dp_rx.c 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #include "dp_ipa.h"
  31. #ifdef FEATURE_WDS
  32. #include "dp_txrx_wds.h"
  33. #endif
  34. #ifdef ATH_RX_PRI_SAVE
  35. #define DP_RX_TID_SAVE(_nbuf, _tid) \
  36. (qdf_nbuf_set_priority(_nbuf, _tid))
  37. #else
  38. #define DP_RX_TID_SAVE(_nbuf, _tid)
  39. #endif
  40. #ifdef DP_RX_DISABLE_NDI_MDNS_FORWARDING
  41. static inline
  42. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  43. {
  44. if (ta_peer->vdev->opmode == wlan_op_mode_ndi &&
  45. qdf_nbuf_is_ipv6_mdns_pkt(nbuf)) {
  46. DP_STATS_INC(ta_peer, rx.intra_bss.mdns_no_fwd, 1);
  47. return false;
  48. }
  49. return true;
  50. }
  51. #else
  52. static inline
  53. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  54. {
  55. return true;
  56. }
  57. #endif
  58. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  59. {
  60. return vdev->ap_bridge_enabled;
  61. }
  62. #ifdef DUP_RX_DESC_WAR
  63. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  64. hal_ring_handle_t hal_ring,
  65. hal_ring_desc_t ring_desc,
  66. struct dp_rx_desc *rx_desc)
  67. {
  68. void *hal_soc = soc->hal_soc;
  69. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  70. dp_rx_desc_dump(rx_desc);
  71. }
  72. #else
  73. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  74. hal_ring_handle_t hal_ring_hdl,
  75. hal_ring_desc_t ring_desc,
  76. struct dp_rx_desc *rx_desc)
  77. {
  78. hal_soc_handle_t hal_soc = soc->hal_soc;
  79. dp_rx_desc_dump(rx_desc);
  80. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  81. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  82. qdf_assert_always(0);
  83. }
  84. #endif
  85. #ifdef RX_DESC_SANITY_WAR
  86. static inline
  87. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  88. hal_ring_handle_t hal_ring_hdl,
  89. hal_ring_desc_t ring_desc,
  90. struct dp_rx_desc *rx_desc)
  91. {
  92. uint8_t return_buffer_manager;
  93. if (qdf_unlikely(!rx_desc)) {
  94. /*
  95. * This is an unlikely case where the cookie obtained
  96. * from the ring_desc is invalid and hence we are not
  97. * able to find the corresponding rx_desc
  98. */
  99. goto fail;
  100. }
  101. return_buffer_manager = hal_rx_ret_buf_manager_get(ring_desc);
  102. if (qdf_unlikely(!(return_buffer_manager == HAL_RX_BUF_RBM_SW1_BM ||
  103. return_buffer_manager == HAL_RX_BUF_RBM_SW3_BM))) {
  104. goto fail;
  105. }
  106. return QDF_STATUS_SUCCESS;
  107. fail:
  108. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  109. dp_err("Ring Desc:");
  110. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  111. ring_desc);
  112. return QDF_STATUS_E_NULL_VALUE;
  113. }
  114. #else
  115. static inline
  116. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  117. hal_ring_handle_t hal_ring_hdl,
  118. hal_ring_desc_t ring_desc,
  119. struct dp_rx_desc *rx_desc)
  120. {
  121. return QDF_STATUS_SUCCESS;
  122. }
  123. #endif
  124. /*
  125. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  126. * called during dp rx initialization
  127. * and at the end of dp_rx_process.
  128. *
  129. * @soc: core txrx main context
  130. * @mac_id: mac_id which is one of 3 mac_ids
  131. * @dp_rxdma_srng: dp rxdma circular ring
  132. * @rx_desc_pool: Pointer to free Rx descriptor pool
  133. * @num_req_buffers: number of buffer to be replenished
  134. * @desc_list: list of descs if called from dp_rx_process
  135. * or NULL during dp rx initialization or out of buffer
  136. * interrupt.
  137. * @tail: tail of descs list
  138. * @func_name: name of the caller function
  139. * Return: return success or failure
  140. */
  141. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  142. struct dp_srng *dp_rxdma_srng,
  143. struct rx_desc_pool *rx_desc_pool,
  144. uint32_t num_req_buffers,
  145. union dp_rx_desc_list_elem_t **desc_list,
  146. union dp_rx_desc_list_elem_t **tail,
  147. const char *func_name)
  148. {
  149. uint32_t num_alloc_desc;
  150. uint16_t num_desc_to_free = 0;
  151. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  152. uint32_t num_entries_avail;
  153. uint32_t count;
  154. int sync_hw_ptr = 1;
  155. qdf_dma_addr_t paddr;
  156. qdf_nbuf_t rx_netbuf;
  157. void *rxdma_ring_entry;
  158. union dp_rx_desc_list_elem_t *next;
  159. QDF_STATUS ret;
  160. uint16_t buf_size = rx_desc_pool->buf_size;
  161. uint8_t buf_alignment = rx_desc_pool->buf_alignment;
  162. void *rxdma_srng;
  163. rxdma_srng = dp_rxdma_srng->hal_srng;
  164. if (!rxdma_srng) {
  165. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  166. "rxdma srng not initialized");
  167. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  168. return QDF_STATUS_E_FAILURE;
  169. }
  170. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  171. "requested %d buffers for replenish", num_req_buffers);
  172. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  173. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  174. rxdma_srng,
  175. sync_hw_ptr);
  176. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  177. "no of available entries in rxdma ring: %d",
  178. num_entries_avail);
  179. if (!(*desc_list) && (num_entries_avail >
  180. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  181. num_req_buffers = num_entries_avail;
  182. } else if (num_entries_avail < num_req_buffers) {
  183. num_desc_to_free = num_req_buffers - num_entries_avail;
  184. num_req_buffers = num_entries_avail;
  185. }
  186. if (qdf_unlikely(!num_req_buffers)) {
  187. num_desc_to_free = num_req_buffers;
  188. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  189. goto free_descs;
  190. }
  191. /*
  192. * if desc_list is NULL, allocate the descs from freelist
  193. */
  194. if (!(*desc_list)) {
  195. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  196. rx_desc_pool,
  197. num_req_buffers,
  198. desc_list,
  199. tail);
  200. if (!num_alloc_desc) {
  201. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  202. "no free rx_descs in freelist");
  203. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  204. num_req_buffers);
  205. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  206. return QDF_STATUS_E_NOMEM;
  207. }
  208. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  209. "%d rx desc allocated", num_alloc_desc);
  210. num_req_buffers = num_alloc_desc;
  211. }
  212. count = 0;
  213. while (count < num_req_buffers) {
  214. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  215. buf_size,
  216. RX_BUFFER_RESERVATION,
  217. buf_alignment,
  218. FALSE);
  219. if (qdf_unlikely(!rx_netbuf)) {
  220. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  221. break;
  222. }
  223. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev, rx_netbuf,
  224. QDF_DMA_FROM_DEVICE, buf_size);
  225. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  226. qdf_nbuf_free(rx_netbuf);
  227. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  228. continue;
  229. }
  230. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  231. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, rx_netbuf, true);
  232. /*
  233. * check if the physical address of nbuf->data is
  234. * less then 0x50000000 then free the nbuf and try
  235. * allocating new nbuf. We can try for 100 times.
  236. * this is a temp WAR till we fix it properly.
  237. */
  238. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, rx_desc_pool);
  239. if (ret == QDF_STATUS_E_FAILURE) {
  240. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  241. break;
  242. }
  243. count++;
  244. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  245. rxdma_srng);
  246. qdf_assert_always(rxdma_ring_entry);
  247. next = (*desc_list)->next;
  248. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  249. /* rx_desc.in_use should be zero at this time*/
  250. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  251. (*desc_list)->rx_desc.in_use = 1;
  252. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  253. func_name, RX_DESC_REPLENISHED);
  254. dp_verbose_debug("rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
  255. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  256. (unsigned long long)paddr,
  257. (*desc_list)->rx_desc.cookie);
  258. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  259. (*desc_list)->rx_desc.cookie,
  260. rx_desc_pool->owner);
  261. *desc_list = next;
  262. }
  263. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  264. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  265. count, num_desc_to_free);
  266. /* No need to count the number of bytes received during replenish.
  267. * Therefore set replenish.pkts.bytes as 0.
  268. */
  269. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  270. free_descs:
  271. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  272. /*
  273. * add any available free desc back to the free list
  274. */
  275. if (*desc_list)
  276. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  277. mac_id, rx_desc_pool);
  278. return QDF_STATUS_SUCCESS;
  279. }
  280. /*
  281. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  282. * pkts to RAW mode simulation to
  283. * decapsulate the pkt.
  284. *
  285. * @vdev: vdev on which RAW mode is enabled
  286. * @nbuf_list: list of RAW pkts to process
  287. * @peer: peer object from which the pkt is rx
  288. *
  289. * Return: void
  290. */
  291. void
  292. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  293. struct dp_peer *peer)
  294. {
  295. qdf_nbuf_t deliver_list_head = NULL;
  296. qdf_nbuf_t deliver_list_tail = NULL;
  297. qdf_nbuf_t nbuf;
  298. nbuf = nbuf_list;
  299. while (nbuf) {
  300. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  301. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  302. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  303. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  304. /*
  305. * reset the chfrag_start and chfrag_end bits in nbuf cb
  306. * as this is a non-amsdu pkt and RAW mode simulation expects
  307. * these bit s to be 0 for non-amsdu pkt.
  308. */
  309. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  310. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  311. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  312. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  313. }
  314. nbuf = next;
  315. }
  316. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  317. &deliver_list_tail, peer->mac_addr.raw);
  318. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  319. }
  320. #ifdef DP_LFR
  321. /*
  322. * In case of LFR, data of a new peer might be sent up
  323. * even before peer is added.
