sde_hw_reg_dma_v1.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2017-2019, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/iopoll.h>
  6. #include "sde_hw_mdss.h"
  7. #include "sde_hw_ctl.h"
  8. #include "sde_hw_reg_dma_v1.h"
  9. #include "msm_drv.h"
  10. #include "msm_mmu.h"
  11. #include "sde_dbg.h"
  12. #define GUARD_BYTES (BIT(8) - 1)
  13. #define ALIGNED_OFFSET (U32_MAX & ~(GUARD_BYTES))
  14. #define ADDR_ALIGN BIT(8)
  15. #define MAX_RELATIVE_OFF (BIT(20) - 1)
  16. #define DECODE_SEL_OP (BIT(HW_BLK_SELECT))
  17. #define REG_WRITE_OP ((BIT(REG_SINGLE_WRITE)) | (BIT(REG_BLK_WRITE_SINGLE)) | \
  18. (BIT(REG_BLK_WRITE_INC)) | (BIT(REG_BLK_WRITE_MULTIPLE)) | \
  19. (BIT(REG_SINGLE_MODIFY)))
  20. #define REG_DMA_OPS (DECODE_SEL_OP | REG_WRITE_OP)
  21. #define IS_OP_ALLOWED(op, buf_op) (BIT(op) & buf_op)
  22. #define SET_UP_REG_DMA_REG(hw, reg_dma) \
  23. do { \
  24. (hw).base_off = (reg_dma)->addr; \
  25. (hw).blk_off = (reg_dma)->caps->base; \
  26. (hw).hwversion = (reg_dma)->caps->version; \
  27. (hw).log_mask = SDE_DBG_MASK_REGDMA; \
  28. } while (0)
  29. #define SIZE_DWORD(x) ((x) / (sizeof(u32)))
  30. #define NOT_WORD_ALIGNED(x) ((x) & 0x3)
  31. #define GRP_VIG_HW_BLK_SELECT (VIG0 | VIG1 | VIG2 | VIG3)
  32. #define GRP_DMA_HW_BLK_SELECT (DMA0 | DMA1 | DMA2 | DMA3)
  33. #define GRP_DSPP_HW_BLK_SELECT (DSPP0 | DSPP1 | DSPP2 | DSPP3)
  34. #define GRP_LTM_HW_BLK_SELECT (LTM0 | LTM1)
  35. #define BUFFER_SPACE_LEFT(cfg) ((cfg)->dma_buf->buffer_size - \
  36. (cfg)->dma_buf->index)
  37. #define REL_ADDR_OPCODE (BIT(27))
  38. #define SINGLE_REG_WRITE_OPCODE (BIT(28))
  39. #define SINGLE_REG_MODIFY_OPCODE (BIT(29))
  40. #define HW_INDEX_REG_WRITE_OPCODE (BIT(28) | BIT(29))
  41. #define AUTO_INC_REG_WRITE_OPCODE (BIT(30))
  42. #define BLK_REG_WRITE_OPCODE (BIT(30) | BIT(28))
  43. #define WRAP_MIN_SIZE 2
  44. #define WRAP_MAX_SIZE (BIT(4) - 1)
  45. #define MAX_DWORDS_SZ (BIT(14) - 1)
  46. #define REG_DMA_HEADERS_BUFFER_SZ (sizeof(u32) * 128)
  47. static uint32_t reg_dma_register_count;
  48. static uint32_t reg_dma_decode_sel;
  49. static uint32_t reg_dma_opmode_offset;
  50. static uint32_t reg_dma_ctl0_queue0_cmd0_offset;
  51. static uint32_t reg_dma_intr_status_offset;
  52. static uint32_t reg_dma_intr_4_status_offset;
  53. static uint32_t reg_dma_intr_clear_offset;
  54. static uint32_t reg_dma_ctl_trigger_offset;
  55. static uint32_t reg_dma_ctl0_reset_offset;
  56. static uint32_t reg_dma_error_clear_mask;
  57. typedef int (*reg_dma_internal_ops) (struct sde_reg_dma_setup_ops_cfg *cfg);
  58. static struct sde_hw_reg_dma *reg_dma;
  59. static u32 ops_mem_size[REG_DMA_SETUP_OPS_MAX] = {
  60. [REG_BLK_WRITE_SINGLE] = sizeof(u32) * 2,
  61. [REG_BLK_WRITE_INC] = sizeof(u32) * 2,
  62. [REG_BLK_WRITE_MULTIPLE] = sizeof(u32) * 2,
  63. [HW_BLK_SELECT] = sizeof(u32) * 2,
  64. [REG_SINGLE_WRITE] = sizeof(u32) * 2,
  65. [REG_SINGLE_MODIFY] = sizeof(u32) * 3,
  66. };
  67. static u32 queue_sel[DMA_CTL_QUEUE_MAX] = {
  68. [DMA_CTL_QUEUE0] = BIT(0),
  69. [DMA_CTL_QUEUE1] = BIT(4),
  70. };
  71. static u32 reg_dma_ctl_queue_off[CTL_MAX];
  72. static u32 dspp_read_sel[DSPP_HIST_MAX] = {
  73. [DSPP0_HIST] = 0,
  74. [DSPP1_HIST] = 1,
  75. [DSPP2_HIST] = 2,
  76. [DSPP3_HIST] = 3,
  77. };
  78. static u32 v1_supported[REG_DMA_FEATURES_MAX] = {
  79. [GAMUT] = GRP_VIG_HW_BLK_SELECT | GRP_DSPP_HW_BLK_SELECT,
  80. [VLUT] = GRP_DSPP_HW_BLK_SELECT,
  81. [GC] = GRP_DSPP_HW_BLK_SELECT,
  82. [IGC] = DSPP_IGC | GRP_DSPP_HW_BLK_SELECT,
  83. [PCC] = GRP_DSPP_HW_BLK_SELECT,
  84. };
  85. static u32 ctl_trigger_done_mask[CTL_MAX][DMA_CTL_QUEUE_MAX] = {
  86. [CTL_0][0] = BIT(16),
  87. [CTL_0][1] = BIT(21),
  88. [CTL_1][0] = BIT(17),
  89. [CTL_1][1] = BIT(22),
  90. [CTL_2][0] = BIT(18),
  91. [CTL_2][1] = BIT(23),
  92. [CTL_3][0] = BIT(19),
  93. [CTL_3][1] = BIT(24),
  94. [CTL_4][0] = BIT(25),
  95. [CTL_4][1] = BIT(27),
  96. [CTL_5][0] = BIT(26),
  97. [CTL_5][1] = BIT(28),
  98. };
  99. static int validate_dma_cfg(struct sde_reg_dma_setup_ops_cfg *cfg);
  100. static int validate_write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg);
  101. static int validate_write_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
  102. static int validate_write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
  103. static int validate_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg);
