Files
android_kernel_samsung_sm86…/msm/dsi/dsi_phy_hw_v3_0.c
Nilaan Gunabalachandran f3c66e9c1b disp: msm: dsi: create generic interface for read poll timeout
Creating a generic api that can be used with the driver
for read poll timeouts. This allows for easy overriding
of the function, if necessary.

Change-Id: I7bc5176ebabe782089b1a4d6e94c17ad3eb9ada4
Signed-off-by: Nilaan Gunabalachandran <ngunabal@codeaurora.org>
Signed-off-by: Michael Ru <mru@codeaurora.org>
2021-06-22 11:43:56 -04:00

664 行
21 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
*/
#include <linux/math64.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include "dsi_hw.h"
#include "dsi_phy_hw.h"
#include "dsi_catalog.h"
#define DSIPHY_CMN_CLK_CFG0 0x010
#define DSIPHY_CMN_CLK_CFG1 0x014
#define DSIPHY_CMN_GLBL_CTRL 0x018
#define DSIPHY_CMN_RBUF_CTRL 0x01C
#define DSIPHY_CMN_VREG_CTRL 0x020
#define DSIPHY_CMN_CTRL_0 0x024
#define DSIPHY_CMN_CTRL_1 0x028
#define DSIPHY_CMN_CTRL_2 0x02C
#define DSIPHY_CMN_LANE_CFG0 0x030
#define DSIPHY_CMN_LANE_CFG1 0x034
#define DSIPHY_CMN_PLL_CNTRL 0x038
#define DSIPHY_CMN_LANE_CTRL0 0x098
#define DSIPHY_CMN_LANE_CTRL1 0x09C
#define DSIPHY_CMN_LANE_CTRL2 0x0A0
#define DSIPHY_CMN_LANE_CTRL3 0x0A4
#define DSIPHY_CMN_LANE_CTRL4 0x0A8
#define DSIPHY_CMN_TIMING_CTRL_0 0x0AC
#define DSIPHY_CMN_TIMING_CTRL_1 0x0B0
#define DSIPHY_CMN_TIMING_CTRL_2 0x0B4
#define DSIPHY_CMN_TIMING_CTRL_3 0x0B8
#define DSIPHY_CMN_TIMING_CTRL_4 0x0BC
#define DSIPHY_CMN_TIMING_CTRL_5 0x0C0
#define DSIPHY_CMN_TIMING_CTRL_6 0x0C4
#define DSIPHY_CMN_TIMING_CTRL_7 0x0C8
#define DSIPHY_CMN_TIMING_CTRL_8 0x0CC
#define DSIPHY_CMN_TIMING_CTRL_9 0x0D0
#define DSIPHY_CMN_TIMING_CTRL_10 0x0D4
#define DSIPHY_CMN_TIMING_CTRL_11 0x0D8
#define DSIPHY_CMN_PHY_STATUS 0x0EC
#define DSIPHY_CMN_LANE_STATUS0 0x0F4
#define DSIPHY_CMN_LANE_STATUS1 0x0F8
/* n = 0..3 for data lanes and n = 4 for clock lane */
#define DSIPHY_LNX_CFG0(n) (0x200 + (0x80 * (n)))
#define DSIPHY_LNX_CFG1(n) (0x204 + (0x80 * (n)))
#define DSIPHY_LNX_CFG2(n) (0x208 + (0x80 * (n)))
#define DSIPHY_LNX_CFG3(n) (0x20C + (0x80 * (n)))
#define DSIPHY_LNX_TEST_DATAPATH(n) (0x210 + (0x80 * (n)))
#define DSIPHY_LNX_PIN_SWAP(n) (0x214 + (0x80 * (n)))
#define DSIPHY_LNX_HSTX_STR_CTRL(n) (0x218 + (0x80 * (n)))
#define DSIPHY_LNX_OFFSET_TOP_CTRL(n) (0x21C + (0x80 * (n)))
