dp_rx.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "dp_types.h"
  21. #include "dp_rx.h"
  22. #include "dp_tx.h"
  23. #include "dp_peer.h"
  24. #include "hal_rx.h"
  25. #include "hal_api.h"
  26. #include "qdf_nbuf.h"
  27. #ifdef MESH_MODE_SUPPORT
  28. #include "if_meta_hdr.h"
  29. #endif
  30. #include "dp_internal.h"
  31. #include "dp_ipa.h"
  32. #include "dp_hist.h"
  33. #include "dp_rx_buffer_pool.h"
  34. #ifdef WIFI_MONITOR_SUPPORT
  35. #include "dp_htt.h"
  36. #include <dp_mon.h>
  37. #endif
  38. #ifdef FEATURE_WDS
  39. #include "dp_txrx_wds.h"
  40. #endif
  41. #ifdef DUP_RX_DESC_WAR
  42. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  43. hal_ring_handle_t hal_ring,
  44. hal_ring_desc_t ring_desc,
  45. struct dp_rx_desc *rx_desc)
  46. {
  47. void *hal_soc = soc->hal_soc;
  48. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  49. dp_rx_desc_dump(rx_desc);
  50. }
  51. #else
  52. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  53. hal_ring_handle_t hal_ring_hdl,
  54. hal_ring_desc_t ring_desc,
  55. struct dp_rx_desc *rx_desc)
  56. {
  57. hal_soc_handle_t hal_soc = soc->hal_soc;
  58. dp_rx_desc_dump(rx_desc);
  59. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  60. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  61. qdf_assert_always(0);
  62. }
  63. #endif
  64. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  65. #ifdef RX_DESC_SANITY_WAR
  66. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  67. hal_ring_handle_t hal_ring_hdl,
  68. hal_ring_desc_t ring_desc,
  69. struct dp_rx_desc *rx_desc)
  70. {
  71. uint8_t return_buffer_manager;
  72. if (qdf_unlikely(!rx_desc)) {
  73. /*
  74. * This is an unlikely case where the cookie obtained
  75. * from the ring_desc is invalid and hence we are not
  76. * able to find the corresponding rx_desc
  77. */
  78. goto fail;
  79. }
  80. return_buffer_manager = hal_rx_ret_buf_manager_get(hal_soc, ring_desc);
  81. if (qdf_unlikely(!(return_buffer_manager ==
  82. HAL_RX_BUF_RBM_SW1_BM(soc->wbm_sw0_bm_id) ||
  83. return_buffer_manager ==
  84. HAL_RX_BUF_RBM_SW3_BM(soc->wbm_sw0_bm_id)))) {
  85. goto fail;
  86. }
  87. return QDF_STATUS_SUCCESS;
  88. fail:
  89. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  90. dp_err("Ring Desc:");
  91. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  92. ring_desc);
  93. return QDF_STATUS_E_NULL_VALUE;
  94. }
  95. #endif
  96. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  97. /**
  98. * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
  99. *
  100. * @dp_soc: struct dp_soc *
  101. * @nbuf_frag_info_t: nbuf frag info
  102. * @dp_pdev: struct dp_pdev *
  103. * @rx_desc_pool: Rx desc pool
  104. *
  105. * Return: QDF_STATUS
  106. */
  107. #ifdef DP_RX_MON_MEM_FRAG
  108. static inline QDF_STATUS
  109. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  110. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  111. struct dp_pdev *dp_pdev,
  112. struct rx_desc_pool *rx_desc_pool)
  113. {
  114. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  115. (nbuf_frag_info_t->virt_addr).vaddr =
  116. qdf_frag_alloc(rx_desc_pool->buf_size);
  117. if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
  118. dp_err("Frag alloc failed");
  119. DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
  120. return QDF_STATUS_E_NOMEM;
  121. }
  122. ret = qdf_mem_map_page(dp_soc->osdev,
  123. (nbuf_frag_info_t->virt_addr).vaddr,
  124. QDF_DMA_FROM_DEVICE,
  125. rx_desc_pool->buf_size,
  126. &nbuf_frag_info_t->paddr);
  127. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  128. qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
  129. dp_err("Frag map failed");
  130. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  131. return QDF_STATUS_E_FAULT;
  132. }
  133. return QDF_STATUS_SUCCESS;
  134. }
  135. #else
  136. static inline QDF_STATUS
  137. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  138. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  139. struct dp_pdev *dp_pdev,
  140. struct rx_desc_pool *rx_desc_pool)
  141. {
  142. return QDF_STATUS_SUCCESS;
  143. }
  144. #endif /* DP_RX_MON_MEM_FRAG */
  145. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  146. /**
  147. * dp_rx_refill_ring_record_entry() - Record an entry into refill_ring history
  148. * @soc: Datapath soc structure
  149. * @ring_num: Refill ring number
  150. * @num_req: number of buffers requested for refill
  151. * @num_refill: number of buffers refilled
  152. *
  153. * Returns: None
  154. */
  155. static inline void
  156. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  157. hal_ring_handle_t hal_ring_hdl,
  158. uint32_t num_req, uint32_t num_refill)
  159. {
  160. struct dp_refill_info_record *record;
  161. uint32_t idx;
  162. uint32_t tp;
  163. uint32_t hp;
  164. if (qdf_unlikely(ring_num >= MAX_PDEV_CNT ||
  165. !soc->rx_refill_ring_history[ring_num]))
  166. return;
  167. idx = dp_history_get_next_index(&soc->rx_refill_ring_history[ring_num]->index,
  168. DP_RX_REFILL_HIST_MAX);
  169. /* No NULL check needed for record since its an array */
  170. record = &soc->rx_refill_ring_history[ring_num]->entry[idx];
  171. hal_get_sw_hptp(soc->hal_soc, hal_ring_hdl, &tp, &hp);
  172. record->timestamp = qdf_get_log_timestamp();
  173. record->num_req = num_req;
  174. record->num_refill = num_refill;
  175. record->hp = hp;
  176. record->tp = tp;
  177. }
  178. #else
  179. static inline void
  180. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  181. hal_ring_handle_t hal_ring_hdl,
  182. uint32_t num_req, uint32_t num_refill)
  183. {
  184. }
  185. #endif
  186. /**
  187. * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
  188. *
  189. * @dp_soc: struct dp_soc *
  190. * @mac_id: Mac id
  191. * @num_entries_avail: num_entries_avail
  192. * @nbuf_frag_info_t: nbuf frag info
  193. * @dp_pdev: struct dp_pdev *
  194. * @rx_desc_pool: Rx desc pool
  195. *
  196. * Return: QDF_STATUS
  197. */
  198. static inline QDF_STATUS
  199. dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
  200. uint32_t mac_id,
  201. uint32_t num_entries_avail,
  202. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  203. struct dp_pdev *dp_pdev,
  204. struct rx_desc_pool *rx_desc_pool)
  205. {
  206. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  207. (nbuf_frag_info_t->virt_addr).nbuf =
  208. dp_rx_buffer_pool_nbuf_alloc(dp_soc,
  209. mac_id,
  210. rx_desc_pool,
  211. num_entries_avail);
  212. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  213. dp_err("nbuf alloc failed");
  214. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  215. return QDF_STATUS_E_NOMEM;
  216. }
  217. ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
  218. nbuf_frag_info_t);
  219. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  220. dp_rx_buffer_pool_nbuf_free(dp_soc,
  221. (nbuf_frag_info_t->virt_addr).nbuf, mac_id);
  222. dp_err("nbuf map failed");
  223. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  224. return QDF_STATUS_E_FAULT;
  225. }
  226. nbuf_frag_info_t->paddr =
  227. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  228. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc,
  229. (qdf_nbuf_t)((nbuf_frag_info_t->virt_addr).nbuf),
  230. rx_desc_pool->buf_size,
  231. true);
  232. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  233. &nbuf_frag_info_t->paddr,
  234. rx_desc_pool);
  235. if (ret == QDF_STATUS_E_FAILURE) {
  236. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  237. return QDF_STATUS_E_ADDRNOTAVAIL;
  238. }
  239. return QDF_STATUS_SUCCESS;
  240. }
  241. /*
  242. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  243. * called during dp rx initialization
  244. * and at the end of dp_rx_process.
  245. *
  246. * @soc: core txrx main context
  247. * @mac_id: mac_id which is one of 3 mac_ids
  248. * @dp_rxdma_srng: dp rxdma circular ring
  249. * @rx_desc_pool: Pointer to free Rx descriptor pool
  250. * @num_req_buffers: number of buffer to be replenished
  251. * @desc_list: list of descs if called from dp_rx_process
  252. * or NULL during dp rx initialization or out of buffer
  253. * interrupt.