  104. static int write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg);
  105. static int write_single_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
  106. static int write_multi_reg_index(struct sde_reg_dma_setup_ops_cfg *cfg);
  107. static int write_multi_reg_inc(struct sde_reg_dma_setup_ops_cfg *cfg);
  108. static int write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
  109. static int write_single_modify(struct sde_reg_dma_setup_ops_cfg *cfg);
  110. static int write_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg);
  111. static int reset_reg_dma_buffer_v1(struct sde_reg_dma_buffer *lut_buf);
  112. static int check_support_v1(enum sde_reg_dma_features feature,
  113. enum sde_reg_dma_blk blk, bool *is_supported);
  114. static int setup_payload_v1(struct sde_reg_dma_setup_ops_cfg *cfg);
  115. static int kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg);
  116. static int reset_v1(struct sde_hw_ctl *ctl);
  117. static int last_cmd_v1(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
  118. enum sde_reg_dma_last_cmd_mode mode);
  119. static struct sde_reg_dma_buffer *alloc_reg_dma_buf_v1(u32 size);
  120. static int dealloc_reg_dma_v1(struct sde_reg_dma_buffer *lut_buf);
  121. static void dump_regs_v1(void);
  122. static reg_dma_internal_ops write_dma_op_params[REG_DMA_SETUP_OPS_MAX] = {
  123. [HW_BLK_SELECT] = write_decode_sel,
  124. [REG_SINGLE_WRITE] = write_single_reg,
  125. [REG_BLK_WRITE_SINGLE] = write_multi_reg_inc,
  126. [REG_BLK_WRITE_INC] = write_multi_reg_index,
  127. [REG_BLK_WRITE_MULTIPLE] = write_multi_lut_reg,
  128. [REG_SINGLE_MODIFY] = write_single_modify,
  129. };
  130. static reg_dma_internal_ops validate_dma_op_params[REG_DMA_SETUP_OPS_MAX] = {
  131. [HW_BLK_SELECT] = validate_write_decode_sel,
  132. [REG_SINGLE_WRITE] = validate_write_reg,
  133. [REG_BLK_WRITE_SINGLE] = validate_write_reg,
  134. [REG_BLK_WRITE_INC] = validate_write_reg,
  135. [REG_BLK_WRITE_MULTIPLE] = validate_write_multi_lut_reg,
  136. [REG_SINGLE_MODIFY] = validate_write_reg,
  137. };
  138. static struct sde_reg_dma_buffer *last_cmd_buf[CTL_MAX];
  139. static void get_decode_sel(unsigned long blk, u32 *decode_sel)
  140. {
  141. int i = 0;
  142. *decode_sel = 0;
  143. for_each_set_bit(i, &blk, 31) {
  144. switch (BIT(i)) {
  145. case VIG0:
  146. *decode_sel |= BIT(0);
  147. break;
  148. case VIG1:
  149. *decode_sel |= BIT(1);
  150. break;
  151. case VIG2:
  152. *decode_sel |= BIT(2);
  153. break;
  154. case VIG3:
  155. *decode_sel |= BIT(3);
  156. break;
  157. case DMA0:
  158. *decode_sel |= BIT(5);
  159. break;
  160. case DMA1:
  161. *decode_sel |= BIT(6);
  162. break;
  163. case DMA2:
  164. *decode_sel |= BIT(7);
  165. break;
  166. case DMA3:
  167. *decode_sel |= BIT(8);
  168. break;
  169. case DSPP0:
  170. *decode_sel |= BIT(17);
  171. break;
  172. case DSPP1:
  173. *decode_sel |= BIT(18);
  174. break;
  175. case DSPP2:
  176. *decode_sel |= BIT(19);
  177. break;
  178. case DSPP3:
  179. *decode_sel |= BIT(20);
  180. break;
  181. case SSPP_IGC:
  182. *decode_sel |= BIT(4);
  183. break;
  184. case DSPP_IGC:
  185. *decode_sel |= BIT(21);
  186. break;
  187. case LTM0:
  188. *decode_sel |= BIT(22);
  189. break;
  190. case LTM1:
  191. *decode_sel |= BIT(23);
  192. break;
  193. default:
  194. DRM_ERROR("block not supported %zx\n", (size_t)BIT(i));
  195. break;
  196. }
  197. }
  198. }
  199. static int write_multi_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  200. {
  201. u8 *loc = NULL;
  202. loc = (u8 *)cfg->dma_buf->vaddr + cfg->dma_buf->index;
  203. memcpy(loc, cfg->data, cfg->data_size);
  204. cfg->dma_buf->index += cfg->data_size;
  205. cfg->dma_buf->next_op_allowed = REG_WRITE_OP | DECODE_SEL_OP;
  206. cfg->dma_buf->ops_completed |= REG_WRITE_OP;
  207. return 0;
  208. }
  209. int write_multi_reg_index(struct sde_reg_dma_setup_ops_cfg *cfg)
  210. {
  211. u32 *loc = NULL;
  212. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  213. cfg->dma_buf->index);
  214. loc[0] = HW_INDEX_REG_WRITE_OPCODE;
  215. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  216. loc[1] = SIZE_DWORD(cfg->data_size);
  217. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  218. return write_multi_reg(cfg);
  219. }
  220. int write_multi_reg_inc(struct sde_reg_dma_setup_ops_cfg *cfg)
