dp_txrx_wds.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "htt.h"
  20. #include "dp_peer.h"
  21. #include "hal_rx.h"
  22. #include "hal_api.h"
  23. #include "qdf_nbuf.h"
  24. #include "dp_types.h"
  25. #include "dp_internal.h"
  26. #include "dp_tx.h"
  27. #include "enet.h"
  28. #ifdef WIFI_MONITOR_SUPPORT
  29. #include "dp_mon.h"
  30. #endif
  31. #include "dp_txrx_wds.h"
  32. /* Generic AST entry aging timer value */
  33. #define DP_AST_AGING_TIMER_DEFAULT_MS 5000
  34. #define DP_VLAN_UNTAGGED 0
  35. #define DP_VLAN_TAGGED_MULTICAST 1
  36. #define DP_VLAN_TAGGED_UNICAST 2
  37. #define DP_MAX_VLAN_IDS 4096
  38. #define DP_INVALID_AST_IDX 0xffff
  39. #define DP_INVALID_FLOW_PRIORITY 0xff
  40. #define DP_PEER_AST0_FLOW_MASK 0x4
  41. #define DP_PEER_AST1_FLOW_MASK 0x8
  42. #define DP_PEER_AST2_FLOW_MASK 0x1
  43. #define DP_PEER_AST3_FLOW_MASK 0x2
  44. #define DP_MAX_AST_INDEX_PER_PEER 4
  45. static void
  46. dp_peer_age_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
  47. {
  48. struct dp_ast_entry *ase, *temp_ase;
  49. struct ast_del_ctxt *del_ctxt = (struct ast_del_ctxt *)arg;
  50. if ((del_ctxt->del_count >= soc->max_ast_ageout_count) &&
  51. !del_ctxt->age) {
  52. return;
  53. }
  54. DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
  55. /*
  56. * Do not expire static ast entries and HM WDS entries
  57. */
  58. if (ase->type != CDP_TXRX_AST_TYPE_WDS &&
  59. ase->type != CDP_TXRX_AST_TYPE_DA)
  60. continue;
  61. if (ase->is_active) {
  62. if (del_ctxt->age)
  63. ase->is_active = FALSE;
  64. continue;
  65. }
  66. if (del_ctxt->del_count < soc->max_ast_ageout_count) {
  67. DP_STATS_INC(soc, ast.aged_out, 1);
  68. dp_peer_del_ast(soc, ase);
  69. del_ctxt->del_count++;
  70. } else {
  71. soc->pending_ageout = true;
  72. if (!del_ctxt->age)
  73. break;
  74. }
  75. }
  76. }
  77. static void
  78. dp_peer_age_mec_entries(struct dp_soc *soc)
  79. {
  80. uint32_t index;
  81. struct dp_mec_entry *mecentry, *mecentry_next;
  82. TAILQ_HEAD(, dp_mec_entry) free_list;
  83. TAILQ_INIT(&free_list);
  84. for (index = 0; index <= soc->mec_hash.mask; index++) {
  85. qdf_spin_lock_bh(&soc->mec_lock);
  86. /*
  87. * Expire MEC entry every n sec.
  88. */
  89. if (!TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
  90. TAILQ_FOREACH_SAFE(mecentry, &soc->mec_hash.bins[index],
  91. hash_list_elem, mecentry_next) {
  92. if (mecentry->is_active) {
  93. mecentry->is_active = FALSE;
  94. continue;
  95. }
  96. dp_peer_mec_detach_entry(soc, mecentry,
  97. &free_list);
  98. }
  99. }
  100. qdf_spin_unlock_bh(&soc->mec_lock);
  101. }
  102. dp_peer_mec_free_list(soc, &free_list);
  103. }
  104. static void dp_ast_aging_timer_fn(void *soc_hdl)
  105. {
  106. struct dp_soc *soc = (struct dp_soc *)soc_hdl;
  107. struct ast_del_ctxt del_ctxt = {0};
  108. if (soc->wds_ast_aging_timer_cnt++ >= DP_WDS_AST_AGING_TIMER_CNT) {
  109. del_ctxt.age = true;
  110. soc->wds_ast_aging_timer_cnt = 0;
  111. }
  112. if (soc->pending_ageout || del_ctxt.age) {
  113. soc->pending_ageout = false;
  114. /* AST list access lock */
  115. qdf_spin_lock_bh(&soc->ast_lock);
  116. dp_soc_iterate_peer(soc, dp_peer_age_ast_entries, &del_ctxt,
  117. DP_MOD_ID_AST);
  118. qdf_spin_unlock_bh(&soc->ast_lock);
  119. }
  120. /*
  121. * If NSS offload is enabled, the MEC timeout
  122. * will be managed by NSS.
