dp_rx.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835
  1. /*
  2. * Copyright (c) 2016-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #ifdef RX_DESC_DEBUG_CHECK
  31. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  32. {
  33. rx_desc->magic = DP_RX_DESC_MAGIC;
  34. rx_desc->nbuf = nbuf;
  35. }
  36. #else
  37. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  38. {
  39. rx_desc->nbuf = nbuf;
  40. }
  41. #endif
  42. #ifdef CONFIG_WIN
  43. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  44. {
  45. return vdev->ap_bridge_enabled;
  46. }
  47. #else
  48. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  49. {
  50. if (vdev->opmode != wlan_op_mode_sta)
  51. return true;
  52. else
  53. return false;
  54. }
  55. #endif
  56. /*
  57. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  58. * called during dp rx initialization
  59. * and at the end of dp_rx_process.
  60. *
  61. * @soc: core txrx main context
  62. * @mac_id: mac_id which is one of 3 mac_ids
  63. * @dp_rxdma_srng: dp rxdma circular ring
  64. * @rx_desc_pool: Pointer to free Rx descriptor pool
  65. * @num_req_buffers: number of buffer to be replenished
  66. * @desc_list: list of descs if called from dp_rx_process
  67. * or NULL during dp rx initialization or out of buffer
  68. * interrupt.
  69. * @tail: tail of descs list
  70. * Return: return success or failure
  71. */
  72. QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  73. struct dp_srng *dp_rxdma_srng,
  74. struct rx_desc_pool *rx_desc_pool,
  75. uint32_t num_req_buffers,
  76. union dp_rx_desc_list_elem_t **desc_list,
  77. union dp_rx_desc_list_elem_t **tail)
  78. {
  79. uint32_t num_alloc_desc;
  80. uint16_t num_desc_to_free = 0;
  81. struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
  82. uint32_t num_entries_avail;
  83. uint32_t count;
  84. int sync_hw_ptr = 1;
  85. qdf_dma_addr_t paddr;
  86. qdf_nbuf_t rx_netbuf;
  87. void *rxdma_ring_entry;
  88. union dp_rx_desc_list_elem_t *next;
  89. QDF_STATUS ret;
  90. void *rxdma_srng;
  91. rxdma_srng = dp_rxdma_srng->hal_srng;
  92. if (!rxdma_srng) {
  93. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  94. "rxdma srng not initialized");
  95. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  96. return QDF_STATUS_E_FAILURE;
  97. }
  98. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  99. "requested %d buffers for replenish", num_req_buffers);
  100. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  101. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  102. rxdma_srng,
  103. sync_hw_ptr);
  104. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  105. "no of available entries in rxdma ring: %d",
  106. num_entries_avail);
  107. if (!(*desc_list) && (num_entries_avail >
  108. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  109. num_req_buffers = num_entries_avail;
  110. } else if (num_entries_avail < num_req_buffers) {
  111. num_desc_to_free = num_req_buffers - num_entries_avail;
  112. num_req_buffers = num_entries_avail;
  113. }
  114. if (qdf_unlikely(!num_req_buffers)) {
  115. num_desc_to_free = num_req_buffers;
  116. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  117. goto free_descs;
  118. }
  119. /*
  120. * if desc_list is NULL, allocate the descs from freelist
  121. */
  122. if (!(*desc_list)) {
  123. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  124. rx_desc_pool,
  125. num_req_buffers,
  126. desc_list,
  127. tail);
  128. if (!num_alloc_desc) {
  129. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  130. "no free rx_descs in freelist");
  131. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  132. num_req_buffers);
  133. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  134. return QDF_STATUS_E_NOMEM;
  135. }
  136. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  137. "%d rx desc allocated", num_alloc_desc);
  138. num_req_buffers = num_alloc_desc;
  139. }
  140. count = 0;
  141. while (count < num_req_buffers) {
  142. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  143. RX_BUFFER_SIZE,
  144. RX_BUFFER_RESERVATION,
  145. RX_BUFFER_ALIGNMENT,
  146. FALSE);
  147. if (rx_netbuf == NULL) {
  148. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  149. continue;
  150. }
  151. ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
  152. QDF_DMA_BIDIRECTIONAL);
  153. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  154. qdf_nbuf_free(rx_netbuf);
  155. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  156. continue;
  157. }
  158. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  159. /*
  160. * check if the physical address of nbuf->data is
  161. * less then 0x50000000 then free the nbuf and try
  162. * allocating new nbuf. We can try for 100 times.
  163. * this is a temp WAR till we fix it properly.
  164. */
  165. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
  166. if (ret == QDF_STATUS_E_FAILURE) {
  167. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  168. break;
  169. }
  170. count++;
  171. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  172. rxdma_srng);
  173. qdf_assert_always(rxdma_ring_entry);
  174. next = (*desc_list)->next;
  175. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  176. (*desc_list)->rx_desc.in_use = 1;
  177. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  178. "rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
  179. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  180. (unsigned long long)paddr, (*desc_list)->rx_desc.cookie);
  181. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  182. (*desc_list)->rx_desc.cookie,
  183. rx_desc_pool->owner);
  184. *desc_list = next;
  185. }
  186. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  187. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  188. "successfully replenished %d buffers", num_req_buffers);
  189. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  190. "%d rx desc added back to free list", num_desc_to_free);
  191. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
  192. (RX_BUFFER_SIZE * num_req_buffers));
  193. free_descs:
  194. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  195. /*
  196. * add any available free desc back to the free list
  197. */
  198. if (*desc_list)
  199. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  200. mac_id, rx_desc_pool);
  201. return QDF_STATUS_SUCCESS;
  202. }
  203. /*
  204. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  205. * pkts to RAW mode simulation to
  206. * decapsulate the pkt.
  207. *
  208. * @vdev: vdev on which RAW mode is enabled
  209. * @nbuf_list: list of RAW pkts to process
  210. * @peer: peer object from which the pkt is rx
  211. *
  212. * Return: void
  213. */
  214. void
  215. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  216. struct dp_peer *peer)
  217. {
  218. qdf_nbuf_t deliver_list_head = NULL;
  219. qdf_nbuf_t deliver_list_tail = NULL;
  220. qdf_nbuf_t nbuf;
  221. nbuf = nbuf_list;
  222. while (nbuf) {
  223. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  224. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  225. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  226. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  227. /*
  228. * reset the chfrag_start and chfrag_end bits in nbuf cb
  229. * as this is a non-amsdu pkt and RAW mode simulation expects
  230. * these bit s to be 0 for non-amsdu pkt.
