sde_hw_top.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2015-2019, The Linux Foundation. All rights reserved.
  4. */
  5. #include "sde_hwio.h"
  6. #include "sde_hw_catalog.h"
  7. #include "sde_hw_top.h"
  8. #include "sde_dbg.h"
  9. #include "sde_kms.h"
  10. #define SSPP_SPARE 0x28
  11. #define UBWC_DEC_HW_VERSION 0x058
  12. #define UBWC_STATIC 0x144
  13. #define UBWC_CTRL_2 0x150
  14. #define UBWC_PREDICTION_MODE 0x154
  15. #define FLD_SPLIT_DISPLAY_CMD BIT(1)
  16. #define FLD_SMART_PANEL_FREE_RUN BIT(2)
  17. #define FLD_INTF_1_SW_TRG_MUX BIT(4)
  18. #define FLD_INTF_2_SW_TRG_MUX BIT(8)
  19. #define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF
  20. #define DANGER_STATUS 0x360
  21. #define SAFE_STATUS 0x364
  22. #define TE_LINE_INTERVAL 0x3F4
  23. #define TRAFFIC_SHAPER_EN BIT(31)
  24. #define TRAFFIC_SHAPER_RD_CLIENT(num) (0x030 + (num * 4))
  25. #define TRAFFIC_SHAPER_WR_CLIENT(num) (0x060 + (num * 4))
  26. #define TRAFFIC_SHAPER_FIXPOINT_FACTOR 4
  27. #define MDP_WD_TIMER_0_CTL 0x380
  28. #define MDP_WD_TIMER_0_CTL2 0x384
  29. #define MDP_WD_TIMER_0_LOAD_VALUE 0x388
  30. #define MDP_WD_TIMER_1_CTL 0x390
  31. #define MDP_WD_TIMER_1_CTL2 0x394
  32. #define MDP_WD_TIMER_1_LOAD_VALUE 0x398
  33. #define MDP_WD_TIMER_2_CTL 0x420
  34. #define MDP_WD_TIMER_2_CTL2 0x424
  35. #define MDP_WD_TIMER_2_LOAD_VALUE 0x428
  36. #define MDP_WD_TIMER_3_CTL 0x430
  37. #define MDP_WD_TIMER_3_CTL2 0x434
  38. #define MDP_WD_TIMER_3_LOAD_VALUE 0x438
  39. #define MDP_WD_TIMER_4_CTL 0x440
  40. #define MDP_WD_TIMER_4_CTL2 0x444
  41. #define MDP_WD_TIMER_4_LOAD_VALUE 0x448
  42. #define LTM_SW_FUSE_OFFSET 0x10
  43. #define MDP_TICK_COUNT 16
  44. #define XO_CLK_RATE 19200
  45. #define MS_TICKS_IN_SEC 1000
  46. #define CALCULATE_WD_LOAD_VALUE(fps) \
  47. ((uint32_t)((MS_TICKS_IN_SEC * XO_CLK_RATE)/(MDP_TICK_COUNT * fps)))
  48. #define DCE_SEL 0x450
  49. #define ROT_SID_RD 0x20
  50. #define ROT_SID_WR 0x24
  51. #define ROT_SID_ID_VAL 0x1c
  52. static void sde_hw_setup_split_pipe(struct sde_hw_mdp *mdp,
  53. struct split_pipe_cfg *cfg)
  54. {
  55. struct sde_hw_blk_reg_map *c;
  56. u32 upper_pipe = 0;
  57. u32 lower_pipe = 0;
  58. if (!mdp || !cfg)
  59. return;
  60. c = &mdp->hw;
  61. if (cfg->en) {
  62. if (cfg->mode == INTF_MODE_CMD) {
  63. lower_pipe = FLD_SPLIT_DISPLAY_CMD;
  64. /* interface controlling sw trigger */
  65. if (cfg->intf == INTF_2)
  66. lower_pipe |= FLD_INTF_1_SW_TRG_MUX;
  67. else
  68. lower_pipe |= FLD_INTF_2_SW_TRG_MUX;
  69. /* free run */
  70. if (cfg->pp_split_slave != INTF_MAX)
  71. lower_pipe = FLD_SMART_PANEL_FREE_RUN;
  72. upper_pipe = lower_pipe;
  73. /* smart panel align mode */
  74. lower_pipe |= BIT(mdp->caps->smart_panel_align_mode);