  221. {
  222. u32 *loc = NULL;
  223. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  224. cfg->dma_buf->index);
  225. loc[0] = AUTO_INC_REG_WRITE_OPCODE;
  226. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  227. loc[1] = SIZE_DWORD(cfg->data_size);
  228. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  229. return write_multi_reg(cfg);
  230. }
  231. static int write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  232. {
  233. u32 *loc = NULL;
  234. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  235. cfg->dma_buf->index);
  236. loc[0] = BLK_REG_WRITE_OPCODE;
  237. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  238. loc[1] = (cfg->inc) ? 0 : BIT(31);
  239. loc[1] |= (cfg->wrap_size & WRAP_MAX_SIZE) << 16;
  240. loc[1] |= ((SIZE_DWORD(cfg->data_size)) & MAX_DWORDS_SZ);
  241. cfg->dma_buf->next_op_allowed = REG_WRITE_OP;
  242. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  243. return write_multi_reg(cfg);
  244. }
  245. static int write_single_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  246. {
  247. u32 *loc = NULL;
  248. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  249. cfg->dma_buf->index);
  250. loc[0] = SINGLE_REG_WRITE_OPCODE;
  251. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  252. loc[1] = *cfg->data;
  253. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  254. cfg->dma_buf->ops_completed |= REG_WRITE_OP;
  255. cfg->dma_buf->next_op_allowed = REG_WRITE_OP | DECODE_SEL_OP;
  256. return 0;
  257. }
  258. static int write_single_modify(struct sde_reg_dma_setup_ops_cfg *cfg)
  259. {
  260. u32 *loc = NULL;
  261. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  262. cfg->dma_buf->index);
  263. loc[0] = SINGLE_REG_MODIFY_OPCODE;
  264. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  265. loc[1] = cfg->mask;
  266. loc[2] = *cfg->data;
  267. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  268. cfg->dma_buf->ops_completed |= REG_WRITE_OP;
  269. cfg->dma_buf->next_op_allowed = REG_WRITE_OP | DECODE_SEL_OP;
  270. return 0;
  271. }
  272. static int write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg)
  273. {
  274. u32 *loc = NULL;
  275. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  276. cfg->dma_buf->index);
  277. loc[0] = reg_dma_decode_sel;
  278. get_decode_sel(cfg->blk, &loc[1]);
  279. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  280. cfg->dma_buf->ops_completed |= DECODE_SEL_OP;
  281. cfg->dma_buf->next_op_allowed = REG_WRITE_OP;
  282. return 0;
  283. }
  284. static int validate_write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  285. {
  286. int rc;
  287. rc = validate_write_reg(cfg);
  288. if (rc)
  289. return rc;
  290. if (cfg->wrap_size < WRAP_MIN_SIZE || cfg->wrap_size > WRAP_MAX_SIZE) {
  291. DRM_ERROR("invalid wrap sz %d min %d max %zd\n",
  292. cfg->wrap_size, WRAP_MIN_SIZE, (size_t)WRAP_MAX_SIZE);
  293. rc = -EINVAL;
  294. }
  295. return rc;
  296. }
  297. static int validate_write_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  298. {
  299. u32 remain_len, write_len;
  300. remain_len = BUFFER_SPACE_LEFT(cfg);
  301. write_len = ops_mem_size[cfg->ops] + cfg->data_size;
  302. if (remain_len < write_len) {
  303. DRM_ERROR("buffer is full sz %d needs %d bytes\n",
  304. remain_len, write_len);
  305. return -EINVAL;
  306. }
  307. if (!cfg->data) {
  308. DRM_ERROR("invalid data %pK size %d exp sz %d\n", cfg->data,
  309. cfg->data_size, write_len);
  310. return -EINVAL;
  311. }
  312. if ((SIZE_DWORD(cfg->data_size)) > MAX_DWORDS_SZ ||
  313. NOT_WORD_ALIGNED(cfg->data_size)) {
  314. DRM_ERROR("Invalid data size %d max %zd align %x\n",
  315. cfg->data_size, (size_t)MAX_DWORDS_SZ,
  316. NOT_WORD_ALIGNED(cfg->data_size));
  317. return -EINVAL;
  318. }
  319. if (cfg->blk_offset > MAX_RELATIVE_OFF ||
  320. NOT_WORD_ALIGNED(cfg->blk_offset)) {
  321. DRM_ERROR("invalid offset %d max %zd align %x\n",
  322. cfg->blk_offset, (size_t)MAX_RELATIVE_OFF,
  323. NOT_WORD_ALIGNED(cfg->blk_offset));
  324. return -EINVAL;
  325. }
  326. return 0;
  327. }
  328. static int validate_write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg)
  329. {
  330. u32 remain_len;
  331. remain_len = BUFFER_SPACE_LEFT(cfg);
  332. if (remain_len < ops_mem_size[HW_BLK_SELECT]) {
  333. DRM_ERROR("buffer is full needs %d bytes\n",
