dp_rx.c 79 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866
  1. /*
  2. * Copyright (c) 2016-2022 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "dp_types.h"
  21. #include "dp_rx.h"
  22. #include "dp_tx.h"
  23. #include "dp_peer.h"
  24. #include "hal_rx.h"
  25. #include "hal_api.h"
  26. #include "qdf_nbuf.h"
  27. #ifdef MESH_MODE_SUPPORT
  28. #include "if_meta_hdr.h"
  29. #endif
  30. #include "dp_internal.h"
  31. #include "dp_ipa.h"
  32. #include "dp_hist.h"
  33. #include "dp_rx_buffer_pool.h"
  34. #ifdef WIFI_MONITOR_SUPPORT
  35. #include "dp_htt.h"
  36. #include <dp_mon.h>
  37. #endif
  38. #ifdef FEATURE_WDS
  39. #include "dp_txrx_wds.h"
  40. #endif
  41. #ifdef DUP_RX_DESC_WAR
  42. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  43. hal_ring_handle_t hal_ring,
  44. hal_ring_desc_t ring_desc,
  45. struct dp_rx_desc *rx_desc)
  46. {
  47. void *hal_soc = soc->hal_soc;
  48. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  49. dp_rx_desc_dump(rx_desc);
  50. }
  51. #else
  52. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  53. hal_ring_handle_t hal_ring_hdl,
  54. hal_ring_desc_t ring_desc,
  55. struct dp_rx_desc *rx_desc)
  56. {
  57. hal_soc_handle_t hal_soc = soc->hal_soc;
  58. dp_rx_desc_dump(rx_desc);
  59. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  60. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  61. qdf_assert_always(0);
  62. }
  63. #endif
  64. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  65. #ifdef RX_DESC_SANITY_WAR
  66. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  67. hal_ring_handle_t hal_ring_hdl,
  68. hal_ring_desc_t ring_desc,
  69. struct dp_rx_desc *rx_desc)
  70. {
  71. uint8_t return_buffer_manager;
  72. if (qdf_unlikely(!rx_desc)) {
  73. /*
  74. * This is an unlikely case where the cookie obtained
  75. * from the ring_desc is invalid and hence we are not
  76. * able to find the corresponding rx_desc
  77. */
  78. goto fail;
  79. }
  80. return_buffer_manager = hal_rx_ret_buf_manager_get(hal_soc, ring_desc);
  81. if (qdf_unlikely(!(return_buffer_manager ==
  82. HAL_RX_BUF_RBM_SW1_BM(soc->wbm_sw0_bm_id) ||
  83. return_buffer_manager ==
  84. HAL_RX_BUF_RBM_SW3_BM(soc->wbm_sw0_bm_id)))) {
  85. goto fail;
  86. }
  87. return QDF_STATUS_SUCCESS;
  88. fail:
  89. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  90. dp_err("Ring Desc:");
  91. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  92. ring_desc);
  93. return QDF_STATUS_E_NULL_VALUE;
  94. }
  95. #endif
  96. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  97. /**
  98. * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
  99. *
  100. * @dp_soc: struct dp_soc *
  101. * @nbuf_frag_info_t: nbuf frag info
  102. * @dp_pdev: struct dp_pdev *
  103. * @rx_desc_pool: Rx desc pool
  104. *
  105. * Return: QDF_STATUS
  106. */
  107. #ifdef DP_RX_MON_MEM_FRAG
  108. static inline QDF_STATUS
  109. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  110. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  111. struct dp_pdev *dp_pdev,
  112. struct rx_desc_pool *rx_desc_pool)
  113. {
  114. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  115. (nbuf_frag_info_t->virt_addr).vaddr =
  116. qdf_frag_alloc(rx_desc_pool->buf_size);
  117. if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
  118. dp_err("Frag alloc failed");
  119. DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
  120. return QDF_STATUS_E_NOMEM;
  121. }
  122. ret = qdf_mem_map_page(dp_soc->osdev,
  123. (nbuf_frag_info_t->virt_addr).vaddr,
  124. QDF_DMA_FROM_DEVICE,
  125. rx_desc_pool->buf_size,
  126. &nbuf_frag_info_t->paddr);
  127. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  128. qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
  129. dp_err("Frag map failed");
  130. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  131. return QDF_STATUS_E_FAULT;
  132. }
  133. return QDF_STATUS_SUCCESS;
  134. }
  135. #else
  136. static inline QDF_STATUS
  137. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  138. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  139. struct dp_pdev *dp_pdev,
  140. struct rx_desc_pool *rx_desc_pool)
  141. {
  142. return QDF_STATUS_SUCCESS;
  143. }
  144. #endif /* DP_RX_MON_MEM_FRAG */
  145. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  146. /**
  147. * dp_rx_refill_ring_record_entry() - Record an entry into refill_ring history
  148. * @soc: Datapath soc structure
  149. * @ring_num: Refill ring number
  150. * @num_req: number of buffers requested for refill
  151. * @num_refill: number of buffers refilled
  152. *
  153. * Returns: None
  154. */
  155. static inline void
  156. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  157. hal_ring_handle_t hal_ring_hdl,
  158. uint32_t num_req, uint32_t num_refill)
  159. {
  160. struct dp_refill_info_record *record;
  161. uint32_t idx;
  162. uint32_t tp;
  163. uint32_t hp;
  164. if (qdf_unlikely(ring_num >= MAX_PDEV_CNT ||
  165. !soc->rx_refill_ring_history[ring_num]))
  166. return;
  167. idx = dp_history_get_next_index(&soc->rx_refill_ring_history[ring_num]->index,
  168. DP_RX_REFILL_HIST_MAX);
  169. /* No NULL check needed for record since its an array */
  170. record = &soc->rx_refill_ring_history[ring_num]->entry[idx];
  171. hal_get_sw_hptp(soc->hal_soc, hal_ring_hdl, &tp, &hp);
  172. record->timestamp = qdf_get_log_timestamp();
  173. record->num_req = num_req;
  174. record->num_refill = num_refill;
  175. record->hp = hp;
  176. record->tp = tp;
  177. }
  178. #else
  179. static inline void
  180. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  181. hal_ring_handle_t hal_ring_hdl,
  182. uint32_t num_req, uint32_t num_refill)
  183. {
  184. }
  185. #endif
  186. /**
  187. * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
  188. *
  189. * @dp_soc: struct dp_soc *
  190. * @mac_id: Mac id
  191. * @num_entries_avail: num_entries_avail
  192. * @nbuf_frag_info_t: nbuf frag info
  193. * @dp_pdev: struct dp_pdev *
  194. * @rx_desc_pool: Rx desc pool
  195. *
  196. * Return: QDF_STATUS
  197. */
  198. static inline QDF_STATUS
  199. dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
  200. uint32_t mac_id,
  201. uint32_t num_entries_avail,
  202. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  203. struct dp_pdev *dp_pdev,
  204. struct rx_desc_pool *rx_desc_pool)
  205. {
  206. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  207. (nbuf_frag_info_t->virt_addr).nbuf =
  208. dp_rx_buffer_pool_nbuf_alloc(dp_soc,
  209. mac_id,
  210. rx_desc_pool,
  211. num_entries_avail);
  212. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  213. dp_err("nbuf alloc failed");
  214. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  215. return QDF_STATUS_E_NOMEM;
  216. }
  217. ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
  218. nbuf_frag_info_t);
  219. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  220. dp_rx_buffer_pool_nbuf_free(dp_soc,
  221. (nbuf_frag_info_t->virt_addr).nbuf, mac_id);
  222. dp_err("nbuf map failed");
  223. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  224. return QDF_STATUS_E_FAULT;
  225. }
  226. nbuf_frag_info_t->paddr =
  227. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  228. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc,
  229. (qdf_nbuf_t)((nbuf_frag_info_t->virt_addr).nbuf),
  230. rx_desc_pool->buf_size,
  231. true);
  232. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  233. &nbuf_frag_info_t->paddr,
  234. rx_desc_pool);
  235. if (ret == QDF_STATUS_E_FAILURE) {
  236. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  237. return QDF_STATUS_E_ADDRNOTAVAIL;
  238. }
  239. return QDF_STATUS_SUCCESS;
  240. }
  241. #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
  242. QDF_STATUS
  243. __dp_rx_buffers_no_map_lt_replenish(struct dp_soc *soc, uint32_t mac_id,
  244. struct dp_srng *dp_rxdma_srng,
  245. struct rx_desc_pool *rx_desc_pool)
  246. {
  247. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  248. uint32_t count;
  249. void *rxdma_ring_entry;
  250. union dp_rx_desc_list_elem_t *next = NULL;
  251. void *rxdma_srng;
  252. qdf_nbuf_t nbuf;
  253. qdf_dma_addr_t paddr;
  254. uint16_t num_entries_avail = 0;
  255. uint16_t num_alloc_desc = 0;
  256. union dp_rx_desc_list_elem_t *desc_list = NULL;
  257. union dp_rx_desc_list_elem_t *tail = NULL;
  258. int sync_hw_ptr = 0;
  259. rxdma_srng = dp_rxdma_srng->hal_srng;
  260. if (qdf_unlikely(!dp_pdev)) {
  261. dp_rx_err("%pK: pdev is null for mac_id = %d", soc, mac_id);
  262. return QDF_STATUS_E_FAILURE;
  263. }
  264. if (qdf_unlikely(!rxdma_srng)) {
  265. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  266. return QDF_STATUS_E_FAILURE;
  267. }
  268. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  269. num_entries_avail = hal_srng_src_num_avail(soc->hal_soc,
  270. rxdma_srng,
  271. sync_hw_ptr);
  272. dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
  273. soc, num_entries_avail);
  274. if (qdf_unlikely(num_entries_avail <
  275. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  276. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  277. return QDF_STATUS_E_FAILURE;
  278. }
  279. DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1);
  280. num_alloc_desc = dp_rx_get_free_desc_list(soc, mac_id,
  281. rx_desc_pool,
  282. num_entries_avail,
  283. &desc_list,
  284. &tail);
  285. if (!num_alloc_desc) {
  286. dp_rx_err("%pK: no free rx_descs in freelist", soc);
  287. DP_STATS_INC(dp_pdev, err.desc_lt_alloc_fail,
  288. num_entries_avail);
  289. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  290. return QDF_STATUS_E_NOMEM;
  291. }
  292. for (count = 0; count < num_alloc_desc; count++) {
  293. next = desc_list->next;
  294. qdf_prefetch(next);
  295. nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
  296. if (qdf_unlikely(!nbuf)) {
  297. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  298. break;
  299. }
  300. paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
  301. rx_desc_pool->buf_size);
  302. rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc,
  303. rxdma_srng);
  304. qdf_assert_always(rxdma_ring_entry);
  305. desc_list->rx_desc.nbuf = nbuf;
  306. desc_list->rx_desc.rx_buf_start = nbuf->data;
  307. desc_list->rx_desc.unmapped = 0;
  308. /* rx_desc.in_use should be zero at this time*/
  309. qdf_assert_always(desc_list->rx_desc.in_use == 0);
  310. desc_list->rx_desc.in_use = 1;
  311. desc_list->rx_desc.in_err_state = 0;
  312. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  313. paddr,
  314. desc_list->rx_desc.cookie,
  315. rx_desc_pool->owner);
  316. desc_list = next;
  317. }
  318. qdf_dsb();
  319. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  320. /* No need to count the number of bytes received during replenish.