  123. */
  124. if (qdf_atomic_read(&soc->mec_cnt) &&
  125. !wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  126. dp_peer_age_mec_entries(soc);
  127. if (qdf_atomic_read(&soc->cmn_init_done))
  128. qdf_timer_mod(&soc->ast_aging_timer,
  129. DP_AST_AGING_TIMER_DEFAULT_MS);
  130. }
  131. /*
  132. * dp_soc_wds_attach() - Setup WDS timer and AST table
  133. * @soc: Datapath SOC handle
  134. *
  135. * Return: None
  136. */
  137. void dp_soc_wds_attach(struct dp_soc *soc)
  138. {
  139. if (soc->ast_offload_support)
  140. return;
  141. soc->wds_ast_aging_timer_cnt = 0;
  142. soc->pending_ageout = false;
  143. qdf_timer_init(soc->osdev, &soc->ast_aging_timer,
  144. dp_ast_aging_timer_fn, (void *)soc,
  145. QDF_TIMER_TYPE_WAKE_APPS);
  146. qdf_timer_mod(&soc->ast_aging_timer, DP_AST_AGING_TIMER_DEFAULT_MS);
  147. }
  148. /*
  149. * dp_soc_wds_detach() - Detach WDS data structures and timers
  150. * @txrx_soc: DP SOC handle
  151. *
  152. * Return: None
  153. */
  154. void dp_soc_wds_detach(struct dp_soc *soc)
  155. {
  156. qdf_timer_stop(&soc->ast_aging_timer);
  157. qdf_timer_free(&soc->ast_aging_timer);
  158. }
  159. /**
  160. * dp_tx_mec_handler() - Tx MEC Notify Handler
  161. * @vdev: pointer to dp dev handler
  162. * @status : Tx completion status from HTT descriptor
  163. *
  164. * Handles MEC notify event sent from fw to Host
  165. *
  166. * Return: none
  167. */
  168. void dp_tx_mec_handler(struct dp_vdev *vdev, uint8_t *status)
  169. {
  170. struct dp_soc *soc;
  171. QDF_STATUS add_mec_status;
  172. uint8_t mac_addr[QDF_MAC_ADDR_SIZE], i;
  173. if (!vdev->mec_enabled)
  174. return;
  175. /* MEC required only in STA mode */
  176. if (vdev->opmode != wlan_op_mode_sta)
  177. return;
  178. soc = vdev->pdev->soc;
  179. for (i = 0; i < QDF_MAC_ADDR_SIZE; i++)
  180. mac_addr[(QDF_MAC_ADDR_SIZE - 1) - i] =
  181. status[(QDF_MAC_ADDR_SIZE - 2) + i];
  182. dp_peer_debug("%pK: MEC add for mac_addr "QDF_MAC_ADDR_FMT,
  183. soc, QDF_MAC_ADDR_REF(mac_addr));
  184. if (qdf_mem_cmp(mac_addr, vdev->mac_addr.raw, QDF_MAC_ADDR_SIZE)) {
  185. add_mec_status = dp_peer_mec_add_entry(soc, vdev, mac_addr);
  186. dp_peer_debug("%pK: MEC add status %d", vdev, add_mec_status);
  187. }
  188. }
  189. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  190. /**
  191. * dp_rx_da_learn() - Add AST entry based on DA lookup
  192. * This is a WAR for HK 1.0 and will
  193. * be removed in HK 2.0
  194. *
  195. * @soc: core txrx main context
  196. * @rx_tlv_hdr : start address of rx tlvs
  197. * @ta_peer : Transmitter peer entry
  198. * @nbuf : nbuf to retrieve destination mac for which AST will be added
  199. *
  200. */
  201. void
  202. dp_rx_da_learn(struct dp_soc *soc,
  203. uint8_t *rx_tlv_hdr,
  204. struct dp_peer *ta_peer,
  205. qdf_nbuf_t nbuf)
  206. {
  207. /* For HKv2 DA port learing is not needed */
  208. if (qdf_likely(soc->ast_override_support))
  209. return;
  210. if (qdf_unlikely(!ta_peer))
  211. return;
  212. if (qdf_unlikely(ta_peer->vdev->opmode != wlan_op_mode_ap))
  213. return;
  214. if (!soc->da_war_enabled)
  215. return;
  216. if (qdf_unlikely(!qdf_nbuf_is_da_valid(nbuf) &&
  217. !qdf_nbuf_is_da_mcbc(nbuf))) {
  218. dp_peer_add_ast(soc,
  219. ta_peer,
  220. qdf_nbuf_data(nbuf),
  221. CDP_TXRX_AST_TYPE_DA,
  222. DP_AST_FLAGS_HM);
  223. }
  224. }
  225. /**
  226. * dp_txrx_set_wds_rx_policy() - API to store datapath
  227. * config parameters
  228. * @soc - datapath soc handle
  229. * @vdev_id - id of datapath vdev handle
  230. * @cfg: ini parameter handle
  231. *
  232. * Return: status
  233. */
  234. #ifdef WDS_VENDOR_EXTENSION
  235. QDF_STATUS
  236. dp_txrx_set_wds_rx_policy(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  237. u_int32_t val)
  238. {
  239. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  240. struct dp_peer *peer;
  241. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
  242. DP_MOD_ID_MISC);
  243. if (!vdev) {
  244. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  245. FL("vdev is NULL for vdev_id %d"), vdev_id);
  246. return QDF_STATUS_E_INVAL;
  247. }
  248. peer = dp_vdev_bss_peer_ref_n_get(vdev, DP_MOD_ID_AST);
  249. if (peer) {
  250. peer->wds_ecm.wds_rx_filter = 1;
  251. peer->wds_ecm.wds_rx_ucast_4addr =
  252. (val & WDS_POLICY_RX_UCAST_4ADDR) ? 1 : 0;
  253. peer->wds_ecm.wds_rx_mcast_4addr =
  254. (val & WDS_POLICY_RX_MCAST_4ADDR) ? 1 : 0;
  255. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  256. }
  257. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MISC);
  258. return QDF_STATUS_SUCCESS;
  259. }
  260. /**
  261. * dp_txrx_peer_wds_tx_policy_update() - API to set tx wds policy
  262. *
  263. * @cdp_soc: DP soc handle
  264. * @vdev_id: id of vdev handle
  265. * @peer_mac: peer mac address
  266. * @wds_tx_ucast: policy for unicast transmission
  267. * @wds_tx_mcast: policy for multicast transmission
  268. *
  269. * Return: void
  270. */
  271. QDF_STATUS
  272. dp_txrx_peer_wds_tx_policy_update(struct cdp_soc_t *soc, uint8_t vdev_id,
  273. uint8_t *peer_mac, int wds_tx_ucast,
  274. int wds_tx_mcast)
  275. {
  276. struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
  277. peer_mac, 0,
  278. vdev_id,
  279. DP_MOD_ID_AST);
  280. if (!peer) {
  281. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  282. FL("peer is NULL for mac %pM vdev_id %d"),
  283. peer_mac, vdev_id);
  284. return QDF_STATUS_E_INVAL;
  285. }
  286. if (wds_tx_ucast || wds_tx_mcast) {
  287. peer->wds_enabled = 1;
  288. peer->wds_ecm.wds_tx_ucast_4addr = wds_tx_ucast;
  289. peer->wds_ecm.wds_tx_mcast_4addr = wds_tx_mcast;
  290. } else {
  291. peer->wds_enabled = 0;
  292. peer->wds_ecm.wds_tx_ucast_4addr = 0;