  334. ops_mem_size[HW_BLK_SELECT]);
  335. return -EINVAL;
  336. }
  337. if (!cfg->blk) {
  338. DRM_ERROR("blk set as 0\n");
  339. return -EINVAL;
  340. }
  341. /* VIG, DMA and DSPP can't be combined */
  342. if (((cfg->blk & GRP_VIG_HW_BLK_SELECT) &&
  343. (cfg->blk & GRP_DSPP_HW_BLK_SELECT)) ||
  344. ((cfg->blk & GRP_DMA_HW_BLK_SELECT) &&
  345. (cfg->blk & GRP_DSPP_HW_BLK_SELECT)) ||
  346. ((cfg->blk & GRP_VIG_HW_BLK_SELECT) &&
  347. (cfg->blk & GRP_DMA_HW_BLK_SELECT))) {
  348. DRM_ERROR("invalid blk combination %x\n",
  349. cfg->blk);
  350. return -EINVAL;
  351. }
  352. return 0;
  353. }
  354. static int validate_dma_cfg(struct sde_reg_dma_setup_ops_cfg *cfg)
  355. {
  356. int rc = 0;
  357. bool supported;
  358. if (!cfg || cfg->ops >= REG_DMA_SETUP_OPS_MAX || !cfg->dma_buf) {
  359. DRM_ERROR("invalid param cfg %pK ops %d dma_buf %pK\n",
  360. cfg, ((cfg) ? cfg->ops : REG_DMA_SETUP_OPS_MAX),
  361. ((cfg) ? cfg->dma_buf : NULL));
  362. return -EINVAL;
  363. }
  364. rc = check_support_v1(cfg->feature, cfg->blk, &supported);
  365. if (rc || !supported) {
  366. DRM_ERROR("check support failed rc %d supported %d\n",
  367. rc, supported);
  368. rc = -EINVAL;
  369. return rc;
  370. }
  371. if (cfg->dma_buf->index >= cfg->dma_buf->buffer_size ||
  372. NOT_WORD_ALIGNED(cfg->dma_buf->index)) {
  373. DRM_ERROR("Buf Overflow index %d max size %d align %x\n",
  374. cfg->dma_buf->index, cfg->dma_buf->buffer_size,
  375. NOT_WORD_ALIGNED(cfg->dma_buf->index));
  376. return -EINVAL;
  377. }
  378. if (cfg->dma_buf->iova & GUARD_BYTES || !cfg->dma_buf->vaddr) {
  379. DRM_ERROR("iova not aligned to %zx iova %llx kva %pK",
  380. (size_t)ADDR_ALIGN, cfg->dma_buf->iova,
  381. cfg->dma_buf->vaddr);
  382. return -EINVAL;
  383. }
  384. if (!IS_OP_ALLOWED(cfg->ops, cfg->dma_buf->next_op_allowed)) {
  385. DRM_ERROR("invalid op %x allowed %x\n", cfg->ops,
  386. cfg->dma_buf->next_op_allowed);
  387. return -EINVAL;
  388. }
  389. if (!validate_dma_op_params[cfg->ops] ||
  390. !write_dma_op_params[cfg->ops]) {
  391. DRM_ERROR("invalid op %d validate %pK write %pK\n", cfg->ops,
  392. validate_dma_op_params[cfg->ops],
  393. write_dma_op_params[cfg->ops]);
  394. return -EINVAL;
  395. }
  396. return rc;
  397. }
  398. static int validate_kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg)
  399. {
  400. if (!cfg || !cfg->ctl || !cfg->dma_buf) {
  401. DRM_ERROR("invalid cfg %pK ctl %pK dma_buf %pK\n",
  402. cfg, ((!cfg) ? NULL : cfg->ctl),
  403. ((!cfg) ? NULL : cfg->dma_buf));
  404. return -EINVAL;
  405. }
  406. if (cfg->ctl->idx < CTL_0 && cfg->ctl->idx >= CTL_MAX) {
  407. DRM_ERROR("invalid ctl idx %d\n", cfg->ctl->idx);
  408. return -EINVAL;
  409. }
  410. if (cfg->op >= REG_DMA_OP_MAX) {
  411. DRM_ERROR("invalid op %d\n", cfg->op);
  412. return -EINVAL;
  413. }
  414. if ((cfg->op == REG_DMA_WRITE) &&
  415. (!(cfg->dma_buf->ops_completed & DECODE_SEL_OP) ||
  416. !(cfg->dma_buf->ops_completed & REG_WRITE_OP))) {
  417. DRM_ERROR("incomplete write ops %x\n",
  418. cfg->dma_buf->ops_completed);
  419. return -EINVAL;
  420. }
  421. if (cfg->op == REG_DMA_READ && cfg->block_select >= DSPP_HIST_MAX) {
  422. DRM_ERROR("invalid block for read %d\n", cfg->block_select);
  423. return -EINVAL;
  424. }
  425. /* Only immediate triggers are supported now hence hardcode */
  426. cfg->trigger_mode = (cfg->op == REG_DMA_READ) ? (READ_TRIGGER) :
  427. (WRITE_TRIGGER);
  428. if (cfg->dma_buf->iova & GUARD_BYTES) {
  429. DRM_ERROR("Address is not aligned to %zx iova %llx",
  430. (size_t)ADDR_ALIGN, cfg->dma_buf->iova);
  431. return -EINVAL;
  432. }
  433. if (cfg->queue_select >= DMA_CTL_QUEUE_MAX) {
  434. DRM_ERROR("invalid queue selected %d\n", cfg->queue_select);
  435. return -EINVAL;
  436. }
  437. if (SIZE_DWORD(cfg->dma_buf->index) > MAX_DWORDS_SZ ||
  438. !cfg->dma_buf->index) {
  439. DRM_ERROR("invalid dword size %zd max %zd\n",
  440. (size_t)SIZE_DWORD(cfg->dma_buf->index),
  441. (size_t)MAX_DWORDS_SZ);
  442. return -EINVAL;
  443. }
  444. return 0;
  445. }
  446. static int write_kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg)
  447. {
  448. u32 cmd1, mask = 0, val = 0;
  449. struct sde_hw_blk_reg_map hw;
  450. memset(&hw, 0, sizeof(hw));
  451. msm_gem_sync(cfg->dma_buf->buf);
  452. cmd1 = (cfg->op == REG_DMA_READ) ?