  321. * Therefore set replenish.pkts.bytes as 0.
  322. */
  323. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  324. DP_STATS_INC(dp_pdev, buf_freelist, (num_alloc_desc - count));
  325. /*
  326. * add any available free desc back to the free list
  327. */
  328. if (desc_list)
  329. dp_rx_add_desc_list_to_free_list(soc, &desc_list, &tail,
  330. mac_id, rx_desc_pool);
  331. return QDF_STATUS_SUCCESS;
  332. }
  333. QDF_STATUS
  334. __dp_rx_buffers_no_map_replenish(struct dp_soc *soc, uint32_t mac_id,
  335. struct dp_srng *dp_rxdma_srng,
  336. struct rx_desc_pool *rx_desc_pool,
  337. uint32_t num_req_buffers,
  338. union dp_rx_desc_list_elem_t **desc_list,
  339. union dp_rx_desc_list_elem_t **tail)
  340. {
  341. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  342. uint32_t count;
  343. void *rxdma_ring_entry;
  344. union dp_rx_desc_list_elem_t *next;
  345. void *rxdma_srng;
  346. qdf_nbuf_t nbuf;
  347. qdf_dma_addr_t paddr;
  348. rxdma_srng = dp_rxdma_srng->hal_srng;
  349. if (qdf_unlikely(!dp_pdev)) {
  350. dp_rx_err("%pK: pdev is null for mac_id = %d",
  351. soc, mac_id);
  352. return QDF_STATUS_E_FAILURE;
  353. }
  354. if (qdf_unlikely(!rxdma_srng)) {
  355. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  356. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  357. return QDF_STATUS_E_FAILURE;
  358. }
  359. dp_rx_debug("%pK: requested %d buffers for replenish",
  360. soc, num_req_buffers);
  361. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  362. for (count = 0; count < num_req_buffers; count++) {
  363. next = (*desc_list)->next;
  364. qdf_prefetch(next);
  365. nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
  366. if (qdf_unlikely(!nbuf)) {
  367. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  368. break;
  369. }
  370. paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
  371. rx_desc_pool->buf_size);
  372. rxdma_ring_entry = (struct dp_buffer_addr_info *)
  373. hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
  374. if (!rxdma_ring_entry)
  375. break;
  376. qdf_assert_always(rxdma_ring_entry);
  377. (*desc_list)->rx_desc.nbuf = nbuf;
  378. (*desc_list)->rx_desc.rx_buf_start = nbuf->data;
  379. (*desc_list)->rx_desc.unmapped = 0;
  380. /* rx_desc.in_use should be zero at this time*/
  381. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  382. (*desc_list)->rx_desc.in_use = 1;
  383. (*desc_list)->rx_desc.in_err_state = 0;
  384. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  385. paddr,
  386. (*desc_list)->rx_desc.cookie,
  387. rx_desc_pool->owner);
  388. *desc_list = next;
  389. }
  390. qdf_dsb();
  391. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  392. /* No need to count the number of bytes received during replenish.
  393. * Therefore set replenish.pkts.bytes as 0.
  394. */
  395. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  396. DP_STATS_INC(dp_pdev, buf_freelist, (num_req_buffers - count));
  397. /*
  398. * add any available free desc back to the free list
  399. */
  400. if (*desc_list)
  401. dp_rx_add_desc_list_to_free_list(soc, desc_list, tail,
  402. mac_id, rx_desc_pool);
  403. return QDF_STATUS_SUCCESS;
  404. }
  405. QDF_STATUS __dp_pdev_rx_buffers_no_map_attach(struct dp_soc *soc,
  406. uint32_t mac_id,
  407. struct dp_srng *dp_rxdma_srng,
  408. struct rx_desc_pool *rx_desc_pool,
  409. uint32_t num_req_buffers)
  410. {
  411. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  412. uint32_t count;
  413. uint32_t nr_descs = 0;
  414. void *rxdma_ring_entry;
  415. union dp_rx_desc_list_elem_t *next;
  416. void *rxdma_srng;
  417. qdf_nbuf_t nbuf;
  418. qdf_dma_addr_t paddr;
  419. union dp_rx_desc_list_elem_t *desc_list = NULL;
  420. union dp_rx_desc_list_elem_t *tail = NULL;
  421. rxdma_srng = dp_rxdma_srng->hal_srng;
  422. if (qdf_unlikely(!dp_pdev)) {
  423. dp_rx_err("%pK: pdev is null for mac_id = %d",
  424. soc, mac_id);
  425. return QDF_STATUS_E_FAILURE;
  426. }
  427. if (qdf_unlikely(!rxdma_srng)) {
  428. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  429. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  430. return QDF_STATUS_E_FAILURE;
  431. }
  432. dp_rx_debug("%pK: requested %d buffers for replenish",
  433. soc, num_req_buffers);
  434. nr_descs = dp_rx_get_free_desc_list(soc, mac_id, rx_desc_pool,
  435. num_req_buffers, &desc_list, &tail);
  436. if (!nr_descs) {
  437. dp_err("no free rx_descs in freelist");
  438. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  439. return QDF_STATUS_E_NOMEM;
  440. }
  441. dp_debug("got %u RX descs for driver attach", nr_descs);
  442. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  443. for (count = 0; count < nr_descs; count++) {
  444. next = desc_list->next;
  445. qdf_prefetch(next);
  446. nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
  447. if (qdf_unlikely(!nbuf)) {
  448. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  449. break;
  450. }
  451. paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
  452. rx_desc_pool->buf_size);
  453. rxdma_ring_entry = (struct dp_buffer_addr_info *)
  454. hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
  455. if (!rxdma_ring_entry)
  456. break;
  457. qdf_assert_always(rxdma_ring_entry);
  458. desc_list->rx_desc.nbuf = nbuf;
  459. desc_list->rx_desc.rx_buf_start = nbuf->data;
  460. desc_list->rx_desc.unmapped = 0;
  461. /* rx_desc.in_use should be zero at this time*/
  462. qdf_assert_always(desc_list->rx_desc.in_use == 0);
  463. desc_list->rx_desc.in_use = 1;
  464. desc_list->rx_desc.in_err_state = 0;
  465. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  466. paddr,
  467. desc_list->rx_desc.cookie,
  468. rx_desc_pool->owner);
  469. desc_list = next;
  470. }
  471. qdf_dsb();
  472. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  473. /* No need to count the number of bytes received during replenish.
  474. * Therefore set replenish.pkts.bytes as 0.
  475. */
  476. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  477. return QDF_STATUS_SUCCESS;
  478. }
  479. #endif
  480. /*
  481. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  482. * called during dp rx initialization
  483. * and at the end of dp_rx_process.
  484. *
  485. * @soc: core txrx main context
  486. * @mac_id: mac_id which is one of 3 mac_ids
  487. * @dp_rxdma_srng: dp rxdma circular ring
  488. * @rx_desc_pool: Pointer to free Rx descriptor pool
  489. * @num_req_buffers: number of buffer to be replenished
  490. * @desc_list: list of descs if called from dp_rx_process
  491. * or NULL during dp rx initialization or out of buffer
  492. * interrupt.
  493. * @tail: tail of descs list
  494. * @func_name: name of the caller function
  495. * Return: return success or failure
  496. */
  497. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  498. struct dp_srng *dp_rxdma_srng,
  499. struct rx_desc_pool *rx_desc_pool,
  500. uint32_t num_req_buffers,
  501. union dp_rx_desc_list_elem_t **desc_list,
  502. union dp_rx_desc_list_elem_t **tail,
  503. const char *func_name)
  504. {
  505. uint32_t num_alloc_desc;
  506. uint16_t num_desc_to_free = 0;
  507. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  508. uint32_t num_entries_avail;
  509. uint32_t count;
  510. int sync_hw_ptr = 1;
  511. struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
  512. void *rxdma_ring_entry;
  513. union dp_rx_desc_list_elem_t *next;
  514. QDF_STATUS ret;
  515. void *rxdma_srng;
  516. rxdma_srng = dp_rxdma_srng->hal_srng;
  517. if (qdf_unlikely(!dp_pdev)) {
  518. dp_rx_err("%pK: pdev is null for mac_id = %d",
  519. dp_soc, mac_id);
  520. return QDF_STATUS_E_FAILURE;
  521. }
  522. if (qdf_unlikely(!rxdma_srng)) {
  523. dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
  524. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  525. return QDF_STATUS_E_FAILURE;
  526. }
  527. dp_rx_debug("%pK: requested %d buffers for replenish",
  528. dp_soc, num_req_buffers);
  529. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  530. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  531. rxdma_srng,
  532. sync_hw_ptr);
  533. dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
  534. dp_soc, num_entries_avail);
  535. if (!(*desc_list) && (num_entries_avail >
  536. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  537. num_req_buffers = num_entries_avail;
  538. } else if (num_entries_avail < num_req_buffers) {
  539. num_desc_to_free = num_req_buffers - num_entries_avail;
  540. num_req_buffers = num_entries_avail;
  541. }
  542. if (qdf_unlikely(!num_req_buffers)) {
  543. num_desc_to_free = num_req_buffers;
  544. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  545. goto free_descs;
  546. }
  547. /*
  548. * if desc_list is NULL, allocate the descs from freelist
  549. */
  550. if (!(*desc_list)) {
  551. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  552. rx_desc_pool,
  553. num_req_buffers,
  554. desc_list,
  555. tail);
  556. if (!num_alloc_desc) {
  557. dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
  558. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  559. num_req_buffers);
  560. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  561. return QDF_STATUS_E_NOMEM;
  562. }
  563. dp_rx_debug("%pK: %d rx desc allocated", dp_soc, num_alloc_desc);
  564. num_req_buffers = num_alloc_desc;
  565. }
  566. count = 0;
  567. while (count < num_req_buffers) {
  568. /* Flag is set while pdev rx_desc_pool initialization */
  569. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  570. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  571. &nbuf_frag_info,
  572. dp_pdev,
  573. rx_desc_pool);
  574. else
  575. ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
  576. mac_id,
  577. num_entries_avail, &nbuf_frag_info,
  578. dp_pdev, rx_desc_pool);
  579. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  580. if (qdf_unlikely(ret == QDF_STATUS_E_FAULT))
  581. continue;
  582. break;
  583. }
  584. count++;
  585. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  586. rxdma_srng);
  587. qdf_assert_always(rxdma_ring_entry);
  588. next = (*desc_list)->next;
  589. /* Flag is set while pdev rx_desc_pool initialization */
  590. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  591. dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
  592. &nbuf_frag_info);
  593. else
  594. dp_rx_desc_prep(&((*desc_list)->rx_desc),
  595. &nbuf_frag_info);
  596. /* rx_desc.in_use should be zero at this time*/
  597. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  598. (*desc_list)->rx_desc.in_use = 1;
  599. (*desc_list)->rx_desc.in_err_state = 0;
  600. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  601. func_name, RX_DESC_REPLENISHED);
  602. dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
  603. nbuf_frag_info.virt_addr.nbuf,
  604. (unsigned long long)(nbuf_frag_info.paddr),
  605. (*desc_list)->rx_desc.cookie);
  606. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc, rxdma_ring_entry,
  607. nbuf_frag_info.paddr,
  608. (*desc_list)->rx_desc.cookie,
  609. rx_desc_pool->owner);
  610. *desc_list = next;
  611. }
  612. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id, rxdma_srng,
  613. num_req_buffers, count);
  614. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  615. dp_rx_schedule_refill_thread(dp_soc);
  616. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  617. count, num_desc_to_free);
  618. /* No need to count the number of bytes received during replenish.
