power.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2021 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/clk.h>
  7. #include <linux/delay.h>
  8. #if IS_ENABLED(CONFIG_MSM_QMP)
  9. #include <linux/mailbox/qmp.h>
  10. #endif
  11. #include <linux/of.h>
  12. #include <linux/of_gpio.h>
  13. #include <linux/pinctrl/consumer.h>
  14. #include <linux/regulator/consumer.h>
  15. #if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
  16. #include <soc/qcom/cmd-db.h>
  17. #endif
  18. #include "main.h"
  19. #include "debug.h"
  20. #include "bus.h"
  21. #if IS_ENABLED(CONFIG_ARCH_QCOM)
  22. static struct cnss_vreg_cfg cnss_vreg_list[] = {
  23. {"vdd-wlan-core", 1300000, 1300000, 0, 0, 0},
  24. {"vdd-wlan-io", 1800000, 1800000, 0, 0, 0},
  25. {"vdd-wlan-xtal-aon", 0, 0, 0, 0, 0},
  26. {"vdd-wlan-xtal", 1800000, 1800000, 0, 2, 0},
  27. {"vdd-wlan", 0, 0, 0, 0, 0},
  28. {"vdd-wlan-ctrl1", 0, 0, 0, 0, 0},
  29. {"vdd-wlan-ctrl2", 0, 0, 0, 0, 0},
  30. {"vdd-wlan-sp2t", 2700000, 2700000, 0, 0, 0},
  31. {"wlan-ant-switch", 1800000, 1800000, 0, 0, 0},
  32. {"wlan-soc-swreg", 1200000, 1200000, 0, 0, 0},
  33. {"vdd-wlan-aon", 950000, 950000, 0, 0, 0},
  34. {"vdd-wlan-dig", 950000, 952000, 0, 0, 0},
  35. {"vdd-wlan-rfa1", 1900000, 1900000, 0, 0, 0},
  36. {"vdd-wlan-rfa2", 1350000, 1350000, 0, 0, 0},
  37. {"vdd-wlan-rfa3", 1900000, 1900000, 450000, 0, 0},
  38. {"alt-sleep-clk", 0, 0, 0, 0, 0},
  39. {"vdd-wlan-en", 0, 0, 0, 10, 0},
  40. };
  41. static struct cnss_clk_cfg cnss_clk_list[] = {
  42. {"rf_clk", 0, 0},
  43. };
  44. #else
  45. static struct cnss_vreg_cfg cnss_vreg_list[] = {
  46. };
  47. static struct cnss_clk_cfg cnss_clk_list[] = {
  48. };
  49. #endif
  50. #define CNSS_VREG_INFO_SIZE ARRAY_SIZE(cnss_vreg_list)
  51. #define CNSS_CLK_INFO_SIZE ARRAY_SIZE(cnss_clk_list)
  52. #define MAX_PROP_SIZE 32
  53. #define BOOTSTRAP_GPIO "qcom,enable-bootstrap-gpio"
  54. #define BOOTSTRAP_ACTIVE "bootstrap_active"
  55. #define HOST_SOL_GPIO "wlan-host-sol-gpio"
  56. #define DEV_SOL_GPIO "wlan-dev-sol-gpio"
  57. #define SOL_DEFAULT "sol_default"
  58. #define WLAN_EN_GPIO "wlan-en-gpio"
  59. #define BT_EN_GPIO "qcom,bt-en-gpio"
  60. #define XO_CLK_GPIO "qcom,xo-clk-gpio"
  61. #define SW_CTRL_GPIO "qcom,sw-ctrl-gpio"
  62. #define WLAN_SW_CTRL_GPIO "qcom,wlan-sw-ctrl-gpio"
  63. #define WLAN_EN_ACTIVE "wlan_en_active"
  64. #define WLAN_EN_SLEEP "wlan_en_sleep"
  65. #define BOOTSTRAP_DELAY 1000
  66. #define WLAN_ENABLE_DELAY 1000
  67. #define TCS_CMD_DATA_ADDR_OFFSET 0x4
  68. #define TCS_OFFSET 0xC8
  69. #define TCS_CMD_OFFSET 0x10
  70. #define MAX_TCS_NUM 8
  71. #define MAX_TCS_CMD_NUM 5
  72. #define BT_CXMX_VOLTAGE_MV 950
  73. #define CNSS_MBOX_MSG_MAX_LEN 64
  74. #define CNSS_MBOX_TIMEOUT_MS 1000
  75. /**
  76. * enum cnss_aop_vreg_param: Voltage regulator TCS param
  77. * @CNSS_VREG_VOLTAGE: Provides voltage level in mV to be configured in TCS
  78. * @CNSS_VREG_MODE: Regulator mode
  79. * @CNSS_VREG_TCS_ENABLE: Set bool Voltage regulator enable config in TCS.
  80. */
  81. enum cnss_aop_vreg_param {
  82. CNSS_VREG_VOLTAGE,
  83. CNSS_VREG_MODE,
  84. CNSS_VREG_ENABLE,
  85. CNSS_VREG_PARAM_MAX
  86. };
  87. /** enum cnss_aop_vreg_param_mode: Voltage modes supported by AOP*/
  88. enum cnss_aop_vreg_param_mode {
  89. CNSS_VREG_RET_MODE = 3,
  90. CNSS_VREG_LPM_MODE = 4,
  91. CNSS_VREG_AUTO_MODE = 6,
  92. CNSS_VREG_NPM_MODE = 7,
  93. CNSS_VREG_MODE_MAX
  94. };
  95. /**
  96. * enum cnss_aop_tcs_seq: TCS sequence ID for trigger
  97. * @CNSS_TCS_UP_SEQ: TCS Sequence based on up trigger / Wake TCS
  98. * @CNSS_TCS_DOWN_SEQ: TCS Sequence based on down trigger / Sleep TCS
  99. * @CNSS_TCS_ENABLE_SEQ: Enable this TCS seq entry
  100. */
  101. enum cnss_aop_tcs_seq_param {
  102. CNSS_TCS_UP_SEQ,
  103. CNSS_TCS_DOWN_SEQ,
  104. CNSS_TCS_ENABLE_SEQ,
  105. CNSS_TCS_SEQ_MAX
  106. };
  107. static int cnss_get_vreg_single(struct cnss_plat_data *plat_priv,
  108. struct cnss_vreg_info *vreg)
  109. {
  110. int ret = 0;
  111. struct device *dev;
  112. struct regulator *reg;
  113. const __be32 *prop;
  114. char prop_name[MAX_PROP_SIZE] = {0};
  115. int len;
  116. dev = &plat_priv->plat_dev->dev;
  117. reg = devm_regulator_get_optional(dev, vreg->cfg.name);
  118. if (IS_ERR(reg)) {
  119. ret = PTR_ERR(reg);
  120. if (ret == -ENODEV)
  121. return ret;
  122. else if (ret == -EPROBE_DEFER)
  123. cnss_pr_info("EPROBE_DEFER for regulator: %s\n",
  124. vreg->cfg.name);
  125. else
  126. cnss_pr_err("Failed to get regulator %s, err = %d\n",
  127. vreg->cfg.name, ret);
  128. return ret;
  129. }
  130. vreg->reg = reg;
  131. snprintf(prop_name, MAX_PROP_SIZE, "qcom,%s-config",
  132. vreg->cfg.name);
  133. prop = of_get_property(dev->of_node, prop_name, &len);
  134. if (!prop || len != (5 * sizeof(__be32))) {
  135. cnss_pr_dbg("Property %s %s, use default\n", prop_name,
  136. prop ? "invalid format" : "doesn't exist");
  137. } else {
  138. vreg->cfg.min_uv = be32_to_cpup(&prop[0]);
  139. vreg->cfg.max_uv = be32_to_cpup(&prop[1]);
  140. vreg->cfg.load_ua = be32_to_cpup(&prop[2]);
  141. vreg->cfg.delay_us = be32_to_cpup(&prop[3]);
  142. vreg->cfg.need_unvote = be32_to_cpup(&prop[4]);
  143. }