  254. * @tail: tail of descs list
  255. * @func_name: name of the caller function
  256. * Return: return success or failure
  257. */
  258. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  259. struct dp_srng *dp_rxdma_srng,
  260. struct rx_desc_pool *rx_desc_pool,
  261. uint32_t num_req_buffers,
  262. union dp_rx_desc_list_elem_t **desc_list,
  263. union dp_rx_desc_list_elem_t **tail,
  264. const char *func_name)
  265. {
  266. uint32_t num_alloc_desc;
  267. uint16_t num_desc_to_free = 0;
  268. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  269. uint32_t num_entries_avail;
  270. uint32_t count;
  271. int sync_hw_ptr = 1;
  272. struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
  273. void *rxdma_ring_entry;
  274. union dp_rx_desc_list_elem_t *next;
  275. QDF_STATUS ret;
  276. void *rxdma_srng;
  277. rxdma_srng = dp_rxdma_srng->hal_srng;
  278. if (qdf_unlikely(!dp_pdev)) {
  279. dp_rx_err("%pK: pdev is null for mac_id = %d",
  280. dp_soc, mac_id);
  281. return QDF_STATUS_E_FAILURE;
  282. }
  283. if (qdf_unlikely(!rxdma_srng)) {
  284. dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
  285. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  286. return QDF_STATUS_E_FAILURE;
  287. }
  288. dp_rx_debug("%pK: requested %d buffers for replenish",
  289. dp_soc, num_req_buffers);
  290. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  291. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  292. rxdma_srng,
  293. sync_hw_ptr);
  294. dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
  295. dp_soc, num_entries_avail);
  296. if (!(*desc_list) && (num_entries_avail >
  297. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  298. num_req_buffers = num_entries_avail;
  299. } else if (num_entries_avail < num_req_buffers) {
  300. num_desc_to_free = num_req_buffers - num_entries_avail;
  301. num_req_buffers = num_entries_avail;
  302. }
  303. if (qdf_unlikely(!num_req_buffers)) {
  304. num_desc_to_free = num_req_buffers;
  305. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  306. goto free_descs;
  307. }
  308. /*
  309. * if desc_list is NULL, allocate the descs from freelist
  310. */
  311. if (!(*desc_list)) {
  312. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  313. rx_desc_pool,
  314. num_req_buffers,
  315. desc_list,
  316. tail);
  317. if (!num_alloc_desc) {
  318. dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
  319. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  320. num_req_buffers);
  321. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  322. return QDF_STATUS_E_NOMEM;
  323. }
  324. dp_rx_debug("%pK: %d rx desc allocated", dp_soc, num_alloc_desc);
  325. num_req_buffers = num_alloc_desc;
  326. }
  327. count = 0;
  328. while (count < num_req_buffers) {
  329. /* Flag is set while pdev rx_desc_pool initialization */
  330. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  331. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  332. &nbuf_frag_info,
  333. dp_pdev,
  334. rx_desc_pool);
  335. else
  336. ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
  337. mac_id,
  338. num_entries_avail, &nbuf_frag_info,
  339. dp_pdev, rx_desc_pool);
  340. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  341. if (qdf_unlikely(ret == QDF_STATUS_E_FAULT))
  342. continue;
  343. break;
  344. }
  345. count++;
  346. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  347. rxdma_srng);
  348. qdf_assert_always(rxdma_ring_entry);
  349. next = (*desc_list)->next;
  350. /* Flag is set while pdev rx_desc_pool initialization */
  351. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  352. dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
  353. &nbuf_frag_info);
  354. else
  355. dp_rx_desc_prep(&((*desc_list)->rx_desc),
  356. &nbuf_frag_info);
  357. /* rx_desc.in_use should be zero at this time*/
  358. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  359. (*desc_list)->rx_desc.in_use = 1;
  360. (*desc_list)->rx_desc.in_err_state = 0;
  361. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  362. func_name, RX_DESC_REPLENISHED);
  363. dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
  364. nbuf_frag_info.virt_addr.nbuf,
  365. (unsigned long long)(nbuf_frag_info.paddr),
  366. (*desc_list)->rx_desc.cookie);
  367. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc, rxdma_ring_entry,
  368. nbuf_frag_info.paddr,
  369. (*desc_list)->rx_desc.cookie,
  370. rx_desc_pool->owner);
  371. *desc_list = next;
  372. }
  373. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id, rxdma_srng,
  374. num_req_buffers, count);
  375. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  376. dp_rx_schedule_refill_thread(dp_soc);
  377. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  378. count, num_desc_to_free);
  379. /* No need to count the number of bytes received during replenish.
  380. * Therefore set replenish.pkts.bytes as 0.
  381. */
  382. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  383. free_descs:
  384. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  385. /*
  386. * add any available free desc back to the free list
  387. */
  388. if (*desc_list)
  389. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  390. mac_id, rx_desc_pool);
  391. return QDF_STATUS_SUCCESS;
  392. }
  393. qdf_export_symbol(__dp_rx_buffers_replenish);
  394. /*
  395. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  396. * pkts to RAW mode simulation to
  397. * decapsulate the pkt.
  398. *
  399. * @vdev: vdev on which RAW mode is enabled
  400. * @nbuf_list: list of RAW pkts to process
  401. * @peer: peer object from which the pkt is rx
  402. *
  403. * Return: void
  404. */
  405. void
  406. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  407. struct dp_peer *peer)
  408. {
  409. qdf_nbuf_t deliver_list_head = NULL;
  410. qdf_nbuf_t deliver_list_tail = NULL;
  411. qdf_nbuf_t nbuf;
  412. nbuf = nbuf_list;
  413. while (nbuf) {
  414. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  415. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  416. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  417. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  418. /*
  419. * reset the chfrag_start and chfrag_end bits in nbuf cb
  420. * as this is a non-amsdu pkt and RAW mode simulation expects
  421. * these bit s to be 0 for non-amsdu pkt.
  422. */
  423. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  424. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  425. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  426. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  427. }
  428. nbuf = next;
  429. }
  430. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  431. &deliver_list_tail, peer->mac_addr.raw);
  432. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  433. }
  434. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  435. #ifndef FEATURE_WDS
  436. void dp_rx_da_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr,
  437. struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  438. {
  439. }
  440. #endif
  441. /*
  442. * dp_rx_intrabss_mcbc_fwd() - Does intrabss forward for mcast packets
  443. *
  444. * @soc: core txrx main context
  445. * @ta_peer : source peer entry
  446. * @rx_tlv_hdr : start address of rx tlvs
  447. * @nbuf : nbuf that has to be intrabss forwarded
  448. * @tid_stats : tid stats pointer
  449. *
  450. * Return: bool: true if it is forwarded else false
  451. */
  452. bool dp_rx_intrabss_mcbc_fwd(struct dp_soc *soc, struct dp_peer *ta_peer,
  453. uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
  454. struct cdp_tid_rx_stats *tid_stats)
  455. {
  456. uint16_t len;
  457. qdf_nbuf_t nbuf_copy;
  458. if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr,
  459. nbuf))
  460. return true;
  461. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  462. return false;
  463. /* If the source peer in the isolation list
  464. * then dont forward instead push to bridge stack
  465. */
  466. if (dp_get_peer_isolation(ta_peer))
  467. return false;
  468. nbuf_copy = qdf_nbuf_copy(nbuf);
  469. if (!nbuf_copy)
  470. return false;
  471. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  472. if (dp_tx_send((struct cdp_soc_t *)soc,
  473. ta_peer->vdev->vdev_id, nbuf_copy)) {
  474. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  475. tid_stats->fail_cnt[INTRABSS_DROP]++;
  476. qdf_nbuf_free(nbuf_copy);
  477. } else {
  478. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  479. tid_stats->intrabss_cnt++;
  480. }
  481. return false;
  482. }
  483. /*
  484. * dp_rx_intrabss_ucast_fwd() - Does intrabss forward for unicast packets
  485. *
  486. * @soc: core txrx main context
  487. * @ta_peer: source peer entry
  488. * @tx_vdev_id: VDEV ID for Intra-BSS TX
  489. * @rx_tlv_hdr: start address of rx tlvs
  490. * @nbuf: nbuf that has to be intrabss forwarded
  491. * @tid_stats: tid stats pointer
  492. *
  493. * Return: bool: true if it is forwarded else false
  494. */
  495. bool dp_rx_intrabss_ucast_fwd(struct dp_soc *soc, struct dp_peer *ta_peer,
  496. uint8_t tx_vdev_id,
  497. uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
  498. struct cdp_tid_rx_stats *tid_stats)
  499. {
  500. uint16_t len;
  501. if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr,
  502. nbuf))
  503. return true;
  504. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  505. /* linearize the nbuf just before we send to
  506. * dp_tx_send()
  507. */
  508. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  509. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  510. return false;
  511. nbuf = qdf_nbuf_unshare(nbuf);
  512. if (!nbuf) {
  513. DP_STATS_INC_PKT(ta_peer,
  514. rx.intra_bss.fail, 1, len);
  515. /* return true even though the pkt is
  516. * not forwarded. Basically skb_unshare
  517. * failed and we want to continue with
  518. * next nbuf.
  519. */
  520. tid_stats->fail_cnt[INTRABSS_DROP]++;
  521. return false;
  522. }
  523. }
  524. if (!dp_tx_send((struct cdp_soc_t *)soc,
  525. tx_vdev_id, nbuf)) {
  526. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  527. len);
  528. } else {
  529. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  530. len);
  531. tid_stats->fail_cnt[INTRABSS_DROP]++;
  532. return false;
  533. }
  534. return true;
  535. }
  536. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  537. #ifdef MESH_MODE_SUPPORT
  538. /**
  539. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  540. *
  541. * @vdev: DP Virtual device handle
  542. * @nbuf: Buffer pointer
  543. * @rx_tlv_hdr: start of rx tlv header
  544. * @peer: pointer to peer
  545. *
  546. * This function allocated memory for mesh receive stats and fill the
  547. * required stats. Stores the memory address in skb cb.
