadow_config[shadow_config_index].addr =
  187. hal->list_shadow_reg_config[i].target_register;
  188. hal->list_shadow_reg_config[i].shadow_config_index =
  189. shadow_config_index;
  190. hal->list_shadow_reg_config[i].va =
  191. SHADOW_REGISTER(shadow_config_index) +
  192. (uint64_t)hal->dev_base_addr;
  193. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  194. hal->shadow_config[shadow_config_index].addr,
  195. SHADOW_REGISTER(shadow_config_index),
  196. shadow_config_index);
  197. shadow_config_index++;
  198. hal->num_shadow_registers_configured++;
  199. }
  200. return QDF_STATUS_SUCCESS;
  201. }
  202. qdf_export_symbol(hal_construct_shadow_regs);
  203. #endif
  204. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  205. int ring_type,
  206. int ring_num)
  207. {
  208. uint32_t target_register;
  209. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  210. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  211. int shadow_config_index = hal->num_shadow_registers_configured;
  212. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  213. QDF_ASSERT(0);
  214. return QDF_STATUS_E_RESOURCES;
  215. }
  216. hal->num_shadow_registers_configured++;
  217. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  218. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  219. *ring_num);
  220. /* if the ring is a dst ring, we need to shadow the tail pointer */
  221. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  222. target_register += OFFSET_FROM_HP_TO_TP;
  223. hal->shadow_config[shadow_config_index].addr = target_register;
  224. /* update hp/tp addr in the hal_soc structure*/
  225. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  226. ring_num);
  227. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  228. target_register,
  229. SHADOW_REGISTER(shadow_config_index),
  230. shadow_config_index,
  231. ring_type, ring_num);
  232. return QDF_STATUS_SUCCESS;
  233. }
  234. qdf_export_symbol(hal_set_one_shadow_config);
  235. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  236. {
  237. int ring_type, ring_num;
  238. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  239. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  240. struct hal_hw_srng_config *srng_config =
  241. &hal->hw_srng_table[ring_type];
  242. if (ring_type == CE_SRC ||
  243. ring_type == CE_DST ||
  244. ring_type == CE_DST_STATUS)
  245. continue;
  246. if (srng_config->lmac_ring)
  247. continue;
  248. for (ring_num = 0; ring_num < srng_config->max_rings;
  249. ring_num++)
  250. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  251. }
  252. return QDF_STATUS_SUCCESS;
  253. }
  254. qdf_export_symbol(hal_construct_srng_shadow_regs);
  255. void hal_get_shadow_config(void *hal_soc,
  256. struct pld_shadow_reg_v2_cfg **shadow_config,
  257. int *num_shadow_registers_configured)
  258. {
  259. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  260. *shadow_config = hal->shadow_config;
  261. *num_shadow_registers_configured =
  262. hal->num_shadow_registers_configured;
  263. }
  264. qdf_export_symbol(hal_get_shadow_config);
  265. static void hal_validate_shadow_register(struct hal_soc *hal,
  266. uint32_t *destination,
  267. uint32_t *shadow_address)
  268. {
  269. unsigned int index;
  270. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  271. int destination_ba_offset =
  272. ((char *)destination) - (char *)hal->dev_base_addr;
  273. index = shadow_address - shadow_0_offset;
  274. if (index >= MAX_SHADOW_REGISTERS) {
  275. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  276. "%s: index %x out of bounds", __func__, index);
  277. goto error;
  278. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  279. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  280. "%s: sanity check failure, expected %x, found %x",
  281. __func__, destination_ba_offset,
  282. hal->shadow_config[index].addr);
  283. goto error;
  284. }
  285. return;
  286. error:
  287. qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  288. hal->dev_base_addr, destination, shadow_address,
  289. shadow_0_offset, index);
  290. QDF_BUG(0);
  291. return;
  292. }
  293. static void hal_target_based_configure(struct hal_soc *hal)
  294. {
  295. /**
  296. * Indicate Initialization of srngs to avoid force wake
  297. * as umac power collapse is not enabled yet
  298. */
  299. hal->init_phase = true;
  300. switch (hal->target_type) {
  301. #ifdef QCA_WIFI_QCA6290
  302. case TARGET_TYPE_QCA6290:
  303. hal->use_register_windowing = true;