  144. cnss_pr_dbg("Got regulator: %s, min_uv: %u, max_uv: %u, load_ua: %u, delay_us: %u, need_unvote: %u\n",
  145. vreg->cfg.name, vreg->cfg.min_uv,
  146. vreg->cfg.max_uv, vreg->cfg.load_ua,
  147. vreg->cfg.delay_us, vreg->cfg.need_unvote);
  148. return 0;
  149. }
  150. static void cnss_put_vreg_single(struct cnss_plat_data *plat_priv,
  151. struct cnss_vreg_info *vreg)
  152. {
  153. struct device *dev = &plat_priv->plat_dev->dev;
  154. cnss_pr_dbg("Put regulator: %s\n", vreg->cfg.name);
  155. devm_regulator_put(vreg->reg);
  156. devm_kfree(dev, vreg);
  157. }
  158. static int cnss_vreg_on_single(struct cnss_vreg_info *vreg)
  159. {
  160. int ret = 0;
  161. if (vreg->enabled) {
  162. cnss_pr_dbg("Regulator %s is already enabled\n",
  163. vreg->cfg.name);
  164. return 0;
  165. }
  166. cnss_pr_dbg("Regulator %s is being enabled\n", vreg->cfg.name);
  167. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  168. ret = regulator_set_voltage(vreg->reg,
  169. vreg->cfg.min_uv,
  170. vreg->cfg.max_uv);
  171. if (ret) {
  172. cnss_pr_err("Failed to set voltage for regulator %s, min_uv: %u, max_uv: %u, err = %d\n",
  173. vreg->cfg.name, vreg->cfg.min_uv,
  174. vreg->cfg.max_uv, ret);
  175. goto out;
  176. }
  177. }
  178. if (vreg->cfg.load_ua) {
  179. ret = regulator_set_load(vreg->reg,
  180. vreg->cfg.load_ua);
  181. if (ret < 0) {
  182. cnss_pr_err("Failed to set load for regulator %s, load: %u, err = %d\n",
  183. vreg->cfg.name, vreg->cfg.load_ua,
  184. ret);
  185. goto out;
  186. }
  187. }
  188. if (vreg->cfg.delay_us)
  189. udelay(vreg->cfg.delay_us);
  190. ret = regulator_enable(vreg->reg);
  191. if (ret) {
  192. cnss_pr_err("Failed to enable regulator %s, err = %d\n",
  193. vreg->cfg.name, ret);
  194. goto out;
  195. }
  196. vreg->enabled = true;
  197. out:
  198. return ret;
  199. }
  200. static int cnss_vreg_unvote_single(struct cnss_vreg_info *vreg)
  201. {
  202. int ret = 0;
  203. if (!vreg->enabled) {
  204. cnss_pr_dbg("Regulator %s is already disabled\n",
  205. vreg->cfg.name);
  206. return 0;
  207. }
  208. cnss_pr_dbg("Removing vote for Regulator %s\n", vreg->cfg.name);
  209. if (vreg->cfg.load_ua) {
  210. ret = regulator_set_load(vreg->reg, 0);
  211. if (ret < 0)
  212. cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  213. vreg->cfg.name, ret);
  214. }
  215. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  216. ret = regulator_set_voltage(vreg->reg, 0,
  217. vreg->cfg.max_uv);
  218. if (ret)
  219. cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  220. vreg->cfg.name, ret);
  221. }
  222. return ret;
  223. }
  224. static int cnss_vreg_off_single(struct cnss_vreg_info *vreg)
  225. {
  226. int ret = 0;
  227. if (!vreg->enabled) {
  228. cnss_pr_dbg("Regulator %s is already disabled\n",
  229. vreg->cfg.name);
  230. return 0;
  231. }
  232. cnss_pr_dbg("Regulator %s is being disabled\n",
  233. vreg->cfg.name);
  234. ret = regulator_disable(vreg->reg);
  235. if (ret)
  236. cnss_pr_err("Failed to disable regulator %s, err = %d\n",
  237. vreg->cfg.name, ret);
  238. if (vreg->cfg.load_ua) {
  239. ret = regulator_set_load(vreg->reg, 0);
  240. if (ret < 0)
  241. cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  242. vreg->cfg.name, ret);
  243. }
  244. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  245. ret = regulator_set_voltage(vreg->reg, 0,
  246. vreg->cfg.max_uv);
  247. if (ret)
  248. cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  249. vreg->cfg.name, ret);
  250. }
  251. vreg->enabled = false;
  252. return ret;
  253. }
  254. static struct cnss_vreg_cfg *get_vreg_list(u32 *vreg_list_size,
  255. enum cnss_vreg_type type)
  256. {
  257. switch (type) {
  258. case CNSS_VREG_PRIM:
  259. *vreg_list_size = CNSS_VREG_INFO_SIZE;
  260. return cnss_vreg_list;
  261. default:
  262. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  263. *vreg_list_size = 0;
  264. return NULL;
  265. }
  266. }
  267. static int cnss_get_vreg(struct cnss_plat_data *plat_priv,
  268. struct list_head *vreg_list,
  269. struct cnss_vreg_cfg *vreg_cfg,
  270. u32 vreg_list_size)
  271. {
  272. int ret = 0;
  273. int i;
  274. struct cnss_vreg_info *vreg;
  275. struct device *dev = &plat_priv->plat_dev->dev;
  276. if (!list_empty(vreg_list)) {
  277. cnss_pr_dbg("Vregs have already been updated\n");
  278. return 0;
  279. }
  280. for (i = 0; i < vreg_list_size; i++) {
  281. vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
  282. if (!vreg)
  283. return -ENOMEM;
  284. memcpy(&vreg->cfg, &vreg_cfg[i], sizeof(vreg->cfg));
  285. ret = cnss_get_vreg_single(plat_priv, vreg);
  286. if (ret != 0) {
  287. if (ret == -ENODEV) {
  288. devm_kfree(dev, vreg);
  289. continue;
  290. } else {
  291. devm_kfree(dev, vreg);
  292. return ret;
  293. }
  294. }
  295. list_add_tail(&vreg->list, vreg_list);
  296. }
  297. return 0;
  298. }
  299. static void cnss_put_vreg(struct cnss_plat_data *plat_priv,
  300. struct list_head *vreg_list)
  301. {
  302. struct cnss_vreg_info *vreg;
  303. while (!list_empty(vreg_list)) {
  304. vreg = list_first_entry(vreg_list,
  305. struct cnss_vreg_info, list);
  306. list_del(&vreg->list);
  307. if (IS_ERR_OR_NULL(vreg->reg))
  308. continue;
  309. cnss_put_vreg_single(plat_priv, vreg);