  548. *
  549. * Return: void
  550. */
  551. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  552. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  553. {
  554. struct mesh_recv_hdr_s *rx_info = NULL;
  555. uint32_t pkt_type;
  556. uint32_t nss;
  557. uint32_t rate_mcs;
  558. uint32_t bw;
  559. uint8_t primary_chan_num;
  560. uint32_t center_chan_freq;
  561. struct dp_soc *soc = vdev->pdev->soc;
  562. /* fill recv mesh stats */
  563. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  564. /* upper layers are resposible to free this memory */
  565. if (!rx_info) {
  566. dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
  567. vdev->pdev->soc);
  568. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  569. return;
  570. }
  571. rx_info->rs_flags = MESH_RXHDR_VER1;
  572. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  573. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  574. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  575. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  576. if (hal_rx_tlv_get_is_decrypted(soc->hal_soc, rx_tlv_hdr)) {
  577. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  578. rx_info->rs_keyix = hal_rx_msdu_get_keyid(soc->hal_soc,
  579. rx_tlv_hdr);
  580. if (vdev->osif_get_key)
  581. vdev->osif_get_key(vdev->osif_vdev,
  582. &rx_info->rs_decryptkey[0],
  583. &peer->mac_addr.raw[0],
  584. rx_info->rs_keyix);
  585. }
  586. rx_info->rs_snr = peer->stats.rx.snr;
  587. rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
  588. soc = vdev->pdev->soc;
  589. primary_chan_num = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr);
  590. center_chan_freq = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr) >> 16;
  591. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  592. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  593. soc->ctrl_psoc,
  594. vdev->pdev->pdev_id,
  595. center_chan_freq);
  596. }
  597. rx_info->rs_channel = primary_chan_num;
  598. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  599. rate_mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  600. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  601. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  602. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  603. (bw << 24);
  604. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  605. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  606. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
  607. rx_info->rs_flags,
  608. rx_info->rs_rssi,
  609. rx_info->rs_channel,
  610. rx_info->rs_ratephy1,
  611. rx_info->rs_keyix,
  612. rx_info->rs_snr);
  613. }
  614. /**
  615. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  616. *
  617. * @vdev: DP Virtual device handle
  618. * @nbuf: Buffer pointer
  619. * @rx_tlv_hdr: start of rx tlv header
  620. *
  621. * This checks if the received packet is matching any filter out
  622. * catogery and and drop the packet if it matches.
  623. *
  624. * Return: status(0 indicates drop, 1 indicate to no drop)
  625. */
  626. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  627. uint8_t *rx_tlv_hdr)
  628. {
  629. union dp_align_mac_addr mac_addr;
  630. struct dp_soc *soc = vdev->pdev->soc;
  631. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  632. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  633. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  634. rx_tlv_hdr))
  635. return QDF_STATUS_SUCCESS;
  636. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  637. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  638. rx_tlv_hdr))
  639. return QDF_STATUS_SUCCESS;
  640. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  641. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  642. rx_tlv_hdr) &&
  643. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  644. rx_tlv_hdr))
  645. return QDF_STATUS_SUCCESS;
  646. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  647. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  648. rx_tlv_hdr,
  649. &mac_addr.raw[0]))
  650. return QDF_STATUS_E_FAILURE;
  651. if (!qdf_mem_cmp(&mac_addr.raw[0],
  652. &vdev->mac_addr.raw[0],
  653. QDF_MAC_ADDR_SIZE))
  654. return QDF_STATUS_SUCCESS;
  655. }
  656. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  657. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  658. rx_tlv_hdr,
  659. &mac_addr.raw[0]))
  660. return QDF_STATUS_E_FAILURE;
  661. if (!qdf_mem_cmp(&mac_addr.raw[0],
  662. &vdev->mac_addr.raw[0],
  663. QDF_MAC_ADDR_SIZE))
  664. return QDF_STATUS_SUCCESS;
  665. }
  666. }
  667. return QDF_STATUS_E_FAILURE;
  668. }
  669. #else
  670. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  671. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  672. {
  673. }
  674. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  675. uint8_t *rx_tlv_hdr)
  676. {
  677. return QDF_STATUS_E_FAILURE;
  678. }
  679. #endif
  680. #ifdef FEATURE_NAC_RSSI
  681. /**
  682. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  683. * @soc: DP SOC handle
  684. * @mpdu: mpdu for which peer is invalid
  685. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  686. * pool_id has same mapping)
  687. *
  688. * return: integer type
  689. */
  690. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  691. uint8_t mac_id)
  692. {
  693. struct dp_invalid_peer_msg msg;
  694. struct dp_vdev *vdev = NULL;
  695. struct dp_pdev *pdev = NULL;
  696. struct ieee80211_frame *wh;
  697. qdf_nbuf_t curr_nbuf, next_nbuf;
  698. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  699. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
  700. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  701. dp_rx_debug("%pK: Drop decapped frames", soc);
  702. goto free;
  703. }
  704. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  705. if (!DP_FRAME_IS_DATA(wh)) {
  706. dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
  707. goto free;
  708. }
  709. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  710. dp_rx_err("%pK: Invalid nbuf length", soc);
  711. goto free;
  712. }
  713. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  714. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  715. dp_rx_err("%pK: PDEV %s", soc, !pdev ? "not found" : "down");
  716. goto free;
  717. }
  718. if (dp_monitor_filter_neighbour_peer(pdev, rx_pkt_hdr) ==
  719. QDF_STATUS_SUCCESS)
  720. return 0;
  721. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  722. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  723. QDF_MAC_ADDR_SIZE) == 0) {
  724. goto out;
  725. }
  726. }
  727. if (!vdev) {
  728. dp_rx_err("%pK: VDEV not found", soc);
  729. goto free;
  730. }
  731. out:
  732. msg.wh = wh;
  733. qdf_nbuf_pull_head(mpdu, soc->rx_pkt_tlv_size);
  734. msg.nbuf = mpdu;
  735. msg.vdev_id = vdev->vdev_id;
  736. /*
  737. * NOTE: Only valid for HKv1.
  738. * If smart monitor mode is enabled on RE, we are getting invalid
  739. * peer frames with RA as STA mac of RE and the TA not matching
  740. * with any NAC list or the the BSSID.Such frames need to dropped
  741. * in order to avoid HM_WDS false addition.
  742. */
  743. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
  744. if (dp_monitor_drop_inv_peer_pkts(vdev) == QDF_STATUS_SUCCESS) {
  745. dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
  746. soc, wh->i_addr1);
  747. goto free;
  748. }
  749. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  750. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  751. pdev->pdev_id, &msg);
  752. }
  753. free:
  754. /* Drop and free packet */
  755. curr_nbuf = mpdu;
  756. while (curr_nbuf) {
  757. next_nbuf = qdf_nbuf_next(curr_nbuf);
  758. qdf_nbuf_free(curr_nbuf);
  759. curr_nbuf = next_nbuf;
  760. }
  761. return 0;
  762. }
  763. /**
  764. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  765. * @soc: DP SOC handle
  766. * @mpdu: mpdu for which peer is invalid
  767. * @mpdu_done: if an mpdu is completed
  768. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  769. * pool_id has same mapping)
  770. *
  771. * return: integer type
  772. */
  773. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  774. qdf_nbuf_t mpdu, bool mpdu_done,
  775. uint8_t mac_id)
  776. {
  777. /* Only trigger the process when mpdu is completed */
  778. if (mpdu_done)
  779. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  780. }
  781. #else
  782. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  783. uint8_t mac_id)
  784. {
  785. qdf_nbuf_t curr_nbuf, next_nbuf;
  786. struct dp_pdev *pdev;
  787. struct dp_vdev *vdev = NULL;
  788. struct ieee80211_frame *wh;
  789. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  790. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
  791. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  792. if (!DP_FRAME_IS_DATA(wh)) {
  793. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  794. "only for data frames");
  795. goto free;
  796. }
  797. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  798. dp_rx_info_rl("%pK: Invalid nbuf length", soc);
  799. goto free;
  800. }
  801. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  802. if (!pdev) {
  803. dp_rx_info_rl("%pK: PDEV not found", soc);
  804. goto free;
  805. }
  806. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  807. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  808. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  809. QDF_MAC_ADDR_SIZE) == 0) {
  810. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  811. goto out;
  812. }
  813. }
  814. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  815. if (!vdev) {
  816. dp_rx_info_rl("%pK: VDEV not found", soc);
  817. goto free;
  818. }
  819. out:
  820. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  821. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  822. free:
  823. /* reset the head and tail pointers */
  824. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  825. if (pdev) {
  826. pdev->invalid_peer_head_msdu = NULL;
  827. pdev->invalid_peer_tail_msdu = NULL;
  828. }
  829. /* Drop and free packet */
  830. curr_nbuf = mpdu;
  831. while (curr_nbuf) {
  832. next_nbuf = qdf_nbuf_next(curr_nbuf);
  833. qdf_nbuf_free(curr_nbuf);
  834. curr_nbuf = next_nbuf;
  835. }
  836. /* Reset the head and tail pointers */
  837. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  838. if (pdev) {
  839. pdev->invalid_peer_head_msdu = NULL;
  840. pdev->invalid_peer_tail_msdu = NULL;
  841. }
  842. return 0;
  843. }
  844. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  845. qdf_nbuf_t mpdu, bool mpdu_done,
  846. uint8_t mac_id)
  847. {
  848. /* Process the nbuf */
  849. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  850. }
  851. #endif
  852. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  853. #ifdef RECEIVE_OFFLOAD
  854. /**
  855. * dp_rx_print_offload_info() - Print offload info from RX TLV
  856. * @soc: dp soc handle
  857. * @msdu: MSDU for which the offload info is to be printed
  858. *
  859. * Return: None
  860. */
  861. static void dp_rx_print_offload_info(struct dp_soc *soc,
  862. qdf_nbuf_t msdu)
  863. {
  864. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  865. dp_verbose_debug("lro_eligible 0x%x",
  866. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu));
  867. dp_verbose_debug("pure_ack 0x%x", QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu));
  868. dp_verbose_debug("chksum 0x%x", QDF_NBUF_CB_RX_TCP_CHKSUM(msdu));
  869. dp_verbose_debug("TCP seq num 0x%x", QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu));
  870. dp_verbose_debug("TCP ack num 0x%x", QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu));
  871. dp_verbose_debug("TCP window 0x%x", QDF_NBUF_CB_RX_TCP_WIN(msdu));
  872. dp_verbose_debug("TCP protocol 0x%x", QDF_NBUF_CB_RX_TCP_PROTO(msdu));
  873. dp_verbose_debug("TCP offset 0x%x", QDF_NBUF_CB_RX_TCP_OFFSET(msdu));
  874. dp_verbose_debug("toeplitz 0x%x", QDF_NBUF_CB_RX_FLOW_ID(msdu));
  875. dp_verbose_debug("---------------------------------------------------------");
  876. }
  877. /**
  878. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  879. * @soc: DP SOC handle
  880. * @rx_tlv: RX TLV received for the msdu
  881. * @msdu: msdu for which GRO info needs to be filled
  882. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  883. *
  884. * Return: None
  885. */
  886. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  887. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  888. {
  889. struct hal_offload_info offload_info;
  890. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  891. return;
  892. if (hal_rx_tlv_get_offload_info(soc->hal_soc, rx_tlv, &offload_info))
  893. return;
  894. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  895. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = offload_info.lro_eligible;
  896. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) = offload_info.tcp_pure_ack;
  897. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  898. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  899. rx_tlv);
  900. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) = offload_info.tcp_seq_num;
  901. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) = offload_info.tcp_ack_num;
  902. QDF_NBUF_CB_RX_TCP_WIN(msdu) = offload_info.tcp_win;
  903. QDF_NBUF_CB_RX_TCP_PROTO(msdu) = offload_info.tcp_proto;
  904. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) = offload_info.ipv6_proto;
  905. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) = offload_info.tcp_offset;
  906. QDF_NBUF_CB_RX_FLOW_ID(msdu) = offload_info.flow_id;
  907. dp_rx_print_offload_info(soc, msdu);
  908. }
  909. #endif /* RECEIVE_OFFLOAD */
  910. /**
  911. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  912. *
  913. * @soc: DP soc handle
  914. * @nbuf: pointer to msdu.