  453. (dspp_read_sel[cfg->block_select] << 30) : 0;
  454. cmd1 |= (cfg->last_command) ? BIT(24) : 0;
  455. cmd1 |= (cfg->op == REG_DMA_READ) ? (2 << 22) : 0;
  456. cmd1 |= (cfg->op == REG_DMA_WRITE) ? (BIT(22)) : 0;
  457. cmd1 |= (SIZE_DWORD(cfg->dma_buf->index) & MAX_DWORDS_SZ);
  458. SET_UP_REG_DMA_REG(hw, reg_dma);
  459. SDE_REG_WRITE(&hw, reg_dma_opmode_offset, BIT(0));
  460. val = SDE_REG_READ(&hw, reg_dma_intr_4_status_offset);
  461. if (val) {
  462. DRM_DEBUG("LUT dma status %x\n", val);
  463. mask = reg_dma_error_clear_mask;
  464. SDE_REG_WRITE(&hw, reg_dma_intr_clear_offset + sizeof(u32) * 4,
  465. mask);
  466. SDE_EVT32(val);
  467. }
  468. SDE_REG_WRITE(&hw, reg_dma_ctl_queue_off[cfg->ctl->idx],
  469. cfg->dma_buf->iova);
  470. SDE_REG_WRITE(&hw, reg_dma_ctl_queue_off[cfg->ctl->idx] + 0x4,
  471. cmd1);
  472. if (cfg->last_command) {
  473. mask = ctl_trigger_done_mask[cfg->ctl->idx][cfg->queue_select];
  474. SDE_REG_WRITE(&hw, reg_dma_intr_clear_offset, mask);
  475. SDE_REG_WRITE(&cfg->ctl->hw, reg_dma_ctl_trigger_offset,
  476. queue_sel[cfg->queue_select]);
  477. }
  478. return 0;
  479. }
  480. int init_v1(struct sde_hw_reg_dma *cfg)
  481. {
  482. int i = 0, rc = 0;
  483. if (!cfg)
  484. return -EINVAL;
  485. reg_dma = cfg;
  486. for (i = CTL_0; i < CTL_MAX; i++) {
  487. if (!last_cmd_buf[i]) {
  488. last_cmd_buf[i] =
  489. alloc_reg_dma_buf_v1(REG_DMA_HEADERS_BUFFER_SZ);
  490. if (IS_ERR_OR_NULL(last_cmd_buf[i])) {
  491. /*
  492. * This will allow reg dma to fall back to
  493. * AHB domain
  494. */
  495. pr_info("Failed to allocate reg dma, ret:%lu\n",
  496. PTR_ERR(last_cmd_buf[i]));
  497. return 0;
  498. }
  499. }
  500. }
  501. if (rc) {
  502. for (i = 0; i < CTL_MAX; i++) {
  503. if (!last_cmd_buf[i])
  504. continue;
  505. dealloc_reg_dma_v1(last_cmd_buf[i]);
  506. last_cmd_buf[i] = NULL;
  507. }
  508. return rc;
  509. }
  510. reg_dma->ops.check_support = check_support_v1;
  511. reg_dma->ops.setup_payload = setup_payload_v1;
  512. reg_dma->ops.kick_off = kick_off_v1;
  513. reg_dma->ops.reset = reset_v1;
  514. reg_dma->ops.alloc_reg_dma_buf = alloc_reg_dma_buf_v1;
  515. reg_dma->ops.dealloc_reg_dma = dealloc_reg_dma_v1;
  516. reg_dma->ops.reset_reg_dma_buf = reset_reg_dma_buffer_v1;
  517. reg_dma->ops.last_command = last_cmd_v1;
  518. reg_dma->ops.dump_regs = dump_regs_v1;
  519. reg_dma_register_count = 60;
  520. reg_dma_decode_sel = 0x180ac060;
  521. reg_dma_opmode_offset = 0x4;
  522. reg_dma_ctl0_queue0_cmd0_offset = 0x14;
  523. reg_dma_intr_status_offset = 0x90;
  524. reg_dma_intr_4_status_offset = 0xa0;
  525. reg_dma_intr_clear_offset = 0xb0;
  526. reg_dma_ctl_trigger_offset = 0xd4;
  527. reg_dma_ctl0_reset_offset = 0xe4;
  528. reg_dma_error_clear_mask = BIT(0) | BIT(1) | BIT(2) | BIT(16);
  529. reg_dma_ctl_queue_off[CTL_0] = reg_dma_ctl0_queue0_cmd0_offset;
  530. for (i = CTL_1; i < ARRAY_SIZE(reg_dma_ctl_queue_off); i++)
  531. reg_dma_ctl_queue_off[i] = reg_dma_ctl_queue_off[i - 1] +
  532. (sizeof(u32) * 4);
  533. return 0;
  534. }
  535. int init_v11(struct sde_hw_reg_dma *cfg)
  536. {
  537. int ret = 0, i = 0;
  538. ret = init_v1(cfg);
  539. if (ret) {
  540. DRM_ERROR("failed to initialize v1: ret %d\n", ret);
  541. return -EINVAL;
  542. }
  543. /* initialize register offsets and v1_supported based on version */
  544. reg_dma_register_count = 133;
  545. reg_dma_decode_sel = 0x180ac114;
  546. reg_dma_opmode_offset = 0x4;
  547. reg_dma_ctl0_queue0_cmd0_offset = 0x14;
  548. reg_dma_intr_status_offset = 0x160;
  549. reg_dma_intr_4_status_offset = 0x170;
  550. reg_dma_intr_clear_offset = 0x1a0;