  324. */
  325. static inline struct dp_vdev *
  326. dp_get_vdev_from_peer(struct dp_soc *soc,
  327. uint16_t peer_id,
  328. struct dp_peer *peer,
  329. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  330. {
  331. struct dp_vdev *vdev;
  332. uint8_t vdev_id;
  333. if (unlikely(!peer)) {
  334. if (peer_id != HTT_INVALID_PEER) {
  335. vdev_id = DP_PEER_METADATA_VDEV_ID_GET(
  336. mpdu_desc_info.peer_meta_data);
  337. QDF_TRACE(QDF_MODULE_ID_DP,
  338. QDF_TRACE_LEVEL_DEBUG,
  339. FL("PeerID %d not found use vdevID %d"),
  340. peer_id, vdev_id);
  341. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  342. vdev_id);
  343. } else {
  344. QDF_TRACE(QDF_MODULE_ID_DP,
  345. QDF_TRACE_LEVEL_DEBUG,
  346. FL("Invalid PeerID %d"),
  347. peer_id);
  348. return NULL;
  349. }
  350. } else {
  351. vdev = peer->vdev;
  352. }
  353. return vdev;
  354. }
  355. #else
  356. static inline struct dp_vdev *
  357. dp_get_vdev_from_peer(struct dp_soc *soc,
  358. uint16_t peer_id,
  359. struct dp_peer *peer,
  360. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  361. {
  362. if (unlikely(!peer)) {
  363. QDF_TRACE(QDF_MODULE_ID_DP,
  364. QDF_TRACE_LEVEL_DEBUG,
  365. FL("Peer not found for peerID %d"),
  366. peer_id);
  367. return NULL;
  368. } else {
  369. return peer->vdev;
  370. }
  371. }
  372. #endif
  373. #ifndef FEATURE_WDS
  374. static void
  375. dp_rx_da_learn(struct dp_soc *soc,
  376. uint8_t *rx_tlv_hdr,
  377. struct dp_peer *ta_peer,
  378. qdf_nbuf_t nbuf)
  379. {
  380. }
  381. #endif
  382. /*
  383. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  384. *
  385. * @soc: core txrx main context
  386. * @ta_peer : source peer entry
  387. * @rx_tlv_hdr : start address of rx tlvs
  388. * @nbuf : nbuf that has to be intrabss forwarded
  389. *
  390. * Return: bool: true if it is forwarded else false
  391. */
  392. static bool
  393. dp_rx_intrabss_fwd(struct dp_soc *soc,
  394. struct dp_peer *ta_peer,
  395. uint8_t *rx_tlv_hdr,
  396. qdf_nbuf_t nbuf,
  397. struct hal_rx_msdu_metadata msdu_metadata)
  398. {
  399. uint16_t len;
  400. uint8_t is_frag;
  401. struct dp_peer *da_peer;
  402. struct dp_ast_entry *ast_entry;
  403. qdf_nbuf_t nbuf_copy;
  404. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  405. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  406. struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats.
  407. tid_stats.tid_rx_stats[ring_id][tid];
  408. /* check if the destination peer is available in peer table
  409. * and also check if the source peer and destination peer
  410. * belong to the same vap and destination peer is not bss peer.
  411. */
  412. if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
  413. ast_entry = soc->ast_table[msdu_metadata.da_idx];
  414. if (!ast_entry)
  415. return false;
  416. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  417. ast_entry->is_active = TRUE;
  418. return false;
  419. }
  420. da_peer = ast_entry->peer;
  421. if (!da_peer)
  422. return false;
  423. /* TA peer cannot be same as peer(DA) on which AST is present
  424. * this indicates a change in topology and that AST entries
  425. * are yet to be updated.
  426. */
  427. if (da_peer == ta_peer)
  428. return false;
  429. if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) {
  430. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  431. is_frag = qdf_nbuf_is_frag(nbuf);
  432. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  433. /* linearize the nbuf just before we send to
  434. * dp_tx_send()
  435. */
  436. if (qdf_unlikely(is_frag)) {
  437. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  438. return false;
  439. nbuf = qdf_nbuf_unshare(nbuf);
  440. if (!nbuf) {
  441. DP_STATS_INC_PKT(ta_peer,
  442. rx.intra_bss.fail,
  443. 1,
  444. len);
  445. /* return true even though the pkt is
  446. * not forwarded. Basically skb_unshare
  447. * failed and we want to continue with
  448. * next nbuf.
  449. */
  450. tid_stats->fail_cnt[INTRABSS_DROP]++;
  451. return true;
  452. }
  453. }
  454. if (!dp_tx_send((struct cdp_soc_t *)soc,
  455. ta_peer->vdev->vdev_id, nbuf)) {
  456. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  457. len);
  458. return true;
  459. } else {
  460. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  461. len);
  462. tid_stats->fail_cnt[INTRABSS_DROP]++;
  463. return false;
  464. }
  465. }
  466. }
  467. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  468. * source, then clone the pkt and send the cloned pkt for
  469. * intra BSS forwarding and original pkt up the network stack
  470. * Note: how do we handle multicast pkts. do we forward
  471. * all multicast pkts as is or let a higher layer module
  472. * like igmpsnoop decide whether to forward or not with
  473. * Mcast enhancement.
  474. */
  475. else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
  476. !ta_peer->bss_peer))) {
  477. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  478. goto end;
  479. nbuf_copy = qdf_nbuf_copy(nbuf);
  480. if (!nbuf_copy)
  481. goto end;
  482. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  483. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  484. /* Set cb->ftype to intrabss FWD */
  485. qdf_nbuf_set_tx_ftype(nbuf_copy, CB_FTYPE_INTRABSS_FWD);
  486. if (dp_tx_send((struct cdp_soc_t *)soc,
  487. ta_peer->vdev->vdev_id, nbuf_copy)) {
  488. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  489. tid_stats->fail_cnt[INTRABSS_DROP]++;
  490. qdf_nbuf_free(nbuf_copy);
  491. } else {
  492. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  493. tid_stats->intrabss_cnt++;
  494. }
  495. }
  496. end:
  497. /* return false as we have to still send the original pkt
  498. * up the stack
  499. */
  500. return false;
  501. }
  502. #ifdef MESH_MODE_SUPPORT
  503. /**
  504. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  505. *
  506. * @vdev: DP Virtual device handle
  507. * @nbuf: Buffer pointer
  508. * @rx_tlv_hdr: start of rx tlv header
  509. * @peer: pointer to peer
  510. *
  511. * This function allocated memory for mesh receive stats and fill the
  512. * required stats. Stores the memory address in skb cb.
  513. *
  514. * Return: void
  515. */
  516. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  517. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  518. {
  519. struct mesh_recv_hdr_s *rx_info = NULL;
  520. uint32_t pkt_type;
  521. uint32_t nss;
  522. uint32_t rate_mcs;
  523. uint32_t bw;
  524. uint8_t primary_chan_num;
  525. uint32_t center_chan_freq;
  526. struct dp_soc *soc;
  527. /* fill recv mesh stats */
  528. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  529. /* upper layers are resposible to free this memory */
  530. if (!rx_info) {
  531. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  532. "Memory allocation failed for mesh rx stats");
  533. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  534. return;
  535. }
  536. rx_info->rs_flags = MESH_RXHDR_VER1;
  537. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  538. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  539. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  540. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  541. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  542. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  543. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  544. if (vdev->osif_get_key)
  545. vdev->osif_get_key(vdev->osif_vdev,
  546. &rx_info->rs_decryptkey[0],
  547. &peer->mac_addr.raw[0],
  548. rx_info->rs_keyix);
  549. }
  550. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  551. soc = vdev->pdev->soc;
  552. primary_chan_num = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  553. center_chan_freq = hal_rx_msdu_start_get_freq(rx_tlv_hdr) >> 16;
  554. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  555. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  556. soc->ctrl_psoc,
  557. vdev->pdev->pdev_id,
  558. center_chan_freq);
  559. }
  560. rx_info->rs_channel = primary_chan_num;
  561. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  562. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  563. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  564. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  565. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  566. (bw << 24);
  567. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  568. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  569. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  570. rx_info->rs_flags,
  571. rx_info->rs_rssi,
  572. rx_info->rs_channel,
  573. rx_info->rs_ratephy1,
  574. rx_info->rs_keyix);
  575. }
  576. /**
  577. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  578. *
  579. * @vdev: DP Virtual device handle
  580. * @nbuf: Buffer pointer
  581. * @rx_tlv_hdr: start of rx tlv header
  582. *
  583. * This checks if the received packet is matching any filter out
  584. * catogery and and drop the packet if it matches.