  619. * Therefore set replenish.pkts.bytes as 0.
  620. */
  621. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  622. free_descs:
  623. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  624. /*
  625. * add any available free desc back to the free list
  626. */
  627. if (*desc_list)
  628. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  629. mac_id, rx_desc_pool);
  630. return QDF_STATUS_SUCCESS;
  631. }
  632. qdf_export_symbol(__dp_rx_buffers_replenish);
  633. /*
  634. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  635. * pkts to RAW mode simulation to
  636. * decapsulate the pkt.
  637. *
  638. * @vdev: vdev on which RAW mode is enabled
  639. * @nbuf_list: list of RAW pkts to process
  640. * @peer: peer object from which the pkt is rx
  641. *
  642. * Return: void
  643. */
  644. void
  645. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  646. struct dp_peer *peer)
  647. {
  648. qdf_nbuf_t deliver_list_head = NULL;
  649. qdf_nbuf_t deliver_list_tail = NULL;
  650. qdf_nbuf_t nbuf;
  651. nbuf = nbuf_list;
  652. while (nbuf) {
  653. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  654. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  655. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  656. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  657. /*
  658. * reset the chfrag_start and chfrag_end bits in nbuf cb
  659. * as this is a non-amsdu pkt and RAW mode simulation expects
  660. * these bit s to be 0 for non-amsdu pkt.
  661. */
  662. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  663. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  664. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  665. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  666. }
  667. nbuf = next;
  668. }
  669. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  670. &deliver_list_tail, peer->mac_addr.raw);
  671. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  672. }
  673. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  674. #ifndef FEATURE_WDS
  675. void dp_rx_da_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr,
  676. struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  677. {
  678. }
  679. #endif
  680. /*
  681. * dp_rx_intrabss_mcbc_fwd() - Does intrabss forward for mcast packets
  682. *
  683. * @soc: core txrx main context
  684. * @ta_peer : source peer entry
  685. * @rx_tlv_hdr : start address of rx tlvs
  686. * @nbuf : nbuf that has to be intrabss forwarded
  687. * @tid_stats : tid stats pointer
  688. *
  689. * Return: bool: true if it is forwarded else false
  690. */
  691. bool dp_rx_intrabss_mcbc_fwd(struct dp_soc *soc, struct dp_peer *ta_peer,
  692. uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
  693. struct cdp_tid_rx_stats *tid_stats)
  694. {
  695. uint16_t len;
  696. qdf_nbuf_t nbuf_copy;
  697. if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr,
  698. nbuf))
  699. return true;
  700. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  701. return false;
  702. /* If the source peer in the isolation list
  703. * then dont forward instead push to bridge stack
  704. */
  705. if (dp_get_peer_isolation(ta_peer))
  706. return false;
  707. nbuf_copy = qdf_nbuf_copy(nbuf);
  708. if (!nbuf_copy)
  709. return false;
  710. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  711. qdf_nbuf_set_tx_fctx_type(nbuf_copy, &ta_peer->peer_id,
  712. CB_FTYPE_INTRABSS_FWD);
  713. if (dp_tx_send((struct cdp_soc_t *)soc,
  714. ta_peer->vdev->vdev_id, nbuf_copy)) {
  715. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  716. tid_stats->fail_cnt[INTRABSS_DROP]++;
  717. qdf_nbuf_free(nbuf_copy);
  718. } else {
  719. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  720. tid_stats->intrabss_cnt++;
  721. }
  722. return false;
  723. }
  724. /*
  725. * dp_rx_intrabss_ucast_fwd() - Does intrabss forward for unicast packets
  726. *
  727. * @soc: core txrx main context
  728. * @ta_peer: source peer entry
  729. * @tx_vdev_id: VDEV ID for Intra-BSS TX
  730. * @rx_tlv_hdr: start address of rx tlvs
  731. * @nbuf: nbuf that has to be intrabss forwarded
  732. * @tid_stats: tid stats pointer
  733. *
  734. * Return: bool: true if it is forwarded else false
  735. */
  736. bool dp_rx_intrabss_ucast_fwd(struct dp_soc *soc, struct dp_peer *ta_peer,
  737. uint8_t tx_vdev_id,
  738. uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
  739. struct cdp_tid_rx_stats *tid_stats)
  740. {
  741. uint16_t len;
  742. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  743. /* linearize the nbuf just before we send to
  744. * dp_tx_send()
  745. */
  746. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  747. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  748. return false;
  749. nbuf = qdf_nbuf_unshare(nbuf);
  750. if (!nbuf) {
  751. DP_STATS_INC_PKT(ta_peer,
  752. rx.intra_bss.fail, 1, len);
  753. /* return true even though the pkt is
  754. * not forwarded. Basically skb_unshare
  755. * failed and we want to continue with
  756. * next nbuf.
  757. */
  758. tid_stats->fail_cnt[INTRABSS_DROP]++;
  759. return false;
  760. }
  761. }
  762. if (!dp_tx_send((struct cdp_soc_t *)soc,
  763. tx_vdev_id, nbuf)) {
  764. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  765. len);
  766. } else {
  767. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  768. len);
  769. tid_stats->fail_cnt[INTRABSS_DROP]++;
  770. return false;
  771. }
  772. return true;
  773. }
  774. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  775. #ifdef MESH_MODE_SUPPORT
  776. /**
  777. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  778. *
  779. * @vdev: DP Virtual device handle
  780. * @nbuf: Buffer pointer
  781. * @rx_tlv_hdr: start of rx tlv header
  782. * @peer: pointer to peer
  783. *
  784. * This function allocated memory for mesh receive stats and fill the
  785. * required stats. Stores the memory address in skb cb.
  786. *
  787. * Return: void
  788. */
  789. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  790. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  791. {
  792. struct mesh_recv_hdr_s *rx_info = NULL;
  793. uint32_t pkt_type;
  794. uint32_t nss;
  795. uint32_t rate_mcs;
  796. uint32_t bw;
  797. uint8_t primary_chan_num;
  798. uint32_t center_chan_freq;
  799. struct dp_soc *soc = vdev->pdev->soc;
  800. /* fill recv mesh stats */
  801. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  802. /* upper layers are resposible to free this memory */
  803. if (!rx_info) {
  804. dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
  805. vdev->pdev->soc);
  806. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  807. return;
  808. }
  809. rx_info->rs_flags = MESH_RXHDR_VER1;
  810. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  811. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  812. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  813. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  814. if (hal_rx_tlv_get_is_decrypted(soc->hal_soc, rx_tlv_hdr)) {
  815. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  816. rx_info->rs_keyix = hal_rx_msdu_get_keyid(soc->hal_soc,
  817. rx_tlv_hdr);
  818. if (vdev->osif_get_key)
  819. vdev->osif_get_key(vdev->osif_vdev,
  820. &rx_info->rs_decryptkey[0],
  821. &peer->mac_addr.raw[0],
  822. rx_info->rs_keyix);
  823. }
  824. rx_info->rs_snr = peer->stats.rx.snr;
  825. rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
  826. soc = vdev->pdev->soc;
  827. primary_chan_num = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr);
  828. center_chan_freq = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr) >> 16;
  829. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  830. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  831. soc->ctrl_psoc,
  832. vdev->pdev->pdev_id,
  833. center_chan_freq);
  834. }
  835. rx_info->rs_channel = primary_chan_num;
  836. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  837. rate_mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  838. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  839. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  840. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  841. (bw << 24);
  842. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  843. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  844. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
  845. rx_info->rs_flags,
  846. rx_info->rs_rssi,
  847. rx_info->rs_channel,
  848. rx_info->rs_ratephy1,
  849. rx_info->rs_keyix,
  850. rx_info->rs_snr);
  851. }
  852. /**
  853. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  854. *
  855. * @vdev: DP Virtual device handle
  856. * @nbuf: Buffer pointer
  857. * @rx_tlv_hdr: start of rx tlv header
  858. *
  859. * This checks if the received packet is matching any filter out
  860. * catogery and and drop the packet if it matches.