  915. * @mpdu_len: mpdu length
  916. * @l3_pad_len: L3 padding length by HW
  917. *
  918. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  919. */
  920. static inline bool dp_rx_adjust_nbuf_len(struct dp_soc *soc,
  921. qdf_nbuf_t nbuf,
  922. uint16_t *mpdu_len,
  923. uint32_t l3_pad_len)
  924. {
  925. bool last_nbuf;
  926. uint32_t pkt_hdr_size;
  927. pkt_hdr_size = soc->rx_pkt_tlv_size + l3_pad_len;
  928. if ((*mpdu_len + pkt_hdr_size) > RX_DATA_BUFFER_SIZE) {
  929. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  930. last_nbuf = false;
  931. *mpdu_len -= (RX_DATA_BUFFER_SIZE - pkt_hdr_size);
  932. } else {
  933. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + pkt_hdr_size));
  934. last_nbuf = true;
  935. *mpdu_len = 0;
  936. }
  937. return last_nbuf;
  938. }
  939. /**
  940. * dp_get_l3_hdr_pad_len() - get L3 header padding length.
  941. *
  942. * @soc: DP soc handle
  943. * @nbuf: pointer to msdu.
  944. *
  945. * Return: returns padding length in bytes.
  946. */
  947. static inline uint32_t dp_get_l3_hdr_pad_len(struct dp_soc *soc,
  948. qdf_nbuf_t nbuf)
  949. {
  950. uint32_t l3_hdr_pad = 0;
  951. uint8_t *rx_tlv_hdr;
  952. struct hal_rx_msdu_metadata msdu_metadata;
  953. while (nbuf) {
  954. if (!qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  955. /* scattered msdu end with continuation is 0 */
  956. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  957. hal_rx_msdu_metadata_get(soc->hal_soc,
  958. rx_tlv_hdr,
  959. &msdu_metadata);
  960. l3_hdr_pad = msdu_metadata.l3_hdr_pad;
  961. break;
  962. }
  963. nbuf = nbuf->next;
  964. }
  965. return l3_hdr_pad;
  966. }
  967. /**
  968. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  969. * multiple nbufs.
  970. * @soc: DP SOC handle
  971. * @nbuf: pointer to the first msdu of an amsdu.
  972. *
  973. * This function implements the creation of RX frag_list for cases
  974. * where an MSDU is spread across multiple nbufs.
  975. *
  976. * Return: returns the head nbuf which contains complete frag_list.
  977. */
  978. qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
  979. {
  980. qdf_nbuf_t parent, frag_list, next = NULL;
  981. uint16_t frag_list_len = 0;
  982. uint16_t mpdu_len;
  983. bool last_nbuf;
  984. uint32_t l3_hdr_pad_offset = 0;
  985. /*
  986. * Use msdu len got from REO entry descriptor instead since
  987. * there is case the RX PKT TLV is corrupted while msdu_len
  988. * from REO descriptor is right for non-raw RX scatter msdu.
  989. */
  990. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  991. /*
  992. * this is a case where the complete msdu fits in one single nbuf.
  993. * in this case HW sets both start and end bit and we only need to
  994. * reset these bits for RAW mode simulator to decap the pkt
  995. */
  996. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  997. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  998. qdf_nbuf_set_pktlen(nbuf, mpdu_len + soc->rx_pkt_tlv_size);
  999. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size);
  1000. return nbuf;
  1001. }
  1002. l3_hdr_pad_offset = dp_get_l3_hdr_pad_len(soc, nbuf);
  1003. /*
  1004. * This is a case where we have multiple msdus (A-MSDU) spread across
  1005. * multiple nbufs. here we create a fraglist out of these nbufs.
  1006. *
  1007. * the moment we encounter a nbuf with continuation bit set we
  1008. * know for sure we have an MSDU which is spread across multiple
  1009. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  1010. */
  1011. parent = nbuf;
  1012. frag_list = nbuf->next;
  1013. nbuf = nbuf->next;
  1014. /*
  1015. * set the start bit in the first nbuf we encounter with continuation
  1016. * bit set. This has the proper mpdu length set as it is the first
  1017. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  1018. * nbufs will form the frag_list of the parent nbuf.
  1019. */
  1020. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1021. /*
  1022. * L3 header padding is only needed for the 1st buffer
  1023. * in a scattered msdu
  1024. */
  1025. last_nbuf = dp_rx_adjust_nbuf_len(soc, parent, &mpdu_len,
  1026. l3_hdr_pad_offset);
  1027. /*
  1028. * MSDU cont bit is set but reported MPDU length can fit
  1029. * in to single buffer
  1030. *
  1031. * Increment error stats and avoid SG list creation
  1032. */
  1033. if (last_nbuf) {
  1034. DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
  1035. qdf_nbuf_pull_head(parent,
  1036. soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
  1037. return parent;
  1038. }
  1039. /*
  1040. * this is where we set the length of the fragments which are
  1041. * associated to the parent nbuf. We iterate through the frag_list
  1042. * till we hit the last_nbuf of the list.
  1043. */
  1044. do {
  1045. last_nbuf = dp_rx_adjust_nbuf_len(soc, nbuf, &mpdu_len, 0);
  1046. qdf_nbuf_pull_head(nbuf,
  1047. soc->rx_pkt_tlv_size);
  1048. frag_list_len += qdf_nbuf_len(nbuf);
  1049. if (last_nbuf) {
  1050. next = nbuf->next;
  1051. nbuf->next = NULL;
  1052. break;
  1053. }
  1054. nbuf = nbuf->next;
  1055. } while (!last_nbuf);
  1056. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1057. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1058. parent->next = next;
  1059. qdf_nbuf_pull_head(parent,
  1060. soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
  1061. return parent;
  1062. }
  1063. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1064. #ifdef QCA_PEER_EXT_STATS
  1065. /*
  1066. * dp_rx_compute_tid_delay - Computer per TID delay stats
  1067. * @peer: DP soc context
  1068. * @nbuf: NBuffer
  1069. *
  1070. * Return: Void
  1071. */
  1072. void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  1073. qdf_nbuf_t nbuf)
  1074. {
  1075. struct cdp_delay_rx_stats *rx_delay = &stats->rx_delay;
  1076. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1077. dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
  1078. }
  1079. #endif /* QCA_PEER_EXT_STATS */
  1080. /**
  1081. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1082. * to pass in correct fields
  1083. *
  1084. * @vdev: pdev handle
  1085. * @tx_desc: tx descriptor
  1086. * @tid: tid value
  1087. * Return: none
  1088. */
  1089. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1090. {
  1091. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1092. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1093. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1094. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1095. uint32_t interframe_delay =
  1096. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1097. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  1098. CDP_DELAY_STATS_REAP_STACK, ring_id);
  1099. /*
  1100. * Update interframe delay stats calculated at deliver_data_ol point.
  1101. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1102. * interframe delay will not be calculate correctly for 1st frame.
  1103. * On the other side, this will help in avoiding extra per packet check
  1104. * of vdev->prev_rx_deliver_tstamp.