  585. *
  586. * Return: status(0 indicates drop, 1 indicate to no drop)
  587. */
  588. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  589. uint8_t *rx_tlv_hdr)
  590. {
  591. union dp_align_mac_addr mac_addr;
  592. struct dp_soc *soc = vdev->pdev->soc;
  593. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  594. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  595. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  596. rx_tlv_hdr))
  597. return QDF_STATUS_SUCCESS;
  598. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  599. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  600. rx_tlv_hdr))
  601. return QDF_STATUS_SUCCESS;
  602. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  603. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  604. rx_tlv_hdr) &&
  605. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  606. rx_tlv_hdr))
  607. return QDF_STATUS_SUCCESS;
  608. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  609. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  610. rx_tlv_hdr,
  611. &mac_addr.raw[0]))
  612. return QDF_STATUS_E_FAILURE;
  613. if (!qdf_mem_cmp(&mac_addr.raw[0],
  614. &vdev->mac_addr.raw[0],
  615. QDF_MAC_ADDR_SIZE))
  616. return QDF_STATUS_SUCCESS;
  617. }
  618. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  619. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  620. rx_tlv_hdr,
  621. &mac_addr.raw[0]))
  622. return QDF_STATUS_E_FAILURE;
  623. if (!qdf_mem_cmp(&mac_addr.raw[0],
  624. &vdev->mac_addr.raw[0],
  625. QDF_MAC_ADDR_SIZE))
  626. return QDF_STATUS_SUCCESS;
  627. }
  628. }
  629. return QDF_STATUS_E_FAILURE;
  630. }
  631. #else
  632. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  633. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  634. {
  635. }
  636. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  637. uint8_t *rx_tlv_hdr)
  638. {
  639. return QDF_STATUS_E_FAILURE;
  640. }
  641. #endif
  642. #ifdef FEATURE_NAC_RSSI
  643. /**
  644. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  645. * clients
  646. * @pdev: DP pdev handle
  647. * @rx_pkt_hdr: Rx packet Header
  648. *
  649. * return: dp_vdev*
  650. */
  651. static
  652. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  653. uint8_t *rx_pkt_hdr)
  654. {
  655. struct ieee80211_frame *wh;
  656. struct dp_neighbour_peer *peer = NULL;
  657. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  658. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  659. return NULL;
  660. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  661. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  662. neighbour_peer_list_elem) {
  663. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  664. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  665. QDF_TRACE(
  666. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  667. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  668. peer->neighbour_peers_macaddr.raw[0],
  669. peer->neighbour_peers_macaddr.raw[1],
  670. peer->neighbour_peers_macaddr.raw[2],
  671. peer->neighbour_peers_macaddr.raw[3],
  672. peer->neighbour_peers_macaddr.raw[4],
  673. peer->neighbour_peers_macaddr.raw[5]);
  674. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  675. return pdev->monitor_vdev;
  676. }
  677. }
  678. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  679. return NULL;
  680. }
  681. /**
  682. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  683. * @soc: DP SOC handle
  684. * @mpdu: mpdu for which peer is invalid
  685. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  686. * pool_id has same mapping)
  687. *
  688. * return: integer type
  689. */
  690. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  691. uint8_t mac_id)
  692. {
  693. struct dp_invalid_peer_msg msg;
  694. struct dp_vdev *vdev = NULL;
  695. struct dp_pdev *pdev = NULL;
  696. struct ieee80211_frame *wh;
  697. qdf_nbuf_t curr_nbuf, next_nbuf;
  698. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  699. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  700. rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  701. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  702. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  703. "Drop decapped frames");
  704. goto free;
  705. }
  706. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  707. if (!DP_FRAME_IS_DATA(wh)) {
  708. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  709. "NAWDS valid only for data frames");
  710. goto free;
  711. }
  712. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  713. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  714. "Invalid nbuf length");
  715. goto free;
  716. }
  717. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  718. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  719. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  720. "PDEV %s", !pdev ? "not found" : "down");
  721. goto free;
  722. }
  723. if (pdev->filter_neighbour_peers) {
  724. /* Next Hop scenario not yet handle */
  725. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  726. if (vdev) {
  727. dp_rx_mon_deliver(soc, pdev->pdev_id,
  728. pdev->invalid_peer_head_msdu,
  729. pdev->invalid_peer_tail_msdu);
  730. pdev->invalid_peer_head_msdu = NULL;
  731. pdev->invalid_peer_tail_msdu = NULL;
  732. return 0;
  733. }
  734. }
  735. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  736. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  737. QDF_MAC_ADDR_SIZE) == 0) {
  738. goto out;
  739. }
  740. }
  741. if (!vdev) {
  742. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  743. "VDEV not found");
  744. goto free;
  745. }
  746. out:
  747. msg.wh = wh;
  748. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  749. msg.nbuf = mpdu;
  750. msg.vdev_id = vdev->vdev_id;
  751. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  752. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  753. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  754. pdev->pdev_id, &msg);
  755. free:
  756. /* Drop and free packet */
  757. curr_nbuf = mpdu;
  758. while (curr_nbuf) {
  759. next_nbuf = qdf_nbuf_next(curr_nbuf);
  760. qdf_nbuf_free(curr_nbuf);
  761. curr_nbuf = next_nbuf;
  762. }
  763. return 0;
  764. }
  765. /**
  766. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  767. * @soc: DP SOC handle
  768. * @mpdu: mpdu for which peer is invalid
  769. * @mpdu_done: if an mpdu is completed
  770. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  771. * pool_id has same mapping)
  772. *
  773. * return: integer type
  774. */
  775. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  776. qdf_nbuf_t mpdu, bool mpdu_done,
  777. uint8_t mac_id)
  778. {
  779. /* Only trigger the process when mpdu is completed */
  780. if (mpdu_done)
  781. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  782. }
  783. #else
  784. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  785. uint8_t mac_id)
  786. {
  787. qdf_nbuf_t curr_nbuf, next_nbuf;
  788. struct dp_pdev *pdev;
  789. struct dp_vdev *vdev = NULL;
  790. struct ieee80211_frame *wh;
  791. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  792. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  793. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  794. if (!DP_FRAME_IS_DATA(wh)) {
  795. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  796. "only for data frames");
  797. goto free;
  798. }
  799. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  800. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  801. "Invalid nbuf length");
  802. goto free;
  803. }
  804. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  805. if (!pdev) {
  806. QDF_TRACE(QDF_MODULE_ID_DP,
  807. QDF_TRACE_LEVEL_ERROR,
  808. "PDEV not found");
  809. goto free;
  810. }
  811. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  812. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  813. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  814. QDF_MAC_ADDR_SIZE) == 0) {
  815. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  816. goto out;
  817. }
  818. }
  819. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  820. if (!vdev) {
  821. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  822. "VDEV not found");
  823. goto free;
  824. }
  825. out:
  826. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  827. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  828. free:
  829. /* reset the head and tail pointers */
  830. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  831. if (pdev) {
  832. pdev->invalid_peer_head_msdu = NULL;
  833. pdev->invalid_peer_tail_msdu = NULL;
  834. }
  835. /* Drop and free packet */
  836. curr_nbuf = mpdu;
  837. while (curr_nbuf) {
  838. next_nbuf = qdf_nbuf_next(curr_nbuf);
  839. qdf_nbuf_free(curr_nbuf);
  840. curr_nbuf = next_nbuf;
  841. }
  842. /* Reset the head and tail pointers */
  843. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  844. if (pdev) {
  845. pdev->invalid_peer_head_msdu = NULL;
  846. pdev->invalid_peer_tail_msdu = NULL;
  847. }
  848. return 0;
  849. }
  850. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  851. qdf_nbuf_t mpdu, bool mpdu_done,
  852. uint8_t mac_id)
  853. {
  854. /* Process the nbuf */
  855. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  856. }
  857. #endif
  858. #ifdef RECEIVE_OFFLOAD
  859. /**
  860. * dp_rx_print_offload_info() - Print offload info from RX TLV
  861. * @soc: dp soc handle
  862. * @rx_tlv: RX TLV for which offload information is to be printed
  863. *
  864. * Return: None
  865. */
  866. static void dp_rx_print_offload_info(struct dp_soc *soc, uint8_t *rx_tlv)
  867. {
  868. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  869. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  870. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  871. dp_verbose_debug("chksum 0x%x", hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  872. rx_tlv));
  873. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  874. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  875. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  876. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  877. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  878. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  879. dp_verbose_debug("---------------------------------------------------------");
  880. }
  881. /**
  882. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  883. * @soc: DP SOC handle
  884. * @rx_tlv: RX TLV received for the msdu
  885. * @msdu: msdu for which GRO info needs to be filled
  886. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  887. *
  888. * Return: None
  889. */
  890. static
  891. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  892. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  893. {
  894. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  895. return;
  896. /* Filling up RX offload info only for TCP packets */
  897. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  898. return;
  899. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  900. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  901. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  902. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  903. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  904. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  905. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  906. rx_tlv);
  907. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  908. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  909. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  910. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  911. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  912. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  913. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  914. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  915. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  916. HAL_RX_TLV_GET_IPV6(rx_tlv);
  917. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  918. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  919. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  920. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  921. dp_rx_print_offload_info(soc, rx_tlv);
  922. }
  923. #else
  924. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  925. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  926. {
  927. }
  928. #endif /* RECEIVE_OFFLOAD */
  929. /**
  930. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  931. *
  932. * @nbuf: pointer to msdu.
  933. * @mpdu_len: mpdu length
  934. *
  935. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  936. */
  937. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  938. {
  939. bool last_nbuf;
  940. if (*mpdu_len > (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  941. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  942. last_nbuf = false;
  943. } else {
  944. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  945. last_nbuf = true;
  946. }
  947. *mpdu_len -= (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  948. return last_nbuf;
  949. }
  950. /**
  951. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  952. * multiple nbufs.
  953. * @nbuf: pointer to the first msdu of an amsdu.
  954. *
  955. * This function implements the creation of RX frag_list for cases
  956. * where an MSDU is spread across multiple nbufs.
  957. *
  958. * Return: returns the head nbuf which contains complete frag_list.
  959. */
  960. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf)
  961. {
  962. qdf_nbuf_t parent, frag_list, next = NULL;
  963. uint16_t frag_list_len = 0;
  964. uint16_t mpdu_len;
  965. bool last_nbuf;
  966. /*
  967. * Use msdu len got from REO entry descriptor instead since
  968. * there is case the RX PKT TLV is corrupted while msdu_len
  969. * from REO descriptor is right for non-raw RX scatter msdu.
  970. */
  971. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  972. /*
  973. * this is a case where the complete msdu fits in one single nbuf.
  974. * in this case HW sets both start and end bit and we only need to
  975. * reset these bits for RAW mode simulator to decap the pkt
  976. */
  977. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  978. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  979. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  980. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  981. return nbuf;
  982. }
  983. /*
  984. * This is a case where we have multiple msdus (A-MSDU) spread across
  985. * multiple nbufs. here we create a fraglist out of these nbufs.
  986. *
  987. * the moment we encounter a nbuf with continuation bit set we
  988. * know for sure we have an MSDU which is spread across multiple
  989. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  990. */
  991. parent = nbuf;
  992. frag_list = nbuf->next;
  993. nbuf = nbuf->next;
  994. /*
  995. * set the start bit in the first nbuf we encounter with continuation
  996. * bit set. This has the proper mpdu length set as it is the first
  997. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  998. * nbufs will form the frag_list of the parent nbuf.
  999. */
  1000. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1001. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  1002. /*
  1003. * this is where we set the length of the fragments which are
  1004. * associated to the parent nbuf. We iterate through the frag_list
  1005. * till we hit the last_nbuf of the list.
  1006. */
  1007. do {
  1008. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  1009. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1010. frag_list_len += qdf_nbuf_len(nbuf);
  1011. if (last_nbuf) {
  1012. next = nbuf->next;
  1013. nbuf->next = NULL;
  1014. break;
  1015. }
  1016. nbuf = nbuf->next;
  1017. } while (!last_nbuf);
  1018. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1019. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1020. parent->next = next;
  1021. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  1022. return parent;
  1023. }
  1024. /**
  1025. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1026. * to pass in correct fields
  1027. *
  1028. * @vdev: pdev handle
  1029. * @tx_desc: tx descriptor
  1030. * @tid: tid value
  1031. * Return: none
  1032. */
  1033. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1034. {
  1035. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1036. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1037. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1038. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1039. uint32_t interframe_delay =
  1040. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1041. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  1042. CDP_DELAY_STATS_REAP_STACK, ring_id);
  1043. /*
  1044. * Update interframe delay stats calculated at deliver_data_ol point.
  1045. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1046. * interframe delay will not be calculate correctly for 1st frame.
  1047. * On the other side, this will help in avoiding extra per packet check
  1048. * of vdev->prev_rx_deliver_tstamp.