  310. }
  311. }
  312. static int cnss_vreg_on(struct cnss_plat_data *plat_priv,
  313. struct list_head *vreg_list)
  314. {
  315. struct cnss_vreg_info *vreg;
  316. int ret = 0;
  317. list_for_each_entry(vreg, vreg_list, list) {
  318. if (IS_ERR_OR_NULL(vreg->reg))
  319. continue;
  320. ret = cnss_vreg_on_single(vreg);
  321. if (ret)
  322. break;
  323. }
  324. if (!ret)
  325. return 0;
  326. list_for_each_entry_continue_reverse(vreg, vreg_list, list) {
  327. if (IS_ERR_OR_NULL(vreg->reg) || !vreg->enabled)
  328. continue;
  329. cnss_vreg_off_single(vreg);
  330. }
  331. return ret;
  332. }
  333. static int cnss_vreg_off(struct cnss_plat_data *plat_priv,
  334. struct list_head *vreg_list)
  335. {
  336. struct cnss_vreg_info *vreg;
  337. list_for_each_entry_reverse(vreg, vreg_list, list) {
  338. if (IS_ERR_OR_NULL(vreg->reg))
  339. continue;
  340. cnss_vreg_off_single(vreg);
  341. }
  342. return 0;
  343. }
  344. static int cnss_vreg_unvote(struct cnss_plat_data *plat_priv,
  345. struct list_head *vreg_list)
  346. {
  347. struct cnss_vreg_info *vreg;
  348. list_for_each_entry_reverse(vreg, vreg_list, list) {
  349. if (IS_ERR_OR_NULL(vreg->reg))
  350. continue;
  351. if (vreg->cfg.need_unvote)
  352. cnss_vreg_unvote_single(vreg);
  353. }
  354. return 0;
  355. }
  356. int cnss_get_vreg_type(struct cnss_plat_data *plat_priv,
  357. enum cnss_vreg_type type)
  358. {
  359. struct cnss_vreg_cfg *vreg_cfg;
  360. u32 vreg_list_size = 0;
  361. int ret = 0;
  362. vreg_cfg = get_vreg_list(&vreg_list_size, type);
  363. if (!vreg_cfg)
  364. return -EINVAL;
  365. switch (type) {
  366. case CNSS_VREG_PRIM:
  367. ret = cnss_get_vreg(plat_priv, &plat_priv->vreg_list,
  368. vreg_cfg, vreg_list_size);
  369. break;
  370. default:
  371. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  372. return -EINVAL;
  373. }
  374. return ret;
  375. }
  376. void cnss_put_vreg_type(struct cnss_plat_data *plat_priv,
  377. enum cnss_vreg_type type)
  378. {
  379. switch (type) {
  380. case CNSS_VREG_PRIM:
  381. cnss_put_vreg(plat_priv, &plat_priv->vreg_list);
  382. break;
  383. default:
  384. return;
  385. }
  386. }
  387. int cnss_vreg_on_type(struct cnss_plat_data *plat_priv,
  388. enum cnss_vreg_type type)
  389. {
  390. int ret = 0;
  391. switch (type) {
  392. case CNSS_VREG_PRIM:
  393. ret = cnss_vreg_on(plat_priv, &plat_priv->vreg_list);
  394. break;
  395. default:
  396. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  397. return -EINVAL;
  398. }
  399. return ret;
  400. }
  401. int cnss_vreg_off_type(struct cnss_plat_data *plat_priv,
  402. enum cnss_vreg_type type)
  403. {
  404. int ret = 0;
  405. switch (type) {
  406. case CNSS_VREG_PRIM:
  407. ret = cnss_vreg_off(plat_priv, &plat_priv->vreg_list);
  408. break;
  409. default:
  410. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  411. return -EINVAL;
  412. }
  413. return ret;
  414. }
  415. int cnss_vreg_unvote_type(struct cnss_plat_data *plat_priv,
  416. enum cnss_vreg_type type)
  417. {
  418. int ret = 0;
  419. switch (type) {
  420. case CNSS_VREG_PRIM:
  421. ret = cnss_vreg_unvote(plat_priv, &plat_priv->vreg_list);
  422. break;
  423. default:
  424. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  425. return -EINVAL;
  426. }
  427. return ret;
  428. }
  429. static int cnss_get_clk_single(struct cnss_plat_data *plat_priv,
  430. struct cnss_clk_info *clk_info)
  431. {
  432. struct device *dev = &plat_priv->plat_dev->dev;
  433. struct clk *clk;
  434. int ret;
  435. clk = devm_clk_get(dev, clk_info->cfg.name);
  436. if (IS_ERR(clk)) {
  437. ret = PTR_ERR(clk);
  438. if (clk_info->cfg.required)
  439. cnss_pr_err("Failed to get clock %s, err = %d\n",
  440. clk_info->cfg.name, ret);
  441. else
  442. cnss_pr_dbg("Failed to get optional clock %s, err = %d\n",
  443. clk_info->cfg.name, ret);
  444. return ret;
  445. }
  446. clk_info->clk = clk;
  447. cnss_pr_dbg("Got clock: %s, freq: %u\n",
  448. clk_info->cfg.name, clk_info->cfg.freq);
  449. return 0;
  450. }
  451. static void cnss_put_clk_single(struct cnss_plat_data *plat_priv,
  452. struct cnss_clk_info *clk_info)
  453. {
  454. struct device *dev = &plat_priv->plat_dev->dev;
  455. cnss_pr_dbg("Put clock: %s\n", clk_info->cfg.name);
  456. devm_clk_put(dev, clk_info->clk);
  457. }
  458. static int cnss_clk_on_single(struct cnss_clk_info *clk_info)
  459. {
  460. int ret;
  461. if (clk_info->enabled) {
  462. cnss_pr_dbg("Clock %s is already enabled\n",
  463. clk_info->cfg.name);
  464. return 0;
  465. }
  466. cnss_pr_dbg("Clock %s is being enabled\n", clk_info->cfg.name);
  467. if (clk_info->cfg.freq) {
  468. ret = clk_set_rate(clk_info->clk, clk_info->cfg.freq);
  469. if (ret) {
  470. cnss_pr_err("Failed to set frequency %u for clock %s, err = %d\n",
  471. clk_info->cfg.freq, clk_info->cfg.name,
  472. ret);
  473. return ret;
  474. }
  475. }
  476. ret = clk_prepare_enable(clk_info->clk);
  477. if (ret) {
  478. cnss_pr_err("Failed to enable clock %s, err = %d\n",
  479. clk_info->cfg.name, ret);
  480. return ret;
  481. }
  482. clk_info->enabled = true;
  483. return 0;
  484. }
  485. static int cnss_clk_off_single(struct cnss_clk_info *clk_info)
  486. {