  75. } else {
  76. if (cfg->intf == INTF_2) {
  77. lower_pipe = FLD_INTF_1_SW_TRG_MUX;
  78. upper_pipe = FLD_INTF_2_SW_TRG_MUX;
  79. } else {
  80. lower_pipe = FLD_INTF_2_SW_TRG_MUX;
  81. upper_pipe = FLD_INTF_1_SW_TRG_MUX;
  82. }
  83. }
  84. }
  85. SDE_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0);
  86. SDE_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe);
  87. SDE_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe);
  88. SDE_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1);
  89. }
  90. static u32 sde_hw_get_split_flush(struct sde_hw_mdp *mdp)
  91. {
  92. struct sde_hw_blk_reg_map *c;
  93. if (!mdp)
  94. return 0;
  95. c = &mdp->hw;
  96. return (SDE_REG_READ(c, SSPP_SPARE) & 0x1);
  97. }
  98. static void sde_hw_setup_pp_split(struct sde_hw_mdp *mdp,
  99. struct split_pipe_cfg *cfg)
  100. {
  101. u32 ppb_config = 0x0;
  102. u32 ppb_control = 0x0;
  103. if (!mdp || !cfg)
  104. return;
  105. if (cfg->split_link_en) {
  106. ppb_config |= BIT(16); /* split enable */
  107. ppb_control = BIT(5); /* horz split*/
  108. } else if (cfg->en && cfg->pp_split_slave != INTF_MAX) {
  109. ppb_config |= (cfg->pp_split_slave - INTF_0 + 1) << 20;
  110. ppb_config |= BIT(16); /* split enable */
  111. ppb_control = BIT(5); /* horz split*/
  112. }
  113. if (cfg->pp_split_index && !cfg->split_link_en) {
  114. SDE_REG_WRITE(&mdp->hw, PPB0_CONFIG, 0x0);
  115. SDE_REG_WRITE(&mdp->hw, PPB0_CNTL, 0x0);
  116. SDE_REG_WRITE(&mdp->hw, PPB1_CONFIG, ppb_config);
  117. SDE_REG_WRITE(&mdp->hw, PPB1_CNTL, ppb_control);
  118. } else {
  119. SDE_REG_WRITE(&mdp->hw, PPB0_CONFIG, ppb_config);
  120. SDE_REG_WRITE(&mdp->hw, PPB0_CNTL, ppb_control);
  121. SDE_REG_WRITE(&mdp->hw, PPB1_CONFIG, 0x0);
  122. SDE_REG_WRITE(&mdp->hw, PPB1_CNTL, 0x0);
  123. }
  124. }
  125. static void sde_hw_setup_cdm_output(struct sde_hw_mdp *mdp,
  126. struct cdm_output_cfg *cfg)
  127. {
  128. struct sde_hw_blk_reg_map *c;
  129. u32 out_ctl = 0;
  130. if (!mdp || !cfg)
  131. return;
  132. c = &mdp->hw;
  133. if (cfg->wb_en)
  134. out_ctl |= BIT(24);
  135. else if (cfg->intf_en)
  136. out_ctl |= BIT(19);
  137. SDE_REG_WRITE(c, MDP_OUT_CTL_0, out_ctl);
  138. }
  139. static bool sde_hw_setup_clk_force_ctrl(struct sde_hw_mdp *mdp,
  140. enum sde_clk_ctrl_type clk_ctrl, bool enable)
  141. {
  142. struct sde_hw_blk_reg_map *c;
  143. u32 reg_off, bit_off;
  144. u32 reg_val, new_val;
  145. bool clk_forced_on;
  146. if (!mdp)
  147. return false;
  148. c = &mdp->hw;
  149. if (clk_ctrl <= SDE_CLK_CTRL_NONE || clk_ctrl >= SDE_CLK_CTRL_MAX)
  150. return false;
  151. reg_off = mdp->caps->clk_ctrls[clk_ctrl].reg_off;