  1105. */
  1106. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  1107. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  1108. vdev->prev_rx_deliver_tstamp = current_ts;
  1109. }
  1110. /**
  1111. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1112. * @pdev: dp pdev reference
  1113. * @buf_list: buffer list to be dropepd
  1114. *
  1115. * Return: int (number of bufs dropped)
  1116. */
  1117. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1118. qdf_nbuf_t buf_list)
  1119. {
  1120. struct cdp_tid_rx_stats *stats = NULL;
  1121. uint8_t tid = 0, ring_id = 0;
  1122. int num_dropped = 0;
  1123. qdf_nbuf_t buf, next_buf;
  1124. buf = buf_list;
  1125. while (buf) {
  1126. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1127. next_buf = qdf_nbuf_queue_next(buf);
  1128. tid = qdf_nbuf_get_tid_val(buf);
  1129. if (qdf_likely(pdev)) {
  1130. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1131. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1132. stats->delivered_to_stack--;
  1133. }
  1134. qdf_nbuf_free(buf);
  1135. buf = next_buf;
  1136. num_dropped++;
  1137. }
  1138. return num_dropped;
  1139. }
  1140. #ifdef QCA_SUPPORT_WDS_EXTENDED
  1141. /**
  1142. * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
  1143. * @soc: core txrx main context
  1144. * @vdev: vdev
  1145. * @peer: peer
  1146. * @nbuf_head: skb list head
  1147. *
  1148. * Return: true if packet is delivered to netdev per STA.
  1149. */
  1150. static inline bool
  1151. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1152. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1153. {
  1154. /*
  1155. * When extended WDS is disabled, frames are sent to AP netdevice.
  1156. */
  1157. if (qdf_likely(!vdev->wds_ext_enabled))
  1158. return false;
  1159. /*
  1160. * There can be 2 cases:
  1161. * 1. Send frame to parent netdev if its not for netdev per STA
  1162. * 2. If frame is meant for netdev per STA:
  1163. * a. Send frame to appropriate netdev using registered fp.
  1164. * b. If fp is NULL, drop the frames.
  1165. */
  1166. if (!peer->wds_ext.init)
  1167. return false;
  1168. if (peer->osif_rx)
  1169. peer->osif_rx(peer->wds_ext.osif_peer, nbuf_head);
  1170. else
  1171. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1172. return true;
  1173. }
  1174. #else
  1175. static inline bool
  1176. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1177. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1178. {
  1179. return false;
  1180. }
  1181. #endif
  1182. #ifdef PEER_CACHE_RX_PKTS
  1183. /**
  1184. * dp_rx_flush_rx_cached() - flush cached rx frames
  1185. * @peer: peer
  1186. * @drop: flag to drop frames or forward to net stack
  1187. *
  1188. * Return: None
  1189. */
  1190. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1191. {
  1192. struct dp_peer_cached_bufq *bufqi;
  1193. struct dp_rx_cached_buf *cache_buf = NULL;
  1194. ol_txrx_rx_fp data_rx = NULL;
  1195. int num_buff_elem;
  1196. QDF_STATUS status;
  1197. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1198. qdf_atomic_dec(&peer->flush_in_progress);
  1199. return;
  1200. }
  1201. qdf_spin_lock_bh(&peer->peer_info_lock);
  1202. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1203. data_rx = peer->vdev->osif_rx;
  1204. else
  1205. drop = true;
  1206. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1207. bufqi = &peer->bufq_info;
  1208. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1209. qdf_list_remove_front(&bufqi->cached_bufq,
  1210. (qdf_list_node_t **)&cache_buf);
  1211. while (cache_buf) {
  1212. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1213. cache_buf->buf);
  1214. bufqi->entries -= num_buff_elem;
  1215. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1216. if (drop) {
  1217. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1218. cache_buf->buf);
  1219. } else {
  1220. /* Flush the cached frames to OSIF DEV */
  1221. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1222. if (status != QDF_STATUS_SUCCESS)
  1223. bufqi->dropped = dp_rx_drop_nbuf_list(
  1224. peer->vdev->pdev,
  1225. cache_buf->buf);
  1226. }
  1227. qdf_mem_free(cache_buf);
  1228. cache_buf = NULL;
  1229. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1230. qdf_list_remove_front(&bufqi->cached_bufq,
  1231. (qdf_list_node_t **)&cache_buf);
  1232. }
  1233. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1234. qdf_atomic_dec(&peer->flush_in_progress);
  1235. }
  1236. /**
  1237. * dp_rx_enqueue_rx() - cache rx frames
  1238. * @peer: peer
  1239. * @rx_buf_list: cache buffer list
  1240. *
  1241. * Return: None
  1242. */
  1243. static QDF_STATUS
  1244. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1245. {
  1246. struct dp_rx_cached_buf *cache_buf;
  1247. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1248. int num_buff_elem;
  1249. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1250. bufqi->dropped);
  1251. if (!peer->valid) {
  1252. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1253. rx_buf_list);
  1254. return QDF_STATUS_E_INVAL;
  1255. }
  1256. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1257. if (bufqi->entries >= bufqi->thresh) {
  1258. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1259. rx_buf_list);
  1260. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1261. return QDF_STATUS_E_RESOURCES;
  1262. }
  1263. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1264. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1265. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1266. if (!cache_buf) {
  1267. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1268. "Failed to allocate buf to cache rx frames");
  1269. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1270. rx_buf_list);
  1271. return QDF_STATUS_E_NOMEM;
  1272. }
  1273. cache_buf->buf = rx_buf_list;
  1274. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1275. qdf_list_insert_back(&bufqi->cached_bufq,
  1276. &cache_buf->node);
  1277. bufqi->entries += num_buff_elem;
  1278. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1279. return QDF_STATUS_SUCCESS;
  1280. }
  1281. static inline
  1282. bool dp_rx_is_peer_cache_bufq_supported(void)
  1283. {
  1284. return true;
  1285. }
  1286. #else
  1287. static inline
  1288. bool dp_rx_is_peer_cache_bufq_supported(void)
  1289. {
  1290. return false;
  1291. }
  1292. static inline QDF_STATUS
  1293. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1294. {
  1295. return QDF_STATUS_SUCCESS;
  1296. }
  1297. #endif
  1298. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1299. /**
  1300. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1301. * using the appropriate call back functions.
  1302. * @soc: soc
  1303. * @vdev: vdev
  1304. * @peer: peer
  1305. * @nbuf_head: skb list head
  1306. * @nbuf_tail: skb list tail
  1307. *
  1308. * Return: None
  1309. */
  1310. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1311. struct dp_vdev *vdev,
  1312. struct dp_peer *peer,
  1313. qdf_nbuf_t nbuf_head)
  1314. {
  1315. if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
  1316. peer, nbuf_head)))
  1317. return;
  1318. /* Function pointer initialized only when FISA is enabled */
  1319. if (vdev->osif_fisa_rx)
  1320. /* on failure send it via regular path */
  1321. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1322. else
  1323. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1324. }
  1325. #else
  1326. /**
  1327. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1328. * using the appropriate call back functions.
  1329. * @soc: soc
  1330. * @vdev: vdev
  1331. * @peer: peer
  1332. * @nbuf_head: skb list head
  1333. * @nbuf_tail: skb list tail
  1334. *
  1335. * Check the return status of the call back function and drop
  1336. * the packets if the return status indicates a failure.
  1337. *
  1338. * Return: None
  1339. */
  1340. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1341. struct dp_vdev *vdev,
  1342. struct dp_peer *peer,
  1343. qdf_nbuf_t nbuf_head)
  1344. {
  1345. int num_nbuf = 0;
  1346. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1347. /* Function pointer initialized only when FISA is enabled */
  1348. if (vdev->osif_fisa_rx)
  1349. /* on failure send it via regular path */
  1350. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1351. else if (vdev->osif_rx)
  1352. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1353. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1354. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1355. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1356. if (peer)
  1357. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1358. }
  1359. }
  1360. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1361. /*
  1362. * dp_rx_validate_rx_callbacks() - validate rx callbacks
  1363. * @soc DP soc
  1364. * @vdev: DP vdev handle
  1365. * @peer: pointer to the peer object
  1366. * nbuf_head: skb list head
  1367. *
  1368. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  1369. * QDF_STATUS_E_FAILURE
  1370. */
  1371. static inline QDF_STATUS
  1372. dp_rx_validate_rx_callbacks(struct dp_soc *soc,
  1373. struct dp_vdev *vdev,
  1374. struct dp_peer *peer,
  1375. qdf_nbuf_t nbuf_head)
  1376. {
  1377. int num_nbuf;
  1378. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1379. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1380. /*
  1381. * This is a special case where vdev is invalid,
  1382. * so we cannot know the pdev to which this packet
  1383. * belonged. Hence we update the soc rx error stats.
  1384. */
  1385. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1386. return QDF_STATUS_E_FAILURE;
  1387. }
  1388. /*
  1389. * highly unlikely to have a vdev without a registered rx
  1390. * callback function. if so let us free the nbuf_list.
