msm_smem.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/dma-buf.h>
  6. #include <linux/dma-heap.h>
  7. #include <linux/dma-direction.h>
  8. #include <linux/iommu.h>
  9. #include <linux/msm_dma_iommu_mapping.h>
  10. #include <linux/ion.h>
  11. #include <linux/msm_ion.h>
  12. #include <linux/slab.h>
  13. #include <linux/types.h>
  14. #include "msm_cvp_core.h"
  15. #include "msm_cvp_debug.h"
  16. #include "msm_cvp_resources.h"
  17. #include "cvp_core_hfi.h"
  18. static int msm_dma_get_device_address(struct dma_buf *dbuf, u32 align,
  19. dma_addr_t *iova, u32 flags, unsigned long ion_flags,
  20. struct msm_cvp_platform_resources *res,
  21. struct cvp_dma_mapping_info *mapping_info)
  22. {
  23. int rc = 0;
  24. struct dma_buf_attachment *attach;
  25. struct sg_table *table = NULL;
  26. struct context_bank_info *cb = NULL;
  27. if (!dbuf || !iova || !mapping_info) {
  28. dprintk(CVP_ERR, "Invalid params: %pK, %pK, %pK\n",
  29. dbuf, iova, mapping_info);
  30. return -EINVAL;
  31. }
  32. if (is_iommu_present(res)) {
  33. cb = msm_cvp_smem_get_context_bank((flags & SMEM_SECURE),
  34. res, ion_flags);
  35. if (!cb) {
  36. dprintk(CVP_ERR,
  37. "%s: Failed to get context bank device\n",
  38. __func__);
  39. rc = -EIO;
  40. goto mem_map_failed;
  41. }
  42. /* Prepare a dma buf for dma on the given device */
  43. attach = dma_buf_attach(dbuf, cb->dev);
  44. if (IS_ERR_OR_NULL(attach)) {
  45. rc = PTR_ERR(attach) ?: -ENOMEM;
  46. dprintk(CVP_ERR, "Failed to attach dmabuf\n");
  47. goto mem_buf_attach_failed;
  48. }
  49. /*
  50. * Get the scatterlist for the given attachment
  51. * Mapping of sg is taken care by map attachment
  52. */
  53. attach->dma_map_attrs = DMA_ATTR_DELAYED_UNMAP;
  54. /*
  55. * We do not need dma_map function to perform cache operations
  56. * on the whole buffer size and hence pass skip sync flag.
  57. * We do the required cache operations separately for the
  58. * required buffer size
  59. */
  60. attach->dma_map_attrs |= DMA_ATTR_SKIP_CPU_SYNC;
  61. if (res->sys_cache_present)
  62. attach->dma_map_attrs |=
  63. DMA_ATTR_IOMMU_USE_UPSTREAM_HINT;
  64. table = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
  65. if (IS_ERR_OR_NULL(table)) {
  66. rc = PTR_ERR(table) ?: -ENOMEM;
  67. dprintk(CVP_ERR, "Failed to map table\n");
  68. goto mem_map_table_failed;
  69. }
  70. if (table->sgl) {
  71. *iova = table->sgl->dma_address;
  72. } else {
  73. dprintk(CVP_ERR, "sgl is NULL\n");
  74. rc = -ENOMEM;
  75. goto mem_map_sg_failed;
  76. }
  77. mapping_info->dev = cb->dev;
  78. mapping_info->domain = cb->domain;
  79. mapping_info->table = table;
  80. mapping_info->attach = attach;
  81. mapping_info->buf = dbuf;
  82. mapping_info->cb_info = (void *)cb;
  83. } else {
  84. dprintk(CVP_MEM, "iommu not present, use phys mem addr\n");