  304. hal_qca6290_attach(hal);
  305. break;
  306. #endif
  307. #ifdef QCA_WIFI_QCA6390
  308. case TARGET_TYPE_QCA6390:
  309. hal->use_register_windowing = true;
  310. hal_qca6390_attach(hal);
  311. break;
  312. #endif
  313. #ifdef QCA_WIFI_QCA6490
  314. case TARGET_TYPE_QCA6490:
  315. hal->use_register_windowing = true;
  316. hal_qca6490_attach(hal);
  317. hal->init_phase = false;
  318. break;
  319. #endif
  320. #ifdef QCA_WIFI_QCA6750
  321. case TARGET_TYPE_QCA6750:
  322. hal->use_register_windowing = true;
  323. hal->static_window_map = true;
  324. hal_qca6750_attach(hal);
  325. break;
  326. #endif
  327. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  328. case TARGET_TYPE_QCA8074:
  329. hal_qca8074_attach(hal);
  330. break;
  331. #endif
  332. #if defined(QCA_WIFI_QCA8074V2)
  333. case TARGET_TYPE_QCA8074V2:
  334. hal_qca8074v2_attach(hal);
  335. break;
  336. #endif
  337. #if defined(QCA_WIFI_QCA6018)
  338. case TARGET_TYPE_QCA6018:
  339. hal_qca8074v2_attach(hal);
  340. break;
  341. #endif
  342. #if defined(QCA_WIFI_QCN9100)
  343. case TARGET_TYPE_QCN9100:
  344. hal->use_register_windowing = true;
  345. /*
  346. * Static window map is enabled for qcn9000 to use 2mb bar
  347. * size and use multiple windows to write into registers.
  348. */
  349. hal->static_window_map = true;
  350. hal_qcn9100_attach(hal);
  351. break;
  352. #endif
  353. #ifdef QCA_WIFI_QCN9000
  354. case TARGET_TYPE_QCN9000:
  355. hal->use_register_windowing = true;
  356. /*
  357. * Static window map is enabled for qcn9000 to use 2mb bar
  358. * size and use multiple windows to write into registers.
  359. */
  360. hal->static_window_map = true;
  361. hal_qcn9000_attach(hal);
  362. break;
  363. #endif
  364. #ifdef QCA_WIFI_QCA5018
  365. case TARGET_TYPE_QCA5018:
  366. hal->use_register_windowing = true;
  367. hal->static_window_map = true;
  368. hal_qca5018_attach(hal);
  369. break;
  370. #endif
  371. default:
  372. break;
  373. }
  374. }
  375. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  376. {
  377. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  378. struct hif_target_info *tgt_info =
  379. hif_get_target_info_handle(hal_soc->hif_handle);
  380. return tgt_info->target_type;
  381. }
  382. qdf_export_symbol(hal_get_target_type);
  383. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  384. #ifdef MEMORY_DEBUG
  385. /*
  386. * Length of the queue(array) used to hold delayed register writes.
  387. * Must be a multiple of 2.
  388. */
  389. #define HAL_REG_WRITE_QUEUE_LEN 128
  390. #else
  391. #define HAL_REG_WRITE_QUEUE_LEN 32
  392. #endif
  393. /**
  394. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  395. * @hal: hal_soc pointer
  396. *
  397. * Return: true if throughput is high, else false.
  398. */
  399. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  400. {
  401. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  402. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  403. }
  404. /**
  405. * hal_process_reg_write_q_elem() - process a regiter write queue element
  406. * @hal: hal_soc pointer
  407. * @q_elem: pointer to hal regiter write queue element
  408. *
  409. * Return: The value which was written to the address
  410. */
  411. static uint32_t
  412. hal_process_reg_write_q_elem(struct hal_soc *hal,
  413. struct hal_reg_write_q_elem *q_elem)
  414. {
  415. struct hal_srng *srng = q_elem->srng;
  416. uint32_t write_val;
  417. SRNG_LOCK(&srng->lock);
  418. srng->reg_write_in_progress = false;
  419. srng->wstats.dequeues++;
  420. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  421. q_elem->dequeue_val = srng->u.src_ring.hp;
  422. hal_write_address_32_mb(hal,
  423. srng->u.src_ring.hp_addr,
  424. srng->u.src_ring.hp, false);
  425. write_val = srng->u.src_ring.hp;
  426. } else {
  427. q_elem->dequeue_val = srng->u.dst_ring.tp;
  428. hal_write_address_32_mb(hal,
  429. srng->u.dst_ring.tp_addr,
  430. srng->u.dst_ring.tp, false);
  431. write_val = srng->u.dst_ring.tp;
  432. }
  433. q_elem->valid = 0;
  434. SRNG_UNLOCK(&srng->lock);
  435. return write_val;
  436. }
  437. /**
  438. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  439. * @hal: hal_soc pointer
  440. * @delay: delay in us
  441. *
  442. * Return: None
  443. */
  444. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  445. uint64_t delay_us)
  446. {
  447. uint32_t *hist;
  448. hist = hal->stats.wstats.sched_delay;
  449. if (delay_us < 100)
  450. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  451. else if (delay_us < 1000)