#define DSIPHY_LNX_OFFSET_BOT_CTRL(n) (0x220 + (0x80 * (n)))
#define DSIPHY_LNX_LPTX_STR_CTRL(n) (0x224 + (0x80 * (n)))
#define DSIPHY_LNX_LPRX_CTRL(n) (0x228 + (0x80 * (n)))
#define DSIPHY_LNX_TX_DCTRL(n) (0x22C + (0x80 * (n)))
/* dynamic refresh control registers */
#define DSI_DYN_REFRESH_CTRL (0x000)
#define DSI_DYN_REFRESH_PIPE_DELAY (0x004)
#define DSI_DYN_REFRESH_PIPE_DELAY2 (0x008)
#define DSI_DYN_REFRESH_PLL_DELAY (0x00C)
#define DSI_DYN_REFRESH_STATUS (0x010)
#define DSI_DYN_REFRESH_PLL_CTRL0 (0x014)
#define DSI_DYN_REFRESH_PLL_CTRL1 (0x018)
#define DSI_DYN_REFRESH_PLL_CTRL2 (0x01C)
#define DSI_DYN_REFRESH_PLL_CTRL3 (0x020)
#define DSI_DYN_REFRESH_PLL_CTRL4 (0x024)
#define DSI_DYN_REFRESH_PLL_CTRL5 (0x028)
#define DSI_DYN_REFRESH_PLL_CTRL6 (0x02C)
#define DSI_DYN_REFRESH_PLL_CTRL7 (0x030)
#define DSI_DYN_REFRESH_PLL_CTRL8 (0x034)
#define DSI_DYN_REFRESH_PLL_CTRL9 (0x038)
#define DSI_DYN_REFRESH_PLL_CTRL10 (0x03C)
#define DSI_DYN_REFRESH_PLL_CTRL11 (0x040)
#define DSI_DYN_REFRESH_PLL_CTRL12 (0x044)
#define DSI_DYN_REFRESH_PLL_CTRL13 (0x048)
#define DSI_DYN_REFRESH_PLL_CTRL14 (0x04C)
#define DSI_DYN_REFRESH_PLL_CTRL15 (0x050)
#define DSI_DYN_REFRESH_PLL_CTRL16 (0x054)
#define DSI_DYN_REFRESH_PLL_CTRL17 (0x058)
#define DSI_DYN_REFRESH_PLL_CTRL18 (0x05C)
#define DSI_DYN_REFRESH_PLL_CTRL19 (0x060)
#define DSI_DYN_REFRESH_PLL_CTRL20 (0x064)
#define DSI_DYN_REFRESH_PLL_CTRL21 (0x068)
#define DSI_DYN_REFRESH_PLL_CTRL22 (0x06C)
#define DSI_DYN_REFRESH_PLL_CTRL23 (0x070)
#define DSI_DYN_REFRESH_PLL_CTRL24 (0x074)
#define DSI_DYN_REFRESH_PLL_CTRL25 (0x078)
#define DSI_DYN_REFRESH_PLL_CTRL26 (0x07C)
#define DSI_DYN_REFRESH_PLL_CTRL27 (0x080)
#define DSI_DYN_REFRESH_PLL_CTRL28 (0x084)
#define DSI_DYN_REFRESH_PLL_CTRL29 (0x088)
#define DSI_DYN_REFRESH_PLL_CTRL30 (0x08C)
#define DSI_DYN_REFRESH_PLL_CTRL31 (0x090)
#define DSI_DYN_REFRESH_PLL_UPPER_ADDR (0x094)
#define DSI_DYN_REFRESH_PLL_UPPER_ADDR2 (0x098)
/**
* regulator_enable() - enable regulators for DSI PHY
* @phy: Pointer to DSI PHY hardware object.
* @reg_cfg: Regulator configuration for all DSI lanes.
*/
void dsi_phy_hw_v3_0_regulator_enable(struct dsi_phy_hw *phy,
struct dsi_phy_per_lane_cfgs *reg_cfg)
{
DSI_PHY_DBG(phy, "Phy regulators enabled\n");
/* Nothing to be done for DSI PHY regulator enable */
}
/**
* regulator_disable() - disable regulators
* @phy: Pointer to DSI PHY hardware object.