  293. peer->wds_ecm.wds_tx_mcast_4addr = 0;
  294. }
  295. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  296. "Policy Update set to :\n");
  297. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  298. "peer->wds_enabled %d\n", peer->wds_enabled);
  299. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  300. "peer->wds_ecm.wds_tx_ucast_4addr %d\n",
  301. peer->wds_ecm.wds_tx_ucast_4addr);
  302. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  303. "peer->wds_ecm.wds_tx_mcast_4addr %d\n",
  304. peer->wds_ecm.wds_tx_mcast_4addr);
  305. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  306. return QDF_STATUS_SUCCESS;
  307. }
  308. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  309. struct dp_vdev *vdev,
  310. struct dp_peer *peer)
  311. {
  312. struct dp_peer *bss_peer;
  313. int fr_ds, to_ds, rx_3addr, rx_4addr;
  314. int rx_policy_ucast, rx_policy_mcast;
  315. hal_soc_handle_t hal_soc = vdev->pdev->soc->hal_soc;
  316. int rx_mcast = hal_rx_msdu_end_da_is_mcbc_get(hal_soc, rx_tlv_hdr);
  317. if (vdev->opmode == wlan_op_mode_ap) {
  318. bss_peer = dp_vdev_bss_peer_ref_n_get(vdev, DP_MOD_ID_AST);
  319. /* if wds policy check is not enabled on this vdev, accept all frames */
  320. if (bss_peer && !bss_peer->wds_ecm.wds_rx_filter) {
  321. dp_peer_unref_delete(bss_peer, DP_MOD_ID_AST);
  322. return 1;
  323. }
  324. rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
  325. rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
  326. dp_peer_unref_delete(bss_peer, DP_MOD_ID_AST);
  327. } else { /* sta mode */
  328. if (!peer->wds_ecm.wds_rx_filter) {
  329. return 1;
  330. }
  331. rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
  332. rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
  333. }
  334. /* ------------------------------------------------
  335. * self
  336. * peer- rx rx-
  337. * wds ucast mcast dir policy accept note
  338. * ------------------------------------------------
  339. * 1 1 0 11 x1 1 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
  340. * 1 1 0 01 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  341. * 1 1 0 10 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  342. * 1 1 0 00 x1 0 bad frame, won't see it
  343. * 1 0 1 11 1x 1 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
  344. * 1 0 1 01 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  345. * 1 0 1 10 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  346. * 1 0 1 00 1x 0 bad frame, won't see it
  347. * 1 1 0 11 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  348. * 1 1 0 01 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  349. * 1 1 0 10 x0 1 AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
  350. * 1 1 0 00 x0 0 bad frame, won't see it
  351. * 1 0 1 11 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  352. * 1 0 1 01 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  353. * 1 0 1 10 0x 1 AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
  354. * 1 0 1 00 0x 0 bad frame, won't see it
  355. *
  356. * 0 x x 11 xx 0 we only accept td-ds Rx frames from non-wds peers in mode.
  357. * 0 x x 01 xx 1
  358. * 0 x x 10 xx 0
  359. * 0 x x 00 xx 0 bad frame, won't see it
  360. * ------------------------------------------------
  361. */
  362. fr_ds = hal_rx_mpdu_get_fr_ds(hal_soc, rx_tlv_hdr);
  363. to_ds = hal_rx_mpdu_get_to_ds(hal_soc, rx_tlv_hdr);
  364. rx_3addr = fr_ds ^ to_ds;
  365. rx_4addr = fr_ds & to_ds;
  366. if (vdev->opmode == wlan_op_mode_ap) {
  367. if ((!peer->wds_enabled && rx_3addr && to_ds) ||
  368. (peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  369. (peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
  370. return 1;
  371. }
  372. } else { /* sta mode */
  373. if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  374. (rx_mcast && (rx_4addr == rx_policy_mcast))) {
  375. return 1;
  376. }
  377. }
  378. return 0;
  379. }
  380. #endif
  381. /**
  382. * dp_tx_add_groupkey_metadata - Add group key in metadata
  383. * @vdev: DP vdev handle
  384. * @msdu_info: MSDU info to be setup in MSDU descriptor
  385. * @group_key: Group key index programmed in metadata
  386. *
  387. * Return: void
  388. */
  389. #ifdef QCA_MULTIPASS_SUPPORT
  390. static
  391. void dp_tx_add_groupkey_metadata(struct dp_vdev *vdev,
  392. struct dp_tx_msdu_info_s *msdu_info, uint16_t group_key)
  393. {
  394. struct htt_tx_msdu_desc_ext2_t *meta_data =
  395. (struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
  396. qdf_mem_zero(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t));
  397. /*
  398. * When attempting to send a multicast packet with multi-passphrase,
  399. * host shall add HTT EXT meta data "struct htt_tx_msdu_desc_ext2_t"
  400. * ref htt.h indicating the group_id field in "key_flags" also having
  401. * "valid_key_flags" as 1. Assign “key_flags = group_key_ix”.
  402. */
  403. HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_SET(msdu_info->meta_data[0], 1);
  404. HTT_TX_MSDU_EXT2_DESC_KEY_FLAGS_SET(msdu_info->meta_data[2], group_key);
  405. }
  406. /**
  407. * dp_tx_remove_vlan_tag - Remove 4 bytes of vlan tag
  408. * @vdev: DP vdev handle
  409. * @tx_desc: Tx Descriptor Handle
  410. *
  411. * Return: void
  412. */
  413. static
  414. void dp_tx_remove_vlan_tag(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  415. {
  416. struct vlan_ethhdr veth_hdr;
  417. struct vlan_ethhdr *veh = (struct vlan_ethhdr *)nbuf->data;
  418. /*
  419. * Extract VLAN header of 4 bytes:
  420. * Frame Format : {dst_addr[6], src_addr[6], 802.1Q header[4], EtherType[2], Payload}
  421. * Before Removal : xx xx xx xx xx xx xx xx xx xx xx xx 81 00 00 02 08 00 45 00 00...
  422. * After Removal : xx xx xx xx xx xx xx xx xx xx xx xx 08 00 45 00 00...
