sde_hw_top.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. * Copyright (c) 2015-2021, The Linux Foundation. All rights reserved.
  5. */
  6. #include "sde_hwio.h"
  7. #include "sde_hw_catalog.h"
  8. #include "sde_hw_top.h"
  9. #include "sde_dbg.h"
  10. #include "sde_kms.h"
  11. #define SSPP_SPARE 0x28
  12. #define UBWC_DEC_HW_VERSION 0x058
  13. #define UBWC_STATIC 0x144
  14. #define UBWC_CTRL_2 0x150
  15. #define UBWC_PREDICTION_MODE 0x154
  16. #define FLD_SPLIT_DISPLAY_CMD BIT(1)
  17. #define FLD_SMART_PANEL_FREE_RUN BIT(2)
  18. #define FLD_INTF_1_SW_TRG_MUX BIT(4)
  19. #define FLD_INTF_2_SW_TRG_MUX BIT(8)
  20. #define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF
  21. #define MDP_DSPP_DBGBUS_CTRL 0x348
  22. #define MDP_DSPP_DBGBUS_STATUS 0x34C
  23. #define DANGER_STATUS 0x360
  24. #define SAFE_STATUS 0x364
  25. #define TE_LINE_INTERVAL 0x3F4
  26. #define TRAFFIC_SHAPER_EN BIT(31)
  27. #define TRAFFIC_SHAPER_RD_CLIENT(num) (0x030 + (num * 4))
  28. #define TRAFFIC_SHAPER_WR_CLIENT(num) (0x060 + (num * 4))
  29. #define TRAFFIC_SHAPER_FIXPOINT_FACTOR 4
  30. #define MDP_WD_TIMER_0_CTL 0x380
  31. #define MDP_WD_TIMER_0_CTL2 0x384
  32. #define MDP_WD_TIMER_0_LOAD_VALUE 0x388
  33. #define MDP_WD_TIMER_1_CTL 0x390
  34. #define MDP_WD_TIMER_1_CTL2 0x394
  35. #define MDP_WD_TIMER_1_LOAD_VALUE 0x398
  36. #define MDP_PERIPH_DBGBUS_CTRL 0x418
  37. #define MDP_WD_TIMER_2_CTL 0x420
  38. #define MDP_WD_TIMER_2_CTL2 0x424
  39. #define MDP_WD_TIMER_2_LOAD_VALUE 0x428
  40. #define MDP_WD_TIMER_3_CTL 0x430
  41. #define MDP_WD_TIMER_3_CTL2 0x434
  42. #define MDP_WD_TIMER_3_LOAD_VALUE 0x438
  43. #define MDP_WD_TIMER_4_CTL 0x440
  44. #define MDP_WD_TIMER_4_CTL2 0x444
  45. #define MDP_WD_TIMER_4_LOAD_VALUE 0x448
  46. #define MDP_PERIPH_TOP0 0x380
  47. #define MDP_SSPP_TOP2 0x3A8
  48. #define AUTOREFRESH_TEST_POINT 0x2
  49. #define TEST_MASK(id, tp) ((id << 4) | (tp << 1) | BIT(0))
  50. #define DCE_SEL 0x450
  51. #define MDP_SID_VIG0 0x0
  52. #define MDP_SID_VIG1 0x4
  53. #define MDP_SID_VIG2 0x8
  54. #define MDP_SID_VIG3 0xC
  55. #define MDP_SID_DMA0 0x10
  56. #define MDP_SID_DMA1 0x14
  57. #define MDP_SID_DMA2 0x18
  58. #define MDP_SID_DMA3 0x1C
  59. #define MDP_SID_ROT_RD 0x20
  60. #define MDP_SID_ROT_WR 0x24
  61. #define MDP_SID_WB2 0x28
  62. #define MDP_SID_XIN7 0x2C
  63. #define ROT_SID_ID_VAL 0x1c
  64. static void sde_hw_setup_split_pipe(struct sde_hw_mdp *mdp,
  65. struct split_pipe_cfg *cfg)
  66. {
  67. struct sde_hw_blk_reg_map *c;
  68. u32 upper_pipe = 0;
  69. u32 lower_pipe = 0;
  70. if (!mdp || !cfg)