*/
void dsi_phy_hw_v3_0_regulator_disable(struct dsi_phy_hw *phy)
{
DSI_PHY_DBG(phy, "Phy regulators disabled\n");
/* Nothing to be done for DSI PHY regulator disable */
}
void dsi_phy_hw_v3_0_toggle_resync_fifo(struct dsi_phy_hw *phy)
{
DSI_W32(phy, DSIPHY_CMN_RBUF_CTRL, 0x00);
/* ensure that the FIFO is off */
wmb();
DSI_W32(phy, DSIPHY_CMN_RBUF_CTRL, 0x1);
/* ensure that the FIFO is toggled back on */
wmb();
}
static int dsi_phy_hw_v3_0_is_pll_on(struct dsi_phy_hw *phy)
{
u32 data = 0;
data = DSI_R32(phy, DSIPHY_CMN_PLL_CNTRL);
mb(); /*make sure read happened */
return (data & BIT(0));
}
static void dsi_phy_hw_v3_0_config_lpcdrx(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg, bool enable)
{
int phy_lane_0 = dsi_phy_conv_logical_to_phy_lane(&cfg->lane_map,
DSI_LOGICAL_LANE_0);
/*
* LPRX and CDRX need to enabled only for physical data lane
* corresponding to the logical data lane 0
*/
if (enable)
DSI_W32(phy, DSIPHY_LNX_LPRX_CTRL(phy_lane_0),
cfg->strength.lane[phy_lane_0][1]);
else
DSI_W32(phy, DSIPHY_LNX_LPRX_CTRL(phy_lane_0), 0);
}
static void dsi_phy_hw_v3_0_lane_swap_config(struct dsi_phy_hw *phy,
struct dsi_lane_map *lane_map)
{
DSI_W32(phy, DSIPHY_CMN_LANE_CFG0,
(lane_map->lane_map_v2[DSI_LOGICAL_LANE_0] |
(lane_map->lane_map_v2[DSI_LOGICAL_LANE_1] << 4)));
DSI_W32(phy, DSIPHY_CMN_LANE_CFG1,
(lane_map->lane_map_v2[DSI_LOGICAL_LANE_2] |
(lane_map->lane_map_v2[DSI_LOGICAL_LANE_3] << 4)));
}
static void dsi_phy_hw_v3_0_lane_settings(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg)
{
int i;
u8 tx_dctrl[] = {0x00, 0x00, 0x00, 0x04, 0x01};
/* Strength ctrl settings */
for (i = DSI_LOGICAL_LANE_0; i < DSI_LANE_MAX; i++) {
DSI_W32(phy, DSIPHY_LNX_LPTX_STR_CTRL(i),
cfg->strength.lane[i][0]);
/*
* Disable LPRX and CDRX for all lanes. And later on, it will
* be only enabled for the physical data lane corresponding
* to the logical data lane 0
*/
DSI_W32(phy, DSIPHY_LNX_LPRX_CTRL(i), 0);
DSI_W32(phy, DSIPHY_LNX_PIN_SWAP(i), 0x0);
DSI_W32(phy, DSIPHY_LNX_HSTX_STR_CTRL(i), 0x88);
}
dsi_phy_hw_v3_0_config_lpcdrx(phy, cfg, true);
/* other settings */
for (i = DSI_LOGICAL_LANE_0; i < DSI_LANE_MAX; i++) {
DSI_W32(phy, DSIPHY_LNX_CFG0(i), cfg->lanecfg.lane[i][0]);
DSI_W32(phy, DSIPHY_LNX_CFG1(i), cfg->lanecfg.lane[i][1]);
DSI_W32(phy, DSIPHY_LNX_CFG2(i), cfg->lanecfg.lane[i][2]);
DSI_W32(phy, DSIPHY_LNX_CFG3(i), cfg->lanecfg.lane[i][3]);
DSI_W32(phy, DSIPHY_LNX_OFFSET_TOP_CTRL(i), 0x0);
DSI_W32(phy, DSIPHY_LNX_OFFSET_BOT_CTRL(i), 0x0);
DSI_W32(phy, DSIPHY_LNX_TX_DCTRL(i), tx_dctrl[i]);
}
}
void dsi_phy_hw_v3_0_clamp_ctrl(struct dsi_phy_hw *phy, bool enable)
{
u32 reg;
DSI_PHY_DBG(phy, "enable=%s\n", enable ? "true" : "false");
/*
* DSI PHY lane clamps, also referred to as PHY FreezeIO is
* enalbed by default as part of the initialization sequnce.