  1049. */
  1050. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  1051. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  1052. vdev->prev_rx_deliver_tstamp = current_ts;
  1053. }
  1054. /**
  1055. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1056. * @pdev: dp pdev reference
  1057. * @buf_list: buffer list to be dropepd
  1058. *
  1059. * Return: int (number of bufs dropped)
  1060. */
  1061. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1062. qdf_nbuf_t buf_list)
  1063. {
  1064. struct cdp_tid_rx_stats *stats = NULL;
  1065. uint8_t tid = 0, ring_id = 0;
  1066. int num_dropped = 0;
  1067. qdf_nbuf_t buf, next_buf;
  1068. buf = buf_list;
  1069. while (buf) {
  1070. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1071. next_buf = qdf_nbuf_queue_next(buf);
  1072. tid = qdf_nbuf_get_tid_val(buf);
  1073. if (qdf_likely(pdev)) {
  1074. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1075. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1076. stats->delivered_to_stack--;
  1077. }
  1078. qdf_nbuf_free(buf);
  1079. buf = next_buf;
  1080. num_dropped++;
  1081. }
  1082. return num_dropped;
  1083. }
  1084. #ifdef PEER_CACHE_RX_PKTS
  1085. /**
  1086. * dp_rx_flush_rx_cached() - flush cached rx frames
  1087. * @peer: peer
  1088. * @drop: flag to drop frames or forward to net stack
  1089. *
  1090. * Return: None
  1091. */
  1092. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1093. {
  1094. struct dp_peer_cached_bufq *bufqi;
  1095. struct dp_rx_cached_buf *cache_buf = NULL;
  1096. ol_txrx_rx_fp data_rx = NULL;
  1097. int num_buff_elem;
  1098. QDF_STATUS status;
  1099. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1100. qdf_atomic_dec(&peer->flush_in_progress);
  1101. return;
  1102. }
  1103. qdf_spin_lock_bh(&peer->peer_info_lock);
  1104. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1105. data_rx = peer->vdev->osif_rx;
  1106. else
  1107. drop = true;
  1108. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1109. bufqi = &peer->bufq_info;
  1110. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1111. qdf_list_remove_front(&bufqi->cached_bufq,
  1112. (qdf_list_node_t **)&cache_buf);
  1113. while (cache_buf) {
  1114. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1115. cache_buf->buf);
  1116. bufqi->entries -= num_buff_elem;
  1117. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1118. if (drop) {
  1119. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1120. cache_buf->buf);
  1121. } else {
  1122. /* Flush the cached frames to OSIF DEV */
  1123. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1124. if (status != QDF_STATUS_SUCCESS)
  1125. bufqi->dropped = dp_rx_drop_nbuf_list(
  1126. peer->vdev->pdev,
  1127. cache_buf->buf);
  1128. }
  1129. qdf_mem_free(cache_buf);
  1130. cache_buf = NULL;
  1131. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1132. qdf_list_remove_front(&bufqi->cached_bufq,
  1133. (qdf_list_node_t **)&cache_buf);
  1134. }
  1135. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1136. qdf_atomic_dec(&peer->flush_in_progress);
  1137. }
  1138. /**
  1139. * dp_rx_enqueue_rx() - cache rx frames
  1140. * @peer: peer
  1141. * @rx_buf_list: cache buffer list
  1142. *
  1143. * Return: None
  1144. */
  1145. static QDF_STATUS
  1146. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1147. {
  1148. struct dp_rx_cached_buf *cache_buf;
  1149. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1150. int num_buff_elem;
  1151. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1152. bufqi->dropped);
  1153. if (!peer->valid) {
  1154. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1155. rx_buf_list);
  1156. return QDF_STATUS_E_INVAL;
  1157. }
  1158. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1159. if (bufqi->entries >= bufqi->thresh) {
  1160. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1161. rx_buf_list);
  1162. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1163. return QDF_STATUS_E_RESOURCES;
  1164. }
  1165. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1166. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1167. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1168. if (!cache_buf) {
  1169. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1170. "Failed to allocate buf to cache rx frames");
  1171. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1172. rx_buf_list);
  1173. return QDF_STATUS_E_NOMEM;
  1174. }
  1175. cache_buf->buf = rx_buf_list;
  1176. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1177. qdf_list_insert_back(&bufqi->cached_bufq,
  1178. &cache_buf->node);
  1179. bufqi->entries += num_buff_elem;
  1180. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1181. return QDF_STATUS_SUCCESS;
  1182. }
  1183. static inline
  1184. bool dp_rx_is_peer_cache_bufq_supported(void)
  1185. {
  1186. return true;
  1187. }
  1188. #else
  1189. static inline
  1190. bool dp_rx_is_peer_cache_bufq_supported(void)
  1191. {
  1192. return false;
  1193. }
  1194. static inline QDF_STATUS
  1195. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1196. {
  1197. return QDF_STATUS_SUCCESS;
  1198. }
  1199. #endif
  1200. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1201. /**
  1202. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1203. * using the appropriate call back functions.
  1204. * @soc: soc
  1205. * @vdev: vdev
  1206. * @peer: peer
  1207. * @nbuf_head: skb list head
  1208. * @nbuf_tail: skb list tail
  1209. *
  1210. * Return: None
  1211. */
  1212. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1213. struct dp_vdev *vdev,
  1214. struct dp_peer *peer,
  1215. qdf_nbuf_t nbuf_head)
  1216. {
  1217. /* Function pointer initialized only when FISA is enabled */
  1218. if (vdev->osif_fisa_rx)
  1219. /* on failure send it via regular path */
  1220. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1221. else
  1222. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1223. }
  1224. #else
  1225. /**
  1226. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1227. * using the appropriate call back functions.
  1228. * @soc: soc
  1229. * @vdev: vdev
  1230. * @peer: peer
  1231. * @nbuf_head: skb list head
  1232. * @nbuf_tail: skb list tail
  1233. *
  1234. * Check the return status of the call back function and drop
  1235. * the packets if the return status indicates a failure.
  1236. *
  1237. * Return: None
  1238. */
  1239. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1240. struct dp_vdev *vdev,
  1241. struct dp_peer *peer,
  1242. qdf_nbuf_t nbuf_head)
  1243. {
  1244. int num_nbuf = 0;
  1245. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1246. /* Function pointer initialized only when FISA is enabled */
  1247. if (vdev->osif_fisa_rx)
  1248. /* on failure send it via regular path */
  1249. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1250. else if (vdev->osif_rx)
  1251. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1252. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1253. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1254. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1255. if (peer)
  1256. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1257. }
  1258. }
  1259. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1260. void dp_rx_deliver_to_stack(struct dp_soc *soc,
  1261. struct dp_vdev *vdev,
  1262. struct dp_peer *peer,
  1263. qdf_nbuf_t nbuf_head,
  1264. qdf_nbuf_t nbuf_tail)
  1265. {
  1266. int num_nbuf = 0;
  1267. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1268. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1269. /*
  1270. * This is a special case where vdev is invalid,
  1271. * so we cannot know the pdev to which this packet
  1272. * belonged. Hence we update the soc rx error stats.
  1273. */
  1274. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1275. return;
  1276. }
  1277. /*
  1278. * highly unlikely to have a vdev without a registered rx
  1279. * callback function. if so let us free the nbuf_list.
  1280. */
  1281. if (qdf_unlikely(!vdev->osif_rx)) {
  1282. if (peer && dp_rx_is_peer_cache_bufq_supported()) {
  1283. dp_rx_enqueue_rx(peer, nbuf_head);
  1284. } else {
  1285. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1286. nbuf_head);
  1287. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1288. }
  1289. return;
  1290. }
  1291. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1292. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1293. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1294. &nbuf_tail, peer->mac_addr.raw);
  1295. }
  1296. dp_rx_check_delivery_to_stack(soc, vdev, peer, nbuf_head);
  1297. }
  1298. /**
  1299. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1300. * @nbuf: pointer to the first msdu of an amsdu.
  1301. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1302. *
  1303. * The ipsumed field of the skb is set based on whether HW validated the
  1304. * IP/TCP/UDP checksum.
  1305. *
  1306. * Return: void
  1307. */
  1308. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1309. qdf_nbuf_t nbuf,
  1310. uint8_t *rx_tlv_hdr)
  1311. {
  1312. qdf_nbuf_rx_cksum_t cksum = {0};
  1313. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1314. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1315. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1316. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1317. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1318. } else {
  1319. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1320. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1321. }
  1322. }
  1323. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1324. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer) \
  1325. { \
  1326. qdf_nbuf_t nbuf_local; \
  1327. struct dp_peer *peer_local; \
  1328. struct dp_vdev *vdev_local = vdev_hdl; \
  1329. do { \
  1330. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1331. break; \
  1332. nbuf_local = nbuf; \
  1333. peer_local = peer; \
  1334. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1335. break; \
  1336. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1337. break; \
  1338. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1339. (nbuf_local), \
  1340. (peer_local), 0, 1); \
  1341. } while (0); \
  1342. }
  1343. #else
  1344. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer)
  1345. #endif
  1346. /**
  1347. * dp_rx_msdu_stats_update() - update per msdu stats.
  1348. * @soc: core txrx main context
  1349. * @nbuf: pointer to the first msdu of an amsdu.
  1350. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1351. * @peer: pointer to the peer object.
  1352. * @ring_id: reo dest ring number on which pkt is reaped.
  1353. * @tid_stats: per tid rx stats.
  1354. *
  1355. * update all the per msdu stats for that nbuf.
  1356. * Return: void
  1357. */
  1358. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1359. qdf_nbuf_t nbuf,
  1360. uint8_t *rx_tlv_hdr,
  1361. struct dp_peer *peer,
  1362. uint8_t ring_id,
  1363. struct cdp_tid_rx_stats *tid_stats)
  1364. {
  1365. bool is_ampdu, is_not_amsdu;
  1366. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1367. struct dp_vdev *vdev = peer->vdev;
  1368. qdf_ether_header_t *eh;
  1369. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1370. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, peer);
  1371. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1372. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1373. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1374. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1375. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1376. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1377. tid_stats->msdu_cnt++;
  1378. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1379. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1380. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1381. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1382. tid_stats->mcast_msdu_cnt++;
  1383. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1384. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1385. tid_stats->bcast_msdu_cnt++;
  1386. }
  1387. }
  1388. /*
  1389. * currently we can return from here as we have similar stats
  1390. * updated at per ppdu level instead of msdu level
  1391. */
  1392. if (!soc->process_rx_status)
  1393. return;
  1394. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1395. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1396. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1397. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1398. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1399. tid = qdf_nbuf_get_tid_val(nbuf);
  1400. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1401. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1402. rx_tlv_hdr);
  1403. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1404. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1405. DP_STATS_INC(peer, rx.bw[bw], 1);
  1406. /*
  1407. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1408. * then increase index [nss - 1] in array counter.