  1391. */
  1392. if (qdf_unlikely(!vdev->osif_rx)) {
  1393. if (peer && dp_rx_is_peer_cache_bufq_supported()) {
  1394. dp_rx_enqueue_rx(peer, nbuf_head);
  1395. } else {
  1396. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1397. nbuf_head);
  1398. DP_PEER_TO_STACK_DECC(peer, num_nbuf,
  1399. vdev->pdev->enhanced_stats_en);
  1400. }
  1401. return QDF_STATUS_E_FAILURE;
  1402. }
  1403. return QDF_STATUS_SUCCESS;
  1404. }
  1405. QDF_STATUS dp_rx_deliver_to_stack(struct dp_soc *soc,
  1406. struct dp_vdev *vdev,
  1407. struct dp_peer *peer,
  1408. qdf_nbuf_t nbuf_head,
  1409. qdf_nbuf_t nbuf_tail)
  1410. {
  1411. if (dp_rx_validate_rx_callbacks(soc, vdev, peer, nbuf_head) !=
  1412. QDF_STATUS_SUCCESS)
  1413. return QDF_STATUS_E_FAILURE;
  1414. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1415. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1416. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1417. &nbuf_tail, peer->mac_addr.raw);
  1418. }
  1419. dp_rx_check_delivery_to_stack(soc, vdev, peer, nbuf_head);
  1420. return QDF_STATUS_SUCCESS;
  1421. }
  1422. #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
  1423. QDF_STATUS dp_rx_eapol_deliver_to_stack(struct dp_soc *soc,
  1424. struct dp_vdev *vdev,
  1425. struct dp_peer *peer,
  1426. qdf_nbuf_t nbuf_head,
  1427. qdf_nbuf_t nbuf_tail)
  1428. {
  1429. if (dp_rx_validate_rx_callbacks(soc, vdev, peer, nbuf_head) !=
  1430. QDF_STATUS_SUCCESS)
  1431. return QDF_STATUS_E_FAILURE;
  1432. vdev->osif_rx_eapol(vdev->osif_vdev, nbuf_head);
  1433. return QDF_STATUS_SUCCESS;
  1434. }
  1435. #endif
  1436. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1437. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1438. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer) \
  1439. { \
  1440. qdf_nbuf_t nbuf_local; \
  1441. struct dp_peer *peer_local; \
  1442. struct dp_vdev *vdev_local = vdev_hdl; \
  1443. do { \
  1444. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1445. break; \
  1446. nbuf_local = nbuf; \
  1447. peer_local = peer; \
  1448. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1449. break; \
  1450. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1451. break; \
  1452. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1453. (nbuf_local), \
  1454. (peer_local), 0, 1); \
  1455. } while (0); \
  1456. }
  1457. #else
  1458. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer)
  1459. #endif
  1460. /**
  1461. * dp_rx_msdu_stats_update() - update per msdu stats.
  1462. * @soc: core txrx main context
  1463. * @nbuf: pointer to the first msdu of an amsdu.
  1464. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1465. * @peer: pointer to the peer object.
  1466. * @ring_id: reo dest ring number on which pkt is reaped.
  1467. * @tid_stats: per tid rx stats.
  1468. *
  1469. * update all the per msdu stats for that nbuf.
  1470. * Return: void
  1471. */
  1472. void dp_rx_msdu_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1473. uint8_t *rx_tlv_hdr, struct dp_peer *peer,
  1474. uint8_t ring_id,
  1475. struct cdp_tid_rx_stats *tid_stats)
  1476. {
  1477. bool is_ampdu, is_not_amsdu;
  1478. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1479. struct dp_vdev *vdev = peer->vdev;
  1480. bool enh_flag;
  1481. qdf_ether_header_t *eh;
  1482. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1483. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, peer);
  1484. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1485. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1486. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1487. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1488. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1489. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1490. tid_stats->msdu_cnt++;
  1491. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1492. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1493. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1494. enh_flag = vdev->pdev->enhanced_stats_en;
  1495. DP_PEER_MC_INCC_PKT(peer, 1, msdu_len, enh_flag);
  1496. tid_stats->mcast_msdu_cnt++;
  1497. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1498. DP_PEER_BC_INCC_PKT(peer, 1, msdu_len, enh_flag);
  1499. tid_stats->bcast_msdu_cnt++;
  1500. }
  1501. }
  1502. /*
  1503. * currently we can return from here as we have similar stats
  1504. * updated at per ppdu level instead of msdu level
  1505. */
  1506. if (!soc->process_rx_status)
  1507. return;
  1508. peer->stats.rx.last_rx_ts = qdf_system_ticks();
  1509. /*
  1510. * TODO - For WCN7850 this field is present in ring_desc
  1511. * Try to use ring desc instead of tlv.
  1512. */
  1513. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(soc->hal_soc, rx_tlv_hdr);
  1514. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1515. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1516. sgi = hal_rx_tlv_sgi_get(soc->hal_soc, rx_tlv_hdr);
  1517. mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  1518. tid = qdf_nbuf_get_tid_val(nbuf);
  1519. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  1520. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1521. rx_tlv_hdr);
  1522. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1523. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  1524. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[mcs], 1,
  1525. ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1526. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
  1527. ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1528. DP_STATS_INC(peer, rx.bw[bw], 1);
  1529. /*
  1530. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1531. * then increase index [nss - 1] in array counter.
  1532. */
  1533. if (nss > 0 && (pkt_type == DOT11_N ||
  1534. pkt_type == DOT11_AC ||
  1535. pkt_type == DOT11_AX))
  1536. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1537. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1538. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1539. hal_rx_tlv_mic_err_get(soc->hal_soc, rx_tlv_hdr));
  1540. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1541. hal_rx_tlv_decrypt_err_get(soc->hal_soc, rx_tlv_hdr));
  1542. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1543. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1544. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1545. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1546. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1547. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1548. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1549. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1550. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1551. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1552. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1553. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1554. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1555. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1556. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1557. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1558. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1559. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1560. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1561. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1562. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1563. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1564. }
  1565. #ifndef WDS_VENDOR_EXTENSION
  1566. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1567. struct dp_vdev *vdev,
  1568. struct dp_peer *peer)
  1569. {
  1570. return 1;
  1571. }
  1572. #endif
  1573. #ifdef RX_DESC_DEBUG_CHECK
  1574. /**
  1575. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1576. * corruption
  1577. *
  1578. * @ring_desc: REO ring descriptor
  1579. * @rx_desc: Rx descriptor
  1580. *
  1581. * Return: NONE
  1582. */
  1583. QDF_STATUS dp_rx_desc_nbuf_sanity_check(struct dp_soc *soc,
  1584. hal_ring_desc_t ring_desc,
  1585. struct dp_rx_desc *rx_desc)
  1586. {
  1587. struct hal_buf_info hbi;
  1588. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  1589. /* Sanity check for possible buffer paddr corruption */
  1590. if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
  1591. return QDF_STATUS_SUCCESS;
  1592. return QDF_STATUS_E_FAILURE;
  1593. }
  1594. /**
  1595. * dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer
  1596. * out of bound access from H.W
  1597. *
  1598. * @soc: DP soc
  1599. * @pkt_len: Packet length received from H.W
  1600. *
  1601. * Return: NONE
  1602. */
  1603. static inline void
  1604. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc,
  1605. uint32_t pkt_len)
  1606. {
  1607. struct rx_desc_pool *rx_desc_pool;
  1608. rx_desc_pool = &soc->rx_desc_buf[0];
  1609. qdf_assert_always(pkt_len <= rx_desc_pool->buf_size);
  1610. }
  1611. #else
  1612. static inline void
  1613. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { }
  1614. #endif
  1615. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1616. /**
  1617. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1618. * no corresbonding peer found
  1619. * @soc: core txrx main context
  1620. * @nbuf: pkt skb pointer
  1621. *
  1622. * This function will try to deliver some RX special frames to stack
  1623. * even there is no peer matched found. for instance, LFR case, some
  1624. * eapol data will be sent to host before peer_map done.
  1625. *
  1626. * Return: None
  1627. */
  1628. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1629. {
  1630. uint16_t peer_id;
  1631. uint8_t vdev_id;
  1632. struct dp_vdev *vdev = NULL;
  1633. uint32_t l2_hdr_offset = 0;
  1634. uint16_t msdu_len = 0;
  1635. uint32_t pkt_len = 0;
  1636. uint8_t *rx_tlv_hdr;
  1637. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  1638. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  1639. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1640. if (peer_id > soc->max_peer_id)
  1641. goto deliver_fail;
  1642. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1643. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
  1644. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  1645. goto deliver_fail;
  1646. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  1647. goto deliver_fail;
  1648. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1649. l2_hdr_offset =
  1650. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1651. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1652. pkt_len = msdu_len + l2_hdr_offset + soc->rx_pkt_tlv_size;
  1653. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  1654. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1655. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + l2_hdr_offset);
  1656. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  1657. qdf_nbuf_set_exc_frame(nbuf, 1);
  1658. if (QDF_STATUS_SUCCESS !=
  1659. vdev->osif_rx(vdev->osif_vdev, nbuf))
  1660. goto deliver_fail;
  1661. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1662. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1663. return;
  1664. }
  1665. deliver_fail:
  1666. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1667. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1668. qdf_nbuf_free(nbuf);
  1669. if (vdev)
  1670. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1671. }
  1672. #else
  1673. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1674. {
  1675. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1676. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1677. qdf_nbuf_free(nbuf);
  1678. }
  1679. #endif
  1680. /**
  1681. * dp_rx_srng_get_num_pending() - get number of pending entries
  1682. * @hal_soc: hal soc opaque pointer
  1683. * @hal_ring: opaque pointer to the HAL Rx Ring
  1684. * @num_entries: number of entries in the hal_ring.
  1685. * @near_full: pointer to a boolean. This is set if ring is near full.
  1686. *
  1687. * The function returns the number of entries in a destination ring which are
  1688. * yet to be reaped. The function also checks if the ring is near full.
  1689. * If more than half of the ring needs to be reaped, the ring is considered
  1690. * approaching full.