* This would get triggered anytime the chip FreezeIO is asserted.
*/
if (enable)
return;
/*
* Toggle BIT 0 to exlplictly release PHY freeze I/0 to disable
* the clamps.
*/
reg = DSI_R32(phy, DSIPHY_LNX_TX_DCTRL(3));
DSI_W32(phy, DSIPHY_LNX_TX_DCTRL(3), reg | BIT(0));
wmb(); /* Ensure that the freezeio bit is toggled */
DSI_W32(phy, DSIPHY_LNX_TX_DCTRL(3), reg & ~BIT(0));
wmb(); /* Ensure that the freezeio bit is toggled */
}
/**
* enable() - Enable PHY hardware
* @phy: Pointer to DSI PHY hardware object.
* @cfg: Per lane configurations for timing, strength and lane
* configurations.
*/
void dsi_phy_hw_v3_0_enable(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg)
{
int rc = 0;
u32 status;
u32 const delay_us = 5;
u32 const timeout_us = 1000;
struct dsi_phy_per_lane_cfgs *timing = &cfg->timing;
u32 data;
if (dsi_phy_hw_v3_0_is_pll_on(phy))
DSI_PHY_WARN(phy, "PLL turned on before configuring PHY\n");
/* wait for REFGEN READY */
rc = DSI_READ_POLL_TIMEOUT_ATOMIC(phy, DSIPHY_CMN_PHY_STATUS,
status, (status & BIT(0)), delay_us, timeout_us);
if (rc) {
DSI_PHY_ERR(phy, "Ref gen not ready. Aborting\n");
return;
}
/* de-assert digital and pll power down */
data = BIT(6) | BIT(5);
DSI_W32(phy, DSIPHY_CMN_CTRL_0, data);
/* Assert PLL core reset */
DSI_W32(phy, DSIPHY_CMN_PLL_CNTRL, 0x00);
/* turn off resync FIFO */
DSI_W32(phy, DSIPHY_CMN_RBUF_CTRL, 0x00);
/* Select MS1 byte-clk */
DSI_W32(phy, DSIPHY_CMN_GLBL_CTRL, 0x10);
/* Enable LDO */
DSI_W32(phy, DSIPHY_CMN_VREG_CTRL, 0x59);
/* Configure PHY lane swap */
dsi_phy_hw_v3_0_lane_swap_config(phy, &cfg->lane_map);
/* DSI PHY timings */
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_0, timing->lane_v3[0]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_1, timing->lane_v3[1]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_2, timing->lane_v3[2]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_3, timing->lane_v3[3]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_4, timing->lane_v3[4]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_5, timing->lane_v3[5]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_6, timing->lane_v3[6]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_7, timing->lane_v3[7]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_8, timing->lane_v3[8]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_9, timing->lane_v3[9]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_10, timing->lane_v3[10]);
DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_11, timing->lane_v3[11]);
/* Remove power down from all blocks */
DSI_W32(phy, DSIPHY_CMN_CTRL_0, 0x7f);
/*power up lanes */
data = DSI_R32(phy, DSIPHY_CMN_CTRL_0);
/* TODO: only power up lanes that are used */
data |= 0x1F;
DSI_W32(phy, DSIPHY_CMN_CTRL_0, data);
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL0, 0x1F);
/* Select full-rate mode */
DSI_W32(phy, DSIPHY_CMN_CTRL_2, 0x40);
switch (cfg->pll_source) {
case DSI_PLL_SOURCE_STANDALONE:
case DSI_PLL_SOURCE_NATIVE:
data = 0x0; /* internal PLL */
break;
case DSI_PLL_SOURCE_NON_NATIVE:
data = 0x1; /* external PLL */
break;
default:
break;
}
DSI_W32(phy, DSIPHY_CMN_CLK_CFG1, (data << 2)); /* set PLL src */
/* DSI lane settings */
dsi_phy_hw_v3_0_lane_settings(phy, cfg);
DSI_PHY_DBG(phy, "Phy enabled\n");
}
/**
* disable() - Disable PHY hardware
* @phy: Pointer to DSI PHY hardware object.