  1409. */
  1410. if (nss > 0 && (pkt_type == DOT11_N ||
  1411. pkt_type == DOT11_AC ||
  1412. pkt_type == DOT11_AX))
  1413. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1414. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1415. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1416. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1417. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1418. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1419. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1420. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1421. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1422. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1423. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1424. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1425. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1426. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1427. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1428. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1429. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1430. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1431. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1432. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1433. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1434. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1435. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1436. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1437. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1438. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1439. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1440. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1441. if ((soc->process_rx_status) &&
  1442. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1443. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1444. if (!vdev->pdev)
  1445. return;
  1446. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1447. &peer->stats, peer->peer_ids[0],
  1448. UPDATE_PEER_STATS,
  1449. vdev->pdev->pdev_id);
  1450. #endif
  1451. }
  1452. }
  1453. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1454. uint8_t *rx_tlv_hdr,
  1455. qdf_nbuf_t nbuf,
  1456. struct hal_rx_msdu_metadata msdu_info)
  1457. {
  1458. if ((qdf_nbuf_is_sa_valid(nbuf) &&
  1459. (msdu_info.sa_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1460. (!qdf_nbuf_is_da_mcbc(nbuf) &&
  1461. qdf_nbuf_is_da_valid(nbuf) &&
  1462. (msdu_info.da_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1463. return false;
  1464. return true;
  1465. }
  1466. #ifndef WDS_VENDOR_EXTENSION
  1467. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1468. struct dp_vdev *vdev,
  1469. struct dp_peer *peer)
  1470. {
  1471. return 1;
  1472. }
  1473. #endif
  1474. #ifdef RX_DESC_DEBUG_CHECK
  1475. /**
  1476. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1477. * corruption
  1478. *
  1479. * @ring_desc: REO ring descriptor
  1480. * @rx_desc: Rx descriptor
  1481. *
  1482. * Return: NONE
  1483. */
  1484. static inline
  1485. void dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1486. struct dp_rx_desc *rx_desc)
  1487. {
  1488. struct hal_buf_info hbi;
  1489. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1490. /* Sanity check for possible buffer paddr corruption */
  1491. qdf_assert_always((&hbi)->paddr ==
  1492. qdf_nbuf_get_frag_paddr(rx_desc->nbuf, 0));
  1493. }
  1494. #else
  1495. static inline
  1496. void dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1497. struct dp_rx_desc *rx_desc)
  1498. {
  1499. }
  1500. #endif
  1501. #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
  1502. static inline
  1503. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1504. {
  1505. bool limit_hit = false;
  1506. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  1507. limit_hit =
  1508. (num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
  1509. if (limit_hit)
  1510. DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
  1511. return limit_hit;
  1512. }
  1513. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1514. {
  1515. return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
  1516. }
  1517. #else
  1518. static inline
  1519. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1520. {
  1521. return false;
  1522. }
  1523. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1524. {
  1525. return false;
  1526. }
  1527. #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
  1528. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1529. /**
  1530. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1531. * no corresbonding peer found
  1532. * @soc: core txrx main context
  1533. * @nbuf: pkt skb pointer
  1534. *
  1535. * This function will try to deliver some RX special frames to stack
  1536. * even there is no peer matched found. for instance, LFR case, some
  1537. * eapol data will be sent to host before peer_map done.
  1538. *
  1539. * Return: None
  1540. */
  1541. static
  1542. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1543. {
  1544. uint16_t peer_id;
  1545. uint8_t vdev_id;
  1546. struct dp_vdev *vdev;
  1547. uint32_t l2_hdr_offset = 0;
  1548. uint16_t msdu_len = 0;
  1549. uint32_t pkt_len = 0;
  1550. uint8_t *rx_tlv_hdr;
  1551. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  1552. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  1553. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1554. if (peer_id > soc->max_peers)
  1555. goto deliver_fail;
  1556. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1557. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id);
  1558. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  1559. goto deliver_fail;
  1560. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  1561. goto deliver_fail;
  1562. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1563. l2_hdr_offset =
  1564. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1565. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1566. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1567. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  1568. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1569. qdf_nbuf_pull_head(nbuf,
  1570. RX_PKT_TLVS_LEN +
  1571. l2_hdr_offset);
  1572. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  1573. vdev->osif_rx(vdev->osif_vdev, nbuf);
  1574. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1575. return;
  1576. }
  1577. deliver_fail:
  1578. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1579. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1580. qdf_nbuf_free(nbuf);
  1581. }
  1582. #else
  1583. static inline
  1584. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1585. {
  1586. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1587. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1588. qdf_nbuf_free(nbuf);
  1589. }
  1590. #endif
  1591. /**
  1592. * dp_rx_srng_get_num_pending() - get number of pending entries
  1593. * @hal_soc: hal soc opaque pointer
  1594. * @hal_ring: opaque pointer to the HAL Rx Ring
  1595. * @num_entries: number of entries in the hal_ring.
  1596. * @near_full: pointer to a boolean. This is set if ring is near full.
  1597. *
  1598. * The function returns the number of entries in a destination ring which are
  1599. * yet to be reaped. The function also checks if the ring is near full.
  1600. * If more than half of the ring needs to be reaped, the ring is considered
  1601. * approaching full.
  1602. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1603. * entries. It should not be called within a SRNG lock. HW pointer value is
  1604. * synced into cached_hp.
  1605. *
  1606. * Return: Number of pending entries if any
  1607. */
  1608. static
  1609. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1610. hal_ring_handle_t hal_ring_hdl,
  1611. uint32_t num_entries,
  1612. bool *near_full)
  1613. {
  1614. uint32_t num_pending = 0;
  1615. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1616. hal_ring_hdl,
  1617. true);
  1618. if (num_entries && (num_pending >= num_entries >> 1))
  1619. *near_full = true;
  1620. else
  1621. *near_full = false;
  1622. return num_pending;
  1623. }
  1624. #ifdef WLAN_SUPPORT_RX_FISA
  1625. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1626. {
  1627. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1628. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1629. }
  1630. /**
  1631. * dp_rx_set_hdr_pad() - set l3 padding in nbuf cb
  1632. * @nbuf: pkt skb pointer
  1633. * @l3_padding: l3 padding
  1634. *
  1635. * Return: None
  1636. */
  1637. static inline
  1638. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1639. {
  1640. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1641. }
  1642. #else
  1643. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1644. {
  1645. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1646. }
  1647. static inline
  1648. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1649. {
  1650. }
  1651. #endif
  1652. /**
  1653. * dp_rx_process() - Brain of the Rx processing functionality
  1654. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1655. * @int_ctx: per interrupt context
  1656. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1657. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  1658. * @quota: No. of units (packets) that can be serviced in one shot.
  1659. *
  1660. * This function implements the core of Rx functionality. This is
  1661. * expected to handle only non-error frames.
  1662. *
  1663. * Return: uint32_t: No. of elements processed
  1664. */
  1665. uint32_t dp_rx_process(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl,
  1666. uint8_t reo_ring_num, uint32_t quota)
  1667. {
  1668. hal_ring_desc_t ring_desc;
  1669. hal_soc_handle_t hal_soc;
  1670. struct dp_rx_desc *rx_desc = NULL;
  1671. qdf_nbuf_t nbuf, next;
  1672. bool near_full;
  1673. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
  1674. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
  1675. uint32_t num_pending;
  1676. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  1677. uint16_t msdu_len = 0;
  1678. uint16_t peer_id;
  1679. uint8_t vdev_id;
  1680. struct dp_peer *peer;
  1681. struct dp_vdev *vdev;
  1682. uint32_t pkt_len = 0;
  1683. struct hal_rx_mpdu_desc_info mpdu_desc_info;
  1684. struct hal_rx_msdu_desc_info msdu_desc_info;
  1685. enum hal_reo_error_status error;
  1686. uint32_t peer_mdata;
  1687. uint8_t *rx_tlv_hdr;
  1688. uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
  1689. uint8_t mac_id = 0;
  1690. struct dp_pdev *rx_pdev;
  1691. struct dp_srng *dp_rxdma_srng;
  1692. struct rx_desc_pool *rx_desc_pool;
  1693. struct dp_soc *soc = int_ctx->soc;
  1694. uint8_t ring_id = 0;
  1695. uint8_t core_id = 0;
  1696. struct cdp_tid_rx_stats *tid_stats;
  1697. qdf_nbuf_t nbuf_head;
  1698. qdf_nbuf_t nbuf_tail;
  1699. qdf_nbuf_t deliver_list_head;
  1700. qdf_nbuf_t deliver_list_tail;
  1701. uint32_t num_rx_bufs_reaped = 0;
  1702. uint32_t intr_id;
  1703. struct hif_opaque_softc *scn;
  1704. int32_t tid = 0;
  1705. bool is_prev_msdu_last = true;
  1706. uint32_t num_entries_avail = 0;
  1707. uint32_t rx_ol_pkt_cnt = 0;
  1708. uint32_t num_entries = 0;
  1709. struct hal_rx_msdu_metadata msdu_metadata;
  1710. QDF_STATUS status;
  1711. DP_HIST_INIT();
  1712. qdf_assert_always(soc && hal_ring_hdl);
  1713. hal_soc = soc->hal_soc;
  1714. qdf_assert_always(hal_soc);
  1715. scn = soc->hif_handle;
  1716. hif_pm_runtime_mark_dp_rx_busy(scn);
  1717. intr_id = int_ctx->dp_intr_id;
  1718. num_entries = hal_srng_get_num_entries(hal_soc, hal_ring_hdl);
  1719. more_data:
  1720. /* reset local variables here to be re-used in the function */
  1721. nbuf_head = NULL;
  1722. nbuf_tail = NULL;
  1723. deliver_list_head = NULL;
  1724. deliver_list_tail = NULL;
  1725. peer = NULL;
  1726. vdev = NULL;
  1727. num_rx_bufs_reaped = 0;
  1728. qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
  1729. qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
  1730. qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
  1731. qdf_mem_zero(head, sizeof(head));
  1732. qdf_mem_zero(tail, sizeof(tail));
  1733. if (qdf_unlikely(dp_rx_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
  1734. /*
  1735. * Need API to convert from hal_ring pointer to
  1736. * Ring Type / Ring Id combo
  1737. */
  1738. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1739. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1740. FL("HAL RING Access Failed -- %pK"), hal_ring_hdl);
  1741. goto done;
  1742. }
  1743. /*
  1744. * start reaping the buffers from reo ring and queue
  1745. * them in per vdev queue.
  1746. * Process the received pkts in a different per vdev loop.