  85. }
  86. return 0;
  87. mem_map_sg_failed:
  88. dma_buf_unmap_attachment(attach, table, DMA_BIDIRECTIONAL);
  89. mem_map_table_failed:
  90. dma_buf_detach(dbuf, attach);
  91. mem_buf_attach_failed:
  92. mem_map_failed:
  93. return rc;
  94. }
  95. static int msm_dma_put_device_address(u32 flags,
  96. struct cvp_dma_mapping_info *mapping_info)
  97. {
  98. int rc = 0;
  99. if (!mapping_info) {
  100. dprintk(CVP_WARN, "Invalid mapping_info\n");
  101. return -EINVAL;
  102. }
  103. if (!mapping_info->dev || !mapping_info->table ||
  104. !mapping_info->buf || !mapping_info->attach ||
  105. !mapping_info->cb_info) {
  106. dprintk(CVP_WARN, "Invalid params\n");
  107. return -EINVAL;
  108. }
  109. dma_buf_unmap_attachment(mapping_info->attach,
  110. mapping_info->table, DMA_BIDIRECTIONAL);
  111. dma_buf_detach(mapping_info->buf, mapping_info->attach);
  112. mapping_info->dev = NULL;
  113. mapping_info->domain = NULL;
  114. mapping_info->table = NULL;
  115. mapping_info->attach = NULL;
  116. mapping_info->buf = NULL;
  117. mapping_info->cb_info = NULL;
  118. return rc;
  119. }
  120. struct dma_buf *msm_cvp_smem_get_dma_buf(int fd)
  121. {
  122. struct dma_buf *dma_buf;
  123. dma_buf = dma_buf_get(fd);
  124. if (IS_ERR_OR_NULL(dma_buf)) {
  125. dprintk(CVP_ERR, "Failed to get dma_buf for %d, error %ld\n",
  126. fd, PTR_ERR(dma_buf));
  127. dma_buf = NULL;
  128. }
  129. return dma_buf;
  130. }
  131. void msm_cvp_smem_put_dma_buf(void *dma_buf)
  132. {
  133. if (!dma_buf) {
  134. dprintk(CVP_ERR, "%s: NULL dma_buf\n", __func__);
  135. return;
  136. }
  137. dma_heap_buffer_free((struct dma_buf *)dma_buf);
  138. }
  139. int msm_cvp_map_smem(struct msm_cvp_inst *inst,
  140. struct msm_cvp_smem *smem,
  141. const char *str)
  142. {
  143. int rc = 0;
  144. dma_addr_t iova = 0;
  145. u32 temp = 0;
  146. u32 align = SZ_4K;
  147. struct dma_buf *dma_buf;
  148. unsigned long ion_flags = 0;
  149. if (!inst || !smem) {
  150. dprintk(CVP_ERR, "%s: Invalid params: %pK %pK\n",
  151. __func__, inst, smem);
  152. return -EINVAL;
  153. }
  154. dma_buf = smem->dma_buf;
  155. rc = dma_buf_get_flags(dma_buf, &ion_flags);
  156. if (rc) {
  157. dprintk(CVP_ERR, "Failed to get dma buf flags: %d\n", rc);
  158. goto exit;
  159. }
  160. if (ion_flags & ION_FLAG_CACHED)
  161. smem->flags |= SMEM_CACHED;
  162. if (ion_flags & ION_FLAG_SECURE)
  163. smem->flags |= SMEM_SECURE;
  164. rc = msm_dma_get_device_address(dma_buf, align, &iova, smem->flags,
  165. ion_flags, &(inst->core->resources),
  166. &smem->mapping_info);
  167. if (rc) {
  168. dprintk(CVP_ERR, "Failed to get device address: %d\n", rc);
  169. goto exit;
  170. }
  171. temp = (u32)iova;
  172. if ((dma_addr_t)temp != iova) {
  173. dprintk(CVP_ERR, "iova(%pa) truncated to %#x", &iova, temp);