*/
void dsi_phy_hw_v3_0_disable(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg)
{
u32 data = 0;
if (dsi_phy_hw_v3_0_is_pll_on(phy))
DSI_PHY_WARN(phy, "Turning OFF PHY while PLL is on\n");
dsi_phy_hw_v3_0_config_lpcdrx(phy, cfg, false);
data = DSI_R32(phy, DSIPHY_CMN_CTRL_0);
/* disable all lanes */
data &= ~0x1F;
DSI_W32(phy, DSIPHY_CMN_CTRL_0, data);
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL0, 0);
/* Turn off all PHY blocks */
DSI_W32(phy, DSIPHY_CMN_CTRL_0, 0x00);
/* make sure phy is turned off */
wmb();
DSI_PHY_DBG(phy, "Phy disabled\n");
}
int dsi_phy_hw_v3_0_wait_for_lane_idle(
struct dsi_phy_hw *phy, u32 lanes)
{
int rc = 0, val = 0;
u32 stop_state_mask = 0;
u32 const sleep_us = 10;
u32 const timeout_us = 100;
stop_state_mask = BIT(4); /* clock lane */
if (lanes & DSI_DATA_LANE_0)
stop_state_mask |= BIT(0);
if (lanes & DSI_DATA_LANE_1)
stop_state_mask |= BIT(1);
if (lanes & DSI_DATA_LANE_2)
stop_state_mask |= BIT(2);
if (lanes & DSI_DATA_LANE_3)
stop_state_mask |= BIT(3);
DSI_PHY_DBG(phy, "polling for lanes to be in stop state, mask=0x%08x\n",
stop_state_mask);
rc = DSI_READ_POLL_TIMEOUT(phy, DSIPHY_CMN_LANE_STATUS1, val,
((val & stop_state_mask) == stop_state_mask),
sleep_us, timeout_us);
if (rc) {
DSI_PHY_ERR(phy, "lanes not in stop state, LANE_STATUS=0x%08x\n",
val);
return rc;
}
return 0;
}
void dsi_phy_hw_v3_0_ulps_request(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg, u32 lanes)
{
u32 reg = 0;
if (lanes & DSI_CLOCK_LANE)
reg = BIT(4);
if (lanes & DSI_DATA_LANE_0)
reg |= BIT(0);
if (lanes & DSI_DATA_LANE_1)
reg |= BIT(1);
if (lanes & DSI_DATA_LANE_2)
reg |= BIT(2);
if (lanes & DSI_DATA_LANE_3)
reg |= BIT(3);
/*
* ULPS entry request. Wait for short time to make sure
* that the lanes enter ULPS. Recommended as per HPG.
*/
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL1, reg);
usleep_range(100, 110);
/* disable LPRX and CDRX */
dsi_phy_hw_v3_0_config_lpcdrx(phy, cfg, false);
/* disable lane LDOs */
DSI_W32(phy, DSIPHY_CMN_VREG_CTRL, 0x19);
DSI_PHY_DBG(phy, "ULPS requested for lanes 0x%x\n", lanes);
}
int dsi_phy_hw_v3_0_lane_reset(struct dsi_phy_hw *phy)
{
int ret = 0, loop = 10, u_dly = 200;
u32 ln_status = 0;
while ((ln_status != 0x1f) && loop) {
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL3, 0x1f);
wmb(); /* ensure register is committed */
loop--;
udelay(u_dly);
ln_status = DSI_R32(phy, DSIPHY_CMN_LANE_STATUS1);
DSI_PHY_DBG(phy, "trial no: %d\n", loop);
}
if (!loop)
DSI_PHY_DBG(phy, "could not reset phy lanes\n");
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL3, 0x0);
wmb(); /* ensure register is committed */
return ret;
}
void dsi_phy_hw_v3_0_ulps_exit(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg, u32 lanes)
{
u32 reg = 0;
if (lanes & DSI_CLOCK_LANE)
reg = BIT(4);
if (lanes & DSI_DATA_LANE_0)
reg |= BIT(0);
if (lanes & DSI_DATA_LANE_1)
reg |= BIT(1);
if (lanes & DSI_DATA_LANE_2)
reg |= BIT(2);
if (lanes & DSI_DATA_LANE_3)
reg |= BIT(3);
/* enable lane LDOs */
DSI_W32(phy, DSIPHY_CMN_VREG_CTRL, 0x59);
/* enable LPRX and CDRX */
dsi_phy_hw_v3_0_config_lpcdrx(phy, cfg, true);
/* ULPS exit request */
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL2, reg);
usleep_range(1000, 1010);
/* Clear ULPS request flags on all lanes */
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL1, 0);
/* Clear ULPS exit flags on all lanes */
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL2, 0);
/*
* Sometimes when exiting ULPS, it is possible that some DSI
* lanes are not in the stop state which could lead to DSI
* commands not going through. To avoid this, force the lanes
* to be in stop state.