  551. reg_dma_ctl_trigger_offset = 0xd4;
  552. reg_dma_ctl0_reset_offset = 0x200;
  553. reg_dma_error_clear_mask = BIT(0) | BIT(1) | BIT(2) | BIT(16) |
  554. BIT(17) | BIT(18);
  555. reg_dma_ctl_queue_off[CTL_0] = reg_dma_ctl0_queue0_cmd0_offset;
  556. for (i = CTL_1; i < ARRAY_SIZE(reg_dma_ctl_queue_off); i++)
  557. reg_dma_ctl_queue_off[i] = reg_dma_ctl_queue_off[i - 1] +
  558. (sizeof(u32) * 4);
  559. v1_supported[IGC] = DSPP_IGC | GRP_DSPP_HW_BLK_SELECT |
  560. GRP_VIG_HW_BLK_SELECT | GRP_DMA_HW_BLK_SELECT;
  561. v1_supported[GC] = GRP_DMA_HW_BLK_SELECT | GRP_DSPP_HW_BLK_SELECT;
  562. v1_supported[HSIC] = GRP_DSPP_HW_BLK_SELECT;
  563. v1_supported[SIX_ZONE] = GRP_DSPP_HW_BLK_SELECT;
  564. v1_supported[MEMC_SKIN] = GRP_DSPP_HW_BLK_SELECT;
  565. v1_supported[MEMC_SKY] = GRP_DSPP_HW_BLK_SELECT;
  566. v1_supported[MEMC_FOLIAGE] = GRP_DSPP_HW_BLK_SELECT;
  567. v1_supported[MEMC_PROT] = GRP_DSPP_HW_BLK_SELECT;
  568. v1_supported[QSEED] = GRP_VIG_HW_BLK_SELECT;
  569. return 0;
  570. }
  571. int init_v12(struct sde_hw_reg_dma *cfg)
  572. {
  573. int ret = 0;
  574. ret = init_v11(cfg);
  575. if (ret) {
  576. DRM_ERROR("failed to initialize v11: ret %d\n", ret);
  577. return ret;
  578. }
  579. v1_supported[LTM_INIT] = GRP_LTM_HW_BLK_SELECT;
  580. v1_supported[LTM_ROI] = GRP_LTM_HW_BLK_SELECT;
  581. v1_supported[LTM_VLUT] = GRP_LTM_HW_BLK_SELECT;
  582. return 0;
  583. }
  584. static int check_support_v1(enum sde_reg_dma_features feature,
  585. enum sde_reg_dma_blk blk,
  586. bool *is_supported)
  587. {
  588. int ret = 0;
  589. if (!is_supported)
  590. return -EINVAL;
  591. if (feature >= REG_DMA_FEATURES_MAX || blk >= MDSS) {
  592. *is_supported = false;
  593. return ret;
  594. }
  595. *is_supported = (blk & v1_supported[feature]) ? true : false;
  596. return ret;
  597. }
  598. static int setup_payload_v1(struct sde_reg_dma_setup_ops_cfg *cfg)
  599. {
  600. int rc = 0;
  601. rc = validate_dma_cfg(cfg);
  602. if (!rc)
  603. rc = validate_dma_op_params[cfg->ops](cfg);
  604. if (!rc)
  605. rc = write_dma_op_params[cfg->ops](cfg);
  606. return rc;
  607. }
  608. static int kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg)
  609. {
  610. int rc = 0;
  611. rc = validate_kick_off_v1(cfg);
  612. if (rc)
  613. return rc;
  614. rc = write_kick_off_v1(cfg);
  615. return rc;
  616. }
  617. int reset_v1(struct sde_hw_ctl *ctl)
  618. {
  619. struct sde_hw_blk_reg_map hw;
  620. u32 index, val, i = 0;
  621. if (!ctl || ctl->idx > CTL_MAX) {
  622. DRM_ERROR("invalid ctl %pK ctl idx %d\n",
  623. ctl, ((ctl) ? ctl->idx : 0));
  624. return -EINVAL;
  625. }
  626. memset(&hw, 0, sizeof(hw));
  627. index = ctl->idx - CTL_0;
  628. SET_UP_REG_DMA_REG(hw, reg_dma);
  629. SDE_REG_WRITE(&hw, reg_dma_opmode_offset, BIT(0));
  630. SDE_REG_WRITE(&hw, (reg_dma_ctl0_reset_offset + index * sizeof(u32)),
  631. BIT(0));
  632. i = 0;
  633. do {
  634. udelay(1000);
  635. i++;
  636. val = SDE_REG_READ(&hw,
  637. (reg_dma_ctl0_reset_offset + index * sizeof(u32)));
  638. } while (i < 2 && val);
  639. return 0;
  640. }
  641. static void sde_reg_dma_aspace_cb_locked(void *cb_data, bool is_detach)
  642. {
  643. struct sde_reg_dma_buffer *dma_buf = NULL;
  644. struct msm_gem_address_space *aspace = NULL;
  645. u32 iova_aligned, offset;
  646. int rc;
  647. if (!cb_data) {
  648. DRM_ERROR("aspace cb called with invalid dma_buf\n");
  649. return;
  650. }
  651. dma_buf = (struct sde_reg_dma_buffer *)cb_data;
  652. aspace = dma_buf->aspace;
  653. if (is_detach) {
  654. /* invalidate the stored iova */
  655. dma_buf->iova = 0;