  174. rc = -EINVAL;
  175. goto exit;
  176. }
  177. smem->size = dma_buf->size;
  178. smem->device_addr = (u32)iova;
  179. print_smem(CVP_MEM, str, inst, smem);
  180. return rc;
  181. exit:
  182. smem->device_addr = 0x0;
  183. return rc;
  184. }
  185. int msm_cvp_unmap_smem(struct msm_cvp_inst *inst,
  186. struct msm_cvp_smem *smem,
  187. const char *str)
  188. {
  189. int rc = 0;
  190. if (!smem) {
  191. dprintk(CVP_ERR, "%s: Invalid params: %pK\n", __func__, smem);
  192. rc = -EINVAL;
  193. goto exit;
  194. }
  195. print_smem(CVP_MEM, str, inst, smem);
  196. rc = msm_dma_put_device_address(smem->flags, &smem->mapping_info);
  197. if (rc) {
  198. dprintk(CVP_ERR, "Failed to put device address: %d\n", rc);
  199. goto exit;
  200. }
  201. smem->device_addr = 0x0;
  202. exit:
  203. return rc;
  204. }
  205. static int alloc_dma_mem(size_t size, u32 align, u32 flags, int map_kernel,
  206. struct msm_cvp_platform_resources *res, struct msm_cvp_smem *mem)
  207. {
  208. dma_addr_t iova = 0;
  209. unsigned long heap_mask = 0;
  210. int rc = 0;
  211. int ion_flags = 0;
  212. struct dma_buf *dbuf = NULL;
  213. struct dma_heap *heap;
  214. if (!res) {
  215. dprintk(CVP_ERR, "%s: NULL res\n", __func__);
  216. return -EINVAL;
  217. }
  218. align = ALIGN(align, SZ_4K);
  219. size = ALIGN(size, SZ_4K);
  220. if (is_iommu_present(res)) {
  221. if (flags & SMEM_ADSP) {
  222. dprintk(CVP_MEM, "Allocating from ADSP heap\n");
  223. heap_mask = ION_HEAP(ION_ADSP_HEAP_ID);
  224. } else {
  225. heap_mask = ION_HEAP(ION_SYSTEM_HEAP_ID);
  226. }
  227. } else {
  228. dprintk(CVP_MEM,
  229. "allocate shared memory from adsp heap size %zx align %d\n",
  230. size, align);
  231. heap_mask = ION_HEAP(ION_ADSP_HEAP_ID);
  232. }
  233. if (flags & SMEM_CACHED)
  234. ion_flags |= ION_FLAG_CACHED;
  235. if (flags & SMEM_NON_PIXEL)
  236. ion_flags |= ION_FLAG_CP_NON_PIXEL;
  237. if (flags & SMEM_SECURE) {
  238. ion_flags |= ION_FLAG_SECURE;
  239. heap_mask = ION_HEAP(ION_SECURE_HEAP_ID);
  240. }
  241. heap = dma_heap_find("qcom,system");
  242. dbuf = dma_heap_buffer_alloc(heap, size, 0, 0);
  243. if (IS_ERR_OR_NULL(dbuf)) {
  244. dprintk(CVP_ERR,
  245. "Failed to allocate shared memory = %x bytes, %llx, %x %x\n",
  246. size, heap_mask, ion_flags, PTR_ERR(dbuf));
  247. rc = -ENOMEM;
  248. goto fail_shared_mem_alloc;
  249. }
  250. mem->flags = flags;
  251. mem->ion_flags = ion_flags;
  252. mem->size = size;
  253. mem->dma_buf = dbuf;
  254. mem->kvaddr = NULL;
  255. rc = msm_dma_get_device_address(dbuf, align, &iova, flags,
  256. ion_flags, res, &mem->mapping_info);
  257. if (rc) {
  258. dprintk(CVP_ERR, "Failed to get device address: %d\n",
  259. rc);
  260. goto fail_device_address;
  261. }
  262. mem->device_addr = (u32)iova;