*/
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL3, reg);
DSI_W32(phy, DSIPHY_CMN_LANE_CTRL3, 0);
usleep_range(100, 110);
}
u32 dsi_phy_hw_v3_0_get_lanes_in_ulps(struct dsi_phy_hw *phy)
{
u32 lanes = 0;
lanes = DSI_R32(phy, DSIPHY_CMN_LANE_STATUS0);
DSI_PHY_DBG(phy, "lanes in ulps = 0x%x\n", lanes);
return lanes;
}
bool dsi_phy_hw_v3_0_is_lanes_in_ulps(u32 lanes, u32 ulps_lanes)
{
if (lanes & ulps_lanes)
return false;
return true;
}
int dsi_phy_hw_timing_val_v3_0(struct dsi_phy_per_lane_cfgs *timing_cfg,
u32 *timing_val, u32 size)
{
int i = 0;
if (size != DSI_PHY_TIMING_V3_SIZE) {
DSI_ERR("Unexpected timing array size %d\n", size);
return -EINVAL;
}
for (i = 0; i < size; i++)
timing_cfg->lane_v3[i] = timing_val[i];
return 0;
}
void dsi_phy_hw_v3_0_dyn_refresh_config(struct dsi_phy_hw *phy,
struct dsi_phy_cfg *cfg, bool is_master)
{
u32 reg;
if (is_master) {
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL9,
DSIPHY_CMN_GLBL_CTRL, DSIPHY_CMN_VREG_CTRL,
0x10, 0x59);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL10,
DSIPHY_CMN_TIMING_CTRL_0, DSIPHY_CMN_TIMING_CTRL_1,
cfg->timing.lane_v3[0], cfg->timing.lane_v3[1]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL11,
DSIPHY_CMN_TIMING_CTRL_2, DSIPHY_CMN_TIMING_CTRL_3,
cfg->timing.lane_v3[2], cfg->timing.lane_v3[3]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL12,
DSIPHY_CMN_TIMING_CTRL_4, DSIPHY_CMN_TIMING_CTRL_5,
cfg->timing.lane_v3[4], cfg->timing.lane_v3[5]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL13,
DSIPHY_CMN_TIMING_CTRL_6, DSIPHY_CMN_TIMING_CTRL_7,
cfg->timing.lane_v3[6], cfg->timing.lane_v3[7]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL14,
DSIPHY_CMN_TIMING_CTRL_8, DSIPHY_CMN_TIMING_CTRL_9,
cfg->timing.lane_v3[8], cfg->timing.lane_v3[9]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL15,
DSIPHY_CMN_TIMING_CTRL_10, DSIPHY_CMN_TIMING_CTRL_11,
cfg->timing.lane_v3[10], cfg->timing.lane_v3[11]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL16,
DSIPHY_CMN_CTRL_0, DSIPHY_CMN_LANE_CTRL0,
0x7f, 0x1f);
} else {
reg = DSI_R32(phy, DSIPHY_CMN_CLK_CFG0);
reg &= ~BIT(5);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL0,
DSIPHY_CMN_CLK_CFG0, DSIPHY_CMN_PLL_CNTRL,
reg, 0x0);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL1,
DSIPHY_CMN_RBUF_CTRL, DSIPHY_CMN_GLBL_CTRL,
0x0, 0x10);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL2,
DSIPHY_CMN_VREG_CTRL, DSIPHY_CMN_TIMING_CTRL_0,
0x59, cfg->timing.lane_v3[0]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL3,
DSIPHY_CMN_TIMING_CTRL_1, DSIPHY_CMN_TIMING_CTRL_2,
cfg->timing.lane_v3[1], cfg->timing.lane_v3[2]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL4,
DSIPHY_CMN_TIMING_CTRL_3, DSIPHY_CMN_TIMING_CTRL_4,
cfg->timing.lane_v3[3], cfg->timing.lane_v3[4]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL5,
DSIPHY_CMN_TIMING_CTRL_5, DSIPHY_CMN_TIMING_CTRL_6,