  152. bit_off = mdp->caps->clk_ctrls[clk_ctrl].bit_off;
  153. reg_val = SDE_REG_READ(c, reg_off);
  154. if (enable)
  155. new_val = reg_val | BIT(bit_off);
  156. else
  157. new_val = reg_val & ~BIT(bit_off);
  158. SDE_REG_WRITE(c, reg_off, new_val);
  159. wmb(); /* ensure write finished before progressing */
  160. clk_forced_on = !(reg_val & BIT(bit_off));
  161. return clk_forced_on;
  162. }
  163. static void sde_hw_get_danger_status(struct sde_hw_mdp *mdp,
  164. struct sde_danger_safe_status *status)
  165. {
  166. struct sde_hw_blk_reg_map *c;
  167. u32 value;
  168. if (!mdp || !status)
  169. return;
  170. c = &mdp->hw;
  171. value = SDE_REG_READ(c, DANGER_STATUS);
  172. status->mdp = (value >> 0) & 0x3;
  173. status->sspp[SSPP_VIG0] = (value >> 4) & 0x3;
  174. status->sspp[SSPP_VIG1] = (value >> 6) & 0x3;
  175. status->sspp[SSPP_VIG2] = (value >> 8) & 0x3;
  176. status->sspp[SSPP_VIG3] = (value >> 10) & 0x3;
  177. status->sspp[SSPP_RGB0] = (value >> 12) & 0x3;
  178. status->sspp[SSPP_RGB1] = (value >> 14) & 0x3;
  179. status->sspp[SSPP_RGB2] = (value >> 16) & 0x3;
  180. status->sspp[SSPP_RGB3] = (value >> 18) & 0x3;
  181. status->sspp[SSPP_DMA0] = (value >> 20) & 0x3;
  182. status->sspp[SSPP_DMA1] = (value >> 22) & 0x3;
  183. status->sspp[SSPP_DMA2] = (value >> 28) & 0x3;
  184. status->sspp[SSPP_DMA3] = (value >> 30) & 0x3;
  185. status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3;
  186. status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3;
  187. status->wb[WB_0] = 0;
  188. status->wb[WB_1] = 0;
  189. status->wb[WB_2] = (value >> 2) & 0x3;
  190. status->wb[WB_3] = 0;
  191. }
  192. static void _update_vsync_source(struct sde_hw_mdp *mdp,
  193. struct sde_vsync_source_cfg *cfg)
  194. {
  195. struct sde_hw_blk_reg_map *c;
  196. u32 reg, wd_load_value, wd_ctl, wd_ctl2;
  197. if (!mdp || !cfg)
  198. return;
  199. c = &mdp->hw;
  200. if (cfg->vsync_source >= SDE_VSYNC_SOURCE_WD_TIMER_4 &&
  201. cfg->vsync_source <= SDE_VSYNC_SOURCE_WD_TIMER_0) {
  202. switch (cfg->vsync_source) {
  203. case SDE_VSYNC_SOURCE_WD_TIMER_4:
  204. wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE;
  205. wd_ctl = MDP_WD_TIMER_4_CTL;
  206. wd_ctl2 = MDP_WD_TIMER_4_CTL2;
  207. break;
  208. case SDE_VSYNC_SOURCE_WD_TIMER_3:
  209. wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE;
  210. wd_ctl = MDP_WD_TIMER_3_CTL;
  211. wd_ctl2 = MDP_WD_TIMER_3_CTL2;
  212. break;
  213. case SDE_VSYNC_SOURCE_WD_TIMER_2:
  214. wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE;
  215. wd_ctl = MDP_WD_TIMER_2_CTL;
  216. wd_ctl2 = MDP_WD_TIMER_2_CTL2;
  217. break;
  218. case SDE_VSYNC_SOURCE_WD_TIMER_1:
  219. wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE;