  71. return;
  72. c = &mdp->hw;
  73. if (cfg->en) {
  74. if (cfg->mode == INTF_MODE_CMD) {
  75. lower_pipe = FLD_SPLIT_DISPLAY_CMD;
  76. /* interface controlling sw trigger */
  77. if (cfg->intf == INTF_2)
  78. lower_pipe |= FLD_INTF_1_SW_TRG_MUX;
  79. else
  80. lower_pipe |= FLD_INTF_2_SW_TRG_MUX;
  81. /* free run */
  82. if (cfg->pp_split_slave != INTF_MAX)
  83. lower_pipe = FLD_SMART_PANEL_FREE_RUN;
  84. upper_pipe = lower_pipe;
  85. /* smart panel align mode */
  86. lower_pipe |= BIT(mdp->caps->smart_panel_align_mode);
  87. } else {
  88. if (cfg->intf == INTF_2) {
  89. lower_pipe = FLD_INTF_1_SW_TRG_MUX;
  90. upper_pipe = FLD_INTF_2_SW_TRG_MUX;
  91. } else {
  92. lower_pipe = FLD_INTF_2_SW_TRG_MUX;
  93. upper_pipe = FLD_INTF_1_SW_TRG_MUX;
  94. }
  95. }
  96. }
  97. SDE_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0);
  98. SDE_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe);
  99. SDE_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe);
  100. SDE_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1);
  101. }
  102. static void sde_hw_setup_pp_split(struct sde_hw_mdp *mdp,
  103. struct split_pipe_cfg *cfg)
  104. {
  105. u32 ppb_config = 0x0;
  106. u32 ppb_control = 0x0;
  107. if (!mdp || !cfg)
  108. return;
  109. if (cfg->en && cfg->pp_split_slave != INTF_MAX) {
  110. ppb_config |= (cfg->pp_split_slave - INTF_0 + 1) << 20;
  111. ppb_config |= BIT(16); /* split enable */
  112. ppb_control = BIT(5); /* horz split*/
  113. }
  114. if (cfg->pp_split_index) {
  115. SDE_REG_WRITE(&mdp->hw, PPB0_CONFIG, 0x0);
  116. SDE_REG_WRITE(&mdp->hw, PPB0_CNTL, 0x0);
  117. SDE_REG_WRITE(&mdp->hw, PPB1_CONFIG, ppb_config);
  118. SDE_REG_WRITE(&mdp->hw, PPB1_CNTL, ppb_control);
  119. } else {
  120. SDE_REG_WRITE(&mdp->hw, PPB0_CONFIG, ppb_config);
  121. SDE_REG_WRITE(&mdp->hw, PPB0_CNTL, ppb_control);
  122. SDE_REG_WRITE(&mdp->hw, PPB1_CONFIG, 0x0);
  123. SDE_REG_WRITE(&mdp->hw, PPB1_CNTL, 0x0);
  124. }
  125. }
  126. static void sde_hw_setup_cdm_output(struct sde_hw_mdp *mdp,
  127. struct cdm_output_cfg *cfg)
  128. {
  129. struct sde_hw_blk_reg_map *c;
  130. u32 out_ctl = 0;
  131. if (!mdp || !cfg)
  132. return;
  133. c = &mdp->hw;
  134. if (cfg->wb_en)
  135. out_ctl |= BIT(24);
  136. else if (cfg->intf_en)
  137. out_ctl |= BIT(19);
  138. SDE_REG_WRITE(c, MDP_OUT_CTL_0, out_ctl);
  139. }
  140. static bool sde_hw_setup_clk_force_ctrl(struct sde_hw_mdp *mdp,
  141. enum sde_clk_ctrl_type clk_ctrl, bool enable)
  142. {
  143. struct sde_hw_blk_reg_map *c;
  144. u32 reg_off, bit_off;