cfg->timing.lane_v3[5], cfg->timing.lane_v3[6]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL6,
DSIPHY_CMN_TIMING_CTRL_7, DSIPHY_CMN_TIMING_CTRL_8,
cfg->timing.lane_v3[7], cfg->timing.lane_v3[8]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL7,
DSIPHY_CMN_TIMING_CTRL_9, DSIPHY_CMN_TIMING_CTRL_10,
cfg->timing.lane_v3[9], cfg->timing.lane_v3[10]);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL8,
DSIPHY_CMN_TIMING_CTRL_11, DSIPHY_CMN_CTRL_0,
cfg->timing.lane_v3[11], 0x7f);
DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL9,
DSIPHY_CMN_LANE_CTRL0, DSIPHY_CMN_CTRL_2,
0x1f, 0x40);
/*
* fill with dummy register writes since controller will blindly
* send these values to DSI PHY.
*/
reg = DSI_DYN_REFRESH_PLL_CTRL11;
while (reg <= DSI_DYN_REFRESH_PLL_CTRL29) {
DSI_DYN_REF_REG_W(phy->dyn_pll_base, reg,
DSIPHY_CMN_LANE_CTRL0, DSIPHY_CMN_CTRL_0,
0x1f, 0x7f);
reg += 0x4;
}
DSI_GEN_W32(phy->dyn_pll_base,
DSI_DYN_REFRESH_PLL_UPPER_ADDR, 0);
DSI_GEN_W32(phy->dyn_pll_base,
DSI_DYN_REFRESH_PLL_UPPER_ADDR2, 0);
}
wmb(); /* make sure all registers are updated */
}
void dsi_phy_hw_v3_0_dyn_refresh_pipe_delay(struct dsi_phy_hw *phy,
struct dsi_dyn_clk_delay *delay)
{
if (!delay)
return;
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_PIPE_DELAY,
delay->pipe_delay);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_PIPE_DELAY2,
delay->pipe_delay2);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_DELAY,
delay->pll_delay);
}
void dsi_phy_hw_v3_0_dyn_refresh_helper(struct dsi_phy_hw *phy, u32 offset)
{
u32 reg;
/*
* if no offset is mentioned then this means we want to clear
* the dynamic refresh ctrl register which is the last step
* of dynamic refresh sequence.
*/
if (!offset) {
reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
reg &= ~(BIT(0) | BIT(8));
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
wmb(); /* ensure dynamic fps is cleared */
return;
}
if (offset & BIT(DYN_REFRESH_INTF_SEL)) {
reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
reg |= BIT(13);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
}
if (offset & BIT(DYN_REFRESH_SYNC_MODE)) {
reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
reg |= BIT(16);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
}
if (offset & BIT(DYN_REFRESH_SWI_CTRL)) {
reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
reg |= BIT(0);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
}
if (offset & BIT(DYN_REFRESH_SW_TRIGGER)) {
reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
reg |= BIT(8);
DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
wmb(); /* ensure dynamic fps is triggered */
}
}
int dsi_phy_hw_v3_0_cache_phy_timings(struct dsi_phy_per_lane_cfgs *timings,
u32 *dst, u32 size)
{
int i;
if (!timings || !dst || !size)
return -EINVAL;
if (size != DSI_PHY_TIMING_V3_SIZE) {
DSI_ERR("size mis-match\n");
return -EINVAL;
}
for (i = 0; i < size; i++)
dst[i] = timings->lane_v3[i];
return 0;
}