  487. if (!clk_info->enabled) {
  488. cnss_pr_dbg("Clock %s is already disabled\n",
  489. clk_info->cfg.name);
  490. return 0;
  491. }
  492. cnss_pr_dbg("Clock %s is being disabled\n", clk_info->cfg.name);
  493. clk_disable_unprepare(clk_info->clk);
  494. clk_info->enabled = false;
  495. return 0;
  496. }
  497. int cnss_get_clk(struct cnss_plat_data *plat_priv)
  498. {
  499. struct device *dev;
  500. struct list_head *clk_list;
  501. struct cnss_clk_info *clk_info;
  502. int ret, i;
  503. if (!plat_priv)
  504. return -ENODEV;
  505. dev = &plat_priv->plat_dev->dev;
  506. clk_list = &plat_priv->clk_list;
  507. if (!list_empty(clk_list)) {
  508. cnss_pr_dbg("Clocks have already been updated\n");
  509. return 0;
  510. }
  511. for (i = 0; i < CNSS_CLK_INFO_SIZE; i++) {
  512. clk_info = devm_kzalloc(dev, sizeof(*clk_info), GFP_KERNEL);
  513. if (!clk_info) {
  514. ret = -ENOMEM;
  515. goto cleanup;
  516. }
  517. memcpy(&clk_info->cfg, &cnss_clk_list[i],
  518. sizeof(clk_info->cfg));
  519. ret = cnss_get_clk_single(plat_priv, clk_info);
  520. if (ret != 0) {
  521. if (clk_info->cfg.required) {
  522. devm_kfree(dev, clk_info);
  523. goto cleanup;
  524. } else {
  525. devm_kfree(dev, clk_info);
  526. continue;
  527. }
  528. }
  529. list_add_tail(&clk_info->list, clk_list);
  530. }
  531. return 0;
  532. cleanup:
  533. while (!list_empty(clk_list)) {
  534. clk_info = list_first_entry(clk_list, struct cnss_clk_info,
  535. list);
  536. list_del(&clk_info->list);
  537. if (IS_ERR_OR_NULL(clk_info->clk))
  538. continue;
  539. cnss_put_clk_single(plat_priv, clk_info);
  540. devm_kfree(dev, clk_info);
  541. }
  542. return ret;
  543. }
  544. void cnss_put_clk(struct cnss_plat_data *plat_priv)
  545. {
  546. struct device *dev;
  547. struct list_head *clk_list;
  548. struct cnss_clk_info *clk_info;
  549. if (!plat_priv)
  550. return;
  551. dev = &plat_priv->plat_dev->dev;
  552. clk_list = &plat_priv->clk_list;
  553. while (!list_empty(clk_list)) {
  554. clk_info = list_first_entry(clk_list, struct cnss_clk_info,
  555. list);
  556. list_del(&clk_info->list);
  557. if (IS_ERR_OR_NULL(clk_info->clk))
  558. continue;
  559. cnss_put_clk_single(plat_priv, clk_info);
  560. devm_kfree(dev, clk_info);
  561. }
  562. }
  563. static int cnss_clk_on(struct cnss_plat_data *plat_priv,
  564. struct list_head *clk_list)
  565. {
  566. struct cnss_clk_info *clk_info;
  567. int ret = 0;
  568. list_for_each_entry(clk_info, clk_list, list) {
  569. if (IS_ERR_OR_NULL(clk_info->clk))
  570. continue;
  571. ret = cnss_clk_on_single(clk_info);
  572. if (ret)
  573. break;
  574. }
  575. if (!ret)
  576. return 0;
  577. list_for_each_entry_continue_reverse(clk_info, clk_list, list) {
  578. if (IS_ERR_OR_NULL(clk_info->clk))
  579. continue;
  580. cnss_clk_off_single(clk_info);
  581. }
  582. return ret;
  583. }
  584. static int cnss_clk_off(struct cnss_plat_data *plat_priv,
  585. struct list_head *clk_list)
  586. {
  587. struct cnss_clk_info *clk_info;
  588. list_for_each_entry_reverse(clk_info, clk_list, list) {
  589. if (IS_ERR_OR_NULL(clk_info->clk))
  590. continue;
  591. cnss_clk_off_single(clk_info);
  592. }
  593. return 0;
  594. }
  595. int cnss_get_pinctrl(struct cnss_plat_data *plat_priv)
  596. {
  597. int ret = 0;
  598. struct device *dev;
  599. struct cnss_pinctrl_info *pinctrl_info;
  600. dev = &plat_priv->plat_dev->dev;
  601. pinctrl_info = &plat_priv->pinctrl_info;
  602. pinctrl_info->pinctrl = devm_pinctrl_get(dev);
  603. if (IS_ERR_OR_NULL(pinctrl_info->pinctrl)) {
  604. ret = PTR_ERR(pinctrl_info->pinctrl);
  605. cnss_pr_err("Failed to get pinctrl, err = %d\n", ret);
  606. goto out;
  607. }
  608. if (of_find_property(dev->of_node, BOOTSTRAP_GPIO, NULL)) {
  609. pinctrl_info->bootstrap_active =
  610. pinctrl_lookup_state(pinctrl_info->pinctrl,
  611. BOOTSTRAP_ACTIVE);
  612. if (IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
  613. ret = PTR_ERR(pinctrl_info->bootstrap_active);
  614. cnss_pr_err("Failed to get bootstrap active state, err = %d\n",
  615. ret);
  616. goto out;
  617. }
  618. }
  619. if (of_find_property(dev->of_node, HOST_SOL_GPIO, NULL) &&
  620. of_find_property(dev->of_node, DEV_SOL_GPIO, NULL)) {
  621. pinctrl_info->sol_default =
  622. pinctrl_lookup_state(pinctrl_info->pinctrl,
  623. SOL_DEFAULT);
  624. if (IS_ERR_OR_NULL(pinctrl_info->sol_default)) {
  625. ret = PTR_ERR(pinctrl_info->sol_default);
  626. cnss_pr_err("Failed to get sol default state, err = %d\n",
  627. ret);
  628. goto out;
  629. }
  630. cnss_pr_dbg("Got sol default state\n");
  631. }
  632. if (of_find_property(dev->of_node, WLAN_EN_GPIO, NULL)) {
  633. pinctrl_info->wlan_en_active =
  634. pinctrl_lookup_state(pinctrl_info->pinctrl,
  635. WLAN_EN_ACTIVE);
  636. if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
  637. ret = PTR_ERR(pinctrl_info->wlan_en_active);
  638. cnss_pr_err("Failed to get wlan_en active state, err = %d\n",
  639. ret);
  640. goto out;
  641. }
  642. pinctrl_info->wlan_en_sleep =
  643. pinctrl_lookup_state(pinctrl_info->pinctrl,
  644. WLAN_EN_SLEEP);
  645. if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
  646. ret = PTR_ERR(pinctrl_info->wlan_en_sleep);