  423. */
  424. qdf_mem_copy(&veth_hdr, veh, sizeof(veth_hdr));
  425. qdf_nbuf_pull_head(nbuf, ETHERTYPE_VLAN_LEN);
  426. veh = (struct vlan_ethhdr *)nbuf->data;
  427. qdf_mem_copy(veh, &veth_hdr, 2 * QDF_MAC_ADDR_SIZE);
  428. return;
  429. }
  430. /**
  431. * dp_tx_need_multipass_process - If frame needs multipass phrase processing
  432. * @vdev: DP vdev handle
  433. * @tx_desc: Tx Descriptor Handle
  434. * @vlan_id: vlan id of frame
  435. *
  436. * Return: whether peer is special or classic
  437. */
  438. static
  439. uint8_t dp_tx_need_multipass_process(struct dp_soc *soc, struct dp_vdev *vdev,
  440. qdf_nbuf_t buf, uint16_t *vlan_id)
  441. {
  442. struct dp_peer *peer = NULL;
  443. qdf_ether_header_t *eh = (qdf_ether_header_t *)qdf_nbuf_data(buf);
  444. struct vlan_ethhdr *veh = NULL;
  445. bool not_vlan = ((vdev->tx_encap_type == htt_cmn_pkt_type_raw) ||
  446. (htons(eh->ether_type) != ETH_P_8021Q));
  447. if (qdf_unlikely(not_vlan))
  448. return DP_VLAN_UNTAGGED;
  449. veh = (struct vlan_ethhdr *)eh;
  450. *vlan_id = (ntohs(veh->h_vlan_TCI) & VLAN_VID_MASK);
  451. if (qdf_unlikely(DP_FRAME_IS_MULTICAST((eh)->ether_dhost))) {
  452. qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
  453. TAILQ_FOREACH(peer, &vdev->mpass_peer_list,
  454. mpass_peer_list_elem) {
  455. if (*vlan_id == peer->vlan_id) {
  456. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  457. return DP_VLAN_TAGGED_MULTICAST;
  458. }
  459. }
  460. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  461. return DP_VLAN_UNTAGGED;
  462. }
  463. peer = dp_peer_find_hash_find(soc, eh->ether_dhost, 0, DP_VDEV_ALL,
  464. DP_MOD_ID_TX_MULTIPASS);
  465. if (qdf_unlikely(peer == NULL))
  466. return DP_VLAN_UNTAGGED;
  467. /*
  468. * Do not drop the frame when vlan_id doesn't match.
  469. * Send the frame as it is.
  470. */
  471. if (*vlan_id == peer->vlan_id) {
  472. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  473. return DP_VLAN_TAGGED_UNICAST;
  474. }
  475. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  476. return DP_VLAN_UNTAGGED;
  477. }
  478. /**
  479. * dp_tx_multipass_process - Process vlan frames in tx path
  480. * @soc: dp soc handle
  481. * @vdev: DP vdev handle
  482. * @nbuf: skb
  483. * @msdu_info: msdu descriptor
  484. *
  485. * Return: status whether frame needs to be dropped or transmitted
  486. */
  487. bool dp_tx_multipass_process(struct dp_soc *soc, struct dp_vdev *vdev,
  488. qdf_nbuf_t nbuf,
  489. struct dp_tx_msdu_info_s *msdu_info)
  490. {
  491. uint16_t vlan_id = 0;
  492. uint16_t group_key = 0;
  493. uint8_t is_spcl_peer = DP_VLAN_UNTAGGED;
  494. qdf_nbuf_t nbuf_copy = NULL;
  495. if (HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_GET(msdu_info->meta_data[0])) {
  496. return true;
  497. }
  498. is_spcl_peer = dp_tx_need_multipass_process(soc, vdev, nbuf, &vlan_id);
  499. if ((is_spcl_peer != DP_VLAN_TAGGED_MULTICAST) &&
  500. (is_spcl_peer != DP_VLAN_TAGGED_UNICAST))
  501. return true;
  502. if (is_spcl_peer == DP_VLAN_TAGGED_UNICAST) {
  503. dp_tx_remove_vlan_tag(vdev, nbuf);
  504. return true;
  505. }
  506. /* AP can have classic clients, special clients &
  507. * classic repeaters.
  508. * 1. Classic clients & special client:
  509. * Remove vlan header, find corresponding group key
  510. * index, fill in metaheader and enqueue multicast
  511. * frame to TCL.
  512. * 2. Classic repeater:
  513. * Pass through to classic repeater with vlan tag
  514. * intact without any group key index. Hardware
  515. * will know which key to use to send frame to
  516. * repeater.
  517. */
  518. nbuf_copy = qdf_nbuf_copy(nbuf);
  519. /*
  520. * Send multicast frame to special peers even
  521. * if pass through to classic repeater fails.
  522. */
  523. if (nbuf_copy) {
  524. struct dp_tx_msdu_info_s msdu_info_copy;
  525. qdf_mem_zero(&msdu_info_copy, sizeof(msdu_info_copy));
  526. msdu_info_copy.tid = HTT_TX_EXT_TID_INVALID;
  527. HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_SET(msdu_info_copy.meta_data[0], 1);
  528. nbuf_copy = dp_tx_send_msdu_single(vdev, nbuf_copy, &msdu_info_copy, HTT_INVALID_PEER, NULL);
  529. if (nbuf_copy) {
  530. qdf_nbuf_free(nbuf_copy);
  531. qdf_err("nbuf_copy send failed");
  532. }
  533. }
  534. group_key = vdev->iv_vlan_map[vlan_id];
  535. /*
  536. * If group key is not installed, drop the frame.
  537. */
  538. if (!group_key)
  539. return false;
  540. dp_tx_remove_vlan_tag(vdev, nbuf);
  541. dp_tx_add_groupkey_metadata(vdev, msdu_info, group_key);
  542. msdu_info->exception_fw = 1;
  543. return true;
  544. }
  545. /**
  546. * dp_rx_multipass_process - insert vlan tag on frames for traffic separation
  547. * @vdev: DP vdev handle
  548. * @nbuf: skb
  549. * @tid: traffic priority
  550. *
  551. * Return: bool: true in case of success else false
  552. * Success is considered if:
  553. * i. If frame has vlan header
  554. * ii. If the frame comes from different peer and dont need multipass processing
  555. * Failure is considered if:
  556. * i. Frame comes from multipass peer but doesn't contain vlan header.
  557. * In failure case, drop such frames.