  452. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  453. else if (delay_us < 5000)
  454. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  455. else
  456. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  457. }
  458. /**
  459. * hal_reg_write_work() - Worker to process delayed writes
  460. * @arg: hal_soc pointer
  461. *
  462. * Return: None
  463. */
  464. static void hal_reg_write_work(void *arg)
  465. {
  466. int32_t q_depth, write_val;
  467. struct hal_soc *hal = arg;
  468. struct hal_reg_write_q_elem *q_elem;
  469. uint64_t delta_us;
  470. uint8_t ring_id;
  471. uint32_t *addr;
  472. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  473. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  474. /* Make sure q_elem consistent in the memory for multi-cores */
  475. qdf_rmb();
  476. if (!q_elem->valid)
  477. return;
  478. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  479. if (q_depth > hal->stats.wstats.max_q_depth)
  480. hal->stats.wstats.max_q_depth = q_depth;
  481. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  482. hal->stats.wstats.prevent_l1_fails++;
  483. return;
  484. }
  485. while (true) {
  486. qdf_rmb();
  487. if (!q_elem->valid)
  488. break;
  489. q_elem->dequeue_time = qdf_get_log_timestamp();
  490. ring_id = q_elem->srng->ring_id;
  491. addr = q_elem->addr;
  492. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  493. q_elem->enqueue_time);
  494. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  495. hal->stats.wstats.dequeues++;
  496. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  497. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  498. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  499. hal->read_idx, ring_id, addr, write_val, delta_us);
  500. qdf_atomic_dec(&hal->active_work_cnt);
  501. hal->read_idx = (hal->read_idx + 1) &
  502. (HAL_REG_WRITE_QUEUE_LEN - 1);
  503. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  504. }
  505. hif_allow_link_low_power_states(hal->hif_handle);
  506. }
  507. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  508. {
  509. qdf_cancel_work(&hal->reg_write_work);
  510. qdf_flush_work(&hal->reg_write_work);
  511. qdf_flush_workqueue(0, hal->reg_write_wq);
  512. }
  513. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  514. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  515. }
  516. /**
  517. * hal_reg_write_enqueue() - enqueue register writes into kworker
  518. * @hal_soc: hal_soc pointer
  519. * @srng: srng pointer
  520. * @addr: iomem address of regiter
  521. * @value: value to be written to iomem address
  522. *
  523. * This function executes from within the SRNG LOCK
  524. *
  525. * Return: None
  526. */
  527. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  528. struct hal_srng *srng,
  529. void __iomem *addr,
  530. uint32_t value)
  531. {
  532. struct hal_reg_write_q_elem *q_elem;
  533. uint32_t write_idx;
  534. if (srng->reg_write_in_progress) {
  535. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  536. srng->ring_id, addr, value);
  537. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  538. srng->wstats.coalesces++;
  539. return;
  540. }
  541. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  542. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  543. q_elem = &hal_soc->reg_write_queue[write_idx];
  544. if (q_elem->valid) {
  545. hal_err("queue full");
  546. QDF_BUG(0);
  547. return;
  548. }
  549. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  550. srng->wstats.enqueues++;
  551. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  552. q_elem->srng = srng;
  553. q_elem->addr = addr;
  554. q_elem->enqueue_val = value;
  555. q_elem->enqueue_time = qdf_get_log_timestamp();
  556. /*
  557. * Before the valid flag is set to true, all the other
  558. * fields in the q_elem needs to be updated in memory.
  559. * Else there is a chance that the dequeuing worker thread
  560. * might read stale entries and process incorrect srng.
  561. */
  562. qdf_wmb();
  563. q_elem->valid = true;
  564. /*
  565. * After all other fields in the q_elem has been updated
  566. * in memory successfully, the valid flag needs to be updated
  567. * in memory in time too.
  568. * Else there is a chance that the dequeuing worker thread
  569. * might read stale valid flag and the work will be bypassed
  570. * for this round. And if there is no other work scheduled
  571. * later, this hal register writing won't be updated any more.