  145. u32 reg_val, new_val;
  146. bool clk_forced_on;
  147. if (!mdp)
  148. return false;
  149. c = &mdp->hw;
  150. if (clk_ctrl <= SDE_CLK_CTRL_NONE || clk_ctrl >= SDE_CLK_CTRL_MAX)
  151. return false;
  152. reg_off = mdp->caps->clk_ctrls[clk_ctrl].reg_off;
  153. bit_off = mdp->caps->clk_ctrls[clk_ctrl].bit_off;
  154. reg_val = SDE_REG_READ(c, reg_off);
  155. if (enable)
  156. new_val = reg_val | BIT(bit_off);
  157. else
  158. new_val = reg_val & ~BIT(bit_off);
  159. SDE_REG_WRITE(c, reg_off, new_val);
  160. wmb(); /* ensure write finished before progressing */
  161. clk_forced_on = !(reg_val & BIT(bit_off));
  162. return clk_forced_on;
  163. }
  164. static int sde_hw_get_clk_ctrl_status(struct sde_hw_mdp *mdp,
  165. enum sde_clk_ctrl_type clk_ctrl, bool *status)
  166. {
  167. struct sde_hw_blk_reg_map *c;
  168. u32 reg_off, bit_off;
  169. if (!mdp)
  170. return -EINVAL;
  171. c = &mdp->hw;
  172. if (clk_ctrl <= SDE_CLK_CTRL_NONE || clk_ctrl >= SDE_CLK_CTRL_MAX ||
  173. !mdp->caps->clk_status[clk_ctrl].reg_off)
  174. return -EINVAL;
  175. reg_off = mdp->caps->clk_status[clk_ctrl].reg_off;
  176. bit_off = mdp->caps->clk_status[clk_ctrl].bit_off;
  177. *status = SDE_REG_READ(c, reg_off) & BIT(bit_off);
  178. return 0;
  179. }
  180. static void _update_vsync_source(struct sde_hw_mdp *mdp,
  181. struct sde_vsync_source_cfg *cfg)
  182. {
  183. struct sde_hw_blk_reg_map *c;
  184. u32 reg, wd_load_value, wd_ctl, wd_ctl2;
  185. if (!mdp || !cfg)
  186. return;
  187. c = &mdp->hw;
  188. if (cfg->vsync_source >= SDE_VSYNC_SOURCE_WD_TIMER_4 &&
  189. cfg->vsync_source <= SDE_VSYNC_SOURCE_WD_TIMER_0) {
  190. switch (cfg->vsync_source) {
  191. case SDE_VSYNC_SOURCE_WD_TIMER_4:
  192. wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE;
  193. wd_ctl = MDP_WD_TIMER_4_CTL;
  194. wd_ctl2 = MDP_WD_TIMER_4_CTL2;
  195. break;
  196. case SDE_VSYNC_SOURCE_WD_TIMER_3:
  197. wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE;
  198. wd_ctl = MDP_WD_TIMER_3_CTL;
  199. wd_ctl2 = MDP_WD_TIMER_3_CTL2;
  200. break;
  201. case SDE_VSYNC_SOURCE_WD_TIMER_2:
  202. wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE;
  203. wd_ctl = MDP_WD_TIMER_2_CTL;
  204. wd_ctl2 = MDP_WD_TIMER_2_CTL2;
  205. break;
  206. case SDE_VSYNC_SOURCE_WD_TIMER_1:
  207. wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE;
  208. wd_ctl = MDP_WD_TIMER_1_CTL;
  209. wd_ctl2 = MDP_WD_TIMER_1_CTL2;
  210. break;
  211. case SDE_VSYNC_SOURCE_WD_TIMER_0:
  212. default:
  213. wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE;