  1691. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1692. * entries. It should not be called within a SRNG lock. HW pointer value is
  1693. * synced into cached_hp.
  1694. *
  1695. * Return: Number of pending entries if any
  1696. */
  1697. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1698. hal_ring_handle_t hal_ring_hdl,
  1699. uint32_t num_entries,
  1700. bool *near_full)
  1701. {
  1702. uint32_t num_pending = 0;
  1703. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1704. hal_ring_hdl,
  1705. true);
  1706. if (num_entries && (num_pending >= num_entries >> 1))
  1707. *near_full = true;
  1708. else
  1709. *near_full = false;
  1710. return num_pending;
  1711. }
  1712. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1713. #ifdef WLAN_SUPPORT_RX_FISA
  1714. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  1715. {
  1716. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1717. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  1718. }
  1719. /**
  1720. * dp_rx_set_hdr_pad() - set l3 padding in nbuf cb
  1721. * @nbuf: pkt skb pointer
  1722. * @l3_padding: l3 padding
  1723. *
  1724. * Return: None
  1725. */
  1726. static inline
  1727. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1728. {
  1729. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1730. }
  1731. #else
  1732. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  1733. {
  1734. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  1735. }
  1736. static inline
  1737. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1738. {
  1739. }
  1740. #endif
  1741. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1742. #ifdef DP_RX_DROP_RAW_FRM
  1743. /**
  1744. * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
  1745. * @nbuf: pkt skb pointer
  1746. *
  1747. * Return: true - raw frame, dropped
  1748. * false - not raw frame, do nothing
  1749. */
  1750. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  1751. {
  1752. if (qdf_nbuf_is_raw_frame(nbuf)) {
  1753. qdf_nbuf_free(nbuf);
  1754. return true;
  1755. }
  1756. return false;
  1757. }
  1758. #endif
  1759. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1760. /**
  1761. * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
  1762. * @soc: Datapath soc structure
  1763. * @ring_num: REO ring number
  1764. * @ring_desc: REO ring descriptor
  1765. *
  1766. * Returns: None
  1767. */
  1768. void
  1769. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  1770. hal_ring_desc_t ring_desc)
  1771. {
  1772. struct dp_buf_info_record *record;
  1773. struct hal_buf_info hbi;
  1774. uint32_t idx;
  1775. if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
  1776. return;
  1777. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  1778. /* buffer_addr_info is the first element of ring_desc */
  1779. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)ring_desc,
  1780. &hbi);
  1781. idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
  1782. DP_RX_HIST_MAX);
  1783. /* No NULL check needed for record since its an array */
  1784. record = &soc->rx_ring_history[ring_num]->entry[idx];
  1785. record->timestamp = qdf_get_log_timestamp();
  1786. record->hbi.paddr = hbi.paddr;
  1787. record->hbi.sw_cookie = hbi.sw_cookie;
  1788. record->hbi.rbm = hbi.rbm;
  1789. }
  1790. #endif
  1791. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  1792. /**
  1793. * dp_rx_update_stats() - Update soc level rx packet count
  1794. * @soc: DP soc handle
  1795. * @nbuf: nbuf received
  1796. *
  1797. * Returns: none
  1798. */
  1799. void dp_rx_update_stats(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1800. {
  1801. DP_STATS_INC_PKT(soc, rx.ingress, 1,
  1802. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1803. }
  1804. #endif
  1805. #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
  1806. /**
  1807. * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
  1808. * @soc : dp_soc handle
  1809. * @pdev: dp_pdev handle
  1810. * @peer_id: peer_id of the peer for which completion came
  1811. * @ppdu_id: ppdu_id
  1812. * @netbuf: Buffer pointer
  1813. *
  1814. * This function is used to deliver rx packet to packet capture
  1815. */
  1816. void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc, struct dp_pdev *pdev,
  1817. uint16_t peer_id, uint32_t is_offload,
  1818. qdf_nbuf_t netbuf)
  1819. {
  1820. if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
  1821. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
  1822. peer_id, is_offload, pdev->pdev_id);
  1823. }
  1824. void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1825. uint32_t is_offload)
  1826. {
  1827. if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
  1828. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA_NO_PEER,
  1829. soc, nbuf, HTT_INVALID_VDEV,
  1830. is_offload, 0);
  1831. }
  1832. #endif
  1833. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1834. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  1835. {
  1836. QDF_STATUS ret;
  1837. if (vdev->osif_rx_flush) {
  1838. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  1839. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  1840. dp_err("Failed to flush rx pkts for vdev %d\n",
  1841. vdev->vdev_id);
  1842. return ret;
  1843. }
  1844. }
  1845. return QDF_STATUS_SUCCESS;
  1846. }
  1847. static QDF_STATUS
  1848. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
  1849. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  1850. struct dp_pdev *dp_pdev,
  1851. struct rx_desc_pool *rx_desc_pool)
  1852. {
  1853. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  1854. (nbuf_frag_info_t->virt_addr).nbuf =
  1855. qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  1856. RX_BUFFER_RESERVATION,
  1857. rx_desc_pool->buf_alignment, FALSE);
  1858. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  1859. dp_err("nbuf alloc failed");
  1860. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  1861. return ret;
  1862. }
  1863. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  1864. (nbuf_frag_info_t->virt_addr).nbuf,
  1865. QDF_DMA_FROM_DEVICE,
  1866. rx_desc_pool->buf_size);
  1867. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  1868. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  1869. dp_err("nbuf map failed");
  1870. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  1871. return ret;
  1872. }
  1873. nbuf_frag_info_t->paddr =
  1874. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  1875. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  1876. &nbuf_frag_info_t->paddr,
  1877. rx_desc_pool);
  1878. if (ret == QDF_STATUS_E_FAILURE) {
  1879. dp_err("nbuf check x86 failed");
  1880. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  1881. return ret;
  1882. }
  1883. return QDF_STATUS_SUCCESS;
  1884. }
  1885. QDF_STATUS
  1886. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  1887. struct dp_srng *dp_rxdma_srng,
  1888. struct rx_desc_pool *rx_desc_pool,
  1889. uint32_t num_req_buffers)
  1890. {
  1891. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  1892. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  1893. union dp_rx_desc_list_elem_t *next;
  1894. void *rxdma_ring_entry;
  1895. qdf_dma_addr_t paddr;
  1896. struct dp_rx_nbuf_frag_info *nf_info;
  1897. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  1898. uint32_t buffer_index, nbuf_ptrs_per_page;
  1899. qdf_nbuf_t nbuf;
  1900. QDF_STATUS ret;
  1901. int page_idx, total_pages;
  1902. union dp_rx_desc_list_elem_t *desc_list = NULL;
  1903. union dp_rx_desc_list_elem_t *tail = NULL;
  1904. int sync_hw_ptr = 1;
  1905. uint32_t num_entries_avail;
  1906. if (qdf_unlikely(!dp_pdev)) {
  1907. dp_rx_err("%pK: pdev is null for mac_id = %d",
  1908. dp_soc, mac_id);
  1909. return QDF_STATUS_E_FAILURE;
  1910. }
  1911. if (qdf_unlikely(!rxdma_srng)) {
  1912. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  1913. return QDF_STATUS_E_FAILURE;
  1914. }
  1915. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  1916. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  1917. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  1918. rxdma_srng,
  1919. sync_hw_ptr);
  1920. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  1921. if (!num_entries_avail) {
  1922. dp_err("Num of available entries is zero, nothing to do");
  1923. return QDF_STATUS_E_NOMEM;
  1924. }
  1925. if (num_entries_avail < num_req_buffers)
  1926. num_req_buffers = num_entries_avail;
  1927. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  1928. num_req_buffers, &desc_list, &tail);
  1929. if (!nr_descs) {
  1930. dp_err("no free rx_descs in freelist");
  1931. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  1932. return QDF_STATUS_E_NOMEM;
  1933. }
  1934. dp_debug("got %u RX descs for driver attach", nr_descs);
  1935. /*
  1936. * Try to allocate pointers to the nbuf one page at a time.
  1937. * Take pointers that can fit in one page of memory and
  1938. * iterate through the total descriptors that need to be
  1939. * allocated in order of pages. Reuse the pointers that
  1940. * have been allocated to fit in one page across each
  1941. * iteration to index into the nbuf.
  1942. */
  1943. total_pages = (nr_descs * sizeof(*nf_info)) / PAGE_SIZE;
  1944. /*
  1945. * Add an extra page to store the remainder if any
  1946. */
  1947. if ((nr_descs * sizeof(*nf_info)) % PAGE_SIZE)
  1948. total_pages++;
  1949. nf_info = qdf_mem_malloc(PAGE_SIZE);
  1950. if (!nf_info) {
  1951. dp_err("failed to allocate nbuf array");
  1952. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  1953. QDF_BUG(0);
  1954. return QDF_STATUS_E_NOMEM;
  1955. }
  1956. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*nf_info);
  1957. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  1958. qdf_mem_zero(nf_info, PAGE_SIZE);
  1959. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  1960. /*
  1961. * The last page of buffer pointers may not be required
  1962. * completely based on the number of descriptors. Below
  1963. * check will ensure we are allocating only the
  1964. * required number of descriptors.