  572. */
  573. qdf_wmb();
  574. srng->reg_write_in_progress = true;
  575. qdf_atomic_inc(&hal_soc->active_work_cnt);
  576. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  577. write_idx, srng->ring_id, addr, value);
  578. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  579. &hal_soc->reg_write_work);
  580. }
  581. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  582. struct hal_srng *srng,
  583. void __iomem *addr,
  584. uint32_t value)
  585. {
  586. if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
  587. hal_is_reg_write_tput_level_high(hal_soc)) {
  588. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  589. srng->wstats.direct++;
  590. hal_write_address_32_mb(hal_soc, addr, value, false);
  591. } else {
  592. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  593. }
  594. }
  595. /**
  596. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  597. * @hal_soc: hal_soc pointer
  598. *
  599. * Initialize main data structures to process register writes in a delayed
  600. * workqueue.
  601. *
  602. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  603. */
  604. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  605. {
  606. hal->reg_write_wq =
  607. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  608. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  609. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  610. sizeof(*hal->reg_write_queue));
  611. if (!hal->reg_write_queue) {
  612. hal_err("unable to allocate memory");
  613. QDF_BUG(0);
  614. return QDF_STATUS_E_NOMEM;
  615. }
  616. /* Initial value of indices */
  617. hal->read_idx = 0;
  618. qdf_atomic_set(&hal->write_idx, -1);
  619. return QDF_STATUS_SUCCESS;
  620. }
  621. /**
  622. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  623. * @hal_soc: hal_soc pointer
  624. *
  625. * De-initialize main data structures to process register writes in a delayed
  626. * workqueue.
  627. *
  628. * Return: None
  629. */
  630. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  631. {
  632. __hal_flush_reg_write_work(hal);
  633. qdf_destroy_workqueue(0, hal->reg_write_wq);
  634. qdf_mem_free(hal->reg_write_queue);
  635. }
  636. static inline
  637. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  638. char *buf, qdf_size_t size)
  639. {
  640. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  641. srng->wstats.enqueues, srng->wstats.dequeues,
  642. srng->wstats.coalesces, srng->wstats.direct);
  643. return buf;
  644. }
  645. /* bytes for local buffer */
  646. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  647. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  648. {
  649. struct hal_srng *srng;
  650. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  651. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  652. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  653. hal_debug("SW2TCL1: %s",
  654. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  655. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  656. hal_debug("WBM2SW0: %s",
  657. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  658. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  659. hal_debug("REO2SW1: %s",
  660. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  661. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  662. hal_debug("REO2SW2: %s",
  663. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  664. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  665. hal_debug("REO2SW3: %s",
  666. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  667. }
  668. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  669. {
  670. uint32_t *hist;
  671. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  672. hist = hal->stats.wstats.sched_delay;
  673. hal_debug("enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  674. qdf_atomic_read(&hal->stats.wstats.enqueues),
  675. hal->stats.wstats.dequeues,
  676. qdf_atomic_read(&hal->stats.wstats.coalesces),
  677. qdf_atomic_read(&hal->stats.wstats.direct),
  678. qdf_atomic_read(&hal->stats.wstats.q_depth),
  679. hal->stats.wstats.max_q_depth,
  680. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  681. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  682. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  683. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  684. }
  685. int hal_get_reg_write_pending_work(void *hal_soc)
  686. {
  687. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  688. return qdf_atomic_read(&hal->active_work_cnt);
  689. }
  690. #else
  691. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  692. {
  693. return QDF_STATUS_SUCCESS;
  694. }
  695. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  696. {
  697. }
  698. #endif
  699. /**
  700. * hal_attach - Initialize HAL layer
  701. * @hif_handle: Opaque HIF handle
  702. * @qdf_dev: QDF device
  703. *
  704. * Return: Opaque HAL SOC handle
  705. * NULL on failure (if given ring is not available)
  706. *
  707. * This function should be called as part of HIF initialization (for accessing
  708. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  709. *