  558. */
  559. bool dp_rx_multipass_process(struct dp_peer *peer, qdf_nbuf_t nbuf, uint8_t tid)
  560. {
  561. struct vlan_ethhdr *vethhdrp;
  562. if (qdf_unlikely(!peer->vlan_id))
  563. return true;
  564. vethhdrp = (struct vlan_ethhdr *)qdf_nbuf_data(nbuf);
  565. /*
  566. * h_vlan_proto & h_vlan_TCI should be 0x8100 & zero respectively
  567. * as it is expected to be padded by 0
  568. * return false if frame doesn't have above tag so that caller will
  569. * drop the frame.
  570. */
  571. if (qdf_unlikely(vethhdrp->h_vlan_proto != htons(QDF_ETH_TYPE_8021Q)) ||
  572. qdf_unlikely(vethhdrp->h_vlan_TCI != 0))
  573. return false;
  574. vethhdrp->h_vlan_TCI = htons(((tid & 0x7) << VLAN_PRIO_SHIFT) |
  575. (peer->vlan_id & VLAN_VID_MASK));
  576. if (vethhdrp->h_vlan_encapsulated_proto == htons(ETHERTYPE_PAE))
  577. dp_tx_remove_vlan_tag(peer->vdev, nbuf);
  578. return true;
  579. }
  580. #endif /* QCA_MULTIPASS_SUPPORT */
  581. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  582. #ifdef QCA_MULTIPASS_SUPPORT
  583. /**
  584. * dp_peer_multipass_list_remove: remove peer from list
  585. * @peer: pointer to peer
  586. *
  587. * return: void
  588. */
  589. void dp_peer_multipass_list_remove(struct dp_peer *peer)
  590. {
  591. struct dp_vdev *vdev = peer->vdev;
  592. struct dp_peer *tpeer = NULL;
  593. bool found = 0;
  594. qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
  595. TAILQ_FOREACH(tpeer, &vdev->mpass_peer_list, mpass_peer_list_elem) {
  596. if (tpeer == peer) {
  597. found = 1;
  598. TAILQ_REMOVE(&vdev->mpass_peer_list, peer, mpass_peer_list_elem);
  599. break;
  600. }
  601. }
  602. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  603. if (found)
  604. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  605. }
  606. /**
  607. * dp_peer_multipass_list_add: add to new multipass list
  608. * @dp_soc: soc handle
  609. * @peer_mac: mac address
  610. * @vdev_id: vdev id for peer
  611. * @vlan_id: vlan_id
  612. *
  613. * return: void
  614. */
  615. static void dp_peer_multipass_list_add(struct dp_soc *soc, uint8_t *peer_mac,
  616. uint8_t vdev_id, uint16_t vlan_id)
  617. {
  618. struct dp_peer *peer =
  619. dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
  620. DP_MOD_ID_TX_MULTIPASS);
  621. if (qdf_unlikely(!peer)) {
  622. qdf_err("NULL peer");
  623. return;
  624. }
  625. /* If peer already exists in vdev multipass list, do not add it.
  626. * This may happen if key install comes twice or re-key
  627. * happens for a peer.
  628. */
  629. if (peer->vlan_id) {
  630. dp_debug("peer already added to vdev multipass list"
  631. "MAC: "QDF_MAC_ADDR_FMT" vlan: %d ",
  632. QDF_MAC_ADDR_REF(peer->mac_addr.raw), peer->vlan_id);
  633. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  634. return;
  635. }
  636. /*
  637. * Ref_cnt is incremented inside dp_peer_find_hash_find().
  638. * Decrement it when element is deleted from the list.
  639. */
  640. peer->vlan_id = vlan_id;
  641. qdf_spin_lock_bh(&peer->vdev->mpass_peer_mutex);
  642. TAILQ_INSERT_HEAD(&peer->vdev->mpass_peer_list, peer,
  643. mpass_peer_list_elem);
  644. qdf_spin_unlock_bh(&peer->vdev->mpass_peer_mutex);
  645. }
  646. /**
  647. * dp_peer_set_vlan_id: set vlan_id for this peer
  648. * @cdp_soc: soc handle
  649. * @vdev_id: vdev id for peer
  650. * @peer_mac: mac address
  651. * @vlan_id: vlan id for peer
  652. *
  653. * return: void
  654. */
  655. void dp_peer_set_vlan_id(struct cdp_soc_t *cdp_soc,
  656. uint8_t vdev_id, uint8_t *peer_mac,
  657. uint16_t vlan_id)
  658. {
  659. struct dp_soc *soc = (struct dp_soc *)cdp_soc;
  660. struct dp_vdev *vdev =
  661. dp_vdev_get_ref_by_id((struct dp_soc *)soc, vdev_id,
  662. DP_MOD_ID_TX_MULTIPASS);
  663. if (vdev && vdev->multipass_en) {
  664. dp_peer_multipass_list_add(soc, peer_mac, vdev_id, vlan_id);
  665. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_MULTIPASS);
  666. }
  667. }
  668. /**
  669. * dp_set_vlan_groupkey: set vlan map for vdev
  670. * @soc: pointer to soc
  671. * @vdev_id : id of vdev
  672. * @vlan_id: vlan_id
  673. * @group_key: group key for vlan
  674. *
  675. * return: set success/failure
  676. */
  677. QDF_STATUS dp_set_vlan_groupkey(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  678. uint16_t vlan_id, uint16_t group_key)
  679. {
  680. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  681. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
  682. DP_MOD_ID_TX_MULTIPASS);
  683. QDF_STATUS status;
  684. if (!vdev || !vdev->multipass_en) {
  685. status = QDF_STATUS_E_INVAL;
  686. goto fail;
  687. }
  688. if (!vdev->iv_vlan_map) {
  689. uint16_t vlan_map_size = (sizeof(uint16_t))*DP_MAX_VLAN_IDS;
  690. vdev->iv_vlan_map = (uint16_t *)qdf_mem_malloc(vlan_map_size);
  691. if (!vdev->iv_vlan_map) {
  692. QDF_TRACE_ERROR(QDF_MODULE_ID_DP, "iv_vlan_map");
  693. status = QDF_STATUS_E_NOMEM;
  694. goto fail;
  695. }
  696. /*
  697. * 0 is invalid group key.
  698. * Initilalize array with invalid group keys.