  220. wd_ctl = MDP_WD_TIMER_1_CTL;
  221. wd_ctl2 = MDP_WD_TIMER_1_CTL2;
  222. break;
  223. case SDE_VSYNC_SOURCE_WD_TIMER_0:
  224. default:
  225. wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE;
  226. wd_ctl = MDP_WD_TIMER_0_CTL;
  227. wd_ctl2 = MDP_WD_TIMER_0_CTL2;
  228. break;
  229. }
  230. if (cfg->is_dummy) {
  231. SDE_REG_WRITE(c, wd_ctl2, 0x0);
  232. } else {
  233. SDE_REG_WRITE(c, wd_load_value,
  234. CALCULATE_WD_LOAD_VALUE(cfg->frame_rate));
  235. SDE_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */
  236. reg = SDE_REG_READ(c, wd_ctl2);
  237. reg |= BIT(8); /* enable heartbeat timer */
  238. reg |= BIT(0); /* enable WD timer */
  239. SDE_REG_WRITE(c, wd_ctl2, reg);
  240. }
  241. /* make sure that timers are enabled/disabled for vsync state */
  242. wmb();
  243. }
  244. }
  245. static void sde_hw_setup_vsync_source(struct sde_hw_mdp *mdp,
  246. struct sde_vsync_source_cfg *cfg)
  247. {
  248. struct sde_hw_blk_reg_map *c;
  249. u32 reg, i;
  250. static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18};
  251. if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber)))
  252. return;
  253. c = &mdp->hw;
  254. reg = SDE_REG_READ(c, MDP_VSYNC_SEL);
  255. for (i = 0; i < cfg->pp_count; i++) {
  256. int pp_idx = cfg->ppnumber[i] - PINGPONG_0;
  257. if (pp_idx >= ARRAY_SIZE(pp_offset))
  258. continue;
  259. reg &= ~(0xf << pp_offset[pp_idx]);
  260. reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx];
  261. }
  262. SDE_REG_WRITE(c, MDP_VSYNC_SEL, reg);
  263. _update_vsync_source(mdp, cfg);
  264. }
  265. static void sde_hw_setup_vsync_source_v1(struct sde_hw_mdp *mdp,
  266. struct sde_vsync_source_cfg *cfg)
  267. {
  268. _update_vsync_source(mdp, cfg);
  269. }
  270. static void sde_hw_get_safe_status(struct sde_hw_mdp *mdp,
  271. struct sde_danger_safe_status *status)
  272. {
  273. struct sde_hw_blk_reg_map *c;
  274. u32 value;
  275. if (!mdp || !status)
  276. return;
  277. c = &mdp->hw;
  278. value = SDE_REG_READ(c, SAFE_STATUS);
  279. status->mdp = (value >> 0) & 0x1;
  280. status->sspp[SSPP_VIG0] = (value >> 4) & 0x1;
  281. status->sspp[SSPP_VIG1] = (value >> 6) & 0x1;
  282. status->sspp[SSPP_VIG2] = (value >> 8) & 0x1;
  283. status->sspp[SSPP_VIG3] = (value >> 10) & 0x1;
  284. status->sspp[SSPP_RGB0] = (value >> 12) & 0x1;
  285. status->sspp[SSPP_RGB1] = (value >> 14) & 0x1;
  286. status->sspp[SSPP_RGB2] = (value >> 16) & 0x1;
  287. status->sspp[SSPP_RGB3] = (value >> 18) & 0x1;
  288. status->sspp[SSPP_DMA0] = (value >> 20) & 0x1;
  289. status->sspp[SSPP_DMA1] = (value >> 22) & 0x1;
  290. status->sspp[SSPP_DMA2] = (value >> 28) & 0x1;
  291. status->sspp[SSPP_DMA3] = (value >> 30) & 0x1;