  710. */
  711. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  712. {
  713. struct hal_soc *hal;
  714. int i;
  715. hal = qdf_mem_malloc(sizeof(*hal));
  716. if (!hal) {
  717. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  718. "%s: hal_soc allocation failed", __func__);
  719. goto fail0;
  720. }
  721. hal->hif_handle = hif_handle;
  722. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  723. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  724. hal->qdf_dev = qdf_dev;
  725. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  726. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  727. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  728. if (!hal->shadow_rdptr_mem_paddr) {
  729. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  730. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  731. __func__);
  732. goto fail1;
  733. }
  734. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  735. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  736. hal->shadow_wrptr_mem_vaddr =
  737. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  738. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  739. &(hal->shadow_wrptr_mem_paddr));
  740. if (!hal->shadow_wrptr_mem_vaddr) {
  741. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  742. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  743. __func__);
  744. goto fail2;
  745. }
  746. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  747. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  748. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  749. hal->srng_list[i].initialized = 0;
  750. hal->srng_list[i].ring_id = i;
  751. }
  752. qdf_spinlock_create(&hal->register_access_lock);
  753. hal->register_window = 0;
  754. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  755. hal_target_based_configure(hal);
  756. hal_reg_write_fail_history_init(hal);
  757. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  758. qdf_atomic_init(&hal->active_work_cnt);
  759. hal_delayed_reg_write_init(hal);
  760. return (void *)hal;
  761. fail2:
  762. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  763. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  764. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  765. fail1:
  766. qdf_mem_free(hal);
  767. fail0:
  768. return NULL;
  769. }
  770. qdf_export_symbol(hal_attach);
  771. /**
  772. * hal_mem_info - Retrieve hal memory base address
  773. *
  774. * @hal_soc: Opaque HAL SOC handle
  775. * @mem: pointer to structure to be updated with hal mem info
  776. */
  777. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  778. {
  779. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  780. mem->dev_base_addr = (void *)hal->dev_base_addr;
  781. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  782. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  783. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  784. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  785. hif_read_phy_mem_base((void *)hal->hif_handle,
  786. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  787. return;
  788. }
  789. qdf_export_symbol(hal_get_meminfo);
  790. /**
  791. * hal_detach - Detach HAL layer
  792. * @hal_soc: HAL SOC handle
  793. *
  794. * Return: Opaque HAL SOC handle
  795. * NULL on failure (if given ring is not available)
  796. *
  797. * This function should be called as part of HIF initialization (for accessing
  798. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  799. *
  800. */
  801. extern void hal_detach(void *hal_soc)
  802. {
  803. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  804. hal_delayed_reg_write_deinit(hal);
  805. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  806. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  807. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  808. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  809. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  810. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  811. qdf_minidump_remove(hal);
  812. qdf_mem_free(hal);
  813. return;
  814. }
  815. qdf_export_symbol(hal_detach);
  816. /**
  817. * hal_ce_dst_setup - Initialize CE destination ring registers
  818. * @hal_soc: HAL SOC handle
  819. * @srng: SRNG ring pointer
  820. */
  821. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  822. int ring_num)
  823. {
  824. uint32_t reg_val = 0;
  825. uint32_t reg_addr;
  826. struct hal_hw_srng_config *ring_config =
  827. HAL_SRNG_CONFIG(hal, CE_DST);
  828. /* set DEST_MAX_LENGTH according to ce assignment */
  829. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_ADDR(
  830. ring_config->reg_start[R0_INDEX] +
  831. (ring_num * ring_config->reg_size[R0_INDEX]));
  832. reg_val = HAL_REG_READ(hal, reg_addr);
  833. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  834. reg_val |= srng->u.dst_ring.max_buffer_length &
  835. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  836. HAL_REG_WRITE(hal, reg_addr, reg_val);
  837. if (srng->prefetch_timer) {
  838. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  839. ring_config->reg_start[R0_INDEX] +