  699. */
  700. qdf_mem_zero(vdev->iv_vlan_map, vlan_map_size);
  701. }
  702. if (vlan_id >= DP_MAX_VLAN_IDS) {
  703. status = QDF_STATUS_E_INVAL;
  704. goto fail;
  705. }
  706. vdev->iv_vlan_map[vlan_id] = group_key;
  707. status = QDF_STATUS_SUCCESS;
  708. fail:
  709. if (vdev)
  710. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_MULTIPASS);
  711. return status;
  712. }
  713. /**
  714. * dp_tx_vdev_multipass_deinit: set vlan map for vdev
  715. * @vdev_handle: pointer to vdev
  716. *
  717. * return: void
  718. */
  719. void dp_tx_vdev_multipass_deinit(struct dp_vdev *vdev)
  720. {
  721. struct dp_peer *peer = NULL;
  722. qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
  723. TAILQ_FOREACH(peer, &vdev->mpass_peer_list, mpass_peer_list_elem)
  724. qdf_err("Peers present in mpass list :" QDF_MAC_ADDR_FMT,
  725. QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  726. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  727. if (vdev->iv_vlan_map) {
  728. qdf_mem_free(vdev->iv_vlan_map);
  729. vdev->iv_vlan_map = NULL;
  730. }
  731. qdf_spinlock_destroy(&vdev->mpass_peer_mutex);
  732. }
  733. /**
  734. * dp_peer_multipass_list_init: initialize peer mulitpass list
  735. * @vdev_handle: pointer to vdev
  736. *
  737. * return: set success/failure
  738. */
  739. void dp_peer_multipass_list_init(struct dp_vdev *vdev)
  740. {
  741. /*
  742. * vdev->iv_vlan_map is allocated when the first configuration command
  743. * is issued to avoid unnecessary allocation for regular mode VAP.
  744. */
  745. TAILQ_INIT(&vdev->mpass_peer_list);
  746. qdf_spinlock_create(&vdev->mpass_peer_mutex);
  747. }
  748. #endif /* QCA_MULTIPASS_SUPPORT */
  749. #ifdef QCA_PEER_MULTIQ_SUPPORT
  750. /**
  751. * dp_peer_reset_flowq_map() - reset peer flowq map table
  752. * @peer - dp peer handle
  753. *
  754. * Return: none
  755. */
  756. void dp_peer_reset_flowq_map(struct dp_peer *peer)
  757. {
  758. int i = 0;
  759. if (!peer)
  760. return;
  761. for (i = 0; i < DP_PEER_AST_FLOWQ_MAX; i++) {
  762. peer->peer_ast_flowq_idx[i].is_valid = false;
  763. peer->peer_ast_flowq_idx[i].valid_tid_mask = false;
  764. peer->peer_ast_flowq_idx[i].ast_idx = DP_INVALID_AST_IDX;
  765. peer->peer_ast_flowq_idx[i].flowQ = DP_INVALID_FLOW_PRIORITY;
  766. }
  767. }
  768. /**
  769. * dp_peer_get_flowid_from_flowmask() - get flow id from flow mask
  770. * @peer - dp peer handle
  771. * @mask - flow mask
  772. *
  773. * Return: flow id
  774. */
  775. static int dp_peer_get_flowid_from_flowmask(struct dp_peer *peer,
  776. uint8_t mask)
  777. {
  778. if (!peer) {
  779. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  780. "%s: Invalid peer\n", __func__);
  781. return -1;
  782. }
  783. if (mask & DP_PEER_AST0_FLOW_MASK)
  784. return DP_PEER_AST_FLOWQ_UDP;
  785. else if (mask & DP_PEER_AST1_FLOW_MASK)
  786. return DP_PEER_AST_FLOWQ_NON_UDP;
  787. else if (mask & DP_PEER_AST2_FLOW_MASK)
  788. return DP_PEER_AST_FLOWQ_HI_PRIO;
  789. else if (mask & DP_PEER_AST3_FLOW_MASK)
  790. return DP_PEER_AST_FLOWQ_LOW_PRIO;
  791. return DP_PEER_AST_FLOWQ_MAX;
  792. }
  793. /**
  794. * dp_peer_get_ast_valid() - get ast index valid from mask
  795. * @mask - mask for ast valid bits
  796. * @index - index for an ast
  797. *
  798. * Return - 1 if ast index is valid from mask else 0
  799. */
  800. static inline bool dp_peer_get_ast_valid(uint8_t mask, uint16_t index)
  801. {
  802. if (index == 0)
  803. return 1;
  804. return ((mask) & (1 << ((index) - 1)));
  805. }
  806. /**
  807. * dp_peer_ast_index_flow_queue_map_create() - create ast index flow queue map
  808. * @soc - genereic soc handle
  809. * @is_wds - flag to indicate if peer is wds
  810. * @peer_id - peer_id from htt peer map message
  811. * @peer_mac_addr - mac address of the peer
  812. * @ast_info - ast flow override information from peer map
  813. *
  814. * Return: none
  815. */
  816. void dp_peer_ast_index_flow_queue_map_create(void *soc_hdl,
  817. bool is_wds, uint16_t peer_id, uint8_t *peer_mac_addr,
  818. struct dp_ast_flow_override_info *ast_info)
  819. {
  820. struct dp_soc *soc = (struct dp_soc *)soc_hdl;
  821. struct dp_peer *peer = NULL;
  822. uint8_t i;
  823. /*
  824. * Ast flow override feature is supported
  825. * only for connected client
  826. */
  827. if (is_wds)
  828. return;
  829. peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_AST);
  830. if (!peer) {
  831. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  832. "%s: Invalid peer\n", __func__);
  833. return;
  834. }
  835. /* Valid only in AP mode */
  836. if (peer->vdev->opmode != wlan_op_mode_ap) {
  837. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  838. "%s: Peer ast flow map not in STA mode\n", __func__);
  839. goto end;
  840. }
  841. /* Making sure the peer is for this mac address */
  842. if (!qdf_is_macaddr_equal((struct qdf_mac_addr *)peer_mac_addr,
  843. (struct qdf_mac_addr *)peer->mac_addr.raw)) {
  844. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  845. "%s: Peer mac address mismatch\n", __func__);
  846. goto end;
  847. }
  848. /* Ast entry flow mapping not valid for self peer map */
  849. if (qdf_is_macaddr_equal((struct qdf_mac_addr *)peer_mac_addr,
  850. (struct qdf_mac_addr *)peer->vdev->mac_addr.raw)) {