  214. wd_ctl = MDP_WD_TIMER_0_CTL;
  215. wd_ctl2 = MDP_WD_TIMER_0_CTL2;
  216. break;
  217. }
  218. SDE_REG_WRITE(c, wd_load_value, CALCULATE_WD_LOAD_VALUE(cfg->frame_rate));
  219. SDE_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */
  220. reg = SDE_REG_READ(c, wd_ctl2);
  221. reg |= BIT(8); /* enable heartbeat timer */
  222. reg |= BIT(0); /* enable WD timer */
  223. SDE_REG_WRITE(c, wd_ctl2, reg);
  224. /* make sure that timers are enabled/disabled for vsync state */
  225. wmb();
  226. }
  227. }
  228. static void sde_hw_setup_vsync_source(struct sde_hw_mdp *mdp,
  229. struct sde_vsync_source_cfg *cfg)
  230. {
  231. struct sde_hw_blk_reg_map *c;
  232. u32 reg, i;
  233. static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18};
  234. if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber)))
  235. return;
  236. c = &mdp->hw;
  237. reg = SDE_REG_READ(c, MDP_VSYNC_SEL);
  238. for (i = 0; i < cfg->pp_count; i++) {
  239. int pp_idx = cfg->ppnumber[i] - PINGPONG_0;
  240. if (pp_idx >= ARRAY_SIZE(pp_offset))
  241. continue;
  242. reg &= ~(0xf << pp_offset[pp_idx]);
  243. reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx];
  244. }
  245. SDE_REG_WRITE(c, MDP_VSYNC_SEL, reg);
  246. _update_vsync_source(mdp, cfg);
  247. }
  248. static void sde_hw_setup_vsync_source_v1(struct sde_hw_mdp *mdp,
  249. struct sde_vsync_source_cfg *cfg)
  250. {
  251. _update_vsync_source(mdp, cfg);
  252. }
  253. void sde_hw_reset_ubwc(struct sde_hw_mdp *mdp, struct sde_mdss_cfg *m)
  254. {
  255. struct sde_hw_blk_reg_map c;
  256. u32 ubwc_dec_version;
  257. u32 ubwc_enc_version;
  258. if (!mdp || !m)
  259. return;
  260. /* force blk offset to zero to access beginning of register region */
  261. c = mdp->hw;
  262. c.blk_off = 0x0;
  263. ubwc_dec_version = SDE_REG_READ(&c, UBWC_DEC_HW_VERSION);
  264. ubwc_enc_version = m->ubwc_rev;
  265. if (IS_UBWC_40_SUPPORTED(ubwc_dec_version) || IS_UBWC_43_SUPPORTED(ubwc_dec_version)) {
  266. u32 ver = IS_UBWC_43_SUPPORTED(ubwc_dec_version) ? 3 : 2;
  267. u32 mode = 1;
  268. u32 reg = (m->mdp[0].ubwc_swizzle & 0x7) |
  269. ((m->mdp[0].ubwc_static & 0x1) << 3) |
  270. ((m->mdp[0].highest_bank_bit & 0x7) << 4) |
  271. ((m->macrotile_mode & 0x1) << 12);
  272. if (IS_UBWC_30_SUPPORTED(ubwc_enc_version)) {
  273. ver = 1;
  274. mode = 0;
  275. }
  276. SDE_REG_WRITE(&c, UBWC_STATIC, reg);
  277. SDE_REG_WRITE(&c, UBWC_CTRL_2, ver);
  278. SDE_REG_WRITE(&c, UBWC_PREDICTION_MODE, mode);
  279. } else if (IS_UBWC_20_SUPPORTED(ubwc_dec_version)) {
  280. SDE_REG_WRITE(&c, UBWC_STATIC, m->mdp[0].ubwc_static);