  840. (ring_num * ring_config->reg_size[R0_INDEX]));
  841. reg_val = HAL_REG_READ(hal, reg_addr);
  842. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  843. reg_val |= srng->prefetch_timer;
  844. HAL_REG_WRITE(hal, reg_addr, reg_val);
  845. reg_val = HAL_REG_READ(hal, reg_addr);
  846. }
  847. }
  848. /**
  849. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  850. * @hal: HAL SOC handle
  851. * @read: boolean value to indicate if read or write
  852. * @ix0: pointer to store IX0 reg value
  853. * @ix1: pointer to store IX1 reg value
  854. * @ix2: pointer to store IX2 reg value
  855. * @ix3: pointer to store IX3 reg value
  856. */
  857. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  858. uint32_t *ix0, uint32_t *ix1,
  859. uint32_t *ix2, uint32_t *ix3)
  860. {
  861. uint32_t reg_offset;
  862. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  863. if (read) {
  864. if (ix0) {
  865. reg_offset =
  866. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  867. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  868. *ix0 = HAL_REG_READ(hal, reg_offset);
  869. }
  870. if (ix1) {
  871. reg_offset =
  872. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  873. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  874. *ix1 = HAL_REG_READ(hal, reg_offset);
  875. }
  876. if (ix2) {
  877. reg_offset =
  878. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  879. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  880. *ix2 = HAL_REG_READ(hal, reg_offset);
  881. }
  882. if (ix3) {
  883. reg_offset =
  884. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  885. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  886. *ix3 = HAL_REG_READ(hal, reg_offset);
  887. }
  888. } else {
  889. if (ix0) {
  890. reg_offset =
  891. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  892. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  893. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  894. *ix0, true);
  895. }
  896. if (ix1) {
  897. reg_offset =
  898. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  899. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  900. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  901. *ix1, true);
  902. }
  903. if (ix2) {
  904. reg_offset =
  905. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  906. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  907. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  908. *ix2, true);
  909. }
  910. if (ix3) {
  911. reg_offset =
  912. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  913. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  914. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  915. *ix3, true);
  916. }
  917. }
  918. }
  919. /**
  920. * hal_srng_dst_set_hp_paddr() - Set physical address to dest ring head pointer
  921. * @srng: sring pointer
  922. * @paddr: physical address
  923. */
  924. void hal_srng_dst_set_hp_paddr(struct hal_srng *srng,
  925. uint64_t paddr)
  926. {
  927. SRNG_DST_REG_WRITE(srng, HP_ADDR_LSB,
  928. paddr & 0xffffffff);
  929. SRNG_DST_REG_WRITE(srng, HP_ADDR_MSB,
  930. paddr >> 32);
  931. }
  932. /**
  933. * hal_srng_dst_init_hp() - Initialize destination ring head
  934. * pointer
  935. * @hal_soc: hal_soc handle
  936. * @srng: sring pointer
  937. * @vaddr: virtual address
  938. */
  939. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  940. struct hal_srng *srng,
  941. uint32_t *vaddr)
  942. {
  943. uint32_t reg_offset;
  944. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  945. if (!srng)
  946. return;
  947. srng->u.dst_ring.hp_addr = vaddr;
  948. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  949. HAL_REG_WRITE_CONFIRM_RETRY(
  950. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  951. if (vaddr) {
  952. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  953. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  954. "hp_addr=%pK, cached_hp=%d, hp=%d",
  955. (void *)srng->u.dst_ring.hp_addr,
  956. srng->u.dst_ring.cached_hp,
  957. *srng->u.dst_ring.hp_addr);
  958. }
  959. }
  960. /**
  961. * hal_srng_hw_init - Private function to initialize SRNG HW
  962. * @hal_soc: HAL SOC handle
  963. * @srng: SRNG ring pointer
  964. */
  965. static inline void hal_srng_hw_init(struct hal_soc *hal,
  966. struct hal_srng *srng)
  967. {
  968. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  969. hal_srng_src_hw_init(hal, srng);
  970. else
  971. hal_srng_dst_hw_init(hal, srng);
  972. }
  973. #ifdef CONFIG_SHADOW_V2
  974. #define ignore_shadow false
  975. #define CHECK_SHADOW_REGISTERS true
  976. #else
  977. #define ignore_shadow true
  978. #define CHECK_SHADOW_REGISTERS false
  979. #endif
  980. /**
  981. * hal_srng_setup - Initialize HW SRNG ring.
  982. * @hal_soc: Opaque HAL SOC handle
  983. * @ring_type: one of the types from hal_ring_type
  984. * @ring_num: Ring number if there are multiple rings of same type (staring
  985. * from 0)
  986. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  987. * @ring_params: SRNG ring params in hal_srng_params structure.