  231. */
  232. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  233. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  234. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  235. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  236. }
  237. nbuf = next;
  238. }
  239. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  240. &deliver_list_tail, (struct cdp_peer*) peer);
  241. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  242. }
  243. #ifdef DP_LFR
  244. /*
  245. * In case of LFR, data of a new peer might be sent up
  246. * even before peer is added.
  247. */
  248. static inline struct dp_vdev *
  249. dp_get_vdev_from_peer(struct dp_soc *soc,
  250. uint16_t peer_id,
  251. struct dp_peer *peer,
  252. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  253. {
  254. struct dp_vdev *vdev;
  255. uint8_t vdev_id;
  256. if (unlikely(!peer)) {
  257. if (peer_id != HTT_INVALID_PEER) {
  258. vdev_id = DP_PEER_METADATA_ID_GET(
  259. mpdu_desc_info.peer_meta_data);
  260. QDF_TRACE(QDF_MODULE_ID_DP,
  261. QDF_TRACE_LEVEL_DEBUG,
  262. FL("PeerID %d not found use vdevID %d"),
  263. peer_id, vdev_id);
  264. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  265. vdev_id);
  266. } else {
  267. QDF_TRACE(QDF_MODULE_ID_DP,
  268. QDF_TRACE_LEVEL_DEBUG,
  269. FL("Invalid PeerID %d"),
  270. peer_id);
  271. return NULL;
  272. }
  273. } else {
  274. vdev = peer->vdev;
  275. }
  276. return vdev;
  277. }
  278. #else
  279. static inline struct dp_vdev *
  280. dp_get_vdev_from_peer(struct dp_soc *soc,
  281. uint16_t peer_id,
  282. struct dp_peer *peer,
  283. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  284. {
  285. if (unlikely(!peer)) {
  286. QDF_TRACE(QDF_MODULE_ID_DP,
  287. QDF_TRACE_LEVEL_DEBUG,
  288. FL("Peer not found for peerID %d"),
  289. peer_id);
  290. return NULL;
  291. } else {
  292. return peer->vdev;
  293. }
  294. }
  295. #endif
  296. /**
  297. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  298. *
  299. * @soc: core txrx main context
  300. * @sa_peer : source peer entry
  301. * @rx_tlv_hdr : start address of rx tlvs
  302. * @nbuf : nbuf that has to be intrabss forwarded
  303. *
  304. * Return: bool: true if it is forwarded else false
  305. */
  306. static bool
  307. dp_rx_intrabss_fwd(struct dp_soc *soc,
  308. struct dp_peer *sa_peer,
  309. uint8_t *rx_tlv_hdr,
  310. qdf_nbuf_t nbuf)
  311. {
  312. uint16_t da_idx;
  313. uint16_t len;
  314. struct dp_peer *da_peer;
  315. struct dp_ast_entry *ast_entry;
  316. qdf_nbuf_t nbuf_copy;
  317. struct dp_vdev *vdev = sa_peer->vdev;
  318. /*
  319. * intrabss forwarding is not applicable if
  320. * vap is nawds enabled or ap_bridge is false.
  321. */
  322. if (vdev->nawds_enabled)
  323. return false;
  324. /* check if the destination peer is available in peer table
  325. * and also check if the source peer and destination peer
  326. * belong to the same vap and destination peer is not bss peer.
  327. */
  328. if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
  329. !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  330. da_idx = hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr);
  331. ast_entry = soc->ast_table[da_idx];
  332. if (!ast_entry)
  333. return false;
  334. da_peer = ast_entry->peer;
  335. if (!da_peer)
  336. return false;
  337. if (da_peer->vdev == sa_peer->vdev && !da_peer->bss_peer) {
  338. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  339. len = qdf_nbuf_len(nbuf);
  340. /* linearize the nbuf just before we send to
  341. * dp_tx_send()
  342. */
  343. if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf))) {
  344. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  345. return false;
  346. nbuf = qdf_nbuf_unshare(nbuf);
  347. if (!nbuf) {
  348. DP_STATS_INC_PKT(sa_peer,
  349. rx.intra_bss.fail,
  350. 1,
  351. len);
  352. /* return true even though the pkt is
  353. * not forwarded. Basically skb_unshare
  354. * failed and we want to continue with
  355. * next nbuf.
  356. */
  357. return true;
  358. }
  359. }
  360. if (!dp_tx_send(sa_peer->vdev, nbuf)) {
  361. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts,
  362. 1, len);
  363. return true;
  364. } else {
  365. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1,
  366. len);
  367. return false;
  368. }
  369. }
  370. }
  371. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  372. * source, then clone the pkt and send the cloned pkt for
  373. * intra BSS forwarding and original pkt up the network stack
  374. * Note: how do we handle multicast pkts. do we forward
  375. * all multicast pkts as is or let a higher layer module
  376. * like igmpsnoop decide whether to forward or not with
  377. * Mcast enhancement.
  378. */
  379. else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  380. !sa_peer->bss_peer))) {
  381. nbuf_copy = qdf_nbuf_copy(nbuf);
  382. if (!nbuf_copy)
  383. return false;
  384. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  385. len = qdf_nbuf_len(nbuf_copy);
  386. if (dp_tx_send(sa_peer->vdev, nbuf_copy)) {
  387. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1, len);
  388. qdf_nbuf_free(nbuf_copy);
  389. } else
  390. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts, 1, len);
  391. }
  392. /* return false as we have to still send the original pkt
  393. * up the stack
  394. */
  395. return false;
  396. }
  397. #ifdef MESH_MODE_SUPPORT
  398. /**
  399. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  400. *
  401. * @vdev: DP Virtual device handle
  402. * @nbuf: Buffer pointer
  403. * @rx_tlv_hdr: start of rx tlv header
  404. * @peer: pointer to peer
  405. *
  406. * This function allocated memory for mesh receive stats and fill the
  407. * required stats. Stores the memory address in skb cb.
  408. *
  409. * Return: void
  410. */
  411. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  412. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  413. {
  414. struct mesh_recv_hdr_s *rx_info = NULL;
  415. uint32_t pkt_type;
  416. uint32_t nss;
  417. uint32_t rate_mcs;
  418. uint32_t bw;
  419. /* fill recv mesh stats */
  420. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  421. /* upper layers are resposible to free this memory */
  422. if (rx_info == NULL) {
  423. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  424. "Memory allocation failed for mesh rx stats");
  425. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  426. return;
  427. }
  428. rx_info->rs_flags = MESH_RXHDR_VER1;
  429. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  430. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  431. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  432. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  433. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  434. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  435. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  436. if (vdev->osif_get_key)
  437. vdev->osif_get_key(vdev->osif_vdev,
  438. &rx_info->rs_decryptkey[0],
  439. &peer->mac_addr.raw[0],
  440. rx_info->rs_keyix);
  441. }
  442. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  443. rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  444. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  445. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  446. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  447. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  448. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  449. (bw << 24);
  450. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  451. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  452. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  453. rx_info->rs_flags,
  454. rx_info->rs_rssi,
  455. rx_info->rs_channel,
  456. rx_info->rs_ratephy1,
  457. rx_info->rs_keyix);
  458. }
  459. /**
  460. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  461. *
  462. * @vdev: DP Virtual device handle
  463. * @nbuf: Buffer pointer
  464. * @rx_tlv_hdr: start of rx tlv header
  465. *
  466. * This checks if the received packet is matching any filter out
  467. * catogery and and drop the packet if it matches.