  1747. */
  1748. while (qdf_likely(quota &&
  1749. (ring_desc = hal_srng_dst_peek(hal_soc,
  1750. hal_ring_hdl)))) {
  1751. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1752. ring_id = hal_srng_ring_id_get(hal_ring_hdl);
  1753. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1754. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1755. FL("HAL RING 0x%pK:error %d"), hal_ring_hdl, error);
  1756. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1757. /* Don't know how to deal with this -- assert */
  1758. qdf_assert(0);
  1759. }
  1760. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1761. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1762. status = dp_rx_desc_sanity(soc, hal_soc, hal_ring_hdl,
  1763. ring_desc, rx_desc);
  1764. if (QDF_IS_STATUS_ERROR(status)) {
  1765. if (qdf_unlikely(rx_desc && rx_desc->nbuf)) {
  1766. qdf_assert_always(rx_desc->unmapped);
  1767. qdf_nbuf_unmap_nbytes_single(
  1768. soc->osdev,
  1769. rx_desc->nbuf,
  1770. QDF_DMA_FROM_DEVICE,
  1771. RX_DATA_BUFFER_SIZE);
  1772. rx_desc->unmapped = 1;
  1773. qdf_nbuf_free(rx_desc->nbuf);
  1774. dp_rx_add_to_free_desc_list(
  1775. &head[rx_desc->pool_id],
  1776. &tail[rx_desc->pool_id],
  1777. rx_desc);
  1778. }
  1779. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1780. continue;
  1781. }
  1782. /*
  1783. * this is a unlikely scenario where the host is reaping
  1784. * a descriptor which it already reaped just a while ago
  1785. * but is yet to replenish it back to HW.
  1786. * In this case host will dump the last 128 descriptors
  1787. * including the software descriptor rx_desc and assert.
  1788. */
  1789. if (qdf_unlikely(!rx_desc->in_use)) {
  1790. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  1791. dp_info_rl("Reaping rx_desc not in use!");
  1792. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  1793. ring_desc, rx_desc);
  1794. /* ignore duplicate RX desc and continue to process */
  1795. /* Pop out the descriptor */
  1796. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1797. continue;
  1798. }
  1799. dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
  1800. if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
  1801. dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
  1802. DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
  1803. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  1804. ring_desc, rx_desc);
  1805. }
  1806. /* Get MPDU DESC info */
  1807. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  1808. /* Get MSDU DESC info */
  1809. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  1810. if (qdf_unlikely(msdu_desc_info.msdu_flags &
  1811. HAL_MSDU_F_MSDU_CONTINUATION)) {
  1812. /* previous msdu has end bit set, so current one is
  1813. * the new MPDU
  1814. */
  1815. if (is_prev_msdu_last) {
  1816. /* Get number of entries available in HW ring */
  1817. num_entries_avail =
  1818. hal_srng_dst_num_valid(hal_soc,
  1819. hal_ring_hdl, 1);
  1820. /* For new MPDU check if we can read complete
  1821. * MPDU by comparing the number of buffers
  1822. * available and number of buffers needed to
  1823. * reap this MPDU
  1824. */
  1825. if (((msdu_desc_info.msdu_len /
  1826. (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN) +
  1827. 1)) > num_entries_avail) {
  1828. DP_STATS_INC(
  1829. soc,
  1830. rx.msdu_scatter_wait_break,
  1831. 1);
  1832. break;
  1833. }
  1834. is_prev_msdu_last = false;
  1835. }
  1836. }
  1837. core_id = smp_processor_id();
  1838. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  1839. if (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RETRY_BIT)
  1840. qdf_nbuf_set_rx_retry_flag(rx_desc->nbuf, 1);
  1841. if (qdf_unlikely(mpdu_desc_info.mpdu_flags &
  1842. HAL_MPDU_F_RAW_AMPDU))
  1843. qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1);
  1844. if (!is_prev_msdu_last &&
  1845. msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1846. is_prev_msdu_last = true;
  1847. /* Pop out the descriptor*/
  1848. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1849. rx_bufs_reaped[rx_desc->pool_id]++;
  1850. peer_mdata = mpdu_desc_info.peer_meta_data;
  1851. QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
  1852. DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1853. QDF_NBUF_CB_RX_VDEV_ID(rx_desc->nbuf) =
  1854. DP_PEER_METADATA_VDEV_ID_GET(peer_mdata);
  1855. /*
  1856. * save msdu flags first, last and continuation msdu in
  1857. * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
  1858. * length to nbuf->cb. This ensures the info required for
  1859. * per pkt processing is always in the same cache line.
  1860. * This helps in improving throughput for smaller pkt
  1861. * sizes.
  1862. */
  1863. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  1864. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  1865. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  1866. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  1867. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1868. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  1869. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
  1870. qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
  1871. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
  1872. qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
  1873. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
  1874. qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
  1875. qdf_nbuf_set_tid_val(rx_desc->nbuf,
  1876. HAL_RX_REO_QUEUE_NUMBER_GET(ring_desc));
  1877. QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
  1878. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  1879. /*
  1880. * move unmap after scattered msdu waiting break logic
  1881. * in case double skb unmap happened.
  1882. */
  1883. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  1884. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  1885. QDF_DMA_FROM_DEVICE,
  1886. rx_desc_pool->buf_size);
  1887. rx_desc->unmapped = 1;
  1888. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1889. /*
  1890. * if continuation bit is set then we have MSDU spread
  1891. * across multiple buffers, let us not decrement quota
  1892. * till we reap all buffers of that MSDU.
  1893. */
  1894. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1895. quota -= 1;
  1896. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1897. &tail[rx_desc->pool_id],
  1898. rx_desc);
  1899. num_rx_bufs_reaped++;
  1900. /*
  1901. * only if complete msdu is received for scatter case,
  1902. * then allow break.
  1903. */
  1904. if (is_prev_msdu_last &&
  1905. dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
  1906. break;
  1907. }
  1908. done:
  1909. dp_rx_srng_access_end(int_ctx, soc, hal_ring_hdl);
  1910. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1911. /*
  1912. * continue with next mac_id if no pkts were reaped
  1913. * from that pool
  1914. */
  1915. if (!rx_bufs_reaped[mac_id])
  1916. continue;
  1917. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_id];
  1918. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1919. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1920. rx_desc_pool, rx_bufs_reaped[mac_id],
  1921. &head[mac_id], &tail[mac_id]);
  1922. }
  1923. dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
  1924. /* Peer can be NULL is case of LFR */
  1925. if (qdf_likely(peer))
  1926. vdev = NULL;
  1927. /*
  1928. * BIG loop where each nbuf is dequeued from global queue,
  1929. * processed and queued back on a per vdev basis. These nbufs
  1930. * are sent to stack as and when we run out of nbufs
  1931. * or a new nbuf dequeued from global queue has a different
  1932. * vdev when compared to previous nbuf.
  1933. */
  1934. nbuf = nbuf_head;
  1935. while (nbuf) {
  1936. next = nbuf->next;
  1937. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1938. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1939. if (deliver_list_head && vdev && (vdev->vdev_id != vdev_id)) {
  1940. dp_rx_deliver_to_stack(soc, vdev, peer,
  1941. deliver_list_head,
  1942. deliver_list_tail);
  1943. deliver_list_head = NULL;
  1944. deliver_list_tail = NULL;
  1945. }
  1946. /* Get TID from struct cb->tid_val, save to tid */
  1947. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  1948. tid = qdf_nbuf_get_tid_val(nbuf);
  1949. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1950. peer = dp_peer_find_by_id(soc, peer_id);
  1951. if (peer) {
  1952. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  1953. qdf_dp_trace_set_track(nbuf, QDF_RX);
  1954. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  1955. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  1956. QDF_NBUF_RX_PKT_DATA_TRACK;
  1957. }
  1958. rx_bufs_used++;
  1959. if (qdf_likely(peer)) {
  1960. vdev = peer->vdev;
  1961. } else {
  1962. nbuf->next = NULL;
  1963. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  1964. nbuf = next;
  1965. continue;
  1966. }
  1967. if (qdf_unlikely(!vdev)) {
  1968. qdf_nbuf_free(nbuf);
  1969. nbuf = next;
  1970. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  1971. dp_peer_unref_del_find_by_id(peer);
  1972. continue;
  1973. }
  1974. rx_pdev = vdev->pdev;
  1975. DP_RX_TID_SAVE(nbuf, tid);
  1976. if (qdf_unlikely(rx_pdev->delay_stats_flag))
  1977. qdf_nbuf_set_timestamp(nbuf);
  1978. ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1979. tid_stats =
  1980. &rx_pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1981. /*
  1982. * Check if DMA completed -- msdu_done is the last bit
  1983. * to be written
  1984. */
  1985. if (qdf_unlikely(!qdf_nbuf_is_rx_chfrag_cont(nbuf) &&
  1986. !hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  1987. dp_err("MSDU DONE failure");
  1988. DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
  1989. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  1990. QDF_TRACE_LEVEL_INFO);
  1991. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  1992. qdf_nbuf_free(nbuf);
  1993. qdf_assert(0);
  1994. nbuf = next;
  1995. continue;
  1996. }
  1997. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  1998. /*
  1999. * First IF condition:
  2000. * 802.11 Fragmented pkts are reinjected to REO
  2001. * HW block as SG pkts and for these pkts we only
  2002. * need to pull the RX TLVS header length.
  2003. * Second IF condition:
  2004. * The below condition happens when an MSDU is spread
  2005. * across multiple buffers. This can happen in two cases
  2006. * 1. The nbuf size is smaller then the received msdu.
  2007. * ex: we have set the nbuf size to 2048 during
  2008. * nbuf_alloc. but we received an msdu which is
  2009. * 2304 bytes in size then this msdu is spread
  2010. * across 2 nbufs.
  2011. *
  2012. * 2. AMSDUs when RAW mode is enabled.
  2013. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  2014. * across 1st nbuf and 2nd nbuf and last MSDU is
  2015. * spread across 2nd nbuf and 3rd nbuf.
  2016. *
  2017. * for these scenarios let us create a skb frag_list and
  2018. * append these buffers till the last MSDU of the AMSDU
  2019. * Third condition:
  2020. * This is the most likely case, we receive 802.3 pkts
  2021. * decapsulated by HW, here we need to set the pkt length.