  988. * Callers are expected to allocate contiguous ring memory of size
  989. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  990. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  991. * hal_srng_params structure. Ring base address should be 8 byte aligned
  992. * and size of each ring entry should be queried using the API
  993. * hal_srng_get_entrysize
  994. *
  995. * Return: Opaque pointer to ring on success
  996. * NULL on failure (if given ring is not available)
  997. */
  998. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  999. int mac_id, struct hal_srng_params *ring_params)
  1000. {
  1001. int ring_id;
  1002. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1003. struct hal_srng *srng;
  1004. struct hal_hw_srng_config *ring_config =
  1005. HAL_SRNG_CONFIG(hal, ring_type);
  1006. void *dev_base_addr;
  1007. int i;
  1008. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1009. if (ring_id < 0)
  1010. return NULL;
  1011. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1012. srng = hal_get_srng(hal_soc, ring_id);
  1013. if (srng->initialized) {
  1014. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1015. return NULL;
  1016. }
  1017. dev_base_addr = hal->dev_base_addr;
  1018. srng->ring_id = ring_id;
  1019. srng->ring_dir = ring_config->ring_dir;
  1020. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1021. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1022. srng->entry_size = ring_config->entry_size;
  1023. srng->num_entries = ring_params->num_entries;
  1024. srng->ring_size = srng->num_entries * srng->entry_size;
  1025. srng->ring_size_mask = srng->ring_size - 1;
  1026. srng->msi_addr = ring_params->msi_addr;
  1027. srng->msi_data = ring_params->msi_data;
  1028. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1029. srng->intr_batch_cntr_thres_entries =
  1030. ring_params->intr_batch_cntr_thres_entries;
  1031. srng->prefetch_timer = ring_params->prefetch_timer;
  1032. srng->hal_soc = hal_soc;
  1033. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1034. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1035. + (ring_num * ring_config->reg_size[i]);
  1036. }
  1037. /* Zero out the entire ring memory */
  1038. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1039. srng->num_entries) << 2);
  1040. srng->flags = ring_params->flags;
  1041. #ifdef BIG_ENDIAN_HOST
  1042. /* TODO: See if we should we get these flags from caller */
  1043. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1044. srng->flags |= HAL_SRNG_MSI_SWAP;
  1045. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1046. #endif
  1047. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1048. srng->u.src_ring.hp = 0;
  1049. srng->u.src_ring.reap_hp = srng->ring_size -
  1050. srng->entry_size;
  1051. srng->u.src_ring.tp_addr =
  1052. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1053. srng->u.src_ring.low_threshold =
  1054. ring_params->low_threshold * srng->entry_size;
  1055. if (ring_config->lmac_ring) {
  1056. /* For LMAC rings, head pointer updates will be done
  1057. * through FW by writing to a shared memory location
  1058. */
  1059. srng->u.src_ring.hp_addr =
  1060. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1061. HAL_SRNG_LMAC1_ID_START]);
  1062. srng->flags |= HAL_SRNG_LMAC_RING;
  1063. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1064. srng->u.src_ring.hp_addr =
  1065. hal_get_window_address(hal,
  1066. SRNG_SRC_ADDR(srng, HP));
  1067. if (CHECK_SHADOW_REGISTERS) {
  1068. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1069. QDF_TRACE_LEVEL_ERROR,
  1070. "%s: Ring (%d, %d) missing shadow config",
  1071. __func__, ring_type, ring_num);
  1072. }
  1073. } else {
  1074. hal_validate_shadow_register(hal,
  1075. SRNG_SRC_ADDR(srng, HP),
  1076. srng->u.src_ring.hp_addr);
  1077. }
  1078. } else {
  1079. /* During initialization loop count in all the descriptors
  1080. * will be set to zero, and HW will set it to 1 on completing
  1081. * descriptor update in first loop, and increments it by 1 on
  1082. * subsequent loops (loop count wraps around after reaching
  1083. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1084. * loop count in descriptors updated by HW (to be processed
  1085. * by SW).