  647. cnss_pr_err("Failed to get wlan_en sleep state, err = %d\n",
  648. ret);
  649. goto out;
  650. }
  651. }
  652. /* Added for QCA6490 PMU delayed WLAN_EN_GPIO */
  653. if (of_find_property(dev->of_node, BT_EN_GPIO, NULL)) {
  654. pinctrl_info->bt_en_gpio = of_get_named_gpio(dev->of_node,
  655. BT_EN_GPIO, 0);
  656. cnss_pr_dbg("BT GPIO: %d\n", pinctrl_info->bt_en_gpio);
  657. } else {
  658. pinctrl_info->bt_en_gpio = -EINVAL;
  659. }
  660. /* Added for QCA6490 to minimize XO CLK selection leakage prevention */
  661. if (of_find_property(dev->of_node, XO_CLK_GPIO, NULL)) {
  662. pinctrl_info->xo_clk_gpio = of_get_named_gpio(dev->of_node,
  663. XO_CLK_GPIO, 0);
  664. cnss_pr_dbg("QCA6490 XO_CLK GPIO: %d\n",
  665. pinctrl_info->xo_clk_gpio);
  666. cnss_set_feature_list(plat_priv, BOOTSTRAP_CLOCK_SELECT_V01);
  667. } else {
  668. pinctrl_info->xo_clk_gpio = -EINVAL;
  669. }
  670. if (of_find_property(dev->of_node, SW_CTRL_GPIO, NULL)) {
  671. pinctrl_info->sw_ctrl_gpio = of_get_named_gpio(dev->of_node,
  672. SW_CTRL_GPIO,
  673. 0);
  674. cnss_pr_dbg("Switch control GPIO: %d\n",
  675. pinctrl_info->sw_ctrl_gpio);
  676. } else {
  677. pinctrl_info->sw_ctrl_gpio = -EINVAL;
  678. }
  679. return 0;
  680. out:
  681. return ret;
  682. }
  683. int cnss_get_wlan_sw_ctrl(struct cnss_plat_data *plat_priv)
  684. {
  685. struct device *dev;
  686. struct cnss_pinctrl_info *pinctrl_info;
  687. dev = &plat_priv->plat_dev->dev;
  688. pinctrl_info = &plat_priv->pinctrl_info;
  689. if (of_find_property(dev->of_node, WLAN_SW_CTRL_GPIO, NULL)) {
  690. pinctrl_info->wlan_sw_ctrl_gpio = of_get_named_gpio(dev->of_node,
  691. WLAN_SW_CTRL_GPIO,
  692. 0);
  693. cnss_pr_dbg("WLAN Switch control GPIO: %d\n",
  694. pinctrl_info->wlan_sw_ctrl_gpio);
  695. } else {
  696. pinctrl_info->wlan_sw_ctrl_gpio = -EINVAL;
  697. }
  698. return 0;
  699. }
  700. #define CNSS_XO_CLK_RETRY_COUNT_MAX 5
  701. static void cnss_set_xo_clk_gpio_state(struct cnss_plat_data *plat_priv,
  702. bool enable)
  703. {
  704. int xo_clk_gpio = plat_priv->pinctrl_info.xo_clk_gpio, retry = 0, ret;
  705. if (xo_clk_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
  706. return;
  707. retry_gpio_req:
  708. ret = gpio_request(xo_clk_gpio, "XO_CLK_GPIO");
  709. if (ret) {
  710. if (retry++ < CNSS_XO_CLK_RETRY_COUNT_MAX) {
  711. /* wait for ~(10 - 20) ms */
  712. usleep_range(10000, 20000);
  713. goto retry_gpio_req;
  714. }
  715. }
  716. if (ret) {
  717. cnss_pr_err("QCA6490 XO CLK Gpio request failed\n");
  718. return;
  719. }
  720. if (enable) {
  721. gpio_direction_output(xo_clk_gpio, 1);
  722. /*XO CLK must be asserted for some time before WLAN_EN */
  723. usleep_range(100, 200);
  724. } else {
  725. /* Assert XO CLK ~(2-5)ms before off for valid latch in HW */
  726. usleep_range(2000, 5000);
  727. gpio_direction_output(xo_clk_gpio, 0);
  728. }
  729. gpio_free(xo_clk_gpio);
  730. }
  731. static int cnss_select_pinctrl_state(struct cnss_plat_data *plat_priv,
  732. bool state)
  733. {
  734. int ret = 0;
  735. struct cnss_pinctrl_info *pinctrl_info;
  736. if (!plat_priv) {
  737. cnss_pr_err("plat_priv is NULL!\n");
  738. ret = -ENODEV;
  739. goto out;
  740. }
  741. pinctrl_info = &plat_priv->pinctrl_info;
  742. if (state) {
  743. if (!IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
  744. ret = pinctrl_select_state
  745. (pinctrl_info->pinctrl,
  746. pinctrl_info->bootstrap_active);
  747. if (ret) {
  748. cnss_pr_err("Failed to select bootstrap active state, err = %d\n",
  749. ret);
  750. goto out;
  751. }
  752. udelay(BOOTSTRAP_DELAY);
  753. }
  754. if (!IS_ERR_OR_NULL(pinctrl_info->sol_default)) {
  755. ret = pinctrl_select_state
  756. (pinctrl_info->pinctrl,
  757. pinctrl_info->sol_default);
  758. if (ret) {
  759. cnss_pr_err("Failed to select sol default state, err = %d\n",
  760. ret);
  761. goto out;
  762. }
  763. cnss_pr_dbg("Selected sol default state\n");
  764. }
  765. cnss_set_xo_clk_gpio_state(plat_priv, true);
  766. if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
  767. ret = pinctrl_select_state
  768. (pinctrl_info->pinctrl,
  769. pinctrl_info->wlan_en_active);
  770. if (ret) {
  771. cnss_pr_err("Failed to select wlan_en active state, err = %d\n",
  772. ret);
  773. goto out;
  774. }
  775. udelay(WLAN_ENABLE_DELAY);
  776. }
  777. cnss_set_xo_clk_gpio_state(plat_priv, false);
  778. } else {
  779. if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
  780. ret = pinctrl_select_state(pinctrl_info->pinctrl,
  781. pinctrl_info->wlan_en_sleep);
  782. if (ret) {
  783. cnss_pr_err("Failed to select wlan_en sleep state, err = %d\n",
  784. ret);
  785. goto out;
  786. }
  787. }
  788. }
  789. cnss_pr_dbg("%s WLAN_EN GPIO successfully\n",
  790. state ? "Assert" : "De-assert");
  791. return 0;
  792. out:
  793. return ret;
  794. }
  795. /**
  796. * cnss_select_pinctrl_enable - select WLAN_GPIO for Active pinctrl status
  797. * @plat_priv: Platform private data structure pointer
  798. *
  799. * For QCA6490, PMU requires minimum 100ms delay between BT_EN_GPIO off and
  800. * WLAN_EN_GPIO on. This is done to avoid power up issues.
  801. *
  802. * Return: Status of pinctrl select operation. 0 - Success.