  861. *
  862. * Return: status(0 indicates drop, 1 indicate to no drop)
  863. */
  864. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  865. uint8_t *rx_tlv_hdr)
  866. {
  867. union dp_align_mac_addr mac_addr;
  868. struct dp_soc *soc = vdev->pdev->soc;
  869. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  870. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  871. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  872. rx_tlv_hdr))
  873. return QDF_STATUS_SUCCESS;
  874. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  875. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  876. rx_tlv_hdr))
  877. return QDF_STATUS_SUCCESS;
  878. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  879. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  880. rx_tlv_hdr) &&
  881. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  882. rx_tlv_hdr))
  883. return QDF_STATUS_SUCCESS;
  884. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  885. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  886. rx_tlv_hdr,
  887. &mac_addr.raw[0]))
  888. return QDF_STATUS_E_FAILURE;
  889. if (!qdf_mem_cmp(&mac_addr.raw[0],
  890. &vdev->mac_addr.raw[0],
  891. QDF_MAC_ADDR_SIZE))
  892. return QDF_STATUS_SUCCESS;
  893. }
  894. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  895. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  896. rx_tlv_hdr,
  897. &mac_addr.raw[0]))
  898. return QDF_STATUS_E_FAILURE;
  899. if (!qdf_mem_cmp(&mac_addr.raw[0],
  900. &vdev->mac_addr.raw[0],
  901. QDF_MAC_ADDR_SIZE))
  902. return QDF_STATUS_SUCCESS;
  903. }
  904. }
  905. return QDF_STATUS_E_FAILURE;
  906. }
  907. #else
  908. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  909. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  910. {
  911. }
  912. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  913. uint8_t *rx_tlv_hdr)
  914. {
  915. return QDF_STATUS_E_FAILURE;
  916. }
  917. #endif
  918. #ifdef FEATURE_NAC_RSSI
  919. /**
  920. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  921. * @soc: DP SOC handle
  922. * @mpdu: mpdu for which peer is invalid
  923. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  924. * pool_id has same mapping)
  925. *
  926. * return: integer type
  927. */
  928. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  929. uint8_t mac_id)
  930. {
  931. struct dp_invalid_peer_msg msg;
  932. struct dp_vdev *vdev = NULL;
  933. struct dp_pdev *pdev = NULL;
  934. struct ieee80211_frame *wh;
  935. qdf_nbuf_t curr_nbuf, next_nbuf;
  936. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  937. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
  938. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  939. dp_rx_debug("%pK: Drop decapped frames", soc);
  940. goto free;
  941. }
  942. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  943. if (!DP_FRAME_IS_DATA(wh)) {
  944. dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
  945. goto free;
  946. }
  947. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  948. dp_rx_err("%pK: Invalid nbuf length", soc);
  949. goto free;
  950. }
  951. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  952. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  953. dp_rx_err("%pK: PDEV %s", soc, !pdev ? "not found" : "down");
  954. goto free;
  955. }
  956. if (dp_monitor_filter_neighbour_peer(pdev, rx_pkt_hdr) ==
  957. QDF_STATUS_SUCCESS)
  958. return 0;
  959. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  960. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  961. QDF_MAC_ADDR_SIZE) == 0) {
  962. goto out;
  963. }
  964. }
  965. if (!vdev) {
  966. dp_rx_err("%pK: VDEV not found", soc);
  967. goto free;
  968. }
  969. out:
  970. msg.wh = wh;
  971. qdf_nbuf_pull_head(mpdu, soc->rx_pkt_tlv_size);
  972. msg.nbuf = mpdu;
  973. msg.vdev_id = vdev->vdev_id;
  974. /*
  975. * NOTE: Only valid for HKv1.
  976. * If smart monitor mode is enabled on RE, we are getting invalid
  977. * peer frames with RA as STA mac of RE and the TA not matching
  978. * with any NAC list or the the BSSID.Such frames need to dropped
  979. * in order to avoid HM_WDS false addition.
  980. */
  981. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
  982. if (dp_monitor_drop_inv_peer_pkts(vdev) == QDF_STATUS_SUCCESS) {
  983. dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
  984. soc, wh->i_addr1);
  985. goto free;
  986. }
  987. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  988. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  989. pdev->pdev_id, &msg);
  990. }
  991. free:
  992. /* Drop and free packet */
  993. curr_nbuf = mpdu;
  994. while (curr_nbuf) {
  995. next_nbuf = qdf_nbuf_next(curr_nbuf);
  996. qdf_nbuf_free(curr_nbuf);
  997. curr_nbuf = next_nbuf;
  998. }
  999. return 0;
  1000. }
  1001. /**
  1002. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  1003. * @soc: DP SOC handle
  1004. * @mpdu: mpdu for which peer is invalid
  1005. * @mpdu_done: if an mpdu is completed
  1006. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  1007. * pool_id has same mapping)
  1008. *
  1009. * return: integer type
  1010. */
  1011. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  1012. qdf_nbuf_t mpdu, bool mpdu_done,
  1013. uint8_t mac_id)
  1014. {
  1015. /* Only trigger the process when mpdu is completed */
  1016. if (mpdu_done)
  1017. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  1018. }
  1019. #else
  1020. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  1021. uint8_t mac_id)
  1022. {
  1023. qdf_nbuf_t curr_nbuf, next_nbuf;
  1024. struct dp_pdev *pdev;
  1025. struct dp_vdev *vdev = NULL;
  1026. struct ieee80211_frame *wh;
  1027. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  1028. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
  1029. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  1030. if (!DP_FRAME_IS_DATA(wh)) {
  1031. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  1032. "only for data frames");
  1033. goto free;
  1034. }
  1035. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  1036. dp_rx_info_rl("%pK: Invalid nbuf length", soc);
  1037. goto free;
  1038. }
  1039. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1040. if (!pdev) {
  1041. dp_rx_info_rl("%pK: PDEV not found", soc);
  1042. goto free;
  1043. }
  1044. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  1045. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  1046. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  1047. QDF_MAC_ADDR_SIZE) == 0) {
  1048. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  1049. goto out;
  1050. }
  1051. }
  1052. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  1053. if (!vdev) {
  1054. dp_rx_info_rl("%pK: VDEV not found", soc);
  1055. goto free;
  1056. }
  1057. out:
  1058. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  1059. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  1060. free:
  1061. /* reset the head and tail pointers */
  1062. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1063. if (pdev) {
  1064. pdev->invalid_peer_head_msdu = NULL;
  1065. pdev->invalid_peer_tail_msdu = NULL;
  1066. }
  1067. /* Drop and free packet */
  1068. curr_nbuf = mpdu;
  1069. while (curr_nbuf) {
  1070. next_nbuf = qdf_nbuf_next(curr_nbuf);
  1071. qdf_nbuf_free(curr_nbuf);
  1072. curr_nbuf = next_nbuf;
  1073. }
  1074. /* Reset the head and tail pointers */
  1075. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1076. if (pdev) {
  1077. pdev->invalid_peer_head_msdu = NULL;
  1078. pdev->invalid_peer_tail_msdu = NULL;
  1079. }
  1080. return 0;
  1081. }
  1082. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  1083. qdf_nbuf_t mpdu, bool mpdu_done,
  1084. uint8_t mac_id)
  1085. {
  1086. /* Process the nbuf */
  1087. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  1088. }
  1089. #endif
  1090. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1091. #ifdef RECEIVE_OFFLOAD
  1092. /**
  1093. * dp_rx_print_offload_info() - Print offload info from RX TLV
  1094. * @soc: dp soc handle
  1095. * @msdu: MSDU for which the offload info is to be printed
  1096. *
  1097. * Return: None
  1098. */
  1099. static void dp_rx_print_offload_info(struct dp_soc *soc,
  1100. qdf_nbuf_t msdu)
  1101. {
  1102. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  1103. dp_verbose_debug("lro_eligible 0x%x",
  1104. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu));
  1105. dp_verbose_debug("pure_ack 0x%x", QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu));
  1106. dp_verbose_debug("chksum 0x%x", QDF_NBUF_CB_RX_TCP_CHKSUM(msdu));
  1107. dp_verbose_debug("TCP seq num 0x%x", QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu));
  1108. dp_verbose_debug("TCP ack num 0x%x", QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu));
  1109. dp_verbose_debug("TCP window 0x%x", QDF_NBUF_CB_RX_TCP_WIN(msdu));
  1110. dp_verbose_debug("TCP protocol 0x%x", QDF_NBUF_CB_RX_TCP_PROTO(msdu));
  1111. dp_verbose_debug("TCP offset 0x%x", QDF_NBUF_CB_RX_TCP_OFFSET(msdu));
  1112. dp_verbose_debug("toeplitz 0x%x", QDF_NBUF_CB_RX_FLOW_ID(msdu));
  1113. dp_verbose_debug("---------------------------------------------------------");
  1114. }
  1115. /**
  1116. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  1117. * @soc: DP SOC handle
  1118. * @rx_tlv: RX TLV received for the msdu
  1119. * @msdu: msdu for which GRO info needs to be filled
  1120. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  1121. *
  1122. * Return: None
  1123. */
  1124. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  1125. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  1126. {
  1127. struct hal_offload_info offload_info;
  1128. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  1129. return;
  1130. if (hal_rx_tlv_get_offload_info(soc->hal_soc, rx_tlv, &offload_info))
  1131. return;
  1132. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  1133. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = offload_info.lro_eligible;
  1134. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) = offload_info.tcp_pure_ack;
  1135. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  1136. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  1137. rx_tlv);
  1138. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) = offload_info.tcp_seq_num;
  1139. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) = offload_info.tcp_ack_num;
  1140. QDF_NBUF_CB_RX_TCP_WIN(msdu) = offload_info.tcp_win;
  1141. QDF_NBUF_CB_RX_TCP_PROTO(msdu) = offload_info.tcp_proto;
  1142. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) = offload_info.ipv6_proto;
  1143. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) = offload_info.tcp_offset;
  1144. QDF_NBUF_CB_RX_FLOW_ID(msdu) = offload_info.flow_id;
  1145. dp_rx_print_offload_info(soc, msdu);
  1146. }
  1147. #endif /* RECEIVE_OFFLOAD */
  1148. /**
  1149. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  1150. *
  1151. * @soc: DP soc handle
  1152. * @nbuf: pointer to msdu.
  1153. * @mpdu_len: mpdu length
  1154. * @l3_pad_len: L3 padding length by HW
  1155. *
  1156. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  1157. */
  1158. static inline bool dp_rx_adjust_nbuf_len(struct dp_soc *soc,
  1159. qdf_nbuf_t nbuf,
  1160. uint16_t *mpdu_len,
  1161. uint32_t l3_pad_len)
  1162. {
  1163. bool last_nbuf;
  1164. uint32_t pkt_hdr_size;
  1165. pkt_hdr_size = soc->rx_pkt_tlv_size + l3_pad_len;
  1166. if ((*mpdu_len + pkt_hdr_size) > RX_DATA_BUFFER_SIZE) {
  1167. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  1168. last_nbuf = false;
  1169. *mpdu_len -= (RX_DATA_BUFFER_SIZE - pkt_hdr_size);
  1170. } else {
  1171. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + pkt_hdr_size));
  1172. last_nbuf = true;
  1173. *mpdu_len = 0;
  1174. }
  1175. return last_nbuf;
  1176. }
  1177. /**
  1178. * dp_get_l3_hdr_pad_len() - get L3 header padding length.
  1179. *
  1180. * @soc: DP soc handle
  1181. * @nbuf: pointer to msdu.
  1182. *
  1183. * Return: returns padding length in bytes.
  1184. */
  1185. static inline uint32_t dp_get_l3_hdr_pad_len(struct dp_soc *soc,
  1186. qdf_nbuf_t nbuf)
  1187. {
  1188. uint32_t l3_hdr_pad = 0;
  1189. uint8_t *rx_tlv_hdr;
  1190. struct hal_rx_msdu_metadata msdu_metadata;
  1191. while (nbuf) {
  1192. if (!qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  1193. /* scattered msdu end with continuation is 0 */
  1194. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1195. hal_rx_msdu_metadata_get(soc->hal_soc,
  1196. rx_tlv_hdr,
  1197. &msdu_metadata);
  1198. l3_hdr_pad = msdu_metadata.l3_hdr_pad;
  1199. break;
  1200. }
  1201. nbuf = nbuf->next;
  1202. }
  1203. return l3_hdr_pad;
  1204. }
  1205. /**
  1206. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  1207. * multiple nbufs.