  656. /* return the virtual address mapping */
  657. msm_gem_put_vaddr(dma_buf->buf);
  658. msm_gem_vunmap(dma_buf->buf, OBJ_LOCK_NORMAL);
  659. } else {
  660. rc = msm_gem_get_iova(dma_buf->buf, aspace,
  661. &dma_buf->iova);
  662. if (rc) {
  663. DRM_ERROR("failed to get the iova rc %d\n", rc);
  664. return;
  665. }
  666. dma_buf->vaddr = msm_gem_get_vaddr(dma_buf->buf);
  667. if (IS_ERR_OR_NULL(dma_buf->vaddr)) {
  668. DRM_ERROR("failed to get va rc %d\n", rc);
  669. return;
  670. }
  671. iova_aligned = (dma_buf->iova + GUARD_BYTES) & ALIGNED_OFFSET;
  672. offset = iova_aligned - dma_buf->iova;
  673. dma_buf->iova = dma_buf->iova + offset;
  674. dma_buf->vaddr = (void *)(((u8 *)dma_buf->vaddr) + offset);
  675. dma_buf->next_op_allowed = DECODE_SEL_OP;
  676. }
  677. }
  678. static struct sde_reg_dma_buffer *alloc_reg_dma_buf_v1(u32 size)
  679. {
  680. struct sde_reg_dma_buffer *dma_buf = NULL;
  681. u32 iova_aligned, offset;
  682. u32 rsize = size + GUARD_BYTES;
  683. struct msm_gem_address_space *aspace = NULL;
  684. int rc = 0;
  685. if (!size || SIZE_DWORD(size) > MAX_DWORDS_SZ) {
  686. DRM_ERROR("invalid buffer size %d\n", size);
  687. return ERR_PTR(-EINVAL);
  688. }
  689. dma_buf = kzalloc(sizeof(*dma_buf), GFP_KERNEL);
  690. if (!dma_buf)
  691. return ERR_PTR(-ENOMEM);
  692. dma_buf->buf = msm_gem_new(reg_dma->drm_dev,
  693. rsize, MSM_BO_UNCACHED);
  694. if (IS_ERR_OR_NULL(dma_buf->buf)) {
  695. rc = -EINVAL;
  696. goto fail;
  697. }
  698. aspace = msm_gem_smmu_address_space_get(reg_dma->drm_dev,
  699. MSM_SMMU_DOMAIN_UNSECURE);
  700. if (!aspace) {
  701. DRM_ERROR("failed to get aspace\n");
  702. rc = -EINVAL;
  703. goto free_gem;
  704. }
  705. /* register to aspace */
  706. rc = msm_gem_address_space_register_cb(aspace,
  707. sde_reg_dma_aspace_cb_locked,
  708. (void *)dma_buf);
  709. if (rc) {
  710. DRM_ERROR("failed to register callback %d", rc);
  711. goto free_gem;
  712. }
  713. dma_buf->aspace = aspace;
  714. rc = msm_gem_get_iova(dma_buf->buf, aspace, &dma_buf->iova);
  715. if (rc) {
  716. DRM_ERROR("failed to get the iova rc %d\n", rc);
  717. goto free_aspace_cb;
  718. }
  719. dma_buf->vaddr = msm_gem_get_vaddr(dma_buf->buf);
  720. if (IS_ERR_OR_NULL(dma_buf->vaddr)) {
  721. DRM_ERROR("failed to get va rc %d\n", rc);
  722. rc = -EINVAL;
  723. goto put_iova;
  724. }
  725. dma_buf->buffer_size = size;
  726. iova_aligned = (dma_buf->iova + GUARD_BYTES) & ALIGNED_OFFSET;
  727. offset = iova_aligned - dma_buf->iova;
  728. dma_buf->iova = dma_buf->iova + offset;
  729. dma_buf->vaddr = (void *)(((u8 *)dma_buf->vaddr) + offset);
  730. dma_buf->next_op_allowed = DECODE_SEL_OP;
  731. return dma_buf;
  732. put_iova:
  733. msm_gem_put_iova(dma_buf->buf, aspace);
  734. free_aspace_cb:
  735. msm_gem_address_space_unregister_cb(aspace,
  736. sde_reg_dma_aspace_cb_locked, dma_buf);
  737. free_gem:
  738. mutex_lock(&reg_dma->drm_dev->struct_mutex);
  739. msm_gem_free_object(dma_buf->buf);
  740. mutex_unlock(&reg_dma->drm_dev->struct_mutex);
  741. fail:
  742. kfree(dma_buf);
  743. return ERR_PTR(rc);
  744. }
  745. static int dealloc_reg_dma_v1(struct sde_reg_dma_buffer *dma_buf)
  746. {
  747. if (!dma_buf) {
  748. DRM_ERROR("invalid param reg_buf %pK\n", dma_buf);
  749. return -EINVAL;
  750. }
  751. if (dma_buf->buf) {
  752. msm_gem_put_iova(dma_buf->buf, 0);
  753. msm_gem_address_space_unregister_cb(dma_buf->aspace,
  754. sde_reg_dma_aspace_cb_locked, dma_buf);
  755. mutex_lock(&reg_dma->drm_dev->struct_mutex);
  756. msm_gem_free_object(dma_buf->buf);
  757. mutex_unlock(&reg_dma->drm_dev->struct_mutex);