  803. */
  804. static int cnss_select_pinctrl_enable(struct cnss_plat_data *plat_priv)
  805. {
  806. int ret = 0, bt_en_gpio = plat_priv->pinctrl_info.bt_en_gpio;
  807. u8 wlan_en_state = 0;
  808. if (bt_en_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
  809. goto set_wlan_en;
  810. if (gpio_get_value(bt_en_gpio)) {
  811. cnss_pr_dbg("BT_EN_GPIO State: On\n");
  812. ret = cnss_select_pinctrl_state(plat_priv, true);
  813. if (!ret)
  814. return ret;
  815. wlan_en_state = 1;
  816. }
  817. if (!gpio_get_value(bt_en_gpio)) {
  818. cnss_pr_dbg("BT_EN_GPIO State: Off. Delay WLAN_GPIO enable\n");
  819. /* check for BT_EN_GPIO down race during above operation */
  820. if (wlan_en_state) {
  821. cnss_pr_dbg("Reset WLAN_EN as BT got turned off during enable\n");
  822. cnss_select_pinctrl_state(plat_priv, false);
  823. wlan_en_state = 0;
  824. }
  825. /* 100 ms delay for BT_EN and WLAN_EN QCA6490 PMU sequencing */
  826. msleep(100);
  827. }
  828. set_wlan_en:
  829. if (!wlan_en_state)
  830. ret = cnss_select_pinctrl_state(plat_priv, true);
  831. return ret;
  832. }
  833. int cnss_get_input_gpio_value(struct cnss_plat_data *plat_priv, int gpio_num)
  834. {
  835. int ret;
  836. if (gpio_num < 0)
  837. return -EINVAL;
  838. ret = gpio_direction_input(gpio_num);
  839. if (ret) {
  840. cnss_pr_err("Failed to set direction of GPIO(%d), err = %d",
  841. gpio_num, ret);
  842. return -EINVAL;
  843. }
  844. return gpio_get_value(gpio_num);
  845. }
  846. int cnss_power_on_device(struct cnss_plat_data *plat_priv)
  847. {
  848. int ret = 0;
  849. if (plat_priv->powered_on) {
  850. cnss_pr_dbg("Already powered up");
  851. return 0;
  852. }
  853. ret = cnss_vreg_on_type(plat_priv, CNSS_VREG_PRIM);
  854. if (ret) {
  855. cnss_pr_err("Failed to turn on vreg, err = %d\n", ret);
  856. goto out;
  857. }
  858. ret = cnss_clk_on(plat_priv, &plat_priv->clk_list);
  859. if (ret) {
  860. cnss_pr_err("Failed to turn on clocks, err = %d\n", ret);
  861. goto vreg_off;
  862. }
  863. ret = cnss_select_pinctrl_enable(plat_priv);
  864. if (ret) {
  865. cnss_pr_err("Failed to select pinctrl state, err = %d\n", ret);
  866. goto clk_off;
  867. }
  868. plat_priv->powered_on = true;
  869. cnss_enable_dev_sol_irq(plat_priv);
  870. cnss_set_host_sol_value(plat_priv, 0);
  871. return 0;
  872. clk_off:
  873. cnss_clk_off(plat_priv, &plat_priv->clk_list);
  874. vreg_off:
  875. cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
  876. out:
  877. return ret;
  878. }
  879. void cnss_power_off_device(struct cnss_plat_data *plat_priv)
  880. {
  881. if (!plat_priv->powered_on) {
  882. cnss_pr_dbg("Already powered down");
  883. return;
  884. }
  885. cnss_disable_dev_sol_irq(plat_priv);
  886. cnss_select_pinctrl_state(plat_priv, false);
  887. cnss_clk_off(plat_priv, &plat_priv->clk_list);
  888. cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
  889. plat_priv->powered_on = false;
  890. }
  891. bool cnss_is_device_powered_on(struct cnss_plat_data *plat_priv)
  892. {
  893. return plat_priv->powered_on;
  894. }
  895. void cnss_set_pin_connect_status(struct cnss_plat_data *plat_priv)
  896. {
  897. unsigned long pin_status = 0;
  898. set_bit(CNSS_WLAN_EN, &pin_status);
  899. set_bit(CNSS_PCIE_TXN, &pin_status);
  900. set_bit(CNSS_PCIE_TXP, &pin_status);
  901. set_bit(CNSS_PCIE_RXN, &pin_status);
  902. set_bit(CNSS_PCIE_RXP, &pin_status);
  903. set_bit(CNSS_PCIE_REFCLKN, &pin_status);
  904. set_bit(CNSS_PCIE_REFCLKP, &pin_status);
  905. set_bit(CNSS_PCIE_RST, &pin_status);
  906. plat_priv->pin_result.host_pin_result = pin_status;
  907. }
  908. #if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
  909. static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
  910. {
  911. return cmd_db_ready();
  912. }
  913. static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
  914. const char *res_id)
  915. {
  916. return cmd_db_read_addr(res_id);
  917. }
  918. #else
  919. static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
  920. {
  921. return -EOPNOTSUPP;
  922. }
  923. static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
  924. const char *res_id)
  925. {
  926. return 0;
  927. }
  928. #endif
  929. int cnss_get_tcs_info(struct cnss_plat_data *plat_priv)
  930. {
  931. struct platform_device *plat_dev = plat_priv->plat_dev;
  932. struct resource *res;
  933. resource_size_t addr_len;
  934. void __iomem *tcs_cmd_base_addr;
  935. int ret = 0;
  936. res = platform_get_resource_byname(plat_dev, IORESOURCE_MEM, "tcs_cmd");
  937. if (!res) {
  938. cnss_pr_dbg("TCS CMD address is not present for CPR\n");
  939. goto out;
  940. }
  941. plat_priv->tcs_info.cmd_base_addr = res->start;
  942. addr_len = resource_size(res);
  943. cnss_pr_dbg("TCS CMD base address is %pa with length %pa\n",
  944. &plat_priv->tcs_info.cmd_base_addr, &addr_len);
  945. tcs_cmd_base_addr = devm_ioremap(&plat_dev->dev, res->start, addr_len);
  946. if (!tcs_cmd_base_addr) {
  947. ret = -EINVAL;
  948. cnss_pr_err("Failed to map TCS CMD address, err = %d\n",
  949. ret);
  950. goto out;
  951. }
  952. plat_priv->tcs_info.cmd_base_addr_io = tcs_cmd_base_addr;
  953. return 0;
  954. out:
  955. return ret;
  956. }
  957. int cnss_get_cpr_info(struct cnss_plat_data *plat_priv)
  958. {
  959. struct platform_device *plat_dev = plat_priv->plat_dev;
  960. struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
  961. const char *cmd_db_name;
  962. u32 cpr_pmic_addr = 0;
  963. int ret = 0;
  964. if (plat_priv->tcs_info.cmd_base_addr == 0) {
  965. cnss_pr_dbg("TCS CMD not configured\n");
  966. return 0;
  967. }
  968. ret = of_property_read_string(plat_dev->dev.of_node,
  969. "qcom,cmd_db_name", &cmd_db_name);
  970. if (ret) {
  971. cnss_pr_dbg("CommandDB name is not present for CPR\n");
  972. goto out;
  973. }
  974. ret = cnss_cmd_db_ready(plat_priv);
  975. if (ret) {
  976. cnss_pr_err("CommandDB is not ready, err = %d\n", ret);
  977. goto out;
  978. }
  979. cpr_pmic_addr = cnss_cmd_db_read_addr(plat_priv, cmd_db_name);
  980. if (cpr_pmic_addr > 0) {
  981. cpr_info->cpr_pmic_addr = cpr_pmic_addr;
  982. cnss_pr_dbg("Get CPR PMIC address 0x%x from %s\n",
  983. cpr_info->cpr_pmic_addr, cmd_db_name);
  984. } else {
  985. cnss_pr_err("CPR PMIC address is not available for %s\n",
  986. cmd_db_name);
  987. ret = -EINVAL;
  988. goto out;
  989. }
  990. return 0;
  991. out:
  992. return ret;
  993. }
  994. #if IS_ENABLED(CONFIG_MSM_QMP)
  995. int cnss_aop_mbox_init(struct cnss_plat_data *plat_priv)
  996. {
  997. struct mbox_client *mbox = &plat_priv->mbox_client_data;
  998. struct mbox_chan *chan;
  999. int ret;
  1000. plat_priv->mbox_chan = NULL;
  1001. mbox->dev = &plat_priv->plat_dev->dev;
  1002. mbox->tx_block = true;
  1003. mbox->tx_tout = CNSS_MBOX_TIMEOUT_MS;
  1004. mbox->knows_txdone = false;
  1005. chan = mbox_request_channel(mbox, 0);
  1006. if (IS_ERR(chan)) {
  1007. cnss_pr_err("Failed to get mbox channel\n");
  1008. return PTR_ERR(chan);
  1009. }
  1010. plat_priv->mbox_chan = chan;
  1011. cnss_pr_dbg("Mbox channel initialized\n");
  1012. ret = cnss_aop_pdc_reconfig(plat_priv);
  1013. if (ret)
  1014. cnss_pr_err("Failed to reconfig WLAN PDC, err = %d\n", ret);
  1015. return 0;
  1016. }
  1017. /**
  1018. * cnss_aop_send_msg: Sends json message to AOP using QMP
  1019. * @plat_priv: Pointer to cnss platform data
  1020. * @msg: String in json format
  1021. *
  1022. * AOP accepts JSON message to configure WLAN resources. Format as follows:
  1023. * To send VReg config: {class: wlan_pdc, ss: <pdc_name>,
  1024. * res: <VReg_name>.<param>, <seq_param>: <value>}
  1025. * To send PDC Config: {class: wlan_pdc, ss: <pdc_name>, res: pdc,
  1026. * enable: <Value>}
  1027. * QMP returns timeout error if format not correct or AOP operation fails.