  1208. * @soc: DP SOC handle
  1209. * @nbuf: pointer to the first msdu of an amsdu.
  1210. *
  1211. * This function implements the creation of RX frag_list for cases
  1212. * where an MSDU is spread across multiple nbufs.
  1213. *
  1214. * Return: returns the head nbuf which contains complete frag_list.
  1215. */
  1216. qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1217. {
  1218. qdf_nbuf_t parent, frag_list, next = NULL;
  1219. uint16_t frag_list_len = 0;
  1220. uint16_t mpdu_len;
  1221. bool last_nbuf;
  1222. uint32_t l3_hdr_pad_offset = 0;
  1223. /*
  1224. * Use msdu len got from REO entry descriptor instead since
  1225. * there is case the RX PKT TLV is corrupted while msdu_len
  1226. * from REO descriptor is right for non-raw RX scatter msdu.
  1227. */
  1228. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1229. /*
  1230. * this is a case where the complete msdu fits in one single nbuf.
  1231. * in this case HW sets both start and end bit and we only need to
  1232. * reset these bits for RAW mode simulator to decap the pkt
  1233. */
  1234. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  1235. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  1236. qdf_nbuf_set_pktlen(nbuf, mpdu_len + soc->rx_pkt_tlv_size);
  1237. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size);
  1238. return nbuf;
  1239. }
  1240. l3_hdr_pad_offset = dp_get_l3_hdr_pad_len(soc, nbuf);
  1241. /*
  1242. * This is a case where we have multiple msdus (A-MSDU) spread across
  1243. * multiple nbufs. here we create a fraglist out of these nbufs.
  1244. *
  1245. * the moment we encounter a nbuf with continuation bit set we
  1246. * know for sure we have an MSDU which is spread across multiple
  1247. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  1248. */
  1249. parent = nbuf;
  1250. frag_list = nbuf->next;
  1251. nbuf = nbuf->next;
  1252. /*
  1253. * set the start bit in the first nbuf we encounter with continuation
  1254. * bit set. This has the proper mpdu length set as it is the first
  1255. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  1256. * nbufs will form the frag_list of the parent nbuf.
  1257. */
  1258. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1259. /*
  1260. * L3 header padding is only needed for the 1st buffer
  1261. * in a scattered msdu
  1262. */
  1263. last_nbuf = dp_rx_adjust_nbuf_len(soc, parent, &mpdu_len,
  1264. l3_hdr_pad_offset);
  1265. /*
  1266. * MSDU cont bit is set but reported MPDU length can fit
  1267. * in to single buffer
  1268. *
  1269. * Increment error stats and avoid SG list creation
  1270. */
  1271. if (last_nbuf) {
  1272. DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
  1273. qdf_nbuf_pull_head(parent,
  1274. soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
  1275. return parent;
  1276. }
  1277. /*
  1278. * this is where we set the length of the fragments which are
  1279. * associated to the parent nbuf. We iterate through the frag_list
  1280. * till we hit the last_nbuf of the list.
  1281. */
  1282. do {
  1283. last_nbuf = dp_rx_adjust_nbuf_len(soc, nbuf, &mpdu_len, 0);
  1284. qdf_nbuf_pull_head(nbuf,
  1285. soc->rx_pkt_tlv_size);
  1286. frag_list_len += qdf_nbuf_len(nbuf);
  1287. if (last_nbuf) {
  1288. next = nbuf->next;
  1289. nbuf->next = NULL;
  1290. break;
  1291. }
  1292. nbuf = nbuf->next;
  1293. } while (!last_nbuf);
  1294. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1295. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1296. parent->next = next;
  1297. qdf_nbuf_pull_head(parent,
  1298. soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
  1299. return parent;
  1300. }
  1301. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1302. #ifdef QCA_PEER_EXT_STATS
  1303. /*
  1304. * dp_rx_compute_tid_delay - Computer per TID delay stats
  1305. * @peer: DP soc context
  1306. * @nbuf: NBuffer
  1307. *
  1308. * Return: Void
  1309. */
  1310. void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  1311. qdf_nbuf_t nbuf)
  1312. {
  1313. struct cdp_delay_rx_stats *rx_delay = &stats->rx_delay;
  1314. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1315. dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
  1316. }
  1317. #endif /* QCA_PEER_EXT_STATS */
  1318. /**
  1319. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1320. * to pass in correct fields
  1321. *
  1322. * @vdev: pdev handle
  1323. * @tx_desc: tx descriptor
  1324. * @tid: tid value
  1325. * Return: none
  1326. */
  1327. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1328. {
  1329. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1330. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1331. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1332. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1333. uint32_t interframe_delay =
  1334. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1335. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  1336. CDP_DELAY_STATS_REAP_STACK, ring_id);
  1337. /*
  1338. * Update interframe delay stats calculated at deliver_data_ol point.
  1339. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1340. * interframe delay will not be calculate correctly for 1st frame.
  1341. * On the other side, this will help in avoiding extra per packet check
  1342. * of vdev->prev_rx_deliver_tstamp.
  1343. */
  1344. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  1345. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  1346. vdev->prev_rx_deliver_tstamp = current_ts;
  1347. }
  1348. /**
  1349. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1350. * @pdev: dp pdev reference
  1351. * @buf_list: buffer list to be dropepd
  1352. *
  1353. * Return: int (number of bufs dropped)
  1354. */
  1355. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1356. qdf_nbuf_t buf_list)
  1357. {
  1358. struct cdp_tid_rx_stats *stats = NULL;
  1359. uint8_t tid = 0, ring_id = 0;
  1360. int num_dropped = 0;
  1361. qdf_nbuf_t buf, next_buf;
  1362. buf = buf_list;
  1363. while (buf) {
  1364. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1365. next_buf = qdf_nbuf_queue_next(buf);
  1366. tid = qdf_nbuf_get_tid_val(buf);
  1367. if (qdf_likely(pdev)) {
  1368. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1369. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1370. stats->delivered_to_stack--;
  1371. }
  1372. qdf_nbuf_free(buf);
  1373. buf = next_buf;
  1374. num_dropped++;
  1375. }
  1376. return num_dropped;
  1377. }
  1378. #ifdef QCA_SUPPORT_WDS_EXTENDED
  1379. /**
  1380. * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
  1381. * @soc: core txrx main context
  1382. * @vdev: vdev
  1383. * @peer: peer
  1384. * @nbuf_head: skb list head
  1385. *
  1386. * Return: true if packet is delivered to netdev per STA.
  1387. */
  1388. static inline bool
  1389. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1390. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1391. {
  1392. /*
  1393. * When extended WDS is disabled, frames are sent to AP netdevice.
  1394. */
  1395. if (qdf_likely(!vdev->wds_ext_enabled))
  1396. return false;
  1397. /*
  1398. * There can be 2 cases:
  1399. * 1. Send frame to parent netdev if its not for netdev per STA
  1400. * 2. If frame is meant for netdev per STA:
  1401. * a. Send frame to appropriate netdev using registered fp.
  1402. * b. If fp is NULL, drop the frames.
  1403. */
  1404. if (!peer->wds_ext.init)
  1405. return false;
  1406. if (peer->osif_rx)
  1407. peer->osif_rx(peer->wds_ext.osif_peer, nbuf_head);
  1408. else
  1409. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1410. return true;
  1411. }
  1412. #else
  1413. static inline bool
  1414. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1415. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1416. {
  1417. return false;
  1418. }
  1419. #endif
  1420. #ifdef PEER_CACHE_RX_PKTS
  1421. /**
  1422. * dp_rx_flush_rx_cached() - flush cached rx frames
  1423. * @peer: peer
  1424. * @drop: flag to drop frames or forward to net stack
  1425. *
  1426. * Return: None
  1427. */
  1428. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1429. {
  1430. struct dp_peer_cached_bufq *bufqi;
  1431. struct dp_rx_cached_buf *cache_buf = NULL;
  1432. ol_txrx_rx_fp data_rx = NULL;
  1433. int num_buff_elem;
  1434. QDF_STATUS status;
  1435. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1436. qdf_atomic_dec(&peer->flush_in_progress);
  1437. return;
  1438. }
  1439. qdf_spin_lock_bh(&peer->peer_info_lock);
  1440. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1441. data_rx = peer->vdev->osif_rx;
  1442. else
  1443. drop = true;
  1444. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1445. bufqi = &peer->bufq_info;
  1446. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1447. qdf_list_remove_front(&bufqi->cached_bufq,
  1448. (qdf_list_node_t **)&cache_buf);
  1449. while (cache_buf) {
  1450. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1451. cache_buf->buf);
  1452. bufqi->entries -= num_buff_elem;
  1453. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1454. if (drop) {
  1455. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1456. cache_buf->buf);
  1457. } else {
  1458. /* Flush the cached frames to OSIF DEV */
  1459. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1460. if (status != QDF_STATUS_SUCCESS)
  1461. bufqi->dropped = dp_rx_drop_nbuf_list(
  1462. peer->vdev->pdev,
  1463. cache_buf->buf);
  1464. }
  1465. qdf_mem_free(cache_buf);
  1466. cache_buf = NULL;
  1467. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1468. qdf_list_remove_front(&bufqi->cached_bufq,
  1469. (qdf_list_node_t **)&cache_buf);
  1470. }
  1471. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1472. qdf_atomic_dec(&peer->flush_in_progress);
  1473. }
  1474. /**
  1475. * dp_rx_enqueue_rx() - cache rx frames
  1476. * @peer: peer
  1477. * @rx_buf_list: cache buffer list
  1478. *
  1479. * Return: None
  1480. */
  1481. static QDF_STATUS
  1482. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1483. {
  1484. struct dp_rx_cached_buf *cache_buf;
  1485. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1486. int num_buff_elem;
  1487. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1488. bufqi->dropped);
  1489. if (!peer->valid) {
  1490. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1491. rx_buf_list);
  1492. return QDF_STATUS_E_INVAL;
  1493. }
  1494. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1495. if (bufqi->entries >= bufqi->thresh) {
  1496. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1497. rx_buf_list);
  1498. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1499. return QDF_STATUS_E_RESOURCES;
  1500. }
  1501. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1502. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1503. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1504. if (!cache_buf) {
  1505. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1506. "Failed to allocate buf to cache rx frames");
  1507. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1508. rx_buf_list);
  1509. return QDF_STATUS_E_NOMEM;
  1510. }
  1511. cache_buf->buf = rx_buf_list;
  1512. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1513. qdf_list_insert_back(&bufqi->cached_bufq,
  1514. &cache_buf->node);
  1515. bufqi->entries += num_buff_elem;
  1516. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1517. return QDF_STATUS_SUCCESS;
  1518. }
  1519. static inline
  1520. bool dp_rx_is_peer_cache_bufq_supported(void)
  1521. {
  1522. return true;
  1523. }
  1524. #else
  1525. static inline
  1526. bool dp_rx_is_peer_cache_bufq_supported(void)
  1527. {
  1528. return false;
  1529. }
  1530. static inline QDF_STATUS
  1531. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1532. {
  1533. return QDF_STATUS_SUCCESS;
  1534. }
  1535. #endif
  1536. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1537. /**
  1538. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1539. * using the appropriate call back functions.