  292. status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1;
  293. status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1;
  294. status->wb[WB_0] = 0;
  295. status->wb[WB_1] = 0;
  296. status->wb[WB_2] = (value >> 2) & 0x1;
  297. status->wb[WB_3] = 0;
  298. }
  299. static void sde_hw_setup_dce(struct sde_hw_mdp *mdp, u32 dce_sel)
  300. {
  301. struct sde_hw_blk_reg_map *c;
  302. if (!mdp)
  303. return;
  304. c = &mdp->hw;
  305. SDE_REG_WRITE(c, DCE_SEL, dce_sel);
  306. }
  307. void sde_hw_reset_ubwc(struct sde_hw_mdp *mdp, struct sde_mdss_cfg *m)
  308. {
  309. struct sde_hw_blk_reg_map c;
  310. u32 ubwc_version;
  311. if (!mdp || !m)
  312. return;
  313. /* force blk offset to zero to access beginning of register region */
  314. c = mdp->hw;
  315. c.blk_off = 0x0;
  316. ubwc_version = SDE_REG_READ(&c, UBWC_DEC_HW_VERSION);
  317. if (IS_UBWC_40_SUPPORTED(ubwc_version)) {
  318. u32 ver = 2;
  319. u32 mode = 1;
  320. u32 reg = (m->mdp[0].ubwc_swizzle & 0x7) |
  321. ((m->mdp[0].ubwc_static & 0x1) << 3) |
  322. ((m->mdp[0].highest_bank_bit & 0x7) << 4) |
  323. ((m->macrotile_mode & 0x1) << 12);
  324. if (IS_UBWC_30_SUPPORTED(m->ubwc_version)) {
  325. ver = 1;
  326. mode = 0;
  327. }
  328. SDE_REG_WRITE(&c, UBWC_STATIC, reg);
  329. SDE_REG_WRITE(&c, UBWC_CTRL_2, ver);
  330. SDE_REG_WRITE(&c, UBWC_PREDICTION_MODE, mode);
  331. } else if (IS_UBWC_20_SUPPORTED(ubwc_version)) {
  332. SDE_REG_WRITE(&c, UBWC_STATIC, m->mdp[0].ubwc_static);
  333. } else if (IS_UBWC_30_SUPPORTED(ubwc_version)) {
  334. u32 reg = m->mdp[0].ubwc_static |
  335. (m->mdp[0].ubwc_swizzle & 0x1) |
  336. ((m->mdp[0].highest_bank_bit & 0x3) << 4) |
  337. ((m->macrotile_mode & 0x1) << 12);
  338. if (IS_UBWC_30_SUPPORTED(m->ubwc_version))
  339. reg |= BIT(10);
  340. if (IS_UBWC_10_SUPPORTED(m->ubwc_version))
  341. reg |= BIT(8);
  342. SDE_REG_WRITE(&c, UBWC_STATIC, reg);
  343. } else {
  344. SDE_ERROR("Unsupported UBWC version 0x%08x\n", ubwc_version);
  345. }
  346. }
  347. static void sde_hw_intf_audio_select(struct sde_hw_mdp *mdp)
  348. {
  349. struct sde_hw_blk_reg_map *c;
  350. if (!mdp)
  351. return;
  352. c = &mdp->hw;
  353. SDE_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1);
  354. }
  355. static void sde_hw_mdp_events(struct sde_hw_mdp *mdp, bool enable)
  356. {
  357. struct sde_hw_blk_reg_map *c;
  358. if (!mdp)
  359. return;
  360. c = &mdp->hw;
  361. SDE_REG_WRITE(c, HW_EVENTS_CTL, enable);
  362. }
  363. struct sde_hw_sid *sde_hw_sid_init(void __iomem *addr,
  364. u32 sid_len, const struct sde_mdss_cfg *m)
  365. {
  366. struct sde_hw_sid *c;
  367. c = kzalloc(sizeof(*c), GFP_KERNEL);
  368. if (!c)
  369. return ERR_PTR(-ENOMEM);
  370. c->hw.base_off = addr;