  1028. *
  1029. * Return: 0 for success
  1030. */
  1031. int cnss_aop_send_msg(struct cnss_plat_data *plat_priv, char *mbox_msg)
  1032. {
  1033. struct qmp_pkt pkt;
  1034. int ret = 0;
  1035. cnss_pr_dbg("Sending AOP Mbox msg: %s\n", mbox_msg);
  1036. pkt.size = CNSS_MBOX_MSG_MAX_LEN;
  1037. pkt.data = mbox_msg;
  1038. ret = mbox_send_message(plat_priv->mbox_chan, &pkt);
  1039. if (ret < 0)
  1040. cnss_pr_err("Failed to send AOP mbox msg: %s\n", mbox_msg);
  1041. else
  1042. ret = 0;
  1043. return ret;
  1044. }
  1045. /* cnss_pdc_reconfig: Send PDC init table as configured in DT for wlan device */
  1046. int cnss_aop_pdc_reconfig(struct cnss_plat_data *plat_priv)
  1047. {
  1048. u32 i;
  1049. int ret;
  1050. if (plat_priv->pdc_init_table_len <= 0 || !plat_priv->pdc_init_table)
  1051. return 0;
  1052. cnss_pr_dbg("Setting PDC defaults for device ID: %d\n",
  1053. plat_priv->device_id);
  1054. for (i = 0; i < plat_priv->pdc_init_table_len; i++) {
  1055. ret = cnss_aop_send_msg(plat_priv,
  1056. (char *)plat_priv->pdc_init_table[i]);
  1057. if (ret < 0)
  1058. break;
  1059. }
  1060. return ret;
  1061. }
  1062. /* cnss_aop_pdc_name_str: Get PDC name corresponding to VReg from DT Mapiping */
  1063. static const char *cnss_aop_pdc_name_str(struct cnss_plat_data *plat_priv,
  1064. const char *vreg_name)
  1065. {
  1066. u32 i;
  1067. static const char * const aop_pdc_ss_str[] = {"rf", "bb"};
  1068. const char *pdc = aop_pdc_ss_str[0], *vreg_map_name;
  1069. if (plat_priv->vreg_pdc_map_len <= 0 || !plat_priv->vreg_pdc_map)
  1070. goto end;
  1071. for (i = 0; i < plat_priv->vreg_pdc_map_len; i++) {
  1072. vreg_map_name = plat_priv->vreg_pdc_map[i];
  1073. if (strnstr(vreg_map_name, vreg_name, strlen(vreg_map_name))) {
  1074. pdc = plat_priv->vreg_pdc_map[i + 1];
  1075. break;
  1076. }
  1077. }
  1078. end:
  1079. cnss_pr_dbg("%s mapped to %s\n", vreg_name, pdc);
  1080. return pdc;
  1081. }
  1082. static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
  1083. const char *vreg_name,
  1084. enum cnss_aop_vreg_param param,
  1085. enum cnss_aop_tcs_seq_param seq_param,
  1086. int val)
  1087. {
  1088. char msg[CNSS_MBOX_MSG_MAX_LEN];
  1089. static const char * const aop_vreg_param_str[] = {
  1090. [CNSS_VREG_VOLTAGE] = "v", [CNSS_VREG_MODE] = "m",
  1091. [CNSS_VREG_ENABLE] = "e",};
  1092. static const char * const aop_tcs_seq_str[] = {
  1093. [CNSS_TCS_UP_SEQ] = "upval", [CNSS_TCS_DOWN_SEQ] = "dwnval",
  1094. [CNSS_TCS_ENABLE_SEQ] = "enable",};
  1095. if (param >= CNSS_VREG_PARAM_MAX || seq_param >= CNSS_TCS_SEQ_MAX ||
  1096. !vreg_name)
  1097. return -EINVAL;
  1098. snprintf(msg, CNSS_MBOX_MSG_MAX_LEN,
  1099. "{class: wlan_pdc, ss: %s, res: %s.%s, %s: %d}",
  1100. cnss_aop_pdc_name_str(plat_priv, vreg_name),
  1101. vreg_name, aop_vreg_param_str[param],
  1102. aop_tcs_seq_str[seq_param], val);
  1103. return cnss_aop_send_msg(plat_priv, msg);
  1104. }
  1105. #else
  1106. int cnss_aop_mbox_init(struct cnss_plat_data *plat_priv)
  1107. {
  1108. return 0;
  1109. }
  1110. int cnss_aop_send_msg(struct cnss_plat_data *plat_priv, char *msg)
  1111. {
  1112. return 0;
  1113. }
  1114. int cnss_aop_pdc_reconfig(struct cnss_plat_data *plat_priv)
  1115. {
  1116. return 0;
  1117. }
  1118. static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
  1119. const char *vreg_name,
  1120. enum cnss_aop_vreg_param param,
  1121. enum cnss_aop_tcs_seq_pram seq_param,
  1122. int val)
  1123. {
  1124. return 0;
  1125. }
  1126. #endif
  1127. void cnss_power_misc_params_init(struct cnss_plat_data *plat_priv)
  1128. {
  1129. struct device *dev = &plat_priv->plat_dev->dev;
  1130. int ret;
  1131. /* common DT Entries */
  1132. plat_priv->pdc_init_table_len =
  1133. of_property_count_strings(dev->of_node,
  1134. "qcom,pdc_init_table");
  1135. if (plat_priv->pdc_init_table_len > 0) {
  1136. plat_priv->pdc_init_table =
  1137. kcalloc(plat_priv->pdc_init_table_len,
  1138. sizeof(char *), GFP_KERNEL);
  1139. ret =
  1140. of_property_read_string_array(dev->of_node,
  1141. "qcom,pdc_init_table",
  1142. plat_priv->pdc_init_table,
  1143. plat_priv->pdc_init_table_len);
  1144. if (ret < 0)
  1145. cnss_pr_err("Failed to get PDC Init Table\n");
  1146. } else {
  1147. cnss_pr_dbg("PDC Init Table not configured\n");
  1148. }
  1149. plat_priv->vreg_pdc_map_len =
  1150. of_property_count_strings(dev->of_node,
  1151. "qcom,vreg_pdc_map");
  1152. if (plat_priv->vreg_pdc_map_len > 0) {
  1153. plat_priv->vreg_pdc_map =
  1154. kcalloc(plat_priv->vreg_pdc_map_len,
  1155. sizeof(char *), GFP_KERNEL);
  1156. ret =
  1157. of_property_read_string_array(dev->of_node,
  1158. "qcom,vreg_pdc_map",
  1159. plat_priv->vreg_pdc_map,
  1160. plat_priv->vreg_pdc_map_len);