  758. }
  759. kfree(dma_buf);
  760. return 0;
  761. }
  762. static int reset_reg_dma_buffer_v1(struct sde_reg_dma_buffer *lut_buf)
  763. {
  764. if (!lut_buf)
  765. return -EINVAL;
  766. lut_buf->index = 0;
  767. lut_buf->ops_completed = 0;
  768. lut_buf->next_op_allowed = DECODE_SEL_OP;
  769. return 0;
  770. }
  771. static int validate_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg)
  772. {
  773. u32 remain_len, write_len;
  774. remain_len = BUFFER_SPACE_LEFT(cfg);
  775. write_len = sizeof(u32);
  776. if (remain_len < write_len) {
  777. DRM_ERROR("buffer is full sz %d needs %d bytes\n",
  778. remain_len, write_len);
  779. return -EINVAL;
  780. }
  781. return 0;
  782. }
  783. static int write_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg)
  784. {
  785. u32 *loc = NULL;
  786. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  787. cfg->dma_buf->index);
  788. loc[0] = reg_dma_decode_sel;
  789. loc[1] = 0;
  790. cfg->dma_buf->index = sizeof(u32) * 2;
  791. cfg->dma_buf->ops_completed = REG_WRITE_OP | DECODE_SEL_OP;
  792. cfg->dma_buf->next_op_allowed = REG_WRITE_OP;
  793. return 0;
  794. }
  795. static int last_cmd_v1(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
  796. enum sde_reg_dma_last_cmd_mode mode)
  797. {
  798. struct sde_reg_dma_setup_ops_cfg cfg;
  799. struct sde_reg_dma_kickoff_cfg kick_off;
  800. struct sde_hw_blk_reg_map hw;
  801. u32 val;
  802. int rc;
  803. if (!ctl || ctl->idx >= CTL_MAX || q >= DMA_CTL_QUEUE_MAX) {
  804. DRM_ERROR("ctl %pK q %d index %d\n", ctl, q,
  805. ((ctl) ? ctl->idx : -1));
  806. return -EINVAL;
  807. }
  808. if (!last_cmd_buf[ctl->idx] || !last_cmd_buf[ctl->idx]->iova) {
  809. DRM_DEBUG("invalid last cmd buf for idx %d\n", ctl->idx);
  810. return 0;
  811. }
  812. cfg.dma_buf = last_cmd_buf[ctl->idx];
  813. reset_reg_dma_buffer_v1(last_cmd_buf[ctl->idx]);
  814. if (validate_last_cmd(&cfg)) {
  815. DRM_ERROR("validate buf failed\n");
  816. return -EINVAL;
  817. }
  818. if (write_last_cmd(&cfg)) {
  819. DRM_ERROR("write buf failed\n");
  820. return -EINVAL;
  821. }
  822. kick_off.ctl = ctl;
  823. kick_off.queue_select = q;
  824. kick_off.trigger_mode = WRITE_IMMEDIATE;
  825. kick_off.last_command = 1;
  826. kick_off.op = REG_DMA_WRITE;
  827. kick_off.dma_buf = last_cmd_buf[ctl->idx];
  828. if (kick_off_v1(&kick_off)) {
  829. DRM_ERROR("kick off last cmd failed\n");
  830. return -EINVAL;
  831. }
  832. memset(&hw, 0, sizeof(hw));
  833. SET_UP_REG_DMA_REG(hw, reg_dma);
  834. SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY, mode);
  835. if (mode == REG_DMA_WAIT4_COMP) {
  836. rc = readl_poll_timeout(hw.base_off + hw.blk_off +
  837. reg_dma_intr_status_offset, val,
  838. (val & ctl_trigger_done_mask[ctl->idx][q]),
  839. 10, 20000);
  840. if (rc)
  841. DRM_ERROR("poll wait failed %d val %x mask %x\n",
  842. rc, val, ctl_trigger_done_mask[ctl->idx][q]);
  843. SDE_EVT32(SDE_EVTLOG_FUNC_EXIT, mode);
  844. }
  845. return 0;
  846. }
  847. void deinit_v1(void)
  848. {
  849. int i = 0;
  850. for (i = CTL_0; i < CTL_MAX; i++) {
  851. if (last_cmd_buf[i])
  852. dealloc_reg_dma_v1(last_cmd_buf[i]);
  853. last_cmd_buf[i] = NULL;
  854. }
  855. }
  856. static void dump_regs_v1(void)
  857. {
  858. uint32_t i = 0;
  859. u32 val;
  860. struct sde_hw_blk_reg_map hw;
  861. memset(&hw, 0, sizeof(hw));
  862. SET_UP_REG_DMA_REG(hw, reg_dma);
  863. for (i = 0; i < reg_dma_register_count; i++) {
  864. val = SDE_REG_READ(&hw, i * sizeof(u32));
  865. DRM_ERROR("offset %x val %x\n", (u32)(i * sizeof(u32)), val);
  866. }
  867. }