  281. } else if (IS_UBWC_30_SUPPORTED(ubwc_dec_version)) {
  282. u32 reg = m->mdp[0].ubwc_static |
  283. (m->mdp[0].ubwc_swizzle & 0x1) |
  284. ((m->mdp[0].highest_bank_bit & 0x3) << 4) |
  285. ((m->macrotile_mode & 0x1) << 12);
  286. if (IS_UBWC_30_SUPPORTED(ubwc_enc_version))
  287. reg |= BIT(10);
  288. if (IS_UBWC_10_SUPPORTED(ubwc_enc_version))
  289. reg |= BIT(8);
  290. SDE_REG_WRITE(&c, UBWC_STATIC, reg);
  291. } else {
  292. SDE_ERROR("unsupported ubwc decoder version 0x%08x\n", ubwc_dec_version);
  293. }
  294. }
  295. static void sde_hw_intf_audio_select(struct sde_hw_mdp *mdp)
  296. {
  297. struct sde_hw_blk_reg_map *c;
  298. if (!mdp)
  299. return;
  300. c = &mdp->hw;
  301. SDE_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1);
  302. }
  303. static void sde_hw_mdp_events(struct sde_hw_mdp *mdp, bool enable)
  304. {
  305. struct sde_hw_blk_reg_map *c;
  306. if (!mdp)
  307. return;
  308. c = &mdp->hw;
  309. SDE_REG_WRITE(c, HW_EVENTS_CTL, enable);
  310. }
  311. struct sde_hw_sid *sde_hw_sid_init(void __iomem *addr,
  312. u32 sid_len, const struct sde_mdss_cfg *m)
  313. {
  314. struct sde_hw_sid *c;
  315. c = kzalloc(sizeof(*c), GFP_KERNEL);
  316. if (!c)
  317. return ERR_PTR(-ENOMEM);
  318. c->hw.base_off = addr;
  319. c->hw.blk_off = 0;
  320. c->hw.length = sid_len;
  321. c->hw.hw_rev = m->hw_rev;
  322. c->hw.log_mask = SDE_DBG_MASK_SID;
  323. return c;
  324. }
  325. void sde_hw_set_rotator_sid(struct sde_hw_sid *sid)
  326. {
  327. if (!sid)
  328. return;
  329. SDE_REG_WRITE(&sid->hw, MDP_SID_ROT_RD, ROT_SID_ID_VAL);
  330. SDE_REG_WRITE(&sid->hw, MDP_SID_ROT_WR, ROT_SID_ID_VAL);
  331. }
  332. void sde_hw_set_sspp_sid(struct sde_hw_sid *sid, u32 pipe, u32 vm)
  333. {
  334. u32 offset = 0;
  335. if (!sid)
  336. return;
  337. if (SDE_SSPP_VALID_VIG(pipe))
  338. offset = MDP_SID_VIG0 + ((pipe - SSPP_VIG0) * 4);
  339. else if (SDE_SSPP_VALID_DMA(pipe))
  340. offset = MDP_SID_DMA0 + ((pipe - SSPP_DMA0) * 4);
  341. else
  342. return;
  343. SDE_REG_WRITE(&sid->hw, offset, vm << 2);
  344. }
  345. void sde_hw_set_lutdma_sid(struct sde_hw_sid *sid, u32 vm)
  346. {
  347. if (!sid)
  348. return;
  349. SDE_REG_WRITE(&sid->hw, MDP_SID_XIN7, vm << 2);
  350. }
  351. static void sde_hw_program_cwb_ppb_ctrl(struct sde_hw_mdp *mdp,
  352. bool dual, bool dspp_out)
  353. {
  354. u32 value = dspp_out ? 0x4 : 0x0;
  355. SDE_REG_WRITE(&mdp->hw, PPB2_CNTL, value);
  356. if (dual) {
  357. value |= 0x1;
  358. SDE_REG_WRITE(&mdp->hw, PPB3_CNTL, value);
  359. }
  360. }