  371. c->hw.blk_off = 0;
  372. c->hw.length = sid_len;
  373. c->hw.hwversion = m->hwversion;
  374. c->hw.log_mask = SDE_DBG_MASK_SID;
  375. return c;
  376. }
  377. void sde_hw_sid_rotator_set(struct sde_hw_sid *sid)
  378. {
  379. SDE_REG_WRITE(&sid->hw, ROT_SID_RD, ROT_SID_ID_VAL);
  380. SDE_REG_WRITE(&sid->hw, ROT_SID_WR, ROT_SID_ID_VAL);
  381. }
  382. static void sde_hw_program_cwb_ppb_ctrl(struct sde_hw_mdp *mdp,
  383. bool dual, bool dspp_out)
  384. {
  385. u32 value = dspp_out ? 0x4 : 0x0;
  386. SDE_REG_WRITE(&mdp->hw, PPB2_CNTL, value);
  387. if (dual) {
  388. value |= 0x1;
  389. SDE_REG_WRITE(&mdp->hw, PPB3_CNTL, value);
  390. }
  391. }
  392. static void sde_hw_set_hdr_plus_metadata(struct sde_hw_mdp *mdp,
  393. u8 *payload, u32 len, u32 stream_id)
  394. {
  395. u32 i;
  396. size_t length = len - 1;
  397. u32 offset = 0, data = 0, byte_idx = 0;
  398. const u32 dword_size = sizeof(u32);
  399. if (!payload || !len) {
  400. SDE_ERROR("invalid payload with length: %d\n", len);
  401. return;
  402. }
  403. if (stream_id)
  404. offset = DP_DHDR_MEM_POOL_1_DATA - DP_DHDR_MEM_POOL_0_DATA;
  405. /* payload[0] is set in VSCEXT header byte 1, skip programming here */
  406. SDE_REG_WRITE(&mdp->hw, DP_DHDR_MEM_POOL_0_NUM_BYTES + offset, length);
  407. for (i = 1; i < len; i++) {
  408. if (byte_idx && !(byte_idx % dword_size)) {
  409. SDE_REG_WRITE(&mdp->hw, DP_DHDR_MEM_POOL_0_DATA +
  410. offset, data);
  411. data = 0;
  412. }
  413. data |= payload[i] << (8 * (byte_idx++ % dword_size));
  414. }
  415. SDE_REG_WRITE(&mdp->hw, DP_DHDR_MEM_POOL_0_DATA + offset, data);
  416. }
  417. static void _setup_mdp_ops(struct sde_hw_mdp_ops *ops,
  418. unsigned long cap)
  419. {
  420. ops->setup_split_pipe = sde_hw_setup_split_pipe;
  421. ops->setup_pp_split = sde_hw_setup_pp_split;
  422. ops->setup_cdm_output = sde_hw_setup_cdm_output;
  423. ops->setup_clk_force_ctrl = sde_hw_setup_clk_force_ctrl;
  424. ops->get_danger_status = sde_hw_get_danger_status;
  425. ops->setup_vsync_source = sde_hw_setup_vsync_source;
  426. ops->set_cwb_ppb_cntl = sde_hw_program_cwb_ppb_ctrl;
  427. ops->get_safe_status = sde_hw_get_safe_status;
  428. ops->get_split_flush_status = sde_hw_get_split_flush;
  429. ops->setup_dce = sde_hw_setup_dce;
  430. ops->reset_ubwc = sde_hw_reset_ubwc;
  431. ops->intf_audio_select = sde_hw_intf_audio_select;
  432. ops->set_mdp_hw_events = sde_hw_mdp_events;
  433. if (cap & BIT(SDE_MDP_VSYNC_SEL))
  434. ops->setup_vsync_source = sde_hw_setup_vsync_source;
  435. else
  436. ops->setup_vsync_source = sde_hw_setup_vsync_source_v1;
  437. if (cap & BIT(SDE_MDP_DHDR_MEMPOOL))
  438. ops->set_hdr_plus_metadata = sde_hw_set_hdr_plus_metadata;