  1161. if (ret < 0)
  1162. cnss_pr_err("Failed to get VReg PDC Mapping\n");
  1163. } else {
  1164. cnss_pr_dbg("VReg PDC Mapping not configured\n");
  1165. }
  1166. /* Device DT Specific */
  1167. if (plat_priv->device_id == QCA6390_DEVICE_ID ||
  1168. plat_priv->device_id == QCA6490_DEVICE_ID) {
  1169. ret = of_property_read_string(dev->of_node,
  1170. "qcom,vreg_ol_cpr",
  1171. &plat_priv->vreg_ol_cpr);
  1172. if (ret)
  1173. cnss_pr_dbg("VReg for QCA6490 OL CPR not configured\n");
  1174. ret = of_property_read_string(dev->of_node,
  1175. "qcom,vreg_ipa",
  1176. &plat_priv->vreg_ipa);
  1177. if (ret)
  1178. cnss_pr_dbg("VReg for QCA6490 Int Power Amp not configured\n");
  1179. }
  1180. }
  1181. int cnss_update_cpr_info(struct cnss_plat_data *plat_priv)
  1182. {
  1183. struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
  1184. u32 pmic_addr, voltage = 0, voltage_tmp, offset;
  1185. void __iomem *tcs_cmd_addr, *tcs_cmd_data_addr;
  1186. int i, j;
  1187. if (cpr_info->voltage == 0) {
  1188. cnss_pr_err("OL CPR Voltage %dm is not valid\n",
  1189. cpr_info->voltage);
  1190. return -EINVAL;
  1191. }
  1192. if (!plat_priv->vreg_ol_cpr || !plat_priv->mbox_chan) {
  1193. cnss_pr_dbg("Mbox channel / OL CPR Vreg not configured\n");
  1194. } else {
  1195. return cnss_aop_set_vreg_param(plat_priv,
  1196. plat_priv->vreg_ol_cpr,
  1197. CNSS_VREG_VOLTAGE,
  1198. CNSS_TCS_UP_SEQ,
  1199. cpr_info->voltage);
  1200. }
  1201. if (plat_priv->tcs_info.cmd_base_addr == 0) {
  1202. cnss_pr_dbg("TCS CMD not configured for OL CPR update\n");
  1203. return 0;
  1204. }
  1205. if (cpr_info->cpr_pmic_addr == 0) {
  1206. cnss_pr_err("PMIC address 0x%x is not valid\n",
  1207. cpr_info->cpr_pmic_addr);
  1208. return -EINVAL;
  1209. }
  1210. if (cpr_info->tcs_cmd_data_addr_io)
  1211. goto update_cpr;
  1212. for (i = 0; i < MAX_TCS_NUM; i++) {
  1213. for (j = 0; j < MAX_TCS_CMD_NUM; j++) {
  1214. offset = i * TCS_OFFSET + j * TCS_CMD_OFFSET;
  1215. tcs_cmd_addr = plat_priv->tcs_info.cmd_base_addr_io +
  1216. offset;
  1217. pmic_addr = readl_relaxed(tcs_cmd_addr);
  1218. if (pmic_addr == cpr_info->cpr_pmic_addr) {
  1219. tcs_cmd_data_addr = tcs_cmd_addr +
  1220. TCS_CMD_DATA_ADDR_OFFSET;
  1221. voltage_tmp = readl_relaxed(tcs_cmd_data_addr);
  1222. cnss_pr_dbg("Got voltage %dmV from i: %d, j: %d\n",
  1223. voltage_tmp, i, j);
  1224. if (voltage_tmp > voltage) {
  1225. voltage = voltage_tmp;
  1226. cpr_info->tcs_cmd_data_addr =
  1227. plat_priv->tcs_info.cmd_base_addr +
  1228. offset + TCS_CMD_DATA_ADDR_OFFSET;
  1229. cpr_info->tcs_cmd_data_addr_io =
  1230. tcs_cmd_data_addr;
  1231. }
  1232. }
  1233. }
  1234. }
  1235. if (!cpr_info->tcs_cmd_data_addr_io) {
  1236. cnss_pr_err("Failed to find proper TCS CMD data address\n");
  1237. return -EINVAL;
  1238. }
  1239. update_cpr:
  1240. cpr_info->voltage = cpr_info->voltage > BT_CXMX_VOLTAGE_MV ?
  1241. cpr_info->voltage : BT_CXMX_VOLTAGE_MV;
  1242. cnss_pr_dbg("Update TCS CMD data address %pa with voltage %dmV\n",
  1243. &cpr_info->tcs_cmd_data_addr, cpr_info->voltage);
  1244. writel_relaxed(cpr_info->voltage, cpr_info->tcs_cmd_data_addr_io);
  1245. return 0;
  1246. }
  1247. int cnss_enable_int_pow_amp_vreg(struct cnss_plat_data *plat_priv)
  1248. {
  1249. struct platform_device *plat_dev = plat_priv->plat_dev;
  1250. u32 offset, addr_val, data_val;
  1251. void __iomem *tcs_cmd;
  1252. int ret;
  1253. static bool config_done;
  1254. if (plat_priv->device_id != QCA6490_DEVICE_ID)
  1255. return -EINVAL;
  1256. if (config_done) {
  1257. cnss_pr_dbg("IPA Vreg already configured\n");
  1258. return 0;
  1259. }
  1260. if (!plat_priv->vreg_ipa || !plat_priv->mbox_chan) {
  1261. cnss_pr_dbg("Mbox channel / IPA Vreg not configured\n");
  1262. } else {
  1263. ret = cnss_aop_set_vreg_param(plat_priv,
  1264. plat_priv->vreg_ipa,
  1265. CNSS_VREG_ENABLE,
  1266. CNSS_TCS_UP_SEQ, 1);
  1267. if (ret == 0)
  1268. config_done = true;
  1269. return ret;
  1270. }
  1271. if (!plat_priv->tcs_info.cmd_base_addr_io) {
  1272. cnss_pr_err("TCS CMD not configured for IPA Vreg enable\n");
  1273. return -EINVAL;
  1274. }
  1275. ret = of_property_read_u32(plat_dev->dev.of_node,
  1276. "qcom,tcs_offset_int_pow_amp_vreg",
  1277. &offset);
  1278. if (ret) {
  1279. cnss_pr_dbg("Internal Power Amp Vreg not configured\n");
  1280. return -EINVAL;
  1281. }
  1282. tcs_cmd = plat_priv->tcs_info.cmd_base_addr_io + offset;
  1283. addr_val = readl_relaxed(tcs_cmd);
  1284. tcs_cmd += TCS_CMD_DATA_ADDR_OFFSET;
  1285. /* 1 = enable Vreg */
  1286. writel_relaxed(1, tcs_cmd);
  1287. data_val = readl_relaxed(tcs_cmd);
  1288. cnss_pr_dbg("Setup S3E TCS Addr: %x Data: %d\n", addr_val, data_val);
  1289. config_done = true;
  1290. return 0;
  1291. }