  851. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  852. "%s: Ast flow mapping not valid for self peer \n", __func__);
  853. goto end;
  854. }
  855. /* Fill up ast index <---> flow id mapping table for this peer */
  856. for (i = 0; i < DP_MAX_AST_INDEX_PER_PEER; i++) {
  857. /* Check if this ast index is valid */
  858. peer->peer_ast_flowq_idx[i].is_valid =
  859. dp_peer_get_ast_valid(ast_info->ast_valid_mask, i);
  860. if (!peer->peer_ast_flowq_idx[i].is_valid)
  861. continue;
  862. /* Get the flow queue id which is mapped to this ast index */
  863. peer->peer_ast_flowq_idx[i].flowQ =
  864. dp_peer_get_flowid_from_flowmask(peer,
  865. ast_info->ast_flow_mask[i]);
  866. /*
  867. * Update tid valid mask only if flow id HIGH or
  868. * Low priority
  869. */
  870. if (peer->peer_ast_flowq_idx[i].flowQ ==
  871. DP_PEER_AST_FLOWQ_HI_PRIO) {
  872. peer->peer_ast_flowq_idx[i].valid_tid_mask =
  873. ast_info->tid_valid_hi_pri_mask;
  874. } else if (peer->peer_ast_flowq_idx[i].flowQ ==
  875. DP_PEER_AST_FLOWQ_LOW_PRIO) {
  876. peer->peer_ast_flowq_idx[i].valid_tid_mask =
  877. ast_info->tid_valid_low_pri_mask;
  878. }
  879. /* Save the ast index for this entry */
  880. peer->peer_ast_flowq_idx[i].ast_idx = ast_info->ast_idx[i];
  881. }
  882. if (soc->cdp_soc.ol_ops->peer_ast_flowid_map) {
  883. soc->cdp_soc.ol_ops->peer_ast_flowid_map(
  884. soc->ctrl_psoc, peer->peer_id,
  885. peer->vdev->vdev_id, peer_mac_addr);
  886. }
  887. end:
  888. /* Release peer reference */
  889. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  890. }
  891. /**
  892. * dp_peer_find_ast_index_by_flowq_id() - API to get ast idx for a given flowid
  893. * @soc - soc handle
  894. * @peer_mac_addr - mac address of the peer
  895. * @flow_id - flow id to find ast index
  896. *
  897. * Return: ast index for a given flow id, -1 for fail cases
  898. */
  899. int dp_peer_find_ast_index_by_flowq_id(struct cdp_soc_t *soc,
  900. uint16_t vdev_id, uint8_t *peer_mac_addr,
  901. uint8_t flow_id, uint8_t tid)
  902. {
  903. struct dp_peer *peer = NULL;
  904. uint8_t i;
  905. uint16_t ast_index;
  906. if (flow_id >= DP_PEER_AST_FLOWQ_MAX) {
  907. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  908. "Invalid Flow ID %d\n", flow_id);
  909. return -1;
  910. }
  911. peer = dp_peer_find_hash_find((struct dp_soc *)soc,
  912. peer_mac_addr, 0, vdev_id,
  913. DP_MOD_ID_AST);
  914. if (!peer) {
  915. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  916. "%s: Invalid peer\n", __func__);
  917. return -1;
  918. }
  919. /*
  920. * Loop over the ast entry <----> flow-id mapping to find
  921. * which ast index entry has this flow queue id enabled.
  922. */
  923. for (i = 0; i < DP_PEER_AST_FLOWQ_MAX; i++) {
  924. if (peer->peer_ast_flowq_idx[i].flowQ == flow_id)
  925. /*
  926. * Found the matching index for this flow id
  927. */
  928. break;
  929. }
  930. /*
  931. * No match found for this flow id
  932. */
  933. if (i == DP_PEER_AST_FLOWQ_MAX) {
  934. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  935. "%s: ast index not found for flow %d\n", __func__, flow_id);
  936. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  937. return -1;
  938. }
  939. /* Check whether this ast entry is valid */
  940. if (!peer->peer_ast_flowq_idx[i].is_valid) {
  941. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  942. "%s: ast index is invalid for flow %d\n", __func__, flow_id);
  943. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  944. return -1;
  945. }
  946. if (flow_id == DP_PEER_AST_FLOWQ_HI_PRIO ||
  947. flow_id == DP_PEER_AST_FLOWQ_LOW_PRIO) {
  948. /*
  949. * check if this tid is valid for Hi
  950. * and Low priority flow id
  951. */
  952. if ((peer->peer_ast_flowq_idx[i].valid_tid_mask
  953. & (1 << tid))) {
  954. /* Release peer reference */
  955. ast_index = peer->peer_ast_flowq_idx[i].ast_idx;
  956. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  957. return ast_index;
  958. } else {
  959. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  960. "%s: TID %d is not valid for flow %d\n",
  961. __func__, tid, flow_id);
  962. /*
  963. * TID is not valid for this flow
  964. * Return -1
  965. */
  966. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  967. return -1;
  968. }
  969. }
  970. /*
  971. * TID valid check not required for
  972. * UDP/NON UDP flow id
  973. */
  974. ast_index = peer->peer_ast_flowq_idx[i].ast_idx;
  975. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  976. return ast_index;
  977. }
  978. #endif
  979. void dp_hmwds_ast_add_notify(struct dp_peer *peer,
  980. uint8_t *mac_addr,
  981. enum cdp_txrx_ast_entry_type type,
  982. QDF_STATUS err,
  983. bool is_peer_map)
  984. {
  985. struct dp_vdev *dp_vdev = peer->vdev;
  986. struct dp_pdev *dp_pdev = dp_vdev->pdev;
  987. struct cdp_peer_hmwds_ast_add_status add_status;
  988. /* Ignore ast types other than HM */
  989. if ((type != CDP_TXRX_AST_TYPE_WDS_HM) &&
  990. (type != CDP_TXRX_AST_TYPE_WDS_HM_SEC))
  991. return;
  992. /* existing ast delete in progress, will be attempted
  993. * to add again after delete is complete. Send status then.
  994. */
  995. if (err == QDF_STATUS_E_AGAIN)
  996. return;
  997. /* peer map pending, notify actual status
  998. * when peer map is received.