  2022. */
  2023. hal_rx_msdu_metadata_get(hal_soc, rx_tlv_hdr, &msdu_metadata);
  2024. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2025. bool is_mcbc, is_sa_vld, is_da_vld;
  2026. is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(soc->hal_soc,
  2027. rx_tlv_hdr);
  2028. is_sa_vld =
  2029. hal_rx_msdu_end_sa_is_valid_get(soc->hal_soc,
  2030. rx_tlv_hdr);
  2031. is_da_vld =
  2032. hal_rx_msdu_end_da_is_valid_get(soc->hal_soc,
  2033. rx_tlv_hdr);
  2034. qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
  2035. qdf_nbuf_set_da_valid(nbuf, is_da_vld);
  2036. qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
  2037. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  2038. } else if (qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  2039. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2040. nbuf = dp_rx_sg_create(nbuf);
  2041. next = nbuf->next;
  2042. if (qdf_nbuf_is_raw_frame(nbuf)) {
  2043. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  2044. DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
  2045. } else {
  2046. qdf_nbuf_free(nbuf);
  2047. DP_STATS_INC(soc, rx.err.scatter_msdu, 1);
  2048. dp_info_rl("scatter msdu len %d, dropped",
  2049. msdu_len);
  2050. nbuf = next;
  2051. dp_peer_unref_del_find_by_id(peer);
  2052. continue;
  2053. }
  2054. } else {
  2055. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2056. pkt_len = msdu_len +
  2057. msdu_metadata.l3_hdr_pad +
  2058. RX_PKT_TLVS_LEN;
  2059. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  2060. dp_rx_skip_tlvs(nbuf, msdu_metadata.l3_hdr_pad);
  2061. }
  2062. /*
  2063. * process frame for mulitpass phrase processing
  2064. */
  2065. if (qdf_unlikely(vdev->multipass_en)) {
  2066. if (dp_rx_multipass_process(peer, nbuf, tid) == false) {
  2067. DP_STATS_INC(peer, rx.multipass_rx_pkt_drop, 1);
  2068. qdf_nbuf_free(nbuf);
  2069. nbuf = next;
  2070. dp_peer_unref_del_find_by_id(peer);
  2071. continue;
  2072. }
  2073. }
  2074. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
  2075. QDF_TRACE(QDF_MODULE_ID_DP,
  2076. QDF_TRACE_LEVEL_ERROR,
  2077. FL("Policy Check Drop pkt"));
  2078. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  2079. /* Drop & free packet */
  2080. qdf_nbuf_free(nbuf);
  2081. /* Statistics */
  2082. nbuf = next;
  2083. dp_peer_unref_del_find_by_id(peer);
  2084. continue;
  2085. }
  2086. if (qdf_unlikely(peer && (peer->nawds_enabled) &&
  2087. (qdf_nbuf_is_da_mcbc(nbuf)) &&
  2088. (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc,
  2089. rx_tlv_hdr) ==
  2090. false))) {
  2091. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  2092. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  2093. qdf_nbuf_free(nbuf);
  2094. nbuf = next;
  2095. dp_peer_unref_del_find_by_id(peer);
  2096. continue;
  2097. }
  2098. if (soc->process_rx_status)
  2099. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  2100. /* Update the protocol tag in SKB based on CCE metadata */
  2101. dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
  2102. reo_ring_num, false, true);
  2103. /* Update the flow tag in SKB based on FSE metadata */
  2104. dp_rx_update_flow_tag(soc, vdev, nbuf, rx_tlv_hdr, true);
  2105. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
  2106. ring_id, tid_stats);
  2107. if (qdf_unlikely(vdev->mesh_vdev)) {
  2108. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  2109. == QDF_STATUS_SUCCESS) {
  2110. QDF_TRACE(QDF_MODULE_ID_DP,
  2111. QDF_TRACE_LEVEL_INFO_MED,
  2112. FL("mesh pkt filtered"));
  2113. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  2114. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  2115. 1);
  2116. qdf_nbuf_free(nbuf);
  2117. nbuf = next;
  2118. dp_peer_unref_del_find_by_id(peer);
  2119. continue;
  2120. }
  2121. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  2122. }
  2123. if (qdf_likely(vdev->rx_decap_type ==
  2124. htt_cmn_pkt_type_ethernet) &&
  2125. qdf_likely(!vdev->mesh_vdev)) {
  2126. /* WDS Destination Address Learning */
  2127. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  2128. /* Due to HW issue, sometimes we see that the sa_idx
  2129. * and da_idx are invalid with sa_valid and da_valid
  2130. * bits set
  2131. *
  2132. * in this case we also see that value of
  2133. * sa_sw_peer_id is set as 0
  2134. *
  2135. * Drop the packet if sa_idx and da_idx OOB or
  2136. * sa_sw_peerid is 0
  2137. */
  2138. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf,
  2139. msdu_metadata)) {
  2140. qdf_nbuf_free(nbuf);
  2141. nbuf = next;
  2142. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  2143. dp_peer_unref_del_find_by_id(peer);
  2144. continue;
  2145. }
  2146. /* WDS Source Port Learning */
  2147. if (qdf_likely(vdev->wds_enabled))
  2148. dp_rx_wds_srcport_learn(soc,
  2149. rx_tlv_hdr,
  2150. peer,
  2151. nbuf,
  2152. msdu_metadata);
  2153. /* Intrabss-fwd */
  2154. if (dp_rx_check_ap_bridge(vdev))
  2155. if (dp_rx_intrabss_fwd(soc,
  2156. peer,
  2157. rx_tlv_hdr,
  2158. nbuf,
  2159. msdu_metadata)) {
  2160. nbuf = next;
  2161. dp_peer_unref_del_find_by_id(peer);
  2162. tid_stats->intrabss_cnt++;
  2163. continue; /* Get next desc */
  2164. }
  2165. }
  2166. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf, &rx_ol_pkt_cnt);
  2167. DP_RX_LIST_APPEND(deliver_list_head,
  2168. deliver_list_tail,
  2169. nbuf);
  2170. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  2171. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2172. tid_stats->delivered_to_stack++;
  2173. nbuf = next;
  2174. dp_peer_unref_del_find_by_id(peer);
  2175. }
  2176. if (qdf_likely(deliver_list_head)) {
  2177. if (qdf_likely(peer))
  2178. dp_rx_deliver_to_stack(soc, vdev, peer,
  2179. deliver_list_head,
  2180. deliver_list_tail);
  2181. else {
  2182. nbuf = deliver_list_head;
  2183. while (nbuf) {
  2184. next = nbuf->next;
  2185. nbuf->next = NULL;
  2186. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2187. nbuf = next;
  2188. }
  2189. }
  2190. }
  2191. if (dp_rx_enable_eol_data_check(soc) && rx_bufs_used) {
  2192. if (quota) {
  2193. num_pending =
  2194. dp_rx_srng_get_num_pending(hal_soc,
  2195. hal_ring_hdl,
  2196. num_entries,
  2197. &near_full);
  2198. if (num_pending) {
  2199. DP_STATS_INC(soc, rx.hp_oos2, 1);
  2200. if (!hif_exec_should_yield(scn, intr_id))
  2201. goto more_data;
  2202. if (qdf_unlikely(near_full)) {
  2203. DP_STATS_INC(soc, rx.near_full, 1);
  2204. goto more_data;
  2205. }
  2206. }
  2207. }
  2208. if (vdev && vdev->osif_fisa_flush)
  2209. vdev->osif_fisa_flush(soc, reo_ring_num);
  2210. if (vdev && vdev->osif_gro_flush && rx_ol_pkt_cnt) {
  2211. vdev->osif_gro_flush(vdev->osif_vdev,
  2212. reo_ring_num);
  2213. }
  2214. }
  2215. /* Update histogram statistics by looping through pdev's */
  2216. DP_RX_HIST_STATS_PER_PDEV();
  2217. return rx_bufs_used; /* Assume no scale factor for now */
  2218. }
  2219. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2220. {
  2221. QDF_STATUS ret;
  2222. if (vdev->osif_rx_flush) {
  2223. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2224. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  2225. dp_err("Failed to flush rx pkts for vdev %d\n",
  2226. vdev->vdev_id);
  2227. return ret;
  2228. }
  2229. }
  2230. return QDF_STATUS_SUCCESS;
  2231. }
  2232. static QDF_STATUS
  2233. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc, qdf_nbuf_t *nbuf,
  2234. struct dp_pdev *dp_pdev,
  2235. struct rx_desc_pool *rx_desc_pool)
  2236. {
  2237. qdf_dma_addr_t paddr;
  2238. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2239. *nbuf = qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  2240. RX_BUFFER_RESERVATION,
  2241. rx_desc_pool->buf_alignment, FALSE);
  2242. if (!(*nbuf)) {
  2243. dp_err("nbuf alloc failed");
  2244. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2245. return ret;
  2246. }
  2247. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev, *nbuf,
  2248. QDF_DMA_FROM_DEVICE,
  2249. rx_desc_pool->buf_size);
  2250. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2251. qdf_nbuf_free(*nbuf);
  2252. dp_err("nbuf map failed");
  2253. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2254. return ret;
  2255. }
  2256. paddr = qdf_nbuf_get_frag_paddr(*nbuf, 0);
  2257. ret = check_x86_paddr(dp_soc, nbuf, &paddr, rx_desc_pool);
  2258. if (ret == QDF_STATUS_E_FAILURE) {
  2259. qdf_nbuf_unmap_nbytes_single(dp_soc->osdev, *nbuf,
  2260. QDF_DMA_FROM_DEVICE,
  2261. rx_desc_pool->buf_size);
  2262. qdf_nbuf_free(*nbuf);
  2263. dp_err("nbuf check x86 failed");
  2264. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2265. return ret;
  2266. }
  2267. return QDF_STATUS_SUCCESS;
  2268. }
  2269. QDF_STATUS
  2270. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2271. struct dp_srng *dp_rxdma_srng,
  2272. struct rx_desc_pool *rx_desc_pool,
  2273. uint32_t num_req_buffers)
  2274. {
  2275. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2276. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2277. union dp_rx_desc_list_elem_t *next;
  2278. void *rxdma_ring_entry;
  2279. qdf_dma_addr_t paddr;
  2280. qdf_nbuf_t *rx_nbuf_arr;
  2281. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2282. uint32_t buffer_index, nbuf_ptrs_per_page;
  2283. qdf_nbuf_t nbuf;
  2284. QDF_STATUS ret;
  2285. int page_idx, total_pages;
  2286. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2287. union dp_rx_desc_list_elem_t *tail = NULL;
  2288. int sync_hw_ptr = 1;
  2289. uint32_t num_entries_avail;
  2290. if (qdf_unlikely(!rxdma_srng)) {
  2291. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2292. return QDF_STATUS_E_FAILURE;
  2293. }
  2294. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2295. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2296. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  2297. rxdma_srng,
  2298. sync_hw_ptr);
  2299. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2300. if (!num_entries_avail) {
  2301. dp_err("Num of available entries is zero, nothing to do");
  2302. return QDF_STATUS_E_NOMEM;
  2303. }
  2304. if (num_entries_avail < num_req_buffers)
  2305. num_req_buffers = num_entries_avail;
  2306. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2307. num_req_buffers, &desc_list, &tail);
  2308. if (!nr_descs) {
  2309. dp_err("no free rx_descs in freelist");
  2310. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2311. return QDF_STATUS_E_NOMEM;
  2312. }
  2313. dp_debug("got %u RX descs for driver attach", nr_descs);
  2314. /*
  2315. * Try to allocate pointers to the nbuf one page at a time.