  1965. */
  1966. if (nr_nbuf_total >= nr_descs)
  1967. break;
  1968. /* Flag is set while pdev rx_desc_pool initialization */
  1969. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  1970. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  1971. &nf_info[nr_nbuf], dp_pdev,
  1972. rx_desc_pool);
  1973. else
  1974. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  1975. &nf_info[nr_nbuf], dp_pdev,
  1976. rx_desc_pool);
  1977. if (QDF_IS_STATUS_ERROR(ret))
  1978. break;
  1979. nr_nbuf_total++;
  1980. }
  1981. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  1982. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  1983. rxdma_ring_entry =
  1984. hal_srng_src_get_next(dp_soc->hal_soc,
  1985. rxdma_srng);
  1986. qdf_assert_always(rxdma_ring_entry);
  1987. next = desc_list->next;
  1988. paddr = nf_info[buffer_index].paddr;
  1989. nbuf = nf_info[buffer_index].virt_addr.nbuf;
  1990. /* Flag is set while pdev rx_desc_pool initialization */
  1991. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  1992. dp_rx_desc_frag_prep(&desc_list->rx_desc,
  1993. &nf_info[buffer_index]);
  1994. else
  1995. dp_rx_desc_prep(&desc_list->rx_desc,
  1996. &nf_info[buffer_index]);
  1997. desc_list->rx_desc.in_use = 1;
  1998. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  1999. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  2000. __func__,
  2001. RX_DESC_REPLENISHED);
  2002. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc ,rxdma_ring_entry, paddr,
  2003. desc_list->rx_desc.cookie,
  2004. rx_desc_pool->owner);
  2005. dp_ipa_handle_rx_buf_smmu_mapping(
  2006. dp_soc, nbuf,
  2007. rx_desc_pool->buf_size,
  2008. true);
  2009. desc_list = next;
  2010. }
  2011. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id,
  2012. rxdma_srng, nr_nbuf, nr_nbuf);
  2013. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2014. }
  2015. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2016. qdf_mem_free(nf_info);
  2017. if (!nr_nbuf_total) {
  2018. dp_err("No nbuf's allocated");
  2019. QDF_BUG(0);
  2020. return QDF_STATUS_E_RESOURCES;
  2021. }
  2022. /* No need to count the number of bytes received during replenish.
  2023. * Therefore set replenish.pkts.bytes as 0.
  2024. */
  2025. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2026. return QDF_STATUS_SUCCESS;
  2027. }
  2028. qdf_export_symbol(dp_pdev_rx_buffers_attach);
  2029. /**
  2030. * dp_rx_enable_mon_dest_frag() - Enable frag processing for
  2031. * monitor destination ring via frag.
  2032. *
  2033. * Enable this flag only for monitor destination buffer processing
  2034. * if DP_RX_MON_MEM_FRAG feature is enabled.
  2035. * If flag is set then frag based function will be called for alloc,
  2036. * map, prep desc and free ops for desc buffer else normal nbuf based
  2037. * function will be called.
  2038. *
  2039. * @rx_desc_pool: Rx desc pool
  2040. * @is_mon_dest_desc: Is it for monitor dest buffer
  2041. *
  2042. * Return: None
  2043. */
  2044. #ifdef DP_RX_MON_MEM_FRAG
  2045. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2046. bool is_mon_dest_desc)
  2047. {
  2048. rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
  2049. if (is_mon_dest_desc)
  2050. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
  2051. }
  2052. #else
  2053. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2054. bool is_mon_dest_desc)
  2055. {
  2056. rx_desc_pool->rx_mon_dest_frag_enable = false;
  2057. if (is_mon_dest_desc)
  2058. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
  2059. }
  2060. #endif
  2061. qdf_export_symbol(dp_rx_enable_mon_dest_frag);
  2062. /*
  2063. * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
  2064. * pool
  2065. *
  2066. * @pdev: core txrx pdev context
  2067. *
  2068. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2069. * QDF_STATUS_E_NOMEM
  2070. */
  2071. QDF_STATUS
  2072. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2073. {
  2074. struct dp_soc *soc = pdev->soc;
  2075. uint32_t rxdma_entries;
  2076. uint32_t rx_sw_desc_num;
  2077. struct dp_srng *dp_rxdma_srng;
  2078. struct rx_desc_pool *rx_desc_pool;
  2079. uint32_t status = QDF_STATUS_SUCCESS;
  2080. int mac_for_pdev;
  2081. mac_for_pdev = pdev->lmac_id;
  2082. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2083. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2084. soc, mac_for_pdev);
  2085. return status;
  2086. }
  2087. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2088. rxdma_entries = dp_rxdma_srng->num_entries;
  2089. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2090. rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2091. rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
  2092. status = dp_rx_desc_pool_alloc(soc,
  2093. rx_sw_desc_num,
  2094. rx_desc_pool);
  2095. if (status != QDF_STATUS_SUCCESS)
  2096. return status;
  2097. return status;
  2098. }
  2099. /*
  2100. * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
  2101. *
  2102. * @pdev: core txrx pdev context
  2103. */
  2104. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2105. {
  2106. int mac_for_pdev = pdev->lmac_id;
  2107. struct dp_soc *soc = pdev->soc;
  2108. struct rx_desc_pool *rx_desc_pool;
  2109. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2110. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2111. }
  2112. /*
  2113. * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
  2114. *
  2115. * @pdev: core txrx pdev context
  2116. *
  2117. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2118. * QDF_STATUS_E_NOMEM
  2119. */
  2120. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2121. {
  2122. int mac_for_pdev = pdev->lmac_id;
  2123. struct dp_soc *soc = pdev->soc;
  2124. uint32_t rxdma_entries;
  2125. uint32_t rx_sw_desc_num;
  2126. struct dp_srng *dp_rxdma_srng;
  2127. struct rx_desc_pool *rx_desc_pool;
  2128. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2129. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2130. /**
  2131. * If NSS is enabled, rx_desc_pool is already filled.
  2132. * Hence, just disable desc_pool frag flag.
  2133. */
  2134. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2135. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2136. soc, mac_for_pdev);
  2137. return QDF_STATUS_SUCCESS;
  2138. }
  2139. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2140. return QDF_STATUS_E_NOMEM;
  2141. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2142. rxdma_entries = dp_rxdma_srng->num_entries;
  2143. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2144. rx_sw_desc_num =
  2145. wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2146. rx_desc_pool->owner = dp_rx_get_rx_bm_id(soc);
  2147. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2148. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2149. /* Disable monitor dest processing via frag */
  2150. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2151. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2152. rx_sw_desc_num, rx_desc_pool);
  2153. return QDF_STATUS_SUCCESS;
  2154. }
  2155. /*
  2156. * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
  2157. * @pdev: core txrx pdev context
  2158. *
  2159. * This function resets the freelist of rx descriptors and destroys locks
  2160. * associated with this list of descriptors.
  2161. */
  2162. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  2163. {
  2164. int mac_for_pdev = pdev->lmac_id;
  2165. struct dp_soc *soc = pdev->soc;
  2166. struct rx_desc_pool *rx_desc_pool;
  2167. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2168. dp_rx_desc_pool_deinit(soc, rx_desc_pool, mac_for_pdev);
  2169. }
  2170. /*
  2171. * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
  2172. *
  2173. * @pdev: core txrx pdev context
  2174. *
  2175. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2176. * QDF_STATUS_E_NOMEM
  2177. */
  2178. QDF_STATUS
  2179. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  2180. {
  2181. int mac_for_pdev = pdev->lmac_id;
  2182. struct dp_soc *soc = pdev->soc;
  2183. struct dp_srng *dp_rxdma_srng;
  2184. struct rx_desc_pool *rx_desc_pool;
  2185. uint32_t rxdma_entries;
  2186. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2187. rxdma_entries = dp_rxdma_srng->num_entries;
  2188. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2189. /* Initialize RX buffer pool which will be
  2190. * used during low memory conditions
  2191. */
  2192. dp_rx_buffer_pool_init(soc, mac_for_pdev);
  2193. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev, dp_rxdma_srng,
  2194. rx_desc_pool, rxdma_entries - 1);
  2195. }
  2196. /*
  2197. * dp_rx_pdev_buffers_free - Free nbufs (skbs)
  2198. *
  2199. * @pdev: core txrx pdev context
  2200. */
  2201. void
  2202. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  2203. {
  2204. int mac_for_pdev = pdev->lmac_id;
  2205. struct dp_soc *soc = pdev->soc;
  2206. struct rx_desc_pool *rx_desc_pool;
  2207. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2208. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  2209. dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
  2210. }
  2211. #ifdef DP_RX_SPECIAL_FRAME_NEED
  2212. bool dp_rx_deliver_special_frame(struct dp_soc *soc, struct dp_peer *peer,
  2213. qdf_nbuf_t nbuf, uint32_t frame_mask,
  2214. uint8_t *rx_tlv_hdr)
  2215. {
  2216. uint32_t l2_hdr_offset = 0;
  2217. uint16_t msdu_len = 0;
  2218. uint32_t skip_len;
  2219. l2_hdr_offset =
  2220. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2221. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2222. skip_len = l2_hdr_offset;
  2223. } else {
  2224. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2225. skip_len = l2_hdr_offset + soc->rx_pkt_tlv_size;
  2226. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  2227. }
  2228. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2229. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  2230. qdf_nbuf_pull_head(nbuf, skip_len);
  2231. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  2232. dp_info("special frame, mpdu sn 0x%x",
  2233. hal_rx_get_rx_sequence(soc->hal_soc, rx_tlv_hdr));
  2234. qdf_nbuf_set_exc_frame(nbuf, 1);
  2235. dp_rx_deliver_to_stack(soc, peer->vdev, peer,
  2236. nbuf, NULL);
  2237. return true;
  2238. }
  2239. return false;
  2240. }
  2241. #endif