  439. }
  440. static const struct sde_mdp_cfg *_top_offset(enum sde_mdp mdp,
  441. const struct sde_mdss_cfg *m,
  442. void __iomem *addr,
  443. struct sde_hw_blk_reg_map *b)
  444. {
  445. int i;
  446. if (!m || !addr || !b)
  447. return ERR_PTR(-EINVAL);
  448. for (i = 0; i < m->mdp_count; i++) {
  449. if (mdp == m->mdp[i].id) {
  450. b->base_off = addr;
  451. b->blk_off = m->mdp[i].base;
  452. b->length = m->mdp[i].len;
  453. b->hwversion = m->hwversion;
  454. b->log_mask = SDE_DBG_MASK_TOP;
  455. return &m->mdp[i];
  456. }
  457. }
  458. return ERR_PTR(-EINVAL);
  459. }
  460. static struct sde_hw_blk_ops sde_hw_ops = {
  461. .start = NULL,
  462. .stop = NULL,
  463. };
  464. struct sde_hw_mdp *sde_hw_mdptop_init(enum sde_mdp idx,
  465. void __iomem *addr,
  466. const struct sde_mdss_cfg *m)
  467. {
  468. struct sde_hw_mdp *mdp;
  469. const struct sde_mdp_cfg *cfg;
  470. int rc;
  471. if (!addr || !m)
  472. return ERR_PTR(-EINVAL);
  473. mdp = kzalloc(sizeof(*mdp), GFP_KERNEL);
  474. if (!mdp)
  475. return ERR_PTR(-ENOMEM);
  476. cfg = _top_offset(idx, m, addr, &mdp->hw);
  477. if (IS_ERR_OR_NULL(cfg)) {
  478. kfree(mdp);
  479. return ERR_PTR(-EINVAL);
  480. }
  481. /*
  482. * Assign ops
  483. */
  484. mdp->idx = idx;
  485. mdp->caps = cfg;
  486. _setup_mdp_ops(&mdp->ops, mdp->caps->features);
  487. rc = sde_hw_blk_init(&mdp->base, SDE_HW_BLK_TOP, idx, &sde_hw_ops);
  488. if (rc) {
  489. SDE_ERROR("failed to init hw blk %d\n", rc);
  490. goto blk_init_error;
  491. }
  492. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name,
  493. mdp->hw.blk_off, mdp->hw.blk_off + mdp->hw.length,
  494. mdp->hw.xin_id);
  495. sde_dbg_set_sde_top_offset(mdp->hw.blk_off);
  496. return mdp;
  497. blk_init_error:
  498. kzfree(mdp);
  499. return ERR_PTR(rc);
  500. }
  501. void sde_hw_mdp_destroy(struct sde_hw_mdp *mdp)
  502. {
  503. if (mdp)
  504. sde_hw_blk_destroy(&mdp->base);
  505. kfree(mdp);
  506. }
  507. struct sde_hw_sw_fuse *sde_hw_sw_fuse_init(void __iomem *addr,
  508. u32 sw_fuse_len, const struct sde_mdss_cfg *m)
  509. {
  510. struct sde_hw_sw_fuse *c;
  511. c = kzalloc(sizeof(*c), GFP_KERNEL);
  512. if (!c)
  513. return ERR_PTR(-ENOMEM);
  514. c->hw.base_off = addr;
  515. c->hw.blk_off = 0;
  516. c->hw.length = sw_fuse_len;
  517. c->hw.hwversion = m->hwversion;
  518. return c;
  519. }
  520. void sde_hw_sw_fuse_destroy(struct sde_hw_sw_fuse *sw_fuse)
  521. {
  522. kfree(sw_fuse);
  523. }
  524. u32 sde_hw_get_ltm_sw_fuse_value(struct sde_hw_sw_fuse *sw_fuse)
  525. {
  526. u32 ltm_sw_fuse = 0;
  527. if (sw_fuse)
  528. ltm_sw_fuse = SDE_REG_READ(&sw_fuse->hw, LTM_SW_FUSE_OFFSET);
  529. return ltm_sw_fuse;
  530. }