  999. */
  1000. if (!is_peer_map && (err == QDF_STATUS_SUCCESS))
  1001. return;
  1002. qdf_mem_zero(&add_status, sizeof(add_status));
  1003. add_status.vdev_id = dp_vdev->vdev_id;
  1004. /* For type CDP_TXRX_AST_TYPE_WDS_HM_SEC dp_peer_add_ast()
  1005. * returns QDF_STATUS_E_FAILURE as it is host only entry.
  1006. * In such cases set err as success. Also err code set to
  1007. * QDF_STATUS_E_ALREADY indicates entry already exist in
  1008. * such cases set err as success too. Any other error code
  1009. * is actual error.
  1010. */
  1011. if (((type == CDP_TXRX_AST_TYPE_WDS_HM_SEC) &&
  1012. (err == QDF_STATUS_E_FAILURE)) ||
  1013. (err == QDF_STATUS_E_ALREADY)) {
  1014. err = QDF_STATUS_SUCCESS;
  1015. }
  1016. add_status.status = err;
  1017. qdf_mem_copy(add_status.peer_mac, peer->mac_addr.raw,
  1018. QDF_MAC_ADDR_SIZE);
  1019. qdf_mem_copy(add_status.ast_mac, mac_addr,
  1020. QDF_MAC_ADDR_SIZE);
  1021. #ifdef WDI_EVENT_ENABLE
  1022. dp_wdi_event_handler(WDI_EVENT_HMWDS_AST_ADD_STATUS, dp_pdev->soc,
  1023. (void *)&add_status, 0,
  1024. WDI_NO_VAL, dp_pdev->pdev_id);
  1025. #endif
  1026. }
  1027. #ifdef FEATURE_PERPKT_INFO
  1028. /**
  1029. * dp_get_completion_indication_for_stack() - send completion to stack
  1030. * @soc : dp_soc handle
  1031. * @pdev: dp_pdev handle
  1032. * @peer: dp peer handle
  1033. * @ts: transmit completion status structure
  1034. * @netbuf: Buffer pointer for free
  1035. *
  1036. * This function is used for indication whether buffer needs to be
  1037. * sent to stack for freeing or not
  1038. */
  1039. QDF_STATUS
  1040. dp_get_completion_indication_for_stack(struct dp_soc *soc,
  1041. struct dp_pdev *pdev,
  1042. struct dp_peer *peer,
  1043. struct hal_tx_completion_status *ts,
  1044. qdf_nbuf_t netbuf,
  1045. uint64_t time_latency)
  1046. {
  1047. struct tx_capture_hdr *ppdu_hdr;
  1048. uint16_t peer_id = ts->peer_id;
  1049. uint32_t ppdu_id = ts->ppdu_id;
  1050. uint8_t first_msdu = ts->first_msdu;
  1051. uint8_t last_msdu = ts->last_msdu;
  1052. uint32_t txcap_hdr_size = sizeof(struct tx_capture_hdr);
  1053. if (qdf_unlikely(!dp_monitor_is_enable_tx_sniffer(pdev) &&
  1054. !dp_monitor_is_enable_mcopy_mode(pdev) &&
  1055. !pdev->latency_capture_enable))
  1056. return QDF_STATUS_E_NOSUPPORT;
  1057. if (!peer) {
  1058. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1059. FL("Peer Invalid"));
  1060. return QDF_STATUS_E_INVAL;
  1061. }
  1062. /* If mcopy is enabled and mcopy_mode is M_COPY deliver 1st MSDU
  1063. * per PPDU. If mcopy_mode is M_COPY_EXTENDED deliver 1st MSDU
  1064. * for each MPDU
  1065. */
  1066. if (dp_monitor_mcopy_check_deliver(pdev,
  1067. peer_id,
  1068. ppdu_id,
  1069. first_msdu) != QDF_STATUS_SUCCESS)
  1070. return QDF_STATUS_E_INVAL;
  1071. if (qdf_unlikely(qdf_nbuf_headroom(netbuf) < txcap_hdr_size)) {
  1072. netbuf = qdf_nbuf_realloc_headroom(netbuf, txcap_hdr_size);
  1073. if (!netbuf) {
  1074. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1075. FL("No headroom"));
  1076. return QDF_STATUS_E_NOMEM;
  1077. }
  1078. }
  1079. if (!qdf_nbuf_push_head(netbuf, txcap_hdr_size)) {
  1080. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1081. FL("No headroom"));
  1082. return QDF_STATUS_E_NOMEM;
  1083. }
  1084. ppdu_hdr = (struct tx_capture_hdr *)qdf_nbuf_data(netbuf);
  1085. qdf_mem_copy(ppdu_hdr->ta, peer->vdev->mac_addr.raw,
  1086. QDF_MAC_ADDR_SIZE);
  1087. qdf_mem_copy(ppdu_hdr->ra, peer->mac_addr.raw,
  1088. QDF_MAC_ADDR_SIZE);
  1089. ppdu_hdr->ppdu_id = ppdu_id;
  1090. ppdu_hdr->peer_id = peer_id;
  1091. ppdu_hdr->first_msdu = first_msdu;
  1092. ppdu_hdr->last_msdu = last_msdu;
  1093. if (qdf_unlikely(pdev->latency_capture_enable)) {
  1094. ppdu_hdr->tsf = ts->tsf;
  1095. ppdu_hdr->time_latency = (uint32_t)time_latency;
  1096. }
  1097. return QDF_STATUS_SUCCESS;
  1098. }
  1099. /**
  1100. * dp_send_completion_to_stack() - send completion to stack
  1101. * @soc : dp_soc handle
  1102. * @pdev: dp_pdev handle
  1103. * @peer_id: peer_id of the peer for which completion came
  1104. * @ppdu_id: ppdu_id
  1105. * @netbuf: Buffer pointer for free
  1106. *
  1107. * This function is used to send completion to stack
  1108. * to free buffer
  1109. */
  1110. void dp_send_completion_to_stack(struct dp_soc *soc, struct dp_pdev *pdev,
  1111. uint16_t peer_id, uint32_t ppdu_id,
  1112. qdf_nbuf_t netbuf)
  1113. {
  1114. dp_wdi_event_handler(WDI_EVENT_TX_DATA, soc,
  1115. netbuf, peer_id,
  1116. WDI_NO_VAL, pdev->pdev_id);
  1117. }
  1118. #endif