  361. static void sde_hw_set_hdr_plus_metadata(struct sde_hw_mdp *mdp,
  362. u8 *payload, u32 len, u32 stream_id)
  363. {
  364. u32 i, b;
  365. u32 length = len - 1;
  366. u32 d_offset, nb_offset, data = 0;
  367. const u32 dword_size = sizeof(u32);
  368. bool is_4k_aligned = mdp->caps->features &
  369. BIT(SDE_MDP_DHDR_MEMPOOL_4K);
  370. if (!payload || !len) {
  371. SDE_ERROR("invalid payload with length: %d\n", len);
  372. return;
  373. }
  374. if (stream_id) {
  375. if (is_4k_aligned) {
  376. d_offset = DP_DHDR_MEM_POOL_1_DATA_4K;
  377. nb_offset = DP_DHDR_MEM_POOL_1_NUM_BYTES_4K;
  378. } else {
  379. d_offset = DP_DHDR_MEM_POOL_1_DATA;
  380. nb_offset = DP_DHDR_MEM_POOL_1_NUM_BYTES;
  381. }
  382. } else {
  383. if (is_4k_aligned) {
  384. d_offset = DP_DHDR_MEM_POOL_0_DATA_4K;
  385. nb_offset = DP_DHDR_MEM_POOL_0_NUM_BYTES_4K;
  386. } else {
  387. d_offset = DP_DHDR_MEM_POOL_0_DATA;
  388. nb_offset = DP_DHDR_MEM_POOL_0_NUM_BYTES;
  389. }
  390. }
  391. /* payload[0] is set in VSCEXT header byte 1, skip programming here */
  392. SDE_REG_WRITE(&mdp->hw, nb_offset, length);
  393. for (i = 1; i < len; i += dword_size) {
  394. for (b = 0; (i + b) < len && b < dword_size; b++)
  395. data |= payload[i + b] << (8 * b);
  396. SDE_REG_WRITE(&mdp->hw, d_offset, data);
  397. data = 0;
  398. }
  399. }
  400. static u32 sde_hw_get_autorefresh_status(struct sde_hw_mdp *mdp, u32 intf_idx)
  401. {
  402. struct sde_hw_blk_reg_map *c;
  403. u32 autorefresh_status;
  404. u32 blk_id = (intf_idx == INTF_2) ? 65 : 64;
  405. if (!mdp)
  406. return 0;
  407. c = &mdp->hw;
  408. SDE_REG_WRITE(&mdp->hw, MDP_PERIPH_DBGBUS_CTRL,
  409. TEST_MASK(blk_id, AUTOREFRESH_TEST_POINT));
  410. SDE_REG_WRITE(&mdp->hw, MDP_DSPP_DBGBUS_CTRL, 0x7001);
  411. wmb(); /* make sure test bits were written */
  412. autorefresh_status = SDE_REG_READ(&mdp->hw, MDP_DSPP_DBGBUS_STATUS);
  413. SDE_REG_WRITE(&mdp->hw, MDP_PERIPH_DBGBUS_CTRL, 0x0);
  414. return autorefresh_status;
  415. }
  416. static void _setup_mdp_ops(struct sde_hw_mdp_ops *ops,
  417. unsigned long cap)
  418. {
  419. ops->setup_split_pipe = sde_hw_setup_split_pipe;
  420. ops->setup_pp_split = sde_hw_setup_pp_split;
  421. ops->setup_cdm_output = sde_hw_setup_cdm_output;
  422. ops->setup_clk_force_ctrl = sde_hw_setup_clk_force_ctrl;
  423. ops->get_clk_ctrl_status = sde_hw_get_clk_ctrl_status;
  424. ops->set_cwb_ppb_cntl = sde_hw_program_cwb_ppb_ctrl;
  425. ops->reset_ubwc = sde_hw_reset_ubwc;
  426. ops->intf_audio_select = sde_hw_intf_audio_select;
  427. ops->set_mdp_hw_events = sde_hw_mdp_events;