  1540. * @soc: soc
  1541. * @vdev: vdev
  1542. * @peer: peer
  1543. * @nbuf_head: skb list head
  1544. * @nbuf_tail: skb list tail
  1545. *
  1546. * Return: None
  1547. */
  1548. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1549. struct dp_vdev *vdev,
  1550. struct dp_peer *peer,
  1551. qdf_nbuf_t nbuf_head)
  1552. {
  1553. if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
  1554. peer, nbuf_head)))
  1555. return;
  1556. /* Function pointer initialized only when FISA is enabled */
  1557. if (vdev->osif_fisa_rx)
  1558. /* on failure send it via regular path */
  1559. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1560. else
  1561. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1562. }
  1563. #else
  1564. /**
  1565. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1566. * using the appropriate call back functions.
  1567. * @soc: soc
  1568. * @vdev: vdev
  1569. * @peer: peer
  1570. * @nbuf_head: skb list head
  1571. * @nbuf_tail: skb list tail
  1572. *
  1573. * Check the return status of the call back function and drop
  1574. * the packets if the return status indicates a failure.
  1575. *
  1576. * Return: None
  1577. */
  1578. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1579. struct dp_vdev *vdev,
  1580. struct dp_peer *peer,
  1581. qdf_nbuf_t nbuf_head)
  1582. {
  1583. int num_nbuf = 0;
  1584. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1585. /* Function pointer initialized only when FISA is enabled */
  1586. if (vdev->osif_fisa_rx)
  1587. /* on failure send it via regular path */
  1588. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1589. else if (vdev->osif_rx)
  1590. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1591. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1592. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1593. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1594. if (peer)
  1595. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1596. }
  1597. }
  1598. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1599. /*
  1600. * dp_rx_validate_rx_callbacks() - validate rx callbacks
  1601. * @soc DP soc
  1602. * @vdev: DP vdev handle
  1603. * @peer: pointer to the peer object
  1604. * nbuf_head: skb list head
  1605. *
  1606. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  1607. * QDF_STATUS_E_FAILURE
  1608. */
  1609. static inline QDF_STATUS
  1610. dp_rx_validate_rx_callbacks(struct dp_soc *soc,
  1611. struct dp_vdev *vdev,
  1612. struct dp_peer *peer,
  1613. qdf_nbuf_t nbuf_head)
  1614. {
  1615. int num_nbuf;
  1616. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1617. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1618. /*
  1619. * This is a special case where vdev is invalid,
  1620. * so we cannot know the pdev to which this packet
  1621. * belonged. Hence we update the soc rx error stats.
  1622. */
  1623. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1624. return QDF_STATUS_E_FAILURE;
  1625. }
  1626. /*
  1627. * highly unlikely to have a vdev without a registered rx
  1628. * callback function. if so let us free the nbuf_list.
  1629. */
  1630. if (qdf_unlikely(!vdev->osif_rx)) {
  1631. if (peer && dp_rx_is_peer_cache_bufq_supported()) {
  1632. dp_rx_enqueue_rx(peer, nbuf_head);
  1633. } else {
  1634. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1635. nbuf_head);
  1636. DP_PEER_TO_STACK_DECC(peer, num_nbuf,
  1637. vdev->pdev->enhanced_stats_en);
  1638. }
  1639. return QDF_STATUS_E_FAILURE;
  1640. }
  1641. return QDF_STATUS_SUCCESS;
  1642. }
  1643. QDF_STATUS dp_rx_deliver_to_stack(struct dp_soc *soc,
  1644. struct dp_vdev *vdev,
  1645. struct dp_peer *peer,
  1646. qdf_nbuf_t nbuf_head,
  1647. qdf_nbuf_t nbuf_tail)
  1648. {
  1649. if (dp_rx_validate_rx_callbacks(soc, vdev, peer, nbuf_head) !=
  1650. QDF_STATUS_SUCCESS)
  1651. return QDF_STATUS_E_FAILURE;
  1652. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1653. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1654. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1655. &nbuf_tail, peer->mac_addr.raw);
  1656. }
  1657. dp_rx_check_delivery_to_stack(soc, vdev, peer, nbuf_head);
  1658. return QDF_STATUS_SUCCESS;
  1659. }
  1660. #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
  1661. QDF_STATUS dp_rx_eapol_deliver_to_stack(struct dp_soc *soc,
  1662. struct dp_vdev *vdev,
  1663. struct dp_peer *peer,
  1664. qdf_nbuf_t nbuf_head,
  1665. qdf_nbuf_t nbuf_tail)
  1666. {
  1667. if (dp_rx_validate_rx_callbacks(soc, vdev, peer, nbuf_head) !=
  1668. QDF_STATUS_SUCCESS)
  1669. return QDF_STATUS_E_FAILURE;
  1670. vdev->osif_rx_eapol(vdev->osif_vdev, nbuf_head);
  1671. return QDF_STATUS_SUCCESS;
  1672. }
  1673. #endif
  1674. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1675. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1676. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer) \
  1677. { \
  1678. qdf_nbuf_t nbuf_local; \
  1679. struct dp_peer *peer_local; \
  1680. struct dp_vdev *vdev_local = vdev_hdl; \
  1681. do { \
  1682. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1683. break; \
  1684. nbuf_local = nbuf; \
  1685. peer_local = peer; \
  1686. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1687. break; \
  1688. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1689. break; \
  1690. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1691. (nbuf_local), \
  1692. (peer_local), 0, 1); \
  1693. } while (0); \
  1694. }
  1695. #else
  1696. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer)
  1697. #endif
  1698. /**
  1699. * dp_rx_msdu_stats_update() - update per msdu stats.
  1700. * @soc: core txrx main context
  1701. * @nbuf: pointer to the first msdu of an amsdu.
  1702. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1703. * @peer: pointer to the peer object.
  1704. * @ring_id: reo dest ring number on which pkt is reaped.
  1705. * @tid_stats: per tid rx stats.
  1706. *
  1707. * update all the per msdu stats for that nbuf.
  1708. * Return: void
  1709. */
  1710. void dp_rx_msdu_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1711. uint8_t *rx_tlv_hdr, struct dp_peer *peer,
  1712. uint8_t ring_id,
  1713. struct cdp_tid_rx_stats *tid_stats)
  1714. {
  1715. bool is_ampdu, is_not_amsdu;
  1716. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1717. struct dp_vdev *vdev = peer->vdev;
  1718. bool enh_flag;
  1719. qdf_ether_header_t *eh;
  1720. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1721. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, peer);
  1722. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1723. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1724. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1725. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1726. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1727. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1728. tid_stats->msdu_cnt++;
  1729. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1730. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1731. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1732. enh_flag = vdev->pdev->enhanced_stats_en;
  1733. DP_PEER_MC_INCC_PKT(peer, 1, msdu_len, enh_flag);
  1734. tid_stats->mcast_msdu_cnt++;
  1735. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1736. DP_PEER_BC_INCC_PKT(peer, 1, msdu_len, enh_flag);
  1737. tid_stats->bcast_msdu_cnt++;
  1738. }
  1739. }
  1740. /*
  1741. * currently we can return from here as we have similar stats
  1742. * updated at per ppdu level instead of msdu level
  1743. */
  1744. if (!soc->process_rx_status)
  1745. return;
  1746. peer->stats.rx.last_rx_ts = qdf_system_ticks();
  1747. /*
  1748. * TODO - For KIWI this field is present in ring_desc
  1749. * Try to use ring desc instead of tlv.
  1750. */
  1751. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(soc->hal_soc, rx_tlv_hdr);
  1752. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1753. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1754. sgi = hal_rx_tlv_sgi_get(soc->hal_soc, rx_tlv_hdr);
  1755. mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  1756. tid = qdf_nbuf_get_tid_val(nbuf);
  1757. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  1758. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1759. rx_tlv_hdr);
  1760. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1761. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  1762. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[mcs], 1,
  1763. ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1764. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
  1765. ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1766. DP_STATS_INC(peer, rx.bw[bw], 1);
  1767. /*
  1768. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1769. * then increase index [nss - 1] in array counter.
  1770. */
  1771. if (nss > 0 && (pkt_type == DOT11_N ||
  1772. pkt_type == DOT11_AC ||
  1773. pkt_type == DOT11_AX))
  1774. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1775. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1776. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1777. hal_rx_tlv_mic_err_get(soc->hal_soc, rx_tlv_hdr));
  1778. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1779. hal_rx_tlv_decrypt_err_get(soc->hal_soc, rx_tlv_hdr));
  1780. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1781. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1782. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1783. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1784. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1785. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1786. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1787. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1788. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1789. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1790. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1791. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1792. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1793. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1794. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1795. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1796. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1797. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1798. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1799. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1800. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1801. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1802. }
  1803. #ifndef WDS_VENDOR_EXTENSION
  1804. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1805. struct dp_vdev *vdev,
  1806. struct dp_peer *peer)
  1807. {
  1808. return 1;
  1809. }
  1810. #endif
  1811. #ifdef RX_DESC_DEBUG_CHECK
  1812. /**
  1813. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1814. * corruption
  1815. *
  1816. * @ring_desc: REO ring descriptor
  1817. * @rx_desc: Rx descriptor
  1818. *
  1819. * Return: NONE
  1820. */
  1821. QDF_STATUS dp_rx_desc_nbuf_sanity_check(struct dp_soc *soc,
  1822. hal_ring_desc_t ring_desc,
  1823. struct dp_rx_desc *rx_desc)
  1824. {
  1825. struct hal_buf_info hbi;
  1826. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  1827. /* Sanity check for possible buffer paddr corruption */
  1828. if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
  1829. return QDF_STATUS_SUCCESS;
  1830. return QDF_STATUS_E_FAILURE;
  1831. }
  1832. /**
  1833. * dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer
  1834. * out of bound access from H.W
  1835. *
  1836. * @soc: DP soc
  1837. * @pkt_len: Packet length received from H.W
  1838. *
  1839. * Return: NONE
  1840. */
  1841. static inline void
  1842. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc,
  1843. uint32_t pkt_len)
  1844. {
  1845. struct rx_desc_pool *rx_desc_pool;
  1846. rx_desc_pool = &soc->rx_desc_buf[0];
  1847. qdf_assert_always(pkt_len <= rx_desc_pool->buf_size);
  1848. }
  1849. #else
  1850. static inline void
  1851. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { }
  1852. #endif
  1853. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1854. /**
  1855. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1856. * no corresbonding peer found
  1857. * @soc: core txrx main context
  1858. * @nbuf: pkt skb pointer
  1859. *
  1860. * This function will try to deliver some RX special frames to stack
  1861. * even there is no peer matched found. for instance, LFR case, some
  1862. * eapol data will be sent to host before peer_map done.