  1086. */
  1087. srng->u.dst_ring.loop_cnt = 1;
  1088. srng->u.dst_ring.tp = 0;
  1089. srng->u.dst_ring.hp_addr =
  1090. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1091. if (ring_config->lmac_ring) {
  1092. /* For LMAC rings, tail pointer updates will be done
  1093. * through FW by writing to a shared memory location
  1094. */
  1095. srng->u.dst_ring.tp_addr =
  1096. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1097. HAL_SRNG_LMAC1_ID_START]);
  1098. srng->flags |= HAL_SRNG_LMAC_RING;
  1099. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1100. srng->u.dst_ring.tp_addr =
  1101. hal_get_window_address(hal,
  1102. SRNG_DST_ADDR(srng, TP));
  1103. if (CHECK_SHADOW_REGISTERS) {
  1104. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1105. QDF_TRACE_LEVEL_ERROR,
  1106. "%s: Ring (%d, %d) missing shadow config",
  1107. __func__, ring_type, ring_num);
  1108. }
  1109. } else {
  1110. hal_validate_shadow_register(hal,
  1111. SRNG_DST_ADDR(srng, TP),
  1112. srng->u.dst_ring.tp_addr);
  1113. }
  1114. }
  1115. if (!(ring_config->lmac_ring)) {
  1116. hal_srng_hw_init(hal, srng);
  1117. if (ring_type == CE_DST) {
  1118. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1119. hal_ce_dst_setup(hal, srng, ring_num);
  1120. }
  1121. }
  1122. SRNG_LOCK_INIT(&srng->lock);
  1123. srng->srng_event = 0;
  1124. srng->initialized = true;
  1125. return (void *)srng;
  1126. }
  1127. qdf_export_symbol(hal_srng_setup);
  1128. /**
  1129. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1130. * @hal_soc: Opaque HAL SOC handle
  1131. * @hal_srng: Opaque HAL SRNG pointer
  1132. */
  1133. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1134. {
  1135. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1136. SRNG_LOCK_DESTROY(&srng->lock);
  1137. srng->initialized = 0;
  1138. }
  1139. qdf_export_symbol(hal_srng_cleanup);
  1140. /**
  1141. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1142. * @hal_soc: Opaque HAL SOC handle
  1143. * @ring_type: one of the types from hal_ring_type
  1144. *
  1145. */
  1146. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1147. {
  1148. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1149. struct hal_hw_srng_config *ring_config =
  1150. HAL_SRNG_CONFIG(hal, ring_type);
  1151. return ring_config->entry_size << 2;
  1152. }
  1153. qdf_export_symbol(hal_srng_get_entrysize);
  1154. /**
  1155. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1156. * @hal_soc: Opaque HAL SOC handle
  1157. * @ring_type: one of the types from hal_ring_type
  1158. *
  1159. * Return: Maximum number of entries for the given ring_type
  1160. */
  1161. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1162. {
  1163. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1164. struct hal_hw_srng_config *ring_config =
  1165. HAL_SRNG_CONFIG(hal, ring_type);
  1166. return ring_config->max_size / ring_config->entry_size;
  1167. }
  1168. qdf_export_symbol(hal_srng_max_entries);
  1169. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1170. {
  1171. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1172. struct hal_hw_srng_config *ring_config =
  1173. HAL_SRNG_CONFIG(hal, ring_type);
  1174. return ring_config->ring_dir;
  1175. }
  1176. /**
  1177. * hal_srng_dump - Dump ring status
  1178. * @srng: hal srng pointer
  1179. */
  1180. void hal_srng_dump(struct hal_srng *srng)
  1181. {
  1182. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1183. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1184. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1185. srng->u.src_ring.hp,
  1186. srng->u.src_ring.reap_hp,
  1187. *srng->u.src_ring.tp_addr,
  1188. srng->u.src_ring.cached_tp);
  1189. } else {
  1190. hal_debug("=== DST RING %d ===", srng->ring_id);
  1191. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1192. srng->u.dst_ring.tp,
  1193. *srng->u.dst_ring.hp_addr,
  1194. srng->u.dst_ring.cached_hp,
  1195. srng->u.dst_ring.loop_cnt);
  1196. }
  1197. }
  1198. /**
  1199. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1200. *
  1201. * @hal_soc: Opaque HAL SOC handle
  1202. * @hal_ring: Ring pointer (Source or Destination ring)
  1203. * @ring_params: SRNG parameters will be returned through this structure
  1204. */
  1205. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1206. hal_ring_handle_t hal_ring_hdl,
  1207. struct hal_srng_params *ring_params)
  1208. {
  1209. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1210. int i =0;
  1211. ring_params->ring_id = srng->ring_id;
  1212. ring_params->ring_dir = srng->ring_dir;
  1213. ring_params->entry_size = srng->entry_size;
  1214. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1215. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1216. ring_params->num_entries = srng->num_entries;
  1217. ring_params->msi_addr = srng->msi_addr;
  1218. ring_params->msi_data = srng->msi_data;
  1219. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1220. ring_params->intr_batch_cntr_thres_entries =
  1221. srng->intr_batch_cntr_thres_entries;
  1222. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1223. ring_params->flags = srng->flags;
  1224. ring_params->ring_id = srng->ring_id;
  1225. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1226. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1227. }
  1228. qdf_export_symbol(hal_get_srng_params);
  1229. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1230. uint32_t low_threshold)
  1231. {
  1232. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1233. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1234. }
  1235. qdf_export_symbol(hal_set_low_threshold);
  1236. #ifdef FORCE_WAKE
  1237. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1238. {
  1239. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1240. hal_soc->init_phase = init_phase;
  1241. }
  1242. #endif /* FORCE_WAKE */