  468. *
  469. * Return: status(0 indicates drop, 1 indicate to no drop)
  470. */
  471. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  472. uint8_t *rx_tlv_hdr)
  473. {
  474. union dp_align_mac_addr mac_addr;
  475. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  476. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  477. if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
  478. return QDF_STATUS_SUCCESS;
  479. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  480. if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  481. return QDF_STATUS_SUCCESS;
  482. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  483. if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
  484. && !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  485. return QDF_STATUS_SUCCESS;
  486. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  487. if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
  488. &mac_addr.raw[0]))
  489. return QDF_STATUS_E_FAILURE;
  490. if (!qdf_mem_cmp(&mac_addr.raw[0],
  491. &vdev->mac_addr.raw[0],
  492. DP_MAC_ADDR_LEN))
  493. return QDF_STATUS_SUCCESS;
  494. }
  495. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  496. if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
  497. &mac_addr.raw[0]))
  498. return QDF_STATUS_E_FAILURE;
  499. if (!qdf_mem_cmp(&mac_addr.raw[0],
  500. &vdev->mac_addr.raw[0],
  501. DP_MAC_ADDR_LEN))
  502. return QDF_STATUS_SUCCESS;
  503. }
  504. }
  505. return QDF_STATUS_E_FAILURE;
  506. }
  507. #else
  508. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  509. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  510. {
  511. }
  512. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  513. uint8_t *rx_tlv_hdr)
  514. {
  515. return QDF_STATUS_E_FAILURE;
  516. }
  517. #endif
  518. #ifdef CONFIG_WIN
  519. /**
  520. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  521. * clients
  522. * @pdev: DP pdev handle
  523. * @rx_pkt_hdr: Rx packet Header
  524. *
  525. * return: dp_vdev*
  526. */
  527. static
  528. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  529. uint8_t *rx_pkt_hdr)
  530. {
  531. struct ieee80211_frame *wh;
  532. struct dp_neighbour_peer *peer = NULL;
  533. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  534. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  535. return NULL;
  536. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  537. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  538. neighbour_peer_list_elem) {
  539. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  540. wh->i_addr2, DP_MAC_ADDR_LEN) == 0) {
  541. QDF_TRACE(
  542. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  543. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  544. peer->neighbour_peers_macaddr.raw[0],
  545. peer->neighbour_peers_macaddr.raw[1],
  546. peer->neighbour_peers_macaddr.raw[2],
  547. peer->neighbour_peers_macaddr.raw[3],
  548. peer->neighbour_peers_macaddr.raw[4],
  549. peer->neighbour_peers_macaddr.raw[5]);
  550. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  551. return pdev->monitor_vdev;
  552. }
  553. }
  554. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  555. return NULL;
  556. }
  557. /**
  558. * dp_rx_process_nac_rssi_frames(): Store RSSI for configured NAC
  559. * @pdev: DP pdev handle
  560. * @rx_tlv_hdr: tlv hdr buf
  561. *
  562. * return: None
  563. */
  564. #ifdef ATH_SUPPORT_NAC_RSSI
  565. static void dp_rx_process_nac_rssi_frames(struct dp_pdev *pdev, uint8_t *rx_tlv_hdr)
  566. {
  567. struct dp_vdev *vdev = NULL;
  568. struct dp_soc *soc = pdev->soc;
  569. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  570. struct ieee80211_frame *wh = (struct ieee80211_frame *)rx_pkt_hdr;
  571. if (pdev->nac_rssi_filtering) {
  572. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  573. if (vdev->cdp_nac_rssi_enabled &&
  574. (qdf_mem_cmp(vdev->cdp_nac_rssi.client_mac,
  575. wh->i_addr1, DP_MAC_ADDR_LEN) == 0)) {
  576. QDF_TRACE(QDF_MODULE_ID_DP,
  577. QDF_TRACE_LEVEL_DEBUG, "RSSI updated");
  578. vdev->cdp_nac_rssi.vdev_id = vdev->vdev_id;
  579. vdev->cdp_nac_rssi.client_rssi =
  580. hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  581. dp_wdi_event_handler(WDI_EVENT_NAC_RSSI, soc,
  582. (void *)&vdev->cdp_nac_rssi,
  583. HTT_INVALID_PEER, WDI_NO_VAL,
  584. pdev->pdev_id);
  585. }
  586. }
  587. }
  588. }
  589. #else
  590. static void dp_rx_process_nac_rssi_frames(struct dp_pdev *pdev, uint8_t *rx_tlv_hdr)
  591. {
  592. }
  593. #endif
  594. /**
  595. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  596. * @soc: DP SOC handle
  597. * @mpdu: mpdu for which peer is invalid
  598. *
  599. * return: integer type
  600. */
  601. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  602. {
  603. struct dp_invalid_peer_msg msg;
  604. struct dp_vdev *vdev = NULL;
  605. struct dp_pdev *pdev = NULL;
  606. struct ieee80211_frame *wh;
  607. uint8_t i;
  608. qdf_nbuf_t curr_nbuf, next_nbuf;
  609. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  610. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  611. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  612. if (!DP_FRAME_IS_DATA(wh)) {
  613. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  614. "NAWDS valid only for data frames");
  615. goto free;
  616. }
  617. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  618. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  619. "Invalid nbuf length");
  620. goto free;
  621. }
  622. for (i = 0; i < MAX_PDEV_CNT; i++) {
  623. pdev = soc->pdev_list[i];
  624. if (!pdev) {
  625. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  626. "PDEV not found");
  627. continue;
  628. }
  629. if (pdev->filter_neighbour_peers) {
  630. /* Next Hop scenario not yet handle */
  631. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  632. if (vdev) {
  633. dp_rx_mon_deliver(soc, i,
  634. pdev->invalid_peer_head_msdu,
  635. pdev->invalid_peer_tail_msdu);
  636. pdev->invalid_peer_head_msdu = NULL;
  637. pdev->invalid_peer_tail_msdu = NULL;
  638. return 0;
  639. }
  640. }
  641. dp_rx_process_nac_rssi_frames(pdev, rx_tlv_hdr);
  642. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  643. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  644. DP_MAC_ADDR_LEN) == 0) {
  645. goto out;
  646. }
  647. }
  648. }
  649. if (!vdev) {
  650. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  651. "VDEV not found");
  652. goto free;
  653. }
  654. out:
  655. msg.wh = wh;
  656. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  657. msg.nbuf = mpdu;
  658. msg.vdev_id = vdev->vdev_id;
  659. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  660. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->ctrl_pdev,
  661. &msg);
  662. free:
  663. /* Drop and free packet */
  664. curr_nbuf = mpdu;
  665. while (curr_nbuf) {
  666. next_nbuf = qdf_nbuf_next(curr_nbuf);
  667. qdf_nbuf_free(curr_nbuf);
  668. curr_nbuf = next_nbuf;
  669. }
  670. return 0;
  671. }
  672. /**
  673. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  674. * @soc: DP SOC handle
  675. * @mpdu: mpdu for which peer is invalid
  676. * @mpdu_done: if an mpdu is completed
  677. *
  678. * return: integer type
  679. */