  2316. * Take pointers that can fit in one page of memory and
  2317. * iterate through the total descriptors that need to be
  2318. * allocated in order of pages. Reuse the pointers that
  2319. * have been allocated to fit in one page across each
  2320. * iteration to index into the nbuf.
  2321. */
  2322. total_pages = (nr_descs * sizeof(*rx_nbuf_arr)) / PAGE_SIZE;
  2323. /*
  2324. * Add an extra page to store the remainder if any
  2325. */
  2326. if ((nr_descs * sizeof(*rx_nbuf_arr)) % PAGE_SIZE)
  2327. total_pages++;
  2328. rx_nbuf_arr = qdf_mem_malloc(PAGE_SIZE);
  2329. if (!rx_nbuf_arr) {
  2330. dp_err("failed to allocate nbuf array");
  2331. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2332. QDF_BUG(0);
  2333. return QDF_STATUS_E_NOMEM;
  2334. }
  2335. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*rx_nbuf_arr);
  2336. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2337. qdf_mem_zero(rx_nbuf_arr, PAGE_SIZE);
  2338. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2339. /*
  2340. * The last page of buffer pointers may not be required
  2341. * completely based on the number of descriptors. Below
  2342. * check will ensure we are allocating only the
  2343. * required number of descriptors.
  2344. */
  2345. if (nr_nbuf_total >= nr_descs)
  2346. break;
  2347. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2348. &rx_nbuf_arr[nr_nbuf],
  2349. dp_pdev, rx_desc_pool);
  2350. if (QDF_IS_STATUS_ERROR(ret))
  2351. break;
  2352. nr_nbuf_total++;
  2353. }
  2354. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2355. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2356. rxdma_ring_entry =
  2357. hal_srng_src_get_next(dp_soc->hal_soc,
  2358. rxdma_srng);
  2359. qdf_assert_always(rxdma_ring_entry);
  2360. next = desc_list->next;
  2361. nbuf = rx_nbuf_arr[buffer_index];
  2362. paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
  2363. dp_rx_desc_prep(&desc_list->rx_desc, nbuf);
  2364. desc_list->rx_desc.in_use = 1;
  2365. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  2366. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  2367. __func__,
  2368. RX_DESC_REPLENISHED);
  2369. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  2370. desc_list->rx_desc.cookie,
  2371. rx_desc_pool->owner);
  2372. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, nbuf, true);
  2373. desc_list = next;
  2374. }
  2375. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2376. }
  2377. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2378. qdf_mem_free(rx_nbuf_arr);
  2379. if (!nr_nbuf_total) {
  2380. dp_err("No nbuf's allocated");
  2381. QDF_BUG(0);
  2382. return QDF_STATUS_E_RESOURCES;
  2383. }
  2384. /* No need to count the number of bytes received during replenish.
  2385. * Therefore set replenish.pkts.bytes as 0.
  2386. */
  2387. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2388. return QDF_STATUS_SUCCESS;
  2389. }
  2390. /*
  2391. * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
  2392. * pool
  2393. *
  2394. * @pdev: core txrx pdev context
  2395. *
  2396. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2397. * QDF_STATUS_E_NOMEM
  2398. */
  2399. QDF_STATUS
  2400. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2401. {
  2402. struct dp_soc *soc = pdev->soc;
  2403. uint32_t rxdma_entries;
  2404. uint32_t rx_sw_desc_weight;
  2405. struct dp_srng *dp_rxdma_srng;
  2406. struct rx_desc_pool *rx_desc_pool;
  2407. uint32_t status = QDF_STATUS_SUCCESS;
  2408. int mac_for_pdev;
  2409. mac_for_pdev = pdev->lmac_id;
  2410. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2411. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  2412. "nss-wifi<4> skip Rx refil %d", mac_for_pdev);
  2413. return status;
  2414. }
  2415. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2416. rxdma_entries = dp_rxdma_srng->num_entries;
  2417. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2418. rx_sw_desc_weight = wlan_cfg_get_dp_soc_rx_sw_desc_weight(soc->wlan_cfg_ctx);
  2419. status = dp_rx_desc_pool_alloc(soc,
  2420. rx_sw_desc_weight * rxdma_entries,
  2421. rx_desc_pool);
  2422. if (status != QDF_STATUS_SUCCESS)
  2423. return status;
  2424. return status;
  2425. }
  2426. /*
  2427. * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
  2428. *
  2429. * @pdev: core txrx pdev context
  2430. */
  2431. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2432. {
  2433. int mac_for_pdev = pdev->lmac_id;
  2434. struct dp_soc *soc = pdev->soc;
  2435. struct rx_desc_pool *rx_desc_pool;
  2436. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2437. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2438. }
  2439. /*
  2440. * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
  2441. *
  2442. * @pdev: core txrx pdev context
  2443. *
  2444. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2445. * QDF_STATUS_E_NOMEM
  2446. */
  2447. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2448. {
  2449. int mac_for_pdev = pdev->lmac_id;
  2450. struct dp_soc *soc = pdev->soc;
  2451. uint32_t rxdma_entries;
  2452. uint32_t rx_sw_desc_weight;
  2453. struct dp_srng *dp_rxdma_srng;
  2454. struct rx_desc_pool *rx_desc_pool;
  2455. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2456. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  2457. "nss-wifi<4> skip Rx refil %d", mac_for_pdev);
  2458. return QDF_STATUS_SUCCESS;
  2459. }
  2460. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2461. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2462. return QDF_STATUS_E_NOMEM;
  2463. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2464. rxdma_entries = dp_rxdma_srng->num_entries;
  2465. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2466. rx_sw_desc_weight =
  2467. wlan_cfg_get_dp_soc_rx_sw_desc_weight(soc->wlan_cfg_ctx);
  2468. rx_desc_pool->owner = DP_WBM2SW_RBM;
  2469. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2470. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2471. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2472. rx_sw_desc_weight * rxdma_entries,
  2473. rx_desc_pool);
  2474. return QDF_STATUS_SUCCESS;
  2475. }
  2476. /*
  2477. * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
  2478. * @pdev: core txrx pdev context
  2479. *
  2480. * This function resets the freelist of rx descriptors and destroys locks
  2481. * associated with this list of descriptors.
  2482. */
  2483. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  2484. {
  2485. int mac_for_pdev = pdev->lmac_id;
  2486. struct dp_soc *soc = pdev->soc;
  2487. struct rx_desc_pool *rx_desc_pool;
  2488. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2489. dp_rx_desc_pool_deinit(soc, rx_desc_pool);
  2490. }
  2491. /*
  2492. * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
  2493. *
  2494. * @pdev: core txrx pdev context
  2495. *
  2496. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2497. * QDF_STATUS_E_NOMEM
  2498. */
  2499. QDF_STATUS
  2500. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  2501. {
  2502. int mac_for_pdev = pdev->lmac_id;
  2503. struct dp_soc *soc = pdev->soc;
  2504. struct dp_srng *dp_rxdma_srng;
  2505. struct rx_desc_pool *rx_desc_pool;
  2506. uint32_t rxdma_entries;
  2507. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2508. rxdma_entries = dp_rxdma_srng->num_entries;
  2509. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2510. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev, dp_rxdma_srng,
  2511. rx_desc_pool, rxdma_entries - 1);
  2512. }
  2513. /*
  2514. * dp_rx_pdev_buffers_free - Free nbufs (skbs)
  2515. *
  2516. * @pdev: core txrx pdev context
  2517. */
  2518. void
  2519. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  2520. {
  2521. int mac_for_pdev = pdev->lmac_id;
  2522. struct dp_soc *soc = pdev->soc;
  2523. struct rx_desc_pool *rx_desc_pool;
  2524. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2525. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  2526. }
  2527. /*
  2528. * dp_rx_nbuf_prepare() - prepare RX nbuf
  2529. * @soc: core txrx main context
  2530. * @pdev: core txrx pdev context
  2531. *
  2532. * This function alloc & map nbuf for RX dma usage, retry it if failed
  2533. * until retry times reaches max threshold or succeeded.
  2534. *
  2535. * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
  2536. */
  2537. qdf_nbuf_t
  2538. dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
  2539. {
  2540. uint8_t *buf;
  2541. int32_t nbuf_retry_count;
  2542. QDF_STATUS ret;
  2543. qdf_nbuf_t nbuf = NULL;
  2544. for (nbuf_retry_count = 0; nbuf_retry_count <
  2545. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
  2546. nbuf_retry_count++) {
  2547. /* Allocate a new skb */
  2548. nbuf = qdf_nbuf_alloc(soc->osdev,
  2549. RX_DATA_BUFFER_SIZE,
  2550. RX_BUFFER_RESERVATION,
  2551. RX_DATA_BUFFER_ALIGNMENT,
  2552. FALSE);
  2553. if (!nbuf) {
  2554. DP_STATS_INC(pdev,
  2555. replenish.nbuf_alloc_fail, 1);
  2556. continue;
  2557. }
  2558. buf = qdf_nbuf_data(nbuf);
  2559. memset(buf, 0, RX_DATA_BUFFER_SIZE);
  2560. ret = qdf_nbuf_map_nbytes_single(soc->osdev, nbuf,
  2561. QDF_DMA_FROM_DEVICE,
  2562. RX_DATA_BUFFER_SIZE);
  2563. /* nbuf map failed */
  2564. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2565. qdf_nbuf_free(nbuf);
  2566. DP_STATS_INC(pdev, replenish.map_err, 1);
  2567. continue;
  2568. }
  2569. /* qdf_nbuf alloc and map succeeded */
  2570. break;
  2571. }
  2572. /* qdf_nbuf still alloc or map failed */
  2573. if (qdf_unlikely(nbuf_retry_count >=
  2574. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
  2575. return NULL;
  2576. return nbuf;
  2577. }
  2578. #ifdef DP_RX_SPECIAL_FRAME_NEED
  2579. bool dp_rx_deliver_special_frame(struct dp_soc *soc, struct dp_peer *peer,
  2580. qdf_nbuf_t nbuf, uint32_t frame_mask,
  2581. uint8_t *rx_tlv_hdr)
  2582. {
  2583. uint32_t l2_hdr_offset = 0;
  2584. uint16_t msdu_len = 0;
  2585. uint32_t skip_len;
  2586. l2_hdr_offset =
  2587. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2588. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2589. skip_len = l2_hdr_offset;
  2590. } else {
  2591. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2592. skip_len = l2_hdr_offset + RX_PKT_TLVS_LEN;
  2593. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  2594. }
  2595. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2596. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  2597. qdf_nbuf_pull_head(nbuf, skip_len);
  2598. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  2599. dp_rx_deliver_to_stack(soc, peer->vdev, peer,
  2600. nbuf, NULL);
  2601. return true;
  2602. }
  2603. return false;
  2604. }
  2605. #endif