  263. if ((dma_addr_t)mem->device_addr != iova) {
  264. dprintk(CVP_ERR, "iova(%pa) truncated to %#x",
  265. &iova, mem->device_addr);
  266. goto fail_device_address;
  267. }
  268. if (map_kernel) {
  269. dma_buf_begin_cpu_access(dbuf, DMA_BIDIRECTIONAL);
  270. mem->kvaddr = dma_buf_vmap(dbuf);
  271. if (!mem->kvaddr) {
  272. dprintk(CVP_ERR,
  273. "Failed to map shared mem in kernel\n");
  274. rc = -EIO;
  275. goto fail_map;
  276. }
  277. }
  278. dprintk(CVP_MEM,
  279. "%s: dma_buf = %pK, device_addr = %x, size = %d, kvaddr = %pK, ion_flags = %#x, flags = %#lx\n",
  280. __func__, mem->dma_buf, mem->device_addr, mem->size,
  281. mem->kvaddr, mem->ion_flags, mem->flags);
  282. return rc;
  283. fail_map:
  284. if (map_kernel)
  285. dma_buf_end_cpu_access(dbuf, DMA_BIDIRECTIONAL);
  286. fail_device_address:
  287. dma_heap_buffer_free(dbuf);
  288. fail_shared_mem_alloc:
  289. return rc;
  290. }
  291. static int free_dma_mem(struct msm_cvp_smem *mem)
  292. {
  293. dprintk(CVP_MEM,
  294. "%s: dma_buf = %pK, device_addr = %x, size = %d, kvaddr = %pK, ion_flags = %#x\n",
  295. __func__, mem->dma_buf, mem->device_addr, mem->size,
  296. mem->kvaddr, mem->ion_flags);
  297. if (mem->device_addr) {
  298. msm_dma_put_device_address(mem->flags, &mem->mapping_info);
  299. mem->device_addr = 0x0;
  300. }
  301. if (mem->kvaddr) {
  302. dma_buf_vunmap(mem->dma_buf, mem->kvaddr);
  303. mem->kvaddr = NULL;
  304. dma_buf_end_cpu_access(mem->dma_buf, DMA_BIDIRECTIONAL);
  305. }
  306. if (mem->dma_buf) {
  307. dma_heap_buffer_free(mem->dma_buf);
  308. mem->dma_buf = NULL;
  309. }
  310. return 0;
  311. }
  312. int msm_cvp_smem_alloc(size_t size, u32 align, u32 flags, int map_kernel,
  313. void *res, struct msm_cvp_smem *smem)
  314. {
  315. int rc = 0;
  316. if (!smem || !size) {
  317. dprintk(CVP_ERR, "%s: NULL smem or %d size\n",
  318. __func__, (u32)size);
  319. return -EINVAL;
  320. }
  321. rc = alloc_dma_mem(size, align, flags, map_kernel,
  322. (struct msm_cvp_platform_resources *)res,
  323. smem);
  324. return rc;
  325. }
  326. int msm_cvp_smem_free(struct msm_cvp_smem *smem)
  327. {
  328. int rc = 0;
  329. if (!smem) {
  330. dprintk(CVP_ERR, "NULL smem passed\n");
  331. return -EINVAL;
  332. }
  333. rc = free_dma_mem(smem);
  334. return rc;
  335. };
  336. int msm_cvp_smem_cache_operations(struct dma_buf *dbuf,
  337. enum smem_cache_ops cache_op, unsigned long offset, unsigned long size)
  338. {
  339. int rc = 0;
  340. unsigned long flags = 0;
  341. if (!dbuf) {
  342. dprintk(CVP_ERR, "%s: Invalid params\n", __func__);
  343. return -EINVAL;
  344. }
  345. /* Return if buffer doesn't support caching */
  346. rc = dma_buf_get_flags(dbuf, &flags);
  347. if (rc) {
  348. dprintk(CVP_ERR, "%s: dma_buf_get_flags failed, err %d\n",
  349. __func__, rc);