  428. if (cap & BIT(SDE_MDP_VSYNC_SEL))
  429. ops->setup_vsync_source = sde_hw_setup_vsync_source;
  430. else if (cap & BIT(SDE_MDP_WD_TIMER))
  431. ops->setup_vsync_source = sde_hw_setup_vsync_source_v1;
  432. if (cap & BIT(SDE_MDP_DHDR_MEMPOOL_4K) ||
  433. cap & BIT(SDE_MDP_DHDR_MEMPOOL))
  434. ops->set_hdr_plus_metadata = sde_hw_set_hdr_plus_metadata;
  435. ops->get_autorefresh_status = sde_hw_get_autorefresh_status;
  436. }
  437. static const struct sde_mdp_cfg *_top_offset(enum sde_mdp mdp,
  438. const struct sde_mdss_cfg *m,
  439. void __iomem *addr,
  440. struct sde_hw_blk_reg_map *b)
  441. {
  442. int i;
  443. if (!m || !addr || !b)
  444. return ERR_PTR(-EINVAL);
  445. for (i = 0; i < m->mdp_count; i++) {
  446. if (mdp == m->mdp[i].id) {
  447. b->base_off = addr;
  448. b->blk_off = m->mdp[i].base;
  449. b->length = m->mdp[i].len;
  450. b->hw_rev = m->hw_rev;
  451. b->log_mask = SDE_DBG_MASK_TOP;
  452. return &m->mdp[i];
  453. }
  454. }
  455. return ERR_PTR(-EINVAL);
  456. }
  457. struct sde_hw_mdp *sde_hw_mdptop_init(enum sde_mdp idx,
  458. void __iomem *addr,
  459. const struct sde_mdss_cfg *m)
  460. {
  461. struct sde_hw_mdp *mdp;
  462. const struct sde_mdp_cfg *cfg;
  463. if (!addr || !m)
  464. return ERR_PTR(-EINVAL);
  465. mdp = kzalloc(sizeof(*mdp), GFP_KERNEL);
  466. if (!mdp)
  467. return ERR_PTR(-ENOMEM);
  468. cfg = _top_offset(idx, m, addr, &mdp->hw);
  469. if (IS_ERR_OR_NULL(cfg)) {
  470. kfree(mdp);
  471. return ERR_PTR(-EINVAL);
  472. }
  473. /*
  474. * Assign ops
  475. */
  476. mdp->idx = idx;
  477. mdp->caps = cfg;
  478. _setup_mdp_ops(&mdp->ops, mdp->caps->features);
  479. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, "mdss_hw", 0,
  480. m->mdss_hw_block_size, 0);
  481. if (test_bit(SDE_MDP_PERIPH_TOP_0_REMOVED, &m->mdp[0].features)) {
  482. char name[SDE_HW_BLK_NAME_LEN];
  483. snprintf(name, sizeof(name), "%s_1", cfg->name);
  484. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name, mdp->hw.blk_off,
  485. mdp->hw.blk_off + MDP_PERIPH_TOP0, mdp->hw.xin_id);
  486. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, name, mdp->hw.blk_off + MDP_SSPP_TOP2,
  487. mdp->hw.blk_off + mdp->hw.length, mdp->hw.xin_id);
  488. } else {
  489. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name,
  490. mdp->hw.blk_off, mdp->hw.blk_off + mdp->hw.length,
  491. mdp->hw.xin_id);
  492. }
  493. sde_dbg_set_sde_top_offset(mdp->hw.blk_off);
  494. return mdp;
  495. }
  496. void sde_hw_mdp_destroy(struct sde_hw_mdp *mdp)
  497. {
  498. kfree(mdp);
  499. }