  1863. *
  1864. * Return: None
  1865. */
  1866. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1867. {
  1868. uint16_t peer_id;
  1869. uint8_t vdev_id;
  1870. struct dp_vdev *vdev = NULL;
  1871. uint32_t l2_hdr_offset = 0;
  1872. uint16_t msdu_len = 0;
  1873. uint32_t pkt_len = 0;
  1874. uint8_t *rx_tlv_hdr;
  1875. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  1876. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  1877. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1878. if (peer_id > soc->max_peer_id)
  1879. goto deliver_fail;
  1880. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1881. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
  1882. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  1883. goto deliver_fail;
  1884. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  1885. goto deliver_fail;
  1886. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1887. l2_hdr_offset =
  1888. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1889. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1890. pkt_len = msdu_len + l2_hdr_offset + soc->rx_pkt_tlv_size;
  1891. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  1892. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1893. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + l2_hdr_offset);
  1894. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  1895. qdf_nbuf_set_exc_frame(nbuf, 1);
  1896. if (QDF_STATUS_SUCCESS !=
  1897. vdev->osif_rx(vdev->osif_vdev, nbuf))
  1898. goto deliver_fail;
  1899. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1900. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1901. return;
  1902. }
  1903. deliver_fail:
  1904. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1905. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1906. qdf_nbuf_free(nbuf);
  1907. if (vdev)
  1908. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1909. }
  1910. #else
  1911. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1912. {
  1913. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1914. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1915. qdf_nbuf_free(nbuf);
  1916. }
  1917. #endif
  1918. /**
  1919. * dp_rx_srng_get_num_pending() - get number of pending entries
  1920. * @hal_soc: hal soc opaque pointer
  1921. * @hal_ring: opaque pointer to the HAL Rx Ring
  1922. * @num_entries: number of entries in the hal_ring.
  1923. * @near_full: pointer to a boolean. This is set if ring is near full.
  1924. *
  1925. * The function returns the number of entries in a destination ring which are
  1926. * yet to be reaped. The function also checks if the ring is near full.
  1927. * If more than half of the ring needs to be reaped, the ring is considered
  1928. * approaching full.
  1929. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1930. * entries. It should not be called within a SRNG lock. HW pointer value is
  1931. * synced into cached_hp.
  1932. *
  1933. * Return: Number of pending entries if any
  1934. */
  1935. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1936. hal_ring_handle_t hal_ring_hdl,
  1937. uint32_t num_entries,
  1938. bool *near_full)
  1939. {
  1940. uint32_t num_pending = 0;
  1941. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1942. hal_ring_hdl,
  1943. true);
  1944. if (num_entries && (num_pending >= num_entries >> 1))
  1945. *near_full = true;
  1946. else
  1947. *near_full = false;
  1948. return num_pending;
  1949. }
  1950. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1951. #ifdef WLAN_SUPPORT_RX_FISA
  1952. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  1953. {
  1954. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1955. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  1956. }
  1957. /**
  1958. * dp_rx_set_hdr_pad() - set l3 padding in nbuf cb
  1959. * @nbuf: pkt skb pointer
  1960. * @l3_padding: l3 padding
  1961. *
  1962. * Return: None
  1963. */
  1964. static inline
  1965. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1966. {
  1967. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1968. }
  1969. #else
  1970. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  1971. {
  1972. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  1973. }
  1974. static inline
  1975. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1976. {
  1977. }
  1978. #endif
  1979. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1980. #ifdef DP_RX_DROP_RAW_FRM
  1981. /**
  1982. * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
  1983. * @nbuf: pkt skb pointer
  1984. *
  1985. * Return: true - raw frame, dropped
  1986. * false - not raw frame, do nothing
  1987. */
  1988. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  1989. {
  1990. if (qdf_nbuf_is_raw_frame(nbuf)) {
  1991. qdf_nbuf_free(nbuf);
  1992. return true;
  1993. }
  1994. return false;
  1995. }
  1996. #endif
  1997. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1998. /**
  1999. * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
  2000. * @soc: Datapath soc structure
  2001. * @ring_num: REO ring number
  2002. * @ring_desc: REO ring descriptor
  2003. *
  2004. * Returns: None
  2005. */
  2006. void
  2007. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  2008. hal_ring_desc_t ring_desc)
  2009. {
  2010. struct dp_buf_info_record *record;
  2011. struct hal_buf_info hbi;
  2012. uint32_t idx;
  2013. if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
  2014. return;
  2015. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  2016. /* buffer_addr_info is the first element of ring_desc */
  2017. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)ring_desc,
  2018. &hbi);
  2019. idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
  2020. DP_RX_HIST_MAX);
  2021. /* No NULL check needed for record since its an array */
  2022. record = &soc->rx_ring_history[ring_num]->entry[idx];
  2023. record->timestamp = qdf_get_log_timestamp();
  2024. record->hbi.paddr = hbi.paddr;
  2025. record->hbi.sw_cookie = hbi.sw_cookie;
  2026. record->hbi.rbm = hbi.rbm;
  2027. }
  2028. #endif
  2029. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  2030. /**
  2031. * dp_rx_update_stats() - Update soc level rx packet count
  2032. * @soc: DP soc handle
  2033. * @nbuf: nbuf received
  2034. *
  2035. * Returns: none
  2036. */
  2037. void dp_rx_update_stats(struct dp_soc *soc, qdf_nbuf_t nbuf)
  2038. {
  2039. DP_STATS_INC_PKT(soc, rx.ingress, 1,
  2040. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2041. }
  2042. #endif
  2043. #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
  2044. /**
  2045. * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
  2046. * @soc : dp_soc handle
  2047. * @pdev: dp_pdev handle
  2048. * @peer_id: peer_id of the peer for which completion came
  2049. * @ppdu_id: ppdu_id
  2050. * @netbuf: Buffer pointer
  2051. *
  2052. * This function is used to deliver rx packet to packet capture
  2053. */
  2054. void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc, struct dp_pdev *pdev,
  2055. uint16_t peer_id, uint32_t is_offload,
  2056. qdf_nbuf_t netbuf)
  2057. {
  2058. if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
  2059. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
  2060. peer_id, is_offload, pdev->pdev_id);
  2061. }
  2062. void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2063. uint32_t is_offload)
  2064. {
  2065. if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
  2066. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA_NO_PEER,
  2067. soc, nbuf, HTT_INVALID_VDEV,
  2068. is_offload, 0);
  2069. }
  2070. #endif
  2071. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  2072. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2073. {
  2074. QDF_STATUS ret;
  2075. if (vdev->osif_rx_flush) {
  2076. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2077. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  2078. dp_err("Failed to flush rx pkts for vdev %d\n",
  2079. vdev->vdev_id);
  2080. return ret;
  2081. }
  2082. }
  2083. return QDF_STATUS_SUCCESS;
  2084. }
  2085. static QDF_STATUS
  2086. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
  2087. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  2088. struct dp_pdev *dp_pdev,
  2089. struct rx_desc_pool *rx_desc_pool)
  2090. {
  2091. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2092. (nbuf_frag_info_t->virt_addr).nbuf =
  2093. qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  2094. RX_BUFFER_RESERVATION,
  2095. rx_desc_pool->buf_alignment, FALSE);
  2096. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  2097. dp_err("nbuf alloc failed");
  2098. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2099. return ret;
  2100. }
  2101. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  2102. (nbuf_frag_info_t->virt_addr).nbuf,
  2103. QDF_DMA_FROM_DEVICE,
  2104. rx_desc_pool->buf_size);
  2105. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2106. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  2107. dp_err("nbuf map failed");
  2108. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2109. return ret;
  2110. }
  2111. nbuf_frag_info_t->paddr =
  2112. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  2113. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  2114. &nbuf_frag_info_t->paddr,
  2115. rx_desc_pool);
  2116. if (ret == QDF_STATUS_E_FAILURE) {
  2117. dp_err("nbuf check x86 failed");
  2118. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2119. return ret;
  2120. }
  2121. return QDF_STATUS_SUCCESS;
  2122. }
  2123. QDF_STATUS
  2124. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2125. struct dp_srng *dp_rxdma_srng,
  2126. struct rx_desc_pool *rx_desc_pool,
  2127. uint32_t num_req_buffers)
  2128. {
  2129. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2130. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2131. union dp_rx_desc_list_elem_t *next;
  2132. void *rxdma_ring_entry;
  2133. qdf_dma_addr_t paddr;
  2134. struct dp_rx_nbuf_frag_info *nf_info;
  2135. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2136. uint32_t buffer_index, nbuf_ptrs_per_page;
  2137. qdf_nbuf_t nbuf;
  2138. QDF_STATUS ret;
  2139. int page_idx, total_pages;
  2140. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2141. union dp_rx_desc_list_elem_t *tail = NULL;
  2142. int sync_hw_ptr = 1;
  2143. uint32_t num_entries_avail;
  2144. if (qdf_unlikely(!dp_pdev)) {
  2145. dp_rx_err("%pK: pdev is null for mac_id = %d",
  2146. dp_soc, mac_id);
  2147. return QDF_STATUS_E_FAILURE;
  2148. }
  2149. if (qdf_unlikely(!rxdma_srng)) {
  2150. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2151. return QDF_STATUS_E_FAILURE;
  2152. }
  2153. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2154. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2155. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  2156. rxdma_srng,
  2157. sync_hw_ptr);
  2158. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2159. if (!num_entries_avail) {
  2160. dp_err("Num of available entries is zero, nothing to do");
  2161. return QDF_STATUS_E_NOMEM;
  2162. }
  2163. if (num_entries_avail < num_req_buffers)
  2164. num_req_buffers = num_entries_avail;
  2165. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2166. num_req_buffers, &desc_list, &tail);
  2167. if (!nr_descs) {
  2168. dp_err("no free rx_descs in freelist");
  2169. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2170. return QDF_STATUS_E_NOMEM;
  2171. }
  2172. dp_debug("got %u RX descs for driver attach", nr_descs);
  2173. /*
  2174. * Try to allocate pointers to the nbuf one page at a time.
  2175. * Take pointers that can fit in one page of memory and
  2176. * iterate through the total descriptors that need to be
  2177. * allocated in order of pages. Reuse the pointers that
  2178. * have been allocated to fit in one page across each
  2179. * iteration to index into the nbuf.