  680. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  681. qdf_nbuf_t mpdu, bool mpdu_done)
  682. {
  683. /* Only trigger the process when mpdu is completed */
  684. if (mpdu_done)
  685. dp_rx_process_invalid_peer(soc, mpdu);
  686. }
  687. #else
  688. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  689. {
  690. qdf_nbuf_t curr_nbuf, next_nbuf;
  691. struct dp_pdev *pdev;
  692. uint8_t i;
  693. curr_nbuf = mpdu;
  694. while (curr_nbuf) {
  695. next_nbuf = qdf_nbuf_next(curr_nbuf);
  696. /* Drop and free packet */
  697. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  698. qdf_nbuf_len(curr_nbuf));
  699. qdf_nbuf_free(curr_nbuf);
  700. curr_nbuf = next_nbuf;
  701. }
  702. /* reset the head and tail pointers */
  703. for (i = 0; i < MAX_PDEV_CNT; i++) {
  704. pdev = soc->pdev_list[i];
  705. if (!pdev) {
  706. QDF_TRACE(QDF_MODULE_ID_DP,
  707. QDF_TRACE_LEVEL_ERROR,
  708. "PDEV not found");
  709. continue;
  710. }
  711. pdev->invalid_peer_head_msdu = NULL;
  712. pdev->invalid_peer_tail_msdu = NULL;
  713. }
  714. return 0;
  715. }
  716. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  717. qdf_nbuf_t mpdu, bool mpdu_done)
  718. {
  719. /* To avoid compiler warning */
  720. mpdu_done = mpdu_done;
  721. /* Process the nbuf */
  722. dp_rx_process_invalid_peer(soc, mpdu);
  723. }
  724. #endif
  725. #if defined(FEATURE_LRO)
  726. static void dp_rx_print_lro_info(uint8_t *rx_tlv)
  727. {
  728. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  729. FL("----------------------RX DESC LRO----------------------\n"));
  730. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  731. FL("lro_eligible 0x%x"), HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  732. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  733. FL("pure_ack 0x%x"), HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  734. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  735. FL("chksum 0x%x"), HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
  736. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  737. FL("TCP seq num 0x%x"), HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  738. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  739. FL("TCP ack num 0x%x"), HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  740. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  741. FL("TCP window 0x%x"), HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  742. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  743. FL("TCP protocol 0x%x"), HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  744. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  745. FL("TCP offset 0x%x"), HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  746. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  747. FL("toeplitz 0x%x"), HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  748. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  749. FL("---------------------------------------------------------\n"));
  750. }
  751. /**
  752. * dp_rx_lro() - LRO related processing
  753. * @rx_tlv: TLV data extracted from the rx packet
  754. * @peer: destination peer of the msdu
  755. * @msdu: network buffer
  756. * @ctx: LRO context
  757. *
  758. * This function performs the LRO related processing of the msdu
  759. *
  760. * Return: true: LRO enabled false: LRO is not enabled
  761. */
  762. static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
  763. qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
  764. {
  765. if (!peer || !peer->vdev || !peer->vdev->lro_enable) {
  766. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  767. FL("no peer, no vdev or LRO disabled"));
  768. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = 0;
  769. return;
  770. }
  771. qdf_assert(rx_tlv);
  772. dp_rx_print_lro_info(rx_tlv);
  773. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  774. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  775. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  776. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  777. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  778. HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
  779. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  780. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  781. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  782. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  783. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  784. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  785. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  786. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  787. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  788. HAL_RX_TLV_GET_IPV6(rx_tlv);
  789. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  790. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  791. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  792. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  793. QDF_NBUF_CB_RX_LRO_CTX(msdu) = (unsigned char *)ctx;
  794. }
  795. #else
  796. static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
  797. qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
  798. {
  799. }
  800. #endif
  801. /**
  802. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  803. *
  804. * @nbuf: pointer to msdu.
  805. * @mpdu_len: mpdu length
  806. *
  807. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  808. */
  809. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  810. {
  811. bool last_nbuf;
  812. if (*mpdu_len >= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  813. qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
  814. last_nbuf = false;
  815. } else {
  816. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  817. last_nbuf = true;
  818. }
  819. *mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  820. return last_nbuf;
  821. }
  822. /**
  823. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  824. * multiple nbufs.
  825. * @nbuf: pointer to the first msdu of an amsdu.
  826. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  827. *
  828. *
  829. * This function implements the creation of RX frag_list for cases
  830. * where an MSDU is spread across multiple nbufs.
  831. *
  832. * Return: returns the head nbuf which contains complete frag_list.
  833. */
  834. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
  835. {
  836. qdf_nbuf_t parent, next, frag_list;
  837. uint16_t frag_list_len = 0;
  838. uint16_t mpdu_len;
  839. bool last_nbuf;
  840. mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  841. /*
  842. * this is a case where the complete msdu fits in one single nbuf.
  843. * in this case HW sets both start and end bit and we only need to
  844. * reset these bits for RAW mode simulator to decap the pkt
  845. */
  846. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  847. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  848. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  849. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  850. return nbuf;
  851. }
  852. /*
  853. * This is a case where we have multiple msdus (A-MSDU) spread across
  854. * multiple nbufs. here we create a fraglist out of these nbufs.
  855. *
  856. * the moment we encounter a nbuf with continuation bit set we
  857. * know for sure we have an MSDU which is spread across multiple
  858. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  859. */
  860. parent = nbuf;
  861. frag_list = nbuf->next;
  862. nbuf = nbuf->next;
  863. /*
  864. * set the start bit in the first nbuf we encounter with continuation
  865. * bit set. This has the proper mpdu length set as it is the first
  866. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  867. * nbufs will form the frag_list of the parent nbuf.
  868. */
  869. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  870. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  871. /*
  872. * this is where we set the length of the fragments which are
  873. * associated to the parent nbuf. We iterate through the frag_list
  874. * till we hit the last_nbuf of the list.
  875. */
  876. do {
  877. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  878. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  879. frag_list_len += qdf_nbuf_len(nbuf);
  880. if (last_nbuf) {
  881. next = nbuf->next;
  882. nbuf->next = NULL;
  883. break;
  884. }
  885. nbuf = nbuf->next;
  886. } while (!last_nbuf);
  887. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  888. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  889. parent->next = next;
  890. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  891. return parent;
  892. }
  893. static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
  894. struct dp_peer *peer,
  895. qdf_nbuf_t nbuf_head,
  896. qdf_nbuf_t nbuf_tail)
  897. {
  898. /*
  899. * highly unlikely to have a vdev without a registered rx
  900. * callback function. if so let us free the nbuf_list.
  901. */
  902. if (qdf_unlikely(!vdev->osif_rx)) {
  903. qdf_nbuf_t nbuf;
  904. do {
  905. nbuf = nbuf_head;
  906. nbuf_head = nbuf_head->next;
  907. qdf_nbuf_free(nbuf);
  908. } while (nbuf_head);
  909. return;
  910. }
  911. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  912. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  913. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  914. &nbuf_tail, (struct cdp_peer *) peer);
  915. }
  916. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  917. }
  918. /**
  919. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  920. * @nbuf: pointer to the first msdu of an amsdu.
  921. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  922. *
  923. * The ipsumed field of the skb is set based on whether HW validated the
  924. * IP/TCP/UDP checksum.
  925. *
  926. * Return: void
  927. */
  928. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  929. qdf_nbuf_t nbuf,
  930. uint8_t *rx_tlv_hdr)
  931. {
  932. qdf_nbuf_rx_cksum_t cksum = {0};
  933. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  934. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  935. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  936. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  937. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  938. } else {
  939. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  940. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  941. }
  942. }
  943. /**
  944. * dp_rx_msdu_stats_update() - update per msdu stats.
  945. * @soc: core txrx main context
  946. * @nbuf: pointer to the first msdu of an amsdu.
  947. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  948. * @peer: pointer to the peer object.
  949. * @ring_id: reo dest ring number on which pkt is reaped.
  950. *
  951. * update all the per msdu stats for that nbuf.
  952. * Return: void
  953. */
  954. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  955. qdf_nbuf_t nbuf,
  956. uint8_t *rx_tlv_hdr,
  957. struct dp_peer *peer,
  958. uint8_t ring_id)
  959. {
  960. bool is_ampdu, is_not_amsdu;
  961. uint16_t peer_id;
  962. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  963. struct dp_vdev *vdev = peer->vdev;
  964. struct ether_header *eh;
  965. uint16_t msdu_len = qdf_nbuf_len(nbuf);
  966. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  967. hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr));
  968. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  969. qdf_nbuf_is_rx_chfrag_end(nbuf);
  970. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  971. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  972. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  973. if (qdf_unlikely(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  974. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  975. eh = (struct ether_header *)qdf_nbuf_data(nbuf);
  976. if (IEEE80211_IS_BROADCAST(eh->ether_dhost)) {
  977. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  978. } else {
  979. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  980. }
  981. }
  982. /*
  983. * currently we can return from here as we have similar stats
  984. * updated at per ppdu level instead of msdu level
  985. */
  986. if (!soc->process_rx_status)
  987. return;
  988. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  989. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  990. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  991. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  992. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  993. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_tlv_hdr);
  994. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  995. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  996. rx_tlv_hdr);
  997. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  998. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  999. /* Save tid to skb->priority */
  1000. DP_RX_TID_SAVE(nbuf, tid);
  1001. DP_STATS_INC(peer, rx.bw[bw], 1);
  1002. DP_STATS_INC(peer, rx.nss[nss], 1);
  1003. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1004. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1005. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1006. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1007. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1008. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1009. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1010. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1011. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1012. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1013. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1014. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1015. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1016. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1017. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1018. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1019. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1020. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1021. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1022. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1023. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1024. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1025. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1026. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1027. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1028. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1029. ((mcs <= MAX_MCS) && (pkt_type == DOT11_AX)));
  1030. if ((soc->process_rx_status) &&
  1031. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1032. if (soc->cdp_soc.ol_ops->update_dp_stats) {
  1033. soc->cdp_soc.ol_ops->update_dp_stats(
  1034. vdev->pdev->ctrl_pdev,
  1035. &peer->stats,
  1036. peer_id,
  1037. UPDATE_PEER_STATS);
  1038. }
  1039. }
  1040. }
  1041. #ifdef WDS_VENDOR_EXTENSION
  1042. int dp_wds_rx_policy_check(
  1043. uint8_t *rx_tlv_hdr,
  1044. struct dp_vdev *vdev,
  1045. struct dp_peer *peer,
  1046. int rx_mcast
  1047. )
  1048. {
  1049. struct dp_peer *bss_peer;
  1050. int fr_ds, to_ds, rx_3addr, rx_4addr;
  1051. int rx_policy_ucast, rx_policy_mcast;
  1052. if (vdev->opmode == wlan_op_mode_ap) {
  1053. TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
  1054. if (bss_peer->bss_peer) {
  1055. /* if wds policy check is not enabled on this vdev, accept all frames */
  1056. if (!bss_peer->wds_ecm.wds_rx_filter) {
  1057. return 1;
  1058. }
  1059. break;
  1060. }
  1061. }
  1062. rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
  1063. rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
  1064. } else { /* sta mode */
  1065. if (!peer->wds_ecm.wds_rx_filter) {
  1066. return 1;
  1067. }
  1068. rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
  1069. rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
  1070. }
  1071. /* ------------------------------------------------
  1072. * self
  1073. * peer- rx rx-
  1074. * wds ucast mcast dir policy accept note
  1075. * ------------------------------------------------
  1076. * 1 1 0 11 x1 1 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
  1077. * 1 1 0 01 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1078. * 1 1 0 10 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1079. * 1 1 0 00 x1 0 bad frame, won't see it
  1080. * 1 0 1 11 1x 1 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
  1081. * 1 0 1 01 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1082. * 1 0 1 10 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1083. * 1 0 1 00 1x 0 bad frame, won't see it
  1084. * 1 1 0 11 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1085. * 1 1 0 01 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1086. * 1 1 0 10 x0 1 AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
  1087. * 1 1 0 00 x0 0 bad frame, won't see it
  1088. * 1 0 1 11 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1089. * 1 0 1 01 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1090. * 1 0 1 10 0x 1 AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
  1091. * 1 0 1 00 0x 0 bad frame, won't see it
  1092. *
  1093. * 0 x x 11 xx 0 we only accept td-ds Rx frames from non-wds peers in mode.
  1094. * 0 x x 01 xx 1
  1095. * 0 x x 10 xx 0
  1096. * 0 x x 00 xx 0 bad frame, won't see it
  1097. * ------------------------------------------------
  1098. */
  1099. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  1100. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  1101. rx_3addr = fr_ds ^ to_ds;
  1102. rx_4addr = fr_ds & to_ds;
  1103. if (vdev->opmode == wlan_op_mode_ap) {
  1104. if ((!peer->wds_enabled && rx_3addr && to_ds) ||
  1105. (peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1106. (peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1107. return 1;
  1108. }
  1109. } else { /* sta mode */
  1110. if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1111. (rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1112. return 1;
  1113. }
  1114. }
  1115. return 0;
  1116. }
  1117. #else
  1118. int dp_wds_rx_policy_check(
  1119. uint8_t *rx_tlv_hdr,
  1120. struct dp_vdev *vdev,
  1121. struct dp_peer *peer,
  1122. int rx_mcast
  1123. )
  1124. {
  1125. return 1;
  1126. }
  1127. #endif
  1128. /**
  1129. * dp_rx_process() - Brain of the Rx processing functionality
  1130. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1131. * @soc: core txrx main context
  1132. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1133. * @quota: No. of units (packets) that can be serviced in one shot.
  1134. *
  1135. * This function implements the core of Rx functionality. This is
  1136. * expected to handle only non-error frames.
  1137. *
  1138. * Return: uint32_t: No. of elements processed
  1139. */
  1140. uint32_t
  1141. dp_rx_process(struct dp_intr *int_ctx, void *hal_ring, uint32_t quota)
  1142. {
  1143. void *hal_soc;
  1144. void *ring_desc;
  1145. struct dp_rx_desc *rx_desc = NULL;
  1146. qdf_nbuf_t nbuf, next;
  1147. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
  1148. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
  1149. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  1150. uint32_t l2_hdr_offset = 0;
  1151. uint16_t msdu_len = 0;
  1152. uint16_t peer_id;
  1153. struct dp_peer *peer = NULL;
  1154. struct dp_vdev *vdev = NULL;
  1155. uint32_t pkt_len = 0;
  1156. struct hal_rx_mpdu_desc_info mpdu_desc_info = { 0 };
  1157. struct hal_rx_msdu_desc_info msdu_desc_info = { 0 };
  1158. enum hal_reo_error_status error;
  1159. uint32_t peer_mdata;
  1160. uint8_t *rx_tlv_hdr;
  1161. uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
  1162. uint8_t mac_id = 0;
  1163. struct dp_pdev *pdev;
  1164. struct dp_srng *dp_rxdma_srng;
  1165. struct rx_desc_pool *rx_desc_pool;
  1166. struct dp_soc *soc = int_ctx->soc;
  1167. uint8_t ring_id = 0;
  1168. uint8_t core_id = 0;
  1169. qdf_nbuf_t nbuf_head = NULL;
  1170. qdf_nbuf_t nbuf_tail = NULL;
  1171. qdf_nbuf_t deliver_list_head = NULL;
  1172. qdf_nbuf_t deliver_list_tail = NULL;
  1173. DP_HIST_INIT();
  1174. /* Debug -- Remove later */
  1175. qdf_assert(soc && hal_ring);
  1176. hal_soc = soc->hal_soc;
  1177. /* Debug -- Remove later */
  1178. qdf_assert(hal_soc);
  1179. hif_pm_runtime_mark_last_busy(soc->osdev->dev);
  1180. if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
  1181. /*
  1182. * Need API to convert from hal_ring pointer to
  1183. * Ring Type / Ring Id combo
  1184. */
  1185. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1186. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1187. FL("HAL RING Access Failed -- %pK"), hal_ring);
  1188. hal_srng_access_end(hal_soc, hal_ring);
  1189. goto done;
  1190. }
  1191. /*
  1192. * start reaping the buffers from reo ring and queue
  1193. * them in per vdev queue.
  1194. * Process the received pkts in a different per vdev loop.
  1195. */
  1196. while (qdf_likely(quota)) {
  1197. ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
  1198. /*
  1199. * in case HW has updated hp after we cached the hp
  1200. * ring_desc can be NULL even there are entries
  1201. * available in the ring. Update the cached_hp
  1202. * and reap the buffers available to read complete
  1203. * mpdu in one reap
  1204. *
  1205. * This is needed for RAW mode we have to read all
  1206. * msdus corresponding to amsdu in one reap to create
  1207. * SG list properly but due to mismatch in cached_hp
  1208. * and actual hp sometimes we are unable to read
  1209. * complete mpdu in one reap.
  1210. */
  1211. if (qdf_unlikely(!ring_desc)) {
  1212. hal_srng_access_start_unlocked(hal_soc, hal_ring);
  1213. ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
  1214. if (!ring_desc)
  1215. break;
  1216. }
  1217. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1218. ring_id = hal_srng_ring_id_get(hal_ring);
  1219. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1220. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1221. FL("HAL RING 0x%pK:error %d"), hal_ring, error);
  1222. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1223. /* Don't know how to deal with this -- assert */
  1224. qdf_assert(0);
  1225. }
  1226. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1227. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1228. qdf_assert(rx_desc);
  1229. rx_bufs_reaped[rx_desc->pool_id]++;
  1230. /* TODO */
  1231. /*
  1232. * Need a separate API for unmapping based on
  1233. * phyiscal address
  1234. */
  1235. qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
  1236. QDF_DMA_BIDIRECTIONAL);
  1237. core_id = smp_processor_id();
  1238. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  1239. /* Get MPDU DESC info */
  1240. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  1241. hal_rx_mpdu_peer_meta_data_set(qdf_nbuf_data(rx_desc->nbuf),
  1242. mpdu_desc_info.peer_meta_data);
  1243. /* Get MSDU DESC info */
  1244. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  1245. /*
  1246. * save msdu flags first, last and continuation msdu in
  1247. * nbuf->cb
  1248. */
  1249. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  1250. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  1251. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  1252. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  1253. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1254. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  1255. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1256. /*
  1257. * if continuation bit is set then we have MSDU spread
  1258. * across multiple buffers, let us not decrement quota
  1259. * till we reap all buffers of that MSDU.
  1260. */
  1261. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1262. quota -= 1;
  1263. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1264. &tail[rx_desc->pool_id],
  1265. rx_desc);
  1266. }
  1267. done:
  1268. hal_srng_access_end(hal_soc, hal_ring);
  1269. /* Update histogram statistics by looping through pdev's */
  1270. DP_RX_HIST_STATS_PER_PDEV();
  1271. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1272. /*
  1273. * continue with next mac_id if no pkts were reaped
  1274. * from that pool
  1275. */
  1276. if (!rx_bufs_reaped[mac_id])
  1277. continue;
  1278. pdev = soc->pdev_list[mac_id];
  1279. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1280. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1281. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1282. rx_desc_pool, rx_bufs_reaped[mac_id],
  1283. &head[mac_id], &tail[mac_id]);
  1284. }
  1285. /* Peer can be NULL is case of LFR */
  1286. if (qdf_likely(peer != NULL))
  1287. vdev = NULL;
  1288. /*
  1289. * BIG loop where each nbuf is dequeued from global queue,
  1290. * processed and queued back on a per vdev basis. These nbufs
  1291. * are sent to stack as and when we run out of nbufs
  1292. * or a new nbuf dequeued from global queue has a different
  1293. * vdev when compared to previous nbuf.
  1294. */
  1295. nbuf = nbuf_head;
  1296. while (nbuf) {
  1297. next = nbuf->next;
  1298. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1299. /*
  1300. * Check if DMA completed -- msdu_done is the last bit
  1301. * to be written
  1302. */
  1303. if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  1304. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1305. FL("MSDU DONE failure"));
  1306. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  1307. QDF_TRACE_LEVEL_INFO);
  1308. qdf_assert(0);
  1309. }
  1310. peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr);
  1311. peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1312. peer = dp_peer_find_by_id(soc, peer_id);
  1313. if (peer) {
  1314. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  1315. qdf_dp_trace_set_track(nbuf, QDF_RX);
  1316. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  1317. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  1318. QDF_NBUF_RX_PKT_DATA_TRACK;
  1319. }
  1320. rx_bufs_used++;
  1321. if (deliver_list_head && peer && (vdev != peer->vdev)) {
  1322. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1323. deliver_list_tail);
  1324. deliver_list_head = NULL;
  1325. deliver_list_tail = NULL;
  1326. }
  1327. if (qdf_likely(peer != NULL)) {
  1328. vdev = peer->vdev;
  1329. } else {
  1330. qdf_nbuf_free(nbuf);
  1331. nbuf = next;
  1332. continue;
  1333. }
  1334. if (qdf_unlikely(vdev == NULL)) {
  1335. qdf_nbuf_free(nbuf);
  1336. nbuf = next;
  1337. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  1338. continue;
  1339. }
  1340. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  1341. /*
  1342. * First IF condition:
  1343. * 802.11 Fragmented pkts are reinjected to REO
  1344. * HW block as SG pkts and for these pkts we only
  1345. * need to pull the RX TLVS header length.
  1346. * Second IF condition:
  1347. * The below condition happens when an MSDU is spread
  1348. * across multiple buffers. This can happen in two cases
  1349. * 1. The nbuf size is smaller then the received msdu.
  1350. * ex: we have set the nbuf size to 2048 during
  1351. * nbuf_alloc. but we received an msdu which is
  1352. * 2304 bytes in size then this msdu is spread
  1353. * across 2 nbufs.
  1354. *
  1355. * 2. AMSDUs when RAW mode is enabled.
  1356. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  1357. * across 1st nbuf and 2nd nbuf and last MSDU is
  1358. * spread across 2nd nbuf and 3rd nbuf.
  1359. *
  1360. * for these scenarios let us create a skb frag_list and
  1361. * append these buffers till the last MSDU of the AMSDU
  1362. * Third condition:
  1363. * This is the most likely case, we receive 802.3 pkts
  1364. * decapsulated by HW, here we need to set the pkt length.
  1365. */
  1366. if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf)))
  1367. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1368. else if (qdf_unlikely(vdev->rx_decap_type ==
  1369. htt_cmn_pkt_type_raw)) {
  1370. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  1371. nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
  1372. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  1373. DP_STATS_INC_PKT(peer, rx.raw, 1,
  1374. msdu_len);
  1375. next = nbuf->next;
  1376. } else {
  1377. l2_hdr_offset =
  1378. hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
  1379. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  1380. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1381. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1382. qdf_nbuf_pull_head(nbuf,
  1383. RX_PKT_TLVS_LEN +
  1384. l2_hdr_offset);
  1385. }
  1386. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer,
  1387. hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  1388. QDF_TRACE(QDF_MODULE_ID_DP,
  1389. QDF_TRACE_LEVEL_ERROR,
  1390. FL("Policy Check Drop pkt"));
  1391. /* Drop & free packet */
  1392. qdf_nbuf_free(nbuf);
  1393. /* Statistics */
  1394. nbuf = next;
  1395. continue;
  1396. }
  1397. if (qdf_unlikely(peer && peer->bss_peer)) {
  1398. QDF_TRACE(QDF_MODULE_ID_DP,
  1399. QDF_TRACE_LEVEL_ERROR,
  1400. FL("received pkt with same src MAC"));
  1401. DP_STATS_INC(vdev->pdev, dropped.mec, 1);
  1402. /* Drop & free packet */
  1403. qdf_nbuf_free(nbuf);
  1404. /* Statistics */
  1405. nbuf = next;
  1406. continue;
  1407. }
  1408. if (qdf_unlikely(peer && (peer->nawds_enabled == true) &&
  1409. (hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr)) &&
  1410. (hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) == false))) {
  1411. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  1412. qdf_nbuf_free(nbuf);
  1413. nbuf = next;
  1414. continue;
  1415. }
  1416. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  1417. dp_set_rx_queue(nbuf, ring_id);
  1418. /*
  1419. * HW structures call this L3 header padding --
  1420. * even though this is actually the offset from
  1421. * the buffer beginning where the L2 header
  1422. * begins.
  1423. */
  1424. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1425. FL("rxhash: flow id toeplitz: 0x%x\n"),
  1426. hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
  1427. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer, ring_id);
  1428. if (qdf_unlikely(vdev->mesh_vdev)) {
  1429. if (dp_rx_filter_mesh_packets(vdev, nbuf,
  1430. rx_tlv_hdr)
  1431. == QDF_STATUS_SUCCESS) {
  1432. QDF_TRACE(QDF_MODULE_ID_DP,
  1433. QDF_TRACE_LEVEL_INFO_MED,
  1434. FL("mesh pkt filtered"));
  1435. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  1436. 1);
  1437. qdf_nbuf_free(nbuf);
  1438. nbuf = next;
  1439. continue;
  1440. }
  1441. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  1442. }
  1443. #ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
  1444. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1445. "p_id %d msdu_len %d hdr_off %d",
  1446. peer_id, msdu_len, l2_hdr_offset);
  1447. print_hex_dump(KERN_ERR,
  1448. "\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
  1449. qdf_nbuf_data(nbuf), 128, false);
  1450. #endif /* NAPIER_EMULATION */
  1451. if (qdf_likely(vdev->rx_decap_type ==
  1452. htt_cmn_pkt_type_ethernet) &&
  1453. (qdf_likely(!vdev->mesh_vdev))) {
  1454. /* WDS Source Port Learning */
  1455. dp_rx_wds_srcport_learn(soc,
  1456. rx_tlv_hdr,
  1457. peer,
  1458. nbuf);
  1459. /* Intrabss-fwd */
  1460. if (dp_rx_check_ap_bridge(vdev))
  1461. if (dp_rx_intrabss_fwd(soc,
  1462. peer,
  1463. rx_tlv_hdr,
  1464. nbuf)) {
  1465. nbuf = next;
  1466. continue; /* Get next desc */
  1467. }
  1468. }
  1469. dp_rx_lro(rx_tlv_hdr, peer, nbuf, int_ctx->lro_ctx);
  1470. DP_RX_LIST_APPEND(deliver_list_head,
  1471. deliver_list_tail,
  1472. nbuf);
  1473. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  1474. qdf_nbuf_len(nbuf));
  1475. nbuf = next;
  1476. }
  1477. if (deliver_list_head)
  1478. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1479. deliver_list_tail);
  1480. return rx_bufs_used; /* Assume no scale factor for now */
  1481. }
  1482. /**
  1483. * dp_rx_detach() - detach dp rx
  1484. * @pdev: core txrx pdev context
  1485. *
  1486. * This function will detach DP RX into main device context
  1487. * will free DP Rx resources.
  1488. *
  1489. * Return: void
  1490. */
  1491. void
  1492. dp_rx_pdev_detach(struct dp_pdev *pdev)
  1493. {
  1494. uint8_t pdev_id = pdev->pdev_id;
  1495. struct dp_soc *soc = pdev->soc;
  1496. struct rx_desc_pool *rx_desc_pool;
  1497. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1498. if (rx_desc_pool->pool_size != 0) {
  1499. dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
  1500. }
  1501. return;
  1502. }
  1503. /**
  1504. * dp_rx_attach() - attach DP RX
  1505. * @pdev: core txrx pdev context
  1506. *
  1507. * This function will attach a DP RX instance into the main
  1508. * device (SOC) context. Will allocate dp rx resource and
  1509. * initialize resources.
  1510. *
  1511. * Return: QDF_STATUS_SUCCESS: success
  1512. * QDF_STATUS_E_RESOURCES: Error return
  1513. */
  1514. QDF_STATUS
  1515. dp_rx_pdev_attach(struct dp_pdev *pdev)
  1516. {
  1517. uint8_t pdev_id = pdev->pdev_id;
  1518. struct dp_soc *soc = pdev->soc;
  1519. struct dp_srng rxdma_srng;
  1520. uint32_t rxdma_entries;
  1521. union dp_rx_desc_list_elem_t *desc_list = NULL;
  1522. union dp_rx_desc_list_elem_t *tail = NULL;
  1523. struct dp_srng *dp_rxdma_srng;
  1524. struct rx_desc_pool *rx_desc_pool;
  1525. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  1526. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1527. "nss-wifi<4> skip Rx refil %d", pdev_id);
  1528. return QDF_STATUS_SUCCESS;
  1529. }
  1530. pdev = soc->pdev_list[pdev_id];
  1531. rxdma_srng = pdev->rx_refill_buf_ring;
  1532. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  1533. rxdma_entries = rxdma_srng.alloc_size/hal_srng_get_entrysize(
  1534. soc->hal_soc, RXDMA_BUF);
  1535. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1536. dp_rx_desc_pool_alloc(soc, pdev_id, rxdma_entries*3, rx_desc_pool);
  1537. rx_desc_pool->owner = DP_WBM2SW_RBM;
  1538. /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
  1539. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1540. dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool,
  1541. 0, &desc_list, &tail);
  1542. return QDF_STATUS_SUCCESS;
  1543. }
  1544. /*
  1545. * dp_rx_nbuf_prepare() - prepare RX nbuf
  1546. * @soc: core txrx main context
  1547. * @pdev: core txrx pdev context
  1548. *
  1549. * This function alloc & map nbuf for RX dma usage, retry it if failed
  1550. * until retry times reaches max threshold or succeeded.
  1551. *
  1552. * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
  1553. */
  1554. qdf_nbuf_t
  1555. dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
  1556. {
  1557. uint8_t *buf;
  1558. int32_t nbuf_retry_count;
  1559. QDF_STATUS ret;
  1560. qdf_nbuf_t nbuf = NULL;
  1561. for (nbuf_retry_count = 0; nbuf_retry_count <
  1562. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
  1563. nbuf_retry_count++) {
  1564. /* Allocate a new skb */
  1565. nbuf = qdf_nbuf_alloc(soc->osdev,
  1566. RX_BUFFER_SIZE,
  1567. RX_BUFFER_RESERVATION,
  1568. RX_BUFFER_ALIGNMENT,
  1569. FALSE);
  1570. if (nbuf == NULL) {
  1571. DP_STATS_INC(pdev,
  1572. replenish.nbuf_alloc_fail, 1);
  1573. continue;
  1574. }
  1575. buf = qdf_nbuf_data(nbuf);
  1576. memset(buf, 0, RX_BUFFER_SIZE);
  1577. ret = qdf_nbuf_map_single(soc->osdev, nbuf,
  1578. QDF_DMA_BIDIRECTIONAL);
  1579. /* nbuf map failed */
  1580. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  1581. qdf_nbuf_free(nbuf);
  1582. DP_STATS_INC(pdev, replenish.map_err, 1);
  1583. continue;
  1584. }
  1585. /* qdf_nbuf alloc and map succeeded */
  1586. break;
  1587. }
  1588. /* qdf_nbuf still alloc or map failed */
  1589. if (qdf_unlikely(nbuf_retry_count >=
  1590. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
  1591. return NULL;
  1592. return nbuf;
  1593. }