  350. return rc;
  351. } else if (!(flags & ION_FLAG_CACHED)) {
  352. return rc;
  353. }
  354. switch (cache_op) {
  355. case SMEM_CACHE_CLEAN:
  356. case SMEM_CACHE_CLEAN_INVALIDATE:
  357. rc = dma_buf_begin_cpu_access_partial(dbuf, DMA_BIDIRECTIONAL,
  358. offset, size);
  359. if (rc)
  360. break;
  361. rc = dma_buf_end_cpu_access_partial(dbuf, DMA_BIDIRECTIONAL,
  362. offset, size);
  363. break;
  364. case SMEM_CACHE_INVALIDATE:
  365. rc = dma_buf_begin_cpu_access_partial(dbuf, DMA_TO_DEVICE,
  366. offset, size);
  367. if (rc)
  368. break;
  369. rc = dma_buf_end_cpu_access_partial(dbuf, DMA_FROM_DEVICE,
  370. offset, size);
  371. break;
  372. default:
  373. dprintk(CVP_ERR, "%s: cache (%d) operation not supported\n",
  374. __func__, cache_op);
  375. rc = -EINVAL;
  376. break;
  377. }
  378. return rc;
  379. }
  380. struct context_bank_info *msm_cvp_smem_get_context_bank(bool is_secure,
  381. struct msm_cvp_platform_resources *res, unsigned long ion_flags)
  382. {
  383. struct context_bank_info *cb = NULL, *match = NULL;
  384. char *search_str;
  385. char *non_secure_cb = "cvp_hlos";
  386. char *secure_nonpixel_cb = "cvp_sec_nonpixel";
  387. char *secure_pixel_cb = "cvp_sec_pixel";
  388. if (ion_flags & ION_FLAG_CP_PIXEL)
  389. search_str = secure_pixel_cb;
  390. else if (ion_flags & ION_FLAG_CP_NON_PIXEL)
  391. search_str = secure_nonpixel_cb;
  392. else
  393. search_str = non_secure_cb;
  394. list_for_each_entry(cb, &res->context_banks, list) {
  395. if (cb->is_secure == is_secure &&
  396. !strcmp(search_str, cb->name)) {
  397. match = cb;
  398. break;
  399. }
  400. }
  401. if (!match)
  402. dprintk(CVP_ERR,
  403. "%s: cb not found for ion_flags %x, is_secure %d\n",
  404. __func__, ion_flags, is_secure);
  405. return match;
  406. }
  407. int msm_cvp_map_ipcc_regs(u32 *iova)
  408. {
  409. struct context_bank_info *cb;
  410. struct msm_cvp_core *core;
  411. struct cvp_hfi_device *hfi_ops;
  412. struct iris_hfi_device *dev = NULL;
  413. phys_addr_t paddr;
  414. u32 size;
  415. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  416. if (core) {
  417. hfi_ops = core->device;
  418. if (hfi_ops)
  419. dev = hfi_ops->hfi_device_data;
  420. }
  421. if (!dev)
  422. return -EINVAL;
  423. paddr = dev->res->ipcc_reg_base;
  424. size = dev->res->ipcc_reg_size;
  425. if (!paddr || !size)
  426. return -EINVAL;
  427. cb = msm_cvp_smem_get_context_bank(false, dev->res, 0);
  428. if (!cb) {
  429. dprintk(CVP_ERR, "%s: fail to get context bank\n", __func__);
  430. return -EINVAL;
  431. }
  432. *iova = dma_map_resource(cb->dev, paddr, size, DMA_BIDIRECTIONAL, 0);
  433. if (*iova == DMA_MAPPING_ERROR) {
  434. dprintk(CVP_WARN, "%s: fail to map IPCC regs\n", __func__);
  435. return -EFAULT;
  436. }
  437. return 0;
  438. }