  2180. */
  2181. total_pages = (nr_descs * sizeof(*nf_info)) / PAGE_SIZE;
  2182. /*
  2183. * Add an extra page to store the remainder if any
  2184. */
  2185. if ((nr_descs * sizeof(*nf_info)) % PAGE_SIZE)
  2186. total_pages++;
  2187. nf_info = qdf_mem_malloc(PAGE_SIZE);
  2188. if (!nf_info) {
  2189. dp_err("failed to allocate nbuf array");
  2190. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2191. QDF_BUG(0);
  2192. return QDF_STATUS_E_NOMEM;
  2193. }
  2194. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*nf_info);
  2195. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2196. qdf_mem_zero(nf_info, PAGE_SIZE);
  2197. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2198. /*
  2199. * The last page of buffer pointers may not be required
  2200. * completely based on the number of descriptors. Below
  2201. * check will ensure we are allocating only the
  2202. * required number of descriptors.
  2203. */
  2204. if (nr_nbuf_total >= nr_descs)
  2205. break;
  2206. /* Flag is set while pdev rx_desc_pool initialization */
  2207. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2208. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  2209. &nf_info[nr_nbuf], dp_pdev,
  2210. rx_desc_pool);
  2211. else
  2212. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2213. &nf_info[nr_nbuf], dp_pdev,
  2214. rx_desc_pool);
  2215. if (QDF_IS_STATUS_ERROR(ret))
  2216. break;
  2217. nr_nbuf_total++;
  2218. }
  2219. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2220. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2221. rxdma_ring_entry =
  2222. hal_srng_src_get_next(dp_soc->hal_soc,
  2223. rxdma_srng);
  2224. qdf_assert_always(rxdma_ring_entry);
  2225. next = desc_list->next;
  2226. paddr = nf_info[buffer_index].paddr;
  2227. nbuf = nf_info[buffer_index].virt_addr.nbuf;
  2228. /* Flag is set while pdev rx_desc_pool initialization */
  2229. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2230. dp_rx_desc_frag_prep(&desc_list->rx_desc,
  2231. &nf_info[buffer_index]);
  2232. else
  2233. dp_rx_desc_prep(&desc_list->rx_desc,
  2234. &nf_info[buffer_index]);
  2235. desc_list->rx_desc.in_use = 1;
  2236. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  2237. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  2238. __func__,
  2239. RX_DESC_REPLENISHED);
  2240. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc ,rxdma_ring_entry, paddr,
  2241. desc_list->rx_desc.cookie,
  2242. rx_desc_pool->owner);
  2243. dp_ipa_handle_rx_buf_smmu_mapping(
  2244. dp_soc, nbuf,
  2245. rx_desc_pool->buf_size,
  2246. true);
  2247. desc_list = next;
  2248. }
  2249. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id,
  2250. rxdma_srng, nr_nbuf, nr_nbuf);
  2251. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2252. }
  2253. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2254. qdf_mem_free(nf_info);
  2255. if (!nr_nbuf_total) {
  2256. dp_err("No nbuf's allocated");
  2257. QDF_BUG(0);
  2258. return QDF_STATUS_E_RESOURCES;
  2259. }
  2260. /* No need to count the number of bytes received during replenish.
  2261. * Therefore set replenish.pkts.bytes as 0.
  2262. */
  2263. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2264. return QDF_STATUS_SUCCESS;
  2265. }
  2266. qdf_export_symbol(dp_pdev_rx_buffers_attach);
  2267. /**
  2268. * dp_rx_enable_mon_dest_frag() - Enable frag processing for
  2269. * monitor destination ring via frag.
  2270. *
  2271. * Enable this flag only for monitor destination buffer processing
  2272. * if DP_RX_MON_MEM_FRAG feature is enabled.
  2273. * If flag is set then frag based function will be called for alloc,
  2274. * map, prep desc and free ops for desc buffer else normal nbuf based
  2275. * function will be called.
  2276. *
  2277. * @rx_desc_pool: Rx desc pool
  2278. * @is_mon_dest_desc: Is it for monitor dest buffer
  2279. *
  2280. * Return: None
  2281. */
  2282. #ifdef DP_RX_MON_MEM_FRAG
  2283. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2284. bool is_mon_dest_desc)
  2285. {
  2286. rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
  2287. if (is_mon_dest_desc)
  2288. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
  2289. }
  2290. #else
  2291. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2292. bool is_mon_dest_desc)
  2293. {
  2294. rx_desc_pool->rx_mon_dest_frag_enable = false;
  2295. if (is_mon_dest_desc)
  2296. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
  2297. }
  2298. #endif
  2299. qdf_export_symbol(dp_rx_enable_mon_dest_frag);
  2300. /*
  2301. * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
  2302. * pool
  2303. *
  2304. * @pdev: core txrx pdev context
  2305. *
  2306. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2307. * QDF_STATUS_E_NOMEM
  2308. */
  2309. QDF_STATUS
  2310. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2311. {
  2312. struct dp_soc *soc = pdev->soc;
  2313. uint32_t rxdma_entries;
  2314. uint32_t rx_sw_desc_num;
  2315. struct dp_srng *dp_rxdma_srng;
  2316. struct rx_desc_pool *rx_desc_pool;
  2317. uint32_t status = QDF_STATUS_SUCCESS;
  2318. int mac_for_pdev;
  2319. mac_for_pdev = pdev->lmac_id;
  2320. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2321. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2322. soc, mac_for_pdev);
  2323. return status;
  2324. }
  2325. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2326. rxdma_entries = dp_rxdma_srng->num_entries;
  2327. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2328. rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2329. rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
  2330. status = dp_rx_desc_pool_alloc(soc,
  2331. rx_sw_desc_num,
  2332. rx_desc_pool);
  2333. if (status != QDF_STATUS_SUCCESS)
  2334. return status;
  2335. return status;
  2336. }
  2337. /*
  2338. * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
  2339. *
  2340. * @pdev: core txrx pdev context
  2341. */
  2342. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2343. {
  2344. int mac_for_pdev = pdev->lmac_id;
  2345. struct dp_soc *soc = pdev->soc;
  2346. struct rx_desc_pool *rx_desc_pool;
  2347. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2348. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2349. }
  2350. /*
  2351. * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
  2352. *
  2353. * @pdev: core txrx pdev context
  2354. *
  2355. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2356. * QDF_STATUS_E_NOMEM
  2357. */
  2358. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2359. {
  2360. int mac_for_pdev = pdev->lmac_id;
  2361. struct dp_soc *soc = pdev->soc;
  2362. uint32_t rxdma_entries;
  2363. uint32_t rx_sw_desc_num;
  2364. struct dp_srng *dp_rxdma_srng;
  2365. struct rx_desc_pool *rx_desc_pool;
  2366. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2367. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2368. /**
  2369. * If NSS is enabled, rx_desc_pool is already filled.
  2370. * Hence, just disable desc_pool frag flag.
  2371. */
  2372. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2373. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2374. soc, mac_for_pdev);
  2375. return QDF_STATUS_SUCCESS;
  2376. }
  2377. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2378. return QDF_STATUS_E_NOMEM;
  2379. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2380. rxdma_entries = dp_rxdma_srng->num_entries;
  2381. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2382. rx_sw_desc_num =
  2383. wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2384. rx_desc_pool->owner = dp_rx_get_rx_bm_id(soc);
  2385. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2386. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2387. /* Disable monitor dest processing via frag */
  2388. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2389. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2390. rx_sw_desc_num, rx_desc_pool);
  2391. return QDF_STATUS_SUCCESS;
  2392. }
  2393. /*
  2394. * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
  2395. * @pdev: core txrx pdev context
  2396. *
  2397. * This function resets the freelist of rx descriptors and destroys locks
  2398. * associated with this list of descriptors.
  2399. */
  2400. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  2401. {
  2402. int mac_for_pdev = pdev->lmac_id;
  2403. struct dp_soc *soc = pdev->soc;
  2404. struct rx_desc_pool *rx_desc_pool;
  2405. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2406. dp_rx_desc_pool_deinit(soc, rx_desc_pool, mac_for_pdev);
  2407. }
  2408. /*
  2409. * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
  2410. *
  2411. * @pdev: core txrx pdev context
  2412. *
  2413. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2414. * QDF_STATUS_E_NOMEM
  2415. */
  2416. QDF_STATUS
  2417. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  2418. {
  2419. int mac_for_pdev = pdev->lmac_id;
  2420. struct dp_soc *soc = pdev->soc;
  2421. struct dp_srng *dp_rxdma_srng;
  2422. struct rx_desc_pool *rx_desc_pool;
  2423. uint32_t rxdma_entries;
  2424. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2425. rxdma_entries = dp_rxdma_srng->num_entries;
  2426. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2427. /* Initialize RX buffer pool which will be
  2428. * used during low memory conditions
  2429. */
  2430. dp_rx_buffer_pool_init(soc, mac_for_pdev);
  2431. return dp_pdev_rx_buffers_attach_simple(soc, mac_for_pdev,
  2432. dp_rxdma_srng,
  2433. rx_desc_pool,
  2434. rxdma_entries - 1);
  2435. }
  2436. /*
  2437. * dp_rx_pdev_buffers_free - Free nbufs (skbs)
  2438. *
  2439. * @pdev: core txrx pdev context
  2440. */
  2441. void
  2442. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  2443. {
  2444. int mac_for_pdev = pdev->lmac_id;
  2445. struct dp_soc *soc = pdev->soc;
  2446. struct rx_desc_pool *rx_desc_pool;
  2447. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2448. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  2449. dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
  2450. }
  2451. #ifdef DP_RX_SPECIAL_FRAME_NEED
  2452. bool dp_rx_deliver_special_frame(struct dp_soc *soc, struct dp_peer *peer,
  2453. qdf_nbuf_t nbuf, uint32_t frame_mask,
  2454. uint8_t *rx_tlv_hdr)
  2455. {
  2456. uint32_t l2_hdr_offset = 0;
  2457. uint16_t msdu_len = 0;
  2458. uint32_t skip_len;
  2459. l2_hdr_offset =
  2460. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2461. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2462. skip_len = l2_hdr_offset;
  2463. } else {
  2464. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2465. skip_len = l2_hdr_offset + soc->rx_pkt_tlv_size;
  2466. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  2467. }
  2468. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2469. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  2470. qdf_nbuf_pull_head(nbuf, skip_len);
  2471. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  2472. dp_info("special frame, mpdu sn 0x%x",
  2473. hal_rx_get_rx_sequence(soc->hal_soc, rx_tlv_hdr));
  2474. qdf_nbuf_set_exc_frame(nbuf, 1);
  2475. dp_rx_deliver_to_stack(soc, peer->vdev, peer,
  2476. nbuf, NULL);
  2477. return true;
  2478. }
  2479. return false;
  2480. }